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Abstract
Background: Entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana isolates have
been shown to infect and reduce the survival of mosquito vectors.

Methods: Here four different bioassays were conducted to study the effect of conidia
concentration, co-formulation, exposure time and persistence of the isolates M. anisopliae ICIPE-
30 and B. bassiana I93-925 on infection and survival rates of female Anopheles gambiae sensu stricto.
Test concentrations and exposure times ranged between 1 × 107 - 4 × 1010 conidia m-2 and 15 min
- 6 h. In co-formulations, 2 × 1010 conidia m-2 of both fungus isolates were mixed at ratios of 4:1,
2:1, 1:1,1:0, 0:1, 1:2 and 1:4. To determine persistence, mosquitoes were exposed to surfaces
treated 1, 14 or 28 d previously, with conidia concentrations of 2 × 109, 2 × 1010 or 4 × 1010.

Results: Mosquito survival varied with conidia concentration; 2 × 1010 conidia m-2 was the
concentration above which no further reductions in survival were detectable for both isolates of
fungus. The survival of mosquitoes exposed to single and co-formulated treatments was similar and
no synergistic or additive effects were observed. Mosquitoes were infected within 30 min and
longer exposure times did not result in a more rapid killing effect. Fifteen min exposure still
achieved considerable mortality rates (100% mortality by 14 d) of mosquitoes, but at lower speed
than with 30 min exposure (100% mortality by 9 d). Conidia remained infective up to 28 d post-
application but higher concentrations did not increase persistence.

Conclusion: Both fungus isolates are effective and persistent at low concentrations and short
exposure times.
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Background
The control tools currently deployed to reduce malaria
transmission in Africa are early diagnosis and prompt
treatment, insecticide-treated bed nets (ITNs) and indoor
residual spraying (IRS) [1,2]. Although these strategies
have delivered reductions in childhood disease [3,4],
there remains a high incidence of malaria in many coun-
tries, with over 300 - 500 million infections and 1 million
deaths each year [5]. The factors responsible for continu-
ing transmission include the development of Plasmodium
resistance to drugs [6], Anopheles resistance to insecticides
[7,8], and socio-economic or cultural resistance to control
measures [9]. Clearly, as effective as the current tools are,
they are not sufficient on their own to eliminate malaria
from intensely endemic regions [10]. Therefore, addi-
tional control tools are needed to combat this disease.

Laboratory and small-scale household studies have dem-
onstrated a great potential to develop entomopathogenic
fungi for field control of malaria vectors [11,12]. The
fungi penetrate the mosquito cuticle through mechanical
pressure and/or enzymatic degradation of major cuticle
components [13,14]. Once inside the host, the fungi
propagate, consuming nutrients and releasing metabolites
resulting in mycosis and death [15]. In the laboratory, the
entomopathogenic fungus, Beauveria bassiana was able to
reduce the number of adult anopheline mosquitoes capa-
ble of transmitting malaria by a factor of approximately
80 [16], and one field study on a household scale has
shown that Metarhizium anisopliae ICIPE-30 can cause a
two-fold reduction in the life span of adult mosquitoes
[17].

Before entomopathogenic fungi can be scaled-up for use
in biological control programmes, it is essential to deter-
mine the optimum concentration of conidia (asexual
spores shed at maturity) to apply, whether co-formula-
tions offer any advantage over single isolate applications,
the exposure time required for conidia to infect mosqui-
toes, and whether there is a relationship between concen-
tration and persistence. The optimum concentration will
be identified as the lowest concentration that is able to
achieve the maximum reduction in survival time for each
fungal species. Co-formulations could have a synergistic
or additive effect due to the different life histories of the
fungi involved, or inter-species interactions such as com-
petition-altering activity. Determining the minimum
exposure time for infection will guide in developing real-
istic field dissemination tools having pre-defined whether
the intervention can target either host-seeking or resting
mosquitoes or both. Examining persistence will allow re-
application rates to be defined. Holistically, this informa-
tion will provide a sound indication on the viability of
this technology for field control of mosquitoes. The study
was, therefore, designed to address these issues in assays

of the fungal isolates M. anisopliae ICIPE-30 and B. bassi-
ana I93-925 against adult Anopheles gambiae sensu stricto.
These isolates were chosen because of their proven effi-
cacy, availability in the market, and minimum risks to
non-targeted organisms.

Methods
Mosquito rearing and maintenance
Anopheles gambiae s.s. mosquitoes were reared at the
Ifakara Health Institute (IHI), Tanzania. The colony was
established from a population caught near Njage village,
70 km from Ifakara, in 1996. Larval and adult stages of the
mosquitoes were raised using methods based on those
described by the Huho et al [18]. Bioassays were con-
ducted using 3-6 d old non blood fed adult female mos-
quitoes. During all experiments, mosquitoes were
supplied 9% glucose solution.

