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Abstract
Background: HIV-1 infection affects malaria humeral immunity during pregnancy, but data for
non-pregnant adults are lacking. This study reports the impact of HIV-1 infection and other
variables on the level of malaria humeral immunity in adults with clinical malaria and whether
humeral immune suppression was a risk factor for treatment failure.

Methods: Sera of 224 HIV-1 infected and 115 uninfected adults were compared for IgG to
merozoite antigens AMA-1 and MSP2 (3D7 and FC27 types) determined by ELISA, and for IgG to
the Variant Surface Antigens (VSA) of three different parasite line E8B, A4 and HCD6 determined
by flow cytometry.

Results: Compared to HIV-1 uninfected adults, AMA-1 IgG was lower in HIV-1 infected (P = 0.02)
and associated with low CD4 count AMA-1 IgG (P = 0.003). Low IgG to all three merozoite
antigens was associated with less anemia (P = 0.03). High parasite load was associated with low
MSP2 IgG 3D7 and FC27 types (P = 0.02 and P = 0.08). Antibody levels to VSA did not differ
between HIV-1 infected and uninfected adults. However, low VSA IgGs were associated with high
parasite load (P ≤ 0.002 for each parasite line) and with treatment failure (P ≤ 0.04 for each parasite
line).

Conclusion: HIV-1 affects humeral responses to AMA-1, but seems to marginally or not affect
humeral responses to other merozoite antigens and VSAs. The latter were important for
controlling parasite density and predict treatment outcome.

Background
Humeral responses are of critical importance to blood
stage immunity to Plasmodium falciparum[1]. Malaria-spe-

cific antibodies mediate important anti-parasitic effector
functions, including inhibition of cyto-adherence, inhibi-
tion of erythrocyte invasion, opsonization for phagocytic
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clearance, antibody-dependent cyto-toxicity and cellular
inhibition[2]. Well-known merozoite antigens are the
apical membrane antigen 1 (AMA-1) and merozoite sur-
face proteins (MSPs)[3]. These antigens are involved in
erythrocyte invasion[4,5] and are important vaccine can-
didates[6]. Variant surface antigens (VSAs) are important
targets of protective immunity[7], but are also responsible
for parasite evasion of the immune system by means of
clonal antigenic variation [8-10].

Co-infection with HIV-1 and malaria is common in
Africa[11]. HIV-1 infected people with low CD4 count
have a higher prevalence of P. falciparum malaria infec-
tion, disease and treatment failure [12-15]. However, little
is known regarding the impact of HIV-1 infection on
humeral immunity to P. falciparum. Differences in anti-
malarial antibody levels have been shown in HIV-1
infected pregnant adults [16-18] and adults hospitalized
with AIDS[19], but data for non-pregnant HIV-1 infected
individuals are lacking. The impairment of the humeral
response to malaria by a HIV-1 infection might partly
explain the predisposition of HIV-1 infected adults to
malaria disease. Understanding malaria immunity in
HIV-1 infected individuals may also have implications for
the deployment of future malaria vaccines.

This study assessed the anti-malarial humeral immunity
in HIV-1 infected individuals and its association with
anti-malarial treatment failure

Methods
Patients
This study was conducted in Ndola, Zambia, an area of
meso- to hyperendemic malaria[20], between October
2004 and June 2005 within a randomized clinical trial
(RCT) comparing the safety and efficacy of artemether-
lumefantrine (AL) and sulphadoxine-pyrimethamine
(SP) in adults with uncomplicated P. falciparum malaria.

The study and the results have been reported elsewhere
[20]. Briefly, all individuals aged 15-50 years, attending
four peri-urban health centers and with fever (body tem-
perature ≥ 37.5°C), and/or history of fever in the previous
48 hours without any other obvious disease were screened
for P. falciparum malaria infection and pregnancy (if appli-
cable) and were included if they had a parasite density of
at least 1,000 parasites/μL. Additional exclusion criteria
were: severe malaria; documented intake of SP or AL two
weeks prior recruitment; other cause of fever; evidence of
underlying chronic diseases (cardiac, renal, hepatic, mal-
nutrition); pregnancy; history of allergy to study drug or
other sulfa drugs; non-resident in the study area.