Fungal isolates, formulation and application
Two entomopathogenic fungi species were used in all bio-
assays: 1) Metarhizium anisopliae var. anisopliae isolate
ICIPE-30, isolated originally in 1989 from the maize stalk
borer, Busseola fusca (Lepidoptera, Noctuidae) in Western
Kenya, and imported as dry conidia from Wageningen
University, The Netherlands and 2) Beauveria bassiana iso-
late 193-825 (IMI 391510), isolated from a chrysomelid
beetle (Coleoptera) in the USA and imported as dry
conidia from the Commonwealth Scientific and Indus-
trial Research Organization (CSIRO), Australia and Penn
State University, USA. Before use each batch of conidia
was checked for viability by inoculation on Sabouraud
dextrose agar (SDA) plates, and only conidia with ≥ 85%
germination were used in bioassays.

The conidia were formulated in oil for application. Oil
protects conidia from adverse environmental conditions
and facilitates adhesion to the insect cuticle. Initially, a
fungal stock solution was prepared by suspending 1-2 g of
conidia in 20 ml of highly refined mineral oil (Shell
Ondina 917®, Shell, The Netherlands) or Enerpar (Ener-
par M002®, BP Southern Africa Ltd). To homogenize the
mixture it was shaken vigorously, vortexed for 25 sec and
then sonicated (ultrasonic bath, Langford Electronics,
UK) for 3 min. Dilutions of 1:10, 1:100 and 1:1000 were
prepared in oil and the concentration of conidia was cal-
culated using a Neubauer Haemocytometer (Hausser Sci-
entific, USA) with the aid of a compound microscope
(Leica ATC2000, USA) at 400× magnification. The solu-
tion was adjusted to the desired concentrations for appli-
cation by diluting with mineral oil. Neither Ondina nor
Enerpar oils had any negative effect on conidia germina-
tion or mosquito mortality (unpublished data). Unless
otherwise stated, the conidia used during the bioassays
were formulated in Ondina oil.
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Mosquitoes were exposed to conidia applied to sheets of
A4 printing paper within plastic exposure tubes (8.2 cm
diameter × 12.5 cm height), closed with netting also
treated with conidia. The paper and netting were treated
using a hand-held pressure sprayer (Minijet®, SATA, Ger-
many) operating at a constant pressure of 2 bars. The noz-
zle of the spray gun was held 50 cm away from, and at a
right angle to, the application surface. A working solution
of 23 ml containing the desired conidia concentration was
applied to a 1 m2 area. Treated surfaces were left to dry for
24 h. To avoid cross-contamination, formulations of each
fungal isolate were applied in separate rooms.

Bioassay procedures
30-50 adult An. gambiae s.s. mosquitoes were introduced
to the exposure tubes and held for 6 h (unless stated oth-
erwise in bioassay descriptions below), after which they
were transferred to separate untreated cages (9 cm3) and
maintained at 26-27°C and 85-95% relative humidity
(RH) with access to 9% glucose solution ad libitum. Sur-
vival was monitored daily for a maximum of 28 d. Dead
mosquitoes were collected individually and put onto
moist filter paper in Petri dishes, sealed with parafilm, and
incubated at 26-27°C and 85-95% RH for 3-4 d, after
which they were examined for evidence of fungal sporula-
tion basing on colour of their conidia. Metarhizium anisop-
liae yields green conidia, whereas, B. bassiana yields white
conidia. Similar bioassay procedure was carried out for
30-50 mosquitoes in control groups, except that they were
exposed to untreated surfaces. During all of the bioassays,
four replicates were used for each experimental factor.
Four different bioassays were conducted to study the effect
of 1) concentration, 2) co-formulation 3) exposure time
and 4) persistence on infection and survival of A. gambiae
s.s.

Bioassay 1: concentration
Mosquitoes were exposed to six different concentrations
of the two fungal isolates: (1 × 107, 2 × 108, 1 × 109, 2 ×
109, 2 × 1010 and 4 × 1010 conidia m-2). Concentrations
were chosen basing on their reported efficacy against mos-
quitoes and other arthropods, and likelihood of being
cost effective.

Bioassay 2: co-infection with M. anisopliae and B. 
bassiana
Mosquitoes were exposed to co-formulations of 2 × 1010

conidia m-2of both fungus isolates mixed at ratios of 4:1,
2:1, 1:1, 1:0, 0:1, 1:2 and 1:4.

Bioassay 3: exposure time
Mosquitoes were exposed to 2 × 1010 conidia m-2 for four
different lengths of time: 15 min, 30 min, 1 and 6 h. In a
separate experiment two concentrations, 2 × 1010 and 4 ×
1010 conidia m-2, formulated in Enerpar oil, were evalu-

ated at 15 and 30 min exposure to determine whether
concentration affected time required for infection.