Clinical history, body temperature and physical findings
were recorded. Venous blood (5 ml) was used to prepare

blood films, impregnated filter papers (Schleicher &
Schuell) for molecular analysis, measurement of hemo-
globin (HemoCue®) and test for HIV-1 infection, CD4
count and viral load (if HIV-1 infected). Residual plasma
was separated, stored and transported at -70°C to be
assayed by ELISA and FACS for malarial antibody quanti-
fication. Patients were followed up until 45 day post-treat-
ment when CD4 count was reassessed, as a proxy of
underlying immune suppression. The study was approved
by the ethical and scientific committees of the Institute of
Tropical Medicine, Antwerp, Belgium, The Antwerp Uni-
versity, the Tropical Disease Research Centre, Ndola, Zam-
bia and Melbourne Health Research Directorate,
Australia.

Laboratory methods
All laboratory technicians were blinded to clinical data.
Thin blood films were fixed with methanol and thin and
thick blood films were stained with 10% Giemsa. Parasite
densities were determined by microscopy as the number
of asexual P. falciparum parasites per 200 white blood cells
(WBC). Parasitaemia/μl was computed using the actual
WBC counts. Internal quality control was organized as
recommended by WHO[21]. HIV-1 testing consisted of a
screening EIA (Abbott Determine, Abbott laboratories,
US) and confirmation of reactive samples by a second EIA
(Genie II, Sanofi, Canada). Samples with discordant
results were retested with Capillus (Cambridge, Diagnos-
tics, Ireland) whose result was considered as final. CD4
count were performed on all individuals with a direct vol-
umetric absolute CD4 counting instrument (Cyflow®

Counter, Partec, Germany)[22]. A FACSCount® instru-
ment (Becton Dickinson, US) was used to validate the
Cyflow data and served as a quality control. Based on pre-
vious research, a CD4 count of 300/μl at study entry and
450/μL at 45 days follow up was used as a threshold
between low and high counts[13]. In order to distinguish
recrudescence from reinfection, blood samples, collected
on filter paper, were assessed with a nested PCR technique
as described previously[20]. HIV-1 RNA was assayed in
plasma by the Roche Amplicor HIV-1 Monitor Test, ver-
sion 1.5 (Roche Diagnostics, Branchburg, NJ, USA).

Several parasite lines (E8B, A4 and HCD6) were used for
assessing malarial humeral immunity status. Parasite line
E8B, expressing a mix of var genes, adheres to CD36 and
ICAM-1. Of these var genes, A4var (which binds to ICAM-
1[23]) is a minor transcript (M Duffy, unpublished). Var
gene expression of parasite line A4 was maintained by
positive selection using monoclonal antibody BC6 [24]
and was provided courtesy of Prof C. Newbold. Parasite
line HCD6 was derived from a laboratory adapted patient
isolate by repeated panning on CD36. HCD6 also
expresses a mix of var genes and adheres to CD36 but not
ICAM-1. Infected erythrocytes (IE) were cultured as
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described[25]. For flow cytometry, IE with trophozoite-
stage parasites were harvested at 7-12% parasitaemia and
washed three times in phosphate buffered saline/1% new-
born calf serum (PBS+; Commonwealth Serum Laborato-
ries, Melbourne, Australia). IE were resuspended in PBS+
at 107/mL with test serum (1 in 20 dilution, final volume
100 μL) in microtitre plates and incubated at room tem-
perature for 30 min, washed as before, and incubated for
30 min with rabbit anti-human IgG and (after further
washing as before) with Alexafluor® 488-conjugated don-
key anti-rabbit IgG (Invitrogen, Eugene, Oregon USA) and
ethidium bromide (final concentration 10 mg/L, PRO-
GEN, Brisbane, Australia). Washed cells were resuspended
in 200 μL PBS+ and analyzed on a Becton Dickinson FAC-
SCalibur flow cytometer with Cell Quest software. IE were
gated according to ethidium bromide fluorescence, and
1,000 cells positive for ethidium bromide were collected.
For each serum sample, the geometric mean Alexafluor
488 fluorescence intensity (MFI) generated by the gated
population of IE was recorded. Control serum samples
from malaria naïve adults were included in each assay. A
positive control pool of hyper-immune serum against
VSAs of E8B, A4 and HCD6 was made from the serum of
11 Malawian adults and run in duplicate in each assay.
Samples with readings below the mean of the unexposed
controls were assigned half the lowest value of that partic-
ular VSA variable in order to permit log-transformation;
samples given a positive reading were assigned relative
values by use of the formula (sample reading minus neg-
ative-control reading divided by positive control reading
minus negative-control reading) × 100. Samples giving a
reading above positive control were further diluted and
values were assigned following the same formula and
recalculated to the original dilution.

Antibody levels to merozoite antigens were measured by
ELISA. Recombinant 3D7 or FC27 MSP2 or AMA-1 pro-
teins (2 μg/ml in PBS, kindly provided by Prof R Anders)
were used to coat microtitre plates overnight at 4°C.
Plates were blocked for 1 h with PBS/5% skim milk pow-
der (Blotto) and washed five times with phosphate-buff-
ered saline containing 0.05% Tween (PBS/Tween).
Samples diluted 1 in 1,000 in Blotto were added to plates
(50 μL, in duplicate) and incubated for 2 h. After washing,
horseradish-peroxidase-conjugated sheep antibody to
human IgG (1 in 2,000; Silenus) was added and the plates
were incubated for 2 h then washed three times in PBS/
Tween and twice in deionized water. Peroxidase substrate
was added and color was developed, plates were read at
415 nm on a Biorad plate reader version 5.2, and OD
results were expressed relative to positive and negative
controls as for VSA antibodies. Results were also classified
as positive (optical density greater than the mean plus two
SD of non-exposed sera) or negative. To estimate the
"breadth" of immunity a binary variable "low responders"

was created. Low responders were defined as having anti-
body levels below the geometric mean on all three anti-
gens.

Treatment outcomes were defined according to the most
recent WHO classification and are described in detailed
elsewhere[13,21]. For this report, it was considered that
the adequate parasitological and clinical response was the
absence of recurrent parasitaemia. Recurrent parasitaemia
distinguished new infections from recrudescence by PCR
genotyping.

Statistical analysis
Clinical data were double entered and organized in Epi-
info (version 6.04b; Centers for Disease Control and Pre-
vention, Atlanta, GA). All data were exported to STATA
version 10.0 (Stata Corporation, College Station, Texas,
USA) for analysis. Normally distributed variables were
compared by Student's t test, non-normally distributed
variables by Mann-Whitney's rank sum test (two groups).
Differences in proportions were assessed by χ2 analysis.
Linear regression modeling was used to assess associa-
tions between humeral immunity and other factors. For
the linear regression modeling, all non-normally distrib-
uted variables were log transformed and factors with a P-
value < 0.10 were retained, as well as factors modifying
the regression coefficient of the main determinant by
more than 10%. All reported P-values are two-sided.
Logistic regression modeling was used to assess if humeral
immunity was a risk factor for treatment failure. P-values
< 0.05 were considered significant.

Results
Characteristics of the study population
Between October 2004 and June 2005, 339 adult patients
were enrolled, 115 (33.9%) of them HIV-1 infected (Table
1). Compared to non-infected, HIV-1 infected patients
were older (P < 0.001), comprised more women (P <
0.001), had lower CD4 count on day 0 (P < 0.001) and
had lower hemoglobin levels (P < 0.001). No differences
were found for mean WBC count (P = 0.26), parasite load
(P = 0.92) and body weight (P = 0.95).

Antibody levels to merozoite antigens
HIV-1 infected individuals had lower AMA-1 IgG (P =
0.02) than HIV-1 negative adults, but this difference in
antibody level was not observed for either MSP2 serotypes
(P = 0.68 and P = 0.14) (Figure 1). More HIV-1 infected
adults were low responders compared to HIV-1 unin-
fected adults ((30.4% vs18.8%; P = 0.02) (Table 1). Over-
all, low responders (n = 77), compared to high responders
(n = 262), were more likely to have a low CD4 count
(42.7% vs 29.9%, P = 0.04) and high parasite density
(geometric mean 13,461 vs 8,787 parasites/μL, P = 0.01)
(Data not shown). After adjustment for CD4 count and
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age, low responders remained associated with HIV-1
infection (adjusted odds ratio (AOR):2.40; P = 0.01), par-
asite load (AOR:1.62; P = 0.06) and had less anemia
(AOR:0.55; P = 0.07) (Table 1).

Among HIV-1 infected adults, low CD4 count at day 0
was associated with low AMA-1 antibody levels
(slope:0.9; P = 0.003) but not with IgG to the MSP2 sero-
types (3D7:slope:-0.04; P = 0.92 and FC27:slope:0.21; P =
0.38) (Table 2). Parasite load was negatively associated
with antibody levels to the MSP2 3D7 (slope:0.25; P =

0.02) and the MSP2 FC27 serotype (slope:-0.19; P = 0.08).
No associations between antibody levels with the separate
merozoite antigens and CD4 count on day 45 were found
in the HIV-1 infected adults. (AMA-1:P = 0.69; 3D7:P =
0.78; FC27:P = 0.76).

Antibody levels to variant surface antigens
HIV-1 infected individuals and uninfected individuals
had similar MFI for all three parasite lines expressing dif-
ferent VSAs (E8B:P = 0.22; A4:P = 0.39; HCD6:P = 0.89)
(Figure 2). In all patients, regardless of the HIV-1 status,
high parasite density (AOR:1.70; P = 0.02) and weight
(AOR:1.03; P = 0.02) were associated with low response
to all VSAs.

Among the HIV-1 infected adults, parasite density was
negatively associated with antibody levels to all VSAs, but
an interaction between parasite density and WBC count
was found. HIV-1 infected adults with a WBC count ≥
4,900/μL had a higher parasite load than those <4900/μL
(P = 0.02). In subjects with a WBC count ≥ 4,900/μL, the
parasite density was inversely associated with all VSA anti-
body levels (E8B:slope:-0.72; P = 0.003; A4:-0.72;P =
0.002; HCD6:-0.24; P = 0.005) (Table 3). Within the HIV-
1 infected population, high parasite density (AOR:2.17; P
= 0.05) and low WBC count (AOR:0.78; P = 0.07) were
associated with a low response to all three VSAs.

Antibody levels to VSA of E8B and A4 were inversely
related to CD4 count at day 45 (both P = 0.02) though
there was an interaction between initial parasitaemia and
CD4 count at day 45 (P = 0.05. In HIV-1 infected with a
CD4 count at day 45 <450 cells/μL, no association

Table 1: Characteristics of study population according to HIV-1 status

Characteristic No HIV-1 infection
(n = 224)

HIV-1 infection
(n = 115)

P Value

Mean weight, kg (SD) 56.98 56.89 0.95
Number of women, N (%) 98 (43.8) 72 (62.6) 0.001
Mean age, years (SD) 24.7 (9.1) 29.5 (7.6) <0.001
Mean white blood cell count, *109/L (SD)† 5.3 (1.9) 5.1 (1.7) 0.26
Mean hemoglobin, g/L (SD) 140 (20) 124 (25) <0.001
Mean Log Viral load HIV-1 RNA copies/μL (SD) 4.87 (0.64)
Mean (geometric) parasite density/μL (range)† 9,715 (378-153,120) 9,566 (390-158,894) 0.92
Mean (geometric) CD4 count baseline/μL (95%CI)‡ 458 (427-492) 259 (242-277) <0.001
Mean (geometric) CD4 count day45/μL (95%CI) § 839 (769-915) 379 (317-454) <0.001
Low responders to Combined merozoite antigens, N(%) 42 (18.8) 35 (30.4) 0.02
Low responders to Combined Variant Surface Antigens¶, N (%) 68 (30.4) 33 (28.7) 0.75

*P value based on Students' t- test, Chi square or Wilcoxon Rank -Sum as required
† Data on WBC were missing in 1 patient in the non-HIV-1 infected group and in 2 in the HIV-1 infected group
‡ Data on baseline CD4 count were missing in 6 patients in the non-HIV-1 infected group and in 4 in the HIV-1 infected group
§Data on CD4 count on day 45 used only from patients without parasitaemia; non-HIV-1 infected group n = 108, HIV-1 infected group n = 66
//Low responders are <geometric mean for Merozoïte antigens AMA -1, MSP2 3D7 and MSP2 FC27 and Variant Surface Antigens from parasite 
lines E8B, A4, and HCD6.
¶After adjustment for CD4 count and age, low responders remained associated with HIV-1 infection (OR:2.40, P = 0.01), parasite load (OR: 1.62, P 
= 0.06) and absence of anemia (OR:0.55, P = 0.07).

Anti-Malarial Antibody Levels to Merozoite Blood Stage Anti-gens by HIV-1 StatusFigure 1
Anti-Malarial Antibody Levels to Merozoite Blood 
Stage Antigens by HIV-1 Status. P value by Mann-Whit-
ney's rank sum test.
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between parasite load and antibody levels to VSA E8B or
A4 was found. In HIV-1 infected with a CD4 count ≥ 450
cells/μL on day 45, antibody levels to VSA of E8B and A4
were inversely associated with parasite density (both P =
0.03).

Malaria humeral immunity and malaria treatment failure
Of the evaluable subjects, 82.8% (222/268) patients had
an adequate parasitological and clinical response at day
45. PCR genotyping identified 16 patients with new infec-
tions (6.0%) and 30 patients with recrudescence (11.2%).

No difference in antibody levels to merozoite antigens or
VSA was found between patients successfully treated for
malaria and those with recurrent parasitaemia. However,
after PCR correction, high antibody levels to the VSAs of
E8B, A4, and HCD6 protected for recrudescence P = 0.02;
P = 0.02 and P = 0.04 respectively) (Table 4). Additional
risk factors for recrudescence were high parasite density
(AOR:2.64; P = 0.04), anemia (AOR:4.67; P = 0.0001) and
SP treatment (AOR:7.98; P = 0.001). Despite the low
power, we observed trends showing SP increasing the risk
of new infections (AOR:2.69; P = 0.08), and good
response to all VSAs decreasing the risk of new infections
(AOR:0.16; P = 0.08).

Discussion
HIV-1 infection increases the risks of malaria infection
and disease, and (among immune-compromised
patients) decreases responses to anti-malarial therapy [12-
14]. Given the central importance of humeral immunity

Table 2: Factors Influencing Antibody Levels to Merozoite Blood Stage Antigen within HIV-1 infected Population (N = 115)

Merozoite Blood Stage Antigen

Risk factor AMA -1 MSP2 3D7 MSP2 FC27 Low Responders

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

Slope P Slope P Slope P Slope P Slope P Slope P OR P OR P

CD4 count day 
0
(log10/μL)

0.68 0.03 0.9 0.003 0.04 0.86 -0.02 0.92 0.21 0.38 - - 0.71 0.19 0.44 0.31

Parasite load
(log10/μL)

-0.21 0.13 - - -0.22 0.03 -0.25 0.02 -0.19 0.08 - - 1.59 0.05 - -

White Blood 
cell Count
(*109/L)

-0.02 0.63 -0.02 0.58 -0.05 0.14 - - -0.03 0.64 - - 1.03 0.21 1.03 0.82

Hemoglobin 
day 0
(g/L)

-0.06 0.07 -0.1 0.01 -0.05 0.03 - - -0.03 0.33 - - 1.14 0.83 0.39 0.03

Viral load
(log10 RNA 
copies/μL)†

-0.11 0.48 - - 0.02 0.82 - - 0.1 0.45 - - 0.95 0.95 - -

Age
(years)

-0.01 0.53 - - 0.003 0.74 - - 0.01 0.43 - - 1 0.9 - -

Gender -0.01 0.96 - - 0.11 0.4 - - 0.12 0.4 - - 1.17 0.7 - -
Weight
(Kg)

-0.003 0.65 - - -0.01 0.09 - - -0.01 0.02 - - 1.02 0.12 - -

Values that reached statistical significance in multivariate analysis are indicated in bold † Viral load was not included in multivariate analyses due to 
many missing values (35/80)

Total IgG reactivity to Variant Surface Antigens by HIV-1 Sta-tusFigure 2
Total IgG reactivity to Variant Surface Antigens by 
HIV-1 Status. P value by Mann-Whitney's rank sum test.
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in protecting against malaria, antibody levels to key mero-
zoite antigens and VSA were assessed in adult Zambians
with HIV-1 infection and related immune suppression
and their association with anti-malarial treatment out-
come[13]. Since merozoite antigens and VSAs differ both
in their timing of expression and in their conservation or
variation between different isolates, they are discussed
separately.

Merozoite antigens: AMA-1, MSP2 3D7 and MSP2 FC27
HIV-1 infection was associated with low antibody levels
to AMA-1 and, among HIV-1 infected adults, low AMA-1
antibody levels were associated with low CD4 count. And
HIV-1 infected adults were twice as likely as HIV-1 nega-
tive adults to have low antibody levels to all three mero-
zoite antigens combined.

Reduced concentrations of antibody levels to AMA-1 have
also been demonstrated in HIV-1 infected pregnant
Malawian women[18]. In that particular study, antibody
levels to AMA1 were not associated with CD4 count, but
AMA-1 antibody levels were higher in HIV-1 infected
women with malaria infection than those without malaria
infection (S Rogerson, unpublished observations).

Acute P. falciparum infection induces a short-lived depres-
sion in circulating T cell numbers [26,27]. As HIV-1 infec-
tion and malaria both influence CD4 count, difficulties
arise when assessing associations between those infec-
tions and cellular immunity. The positive relationship
between the concentration of antibodies to AMA-1 and
the CD4 count on enrolment may indicate that low CD4
count directly influences antibody production, as
required T cell help is limited. AMA-1 antibody levels at
day 0 were not associated with CD4 count at day 45, sug-
gesting that the association between AMA-1 antibody and

Table 3: Factors Influencing Antibody Levels to Variant Surface Antigen within HIV-1 infected Population (N = 115)

Variant Surface Antigen

Risk factor VSA E8B VSA A4 VSA HCD6 Low responders

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

Slope P Slope P Slope P Slope P Slope P Slope P OR P OR P

CD4 count 
day 0 (log10/
μL)

-0.44 0.19 - - -0.41 0.23 - - -0.05 0.71 - - 1.66 0.52 - -

Parasite load 
(log10/μL)*

-0.29 0.05 -0.72 0.003 -0.3 0.04 -0.72 0.002 -0.11 0.07 -0.24 0.005 1.78 0.12 2.17 0.05

White Blood 
cell Count
(*109/L)

0.07 0.21 - - 0.04 0.46 - - 0.03 0.12 - - 0.83 0.18 0.78 0.07

Hemoglobin 
day 0 (g/L)

0.01 0.83 - - -0.02 0.65 - - 0.001 0.97 - - 0.81 0.62 - -

Viral load
(log10 RNA 
copies/μL)†

0.13 0.49 - -0.05 0.77 - - -0.01 0.92 0.83 0.62 - -

Age
(years)

-0.01 0.3 - - -0.01 0.14 - - -0.01 0.14 - - 1.03 0.34 - -

Gender 0.22 0.22 - - 0.17 0.36 - - 0.01 0.92 - - 0.65 0.32 - -
Weight
(Kg)

-0.01 0.12 - - -0.01 0.05 - - -0.01 0.06 0.003 0.19 1.02 0.16 - -

Values that reached statistical significance in multivariate analysis are indicated in bold
* Stratified on white blood cell count (median 4.9), statistical significance only reached in subgroup with white blood cell count _ 4.9 (median)
† Viral load was not included in multivariate analyses due to many missing values (35/80)

Table 4: Risk of Recrudescence due to Low Antibody Levels to 
Blood Stage Malarial Antigens in Total Population (N = 268)

Parasite Isolate/Antigen Odds Ratio* 95% CI P value

VSA E8B 0.68 0.50-0.94 0.02
VSA A4 0.61 0.40-0.92 0.02
VSA HCD6 0.28 0.08-0.96 0.04

AMA-1 1 0.58-1.75 0.98
MSP2 type 3D7 1.08 0.57-2.07 0.81
MSP2 type FC27 1.08 0.57-2.07 0.81

* All results of antibodies to Variant Surface Antigens were adjusted 
for CD4 count on day 0 in a multivariate logistic regression model. 
Additional risk factors for recrudescence were high parasite density 
(AOR:2.64; P = 0.04), anemia (AOR:4.67; P = 0.0001) and SP 
treatment (AOR:7.98; P = 0.001).
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CD4 count at day 0 may be a function of the degree of T
cell reallocation, rather than a direct effect of HIV-1 on
antibody levels. Unfortunately, antibody levels were not
measured at follow up, when CD4 count was restored,
and malaria infection had usually been eliminated: such
measurements, and measurement of IgG subclass
responses, could provide useful information on the
dynamics of immune responses following symptomatic
malaria in adults[28]. Limited studies have examined the
effect of HIV-1 on antibody immunity to malaria in
adults. One such study suggested that HIV-1 infected
adults only become vulnerable to malaria when they
develop AIDS[19]. Because T and B cell functions are
affected early in HIV-1 infection[29], malaria specific
humeral immunity might also be affected in the early
HIV-1 stages. Antibodies to different targets probably act
in an additive or synergistic manner[3] and, under natural
exposure, protective immunity to malaria results from
high titer antibody levels to multiple antigenic targets [30-
32]. To begin to examine the impact of HIV-1 on antibody
response to multiple antigenic targets, antibody results for
the three merozoite antigens tested were combined [32].
In this study, HIV-1 infected adults were over twice as
likely to be "low responders" to this combination of tar-
gets, and low responders tended to have a higher parasite
load. HIV-1 might decrease antibody to many targets by
small amounts; in combination, such defects could pre-
dispose to disease or (as these data suggest) to uncon-
trolled parasite replication.

Somewhat unexpectedly, within the HIV-1 infected popu-
lation, low responders were less anemic. The recruited
patients came from a community where malaria transmis-
sion is relatively homogeneous, so differences in exposure
and concomitant development of malarial anemia seem
unlikely. Second, the major contributor to the hemolytic
anemia is the accelerated destruction of uninfected RBC,
probably linked to immune mechanisms[33]. Therefore,
lower antibody levels might be an independent protective
factor for erythrocyte destruction. However, as low
responders have higher parasite loads, the overall impact
might be limited. Additional research with a longitudinal
follow up and a larger panel of antigenic targets is
required to determine whether antibody to blood stage
parasites influence anemia risk in this already immune-
compromised population.

In the whole study population, antibody levels to both
MSP2 types were negatively associated with parasite den-
sity indicating their direct involvement in parasite control
whereas AMA-1 antibody levels were not. The results
found for MSP2 IgG confirm studies that have shown
associations between antibody levels to blood stage anti-
gens and decreased prospective risk of clinical
malaria[6,31,32,34-36].

Variant surface antigens of the parasite lines E8B, A4, and 
HCD6
Adult study participants should already have immunity to
severe malaria and their antibody repertoire to VSAs may
be extensive[3]. It may, therefore, not be surprising that
no differences were found in antibody levels to VSA of the
different parasite lines between HIV-1 infected and HIV-1
negative adults. Since natural immunity may include the
acquisition of a large repertoire of cross-reactive VSA spe-
cific antibodies, it may take considerable time until the
impact of HIV-1 on humeral responses is apparent. In pre-
vious studies, asymptomatic HIV-1 infected individuals
maintained antibody levels[37], in contrast to patients
with advanced clinical AIDS[19]. Indeed, only increased
immune suppression diminishes B cell stimulation,
resulting in decreased production of malaria specific anti-
bodies[38]. Nevertheless, reduced antibody production to
blood stage antigens and functional abnormalities of VSA
specific IgG have been found in HIV-1 pregnant women
without clinical AIDS [17,18]. Malaria in pregnancy is
characterized by development of immunity to unique VSA
expressed by IE capable of sequestering in the placenta
[39]. HIV-1 is associated with decreased IgG antibody lev-
els to these VSA, and decreased opsonizing antibody lev-
els that cause phagocytic clearance of such IE [16,18].
Because immunity to pregnancy-associated malaria is
only acquired during pregnancy, it may be more suscepti-
ble to the effects of concomitant HIV-1, compared to
immunity built up by the subjects in this study over a life-
time, much of it preceding HIV-1 infection. The same rea-
soning might be applicable for children living in malaria
endemic areas. Malaria in children is characterized by a
development of immunity to VSAs. Low antibody levels to
VSAs might be associated with increased clinical malaria
incidence and treatment failure and HIV-1 infection
might be associated with decreased IgG antibody levels to
these VSA. Further research will be needed to assess this
hypothesis.

Although VSA antibody levels were not directly associated
with HIV-1 infection, they appear to have important roles
in controlling malaria parasitaemia in this cohort. Among
HIV-1 infected adults with a WBC count ≥ 4,900/μL, anti-
body levels to VSA were inversely related to parasitaemia.
Among all patients, for those with a CD4 count >450/μL
on day 45 there was a negative association between para-
site load and antibody levels to VSAs of parasite lines E8B
and A4. Antibody to VSA operates by preventing seques-
tration of IE in the vasculature (to avoid splenic clear-
ance), or by opsonization of IE by cytophilic
antibodies[40]. Further research should include IgG iso-
type determination and functional assays of these proper-
ties to assess and confirm this finding.
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Antibody levels to VSA were similar in patients success-
fully treated for malaria and the patients who experienced
recurrent infection, but high levels of antibody levels to
VSAs were associated with decreased risk of recrudescence,
suggesting that these antibodies may complement the
therapeutic response to the anti-malarial drug[41].
Indeed, an adequate host immunological response is
needed in order to maximize the pharmacodynamic prop-
erties of an anti-malarial drug[12,41]. As PCR has some
technical limitations in distinguishing recrudescences
from new infections further research will be needed to
conclusively interpret this result[42].

Conclusion
This study provides evidence that HIV-1 affects humeral
responses to AMA-1. Although levels of antibody to the
other merozoite antigens and VSA were not or little
affected by HIV-1 infection, they appeared to play an
important role in controlling parasite density, and the ina-
bility to control malaria parasite density is one of the fea-
tures of HIV-1 immune suppression. Furthermore,
recrudescence was associated with low VSA antibody titers
to all three parasite lines tested. Specific research in HIV-1
and malaria co-infected adults, with pre-established
malaria-immunity, might offer additional insights into
malaria immunity.
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