Bioassay 4: persistence
The residual activity of conidia was determined by expos-
ing mosquitoes to the same treated surfaces 1, 14 and 28
d post application. Treated surfaces were kept at 26-27°C
and 85-95% RH in-between exposure rounds. Three dif-
ferent concentrations formulated in Enerpar oil (2 × 109,
2 × 1010 and 4 × 1010 conidia m-2).

Statistical analysis
Mosquito survival data were analysed by Kaplan-Meier
pair wise comparison using SPSS version 15. Data were
stratified by replicate and multiple chi-square pair-wise
comparisons were used to examine the effect of treatment
on mosquito survival. Survival curves were considered not
statistically different at p > 0.05. A probit regression (R-
package version 2.9.1) was used to determine the concen-
tration of conidia required for 50% and 90% mortality 10
d after exposure (lethal concentration: LC50 and LC90, Bio-
assay 1).

Results
Bioassay 1: concentration
Concentrations of 2 × 109 conidia m-2 and above of both
M. anisopliae ICIPE-30 and B. bassiana I93-825 resulted in
85-95% mortality of exposed mosquitoes after 10 d. This
was higher than 36 ± 3.4% mortality recorded from
untreated control after 10 d (Figure 1). The daily survival
of mosquitoes exposed to any fungal concentration was
significantly reduced compared to that of controls (P <
0.001; Figure 1; Table 1). The median survival time (MST
± SE) of control mosquitoes was 11 ± 0.06 d. The MST of
fungus-exposed mosquitoes was similar for both isolates
and ranged between 4.0 ± 0.09 d at 4 × 1010 conidia m-2

to 10 ± 0.32 d at 1 × 107 for M. anisopliae, and 4.0 ± 0.08
d at 4 × 1010 to 10 ± 0.467 d at 1 × 107 for B. bassiana.
There was no difference between 2 × 1010 and 4 × 1010 for
M. anisopliae (4.0 ± 0.11, 4.0 ± 0.09 d, X2 = 3.54, P = 0.07)
or B. bassiana (4.0 ± 0.12, 4.0 ± 0.08 d, X2 = 3.56, P = 0.06;
Table 1). As such, optimum reduction in survival was con-
sidered to be reached at a concentration of 2 × 1010

conidia m-2 (Figure 2). The concentrations of conidia that
were modelled to result in 50% and 90% (LC90) mortality
were 1.02 × 107 (LC50) and 9.77 × 108 conidia m-2 (LC90)
M. anisopliae and 7.71 × 107 (LC50) and 2.66 × 109 conidia
m-2 (LC90) for B. bassiana.

Bioassay 2: co-infection with M. anisopliae and B. 
bassiana
The survival of mosquitoes exposed to co-formulated
conidia was significantly reduced compared with control
mosquitoes (P < 0.001, Figure 3, Table 2). However, sur-
vival was not further reduced compared with the single
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fungus strain (P >0.001, Table 2). The MST of mosquitoes
exposed to co-formulations and single species formula-
tions ranged between 5 - 6 d, while that of untreated con-
trols was 13 d.

In all the co-formulation treatments, sporulation of both
fungus species from the same cadaver was never observed.
Metarhizium anisopliae sporulation only was observed in
78.17% (376/481) of the mosquito cadavers. No sporula-
tion was observed on control mosquitoes.

Bioassay 3: exposure time
The exposure concentration used (2 × 1010) was selected
on the basis of Bioassay 1 results. The ability of conidia of
both fungi to kill and reduce the survival of mosquitoes
was dependent on the length of exposure. The MST of
mosquitoes after a 30 min exposure and above was signif-
icantly lower than that after 15 min for both M. anisopliae
(P < 0.001) and B. bassiana (P < 0.001, Figure 4, Table 3).
However, considerable mosquito mortality was still
achieved with 15 min exposure (100% by 14 d), but at
lower speed than with 30 min exposure (100% by 9 d).
Nonetheless, 93.52% and 96.22% mortality was recorded
when mosquitoes were exposed for 15 min to B. bassiana
and M. anisopliae by 9 d. The MST for fungus-exposed
mosquitoes ranged between 5 - 6 d. Survival of mosqui-
toes exposed to either M. anisopliae or B. bassiana for 15
min and above was significantly reduced as compared to
controls (P < 0.001, Table 3).

The percentage mortality of An. gambiae s.s. mosquitoes 3 - 6 d of age, 10 days post exposure to different concentrations of M. anisopliae ICIPE-30 and B. bassiana I93-825Figure 1
The percentage mortality of An. gambiae s.s. mosqui-
toes 3 - 6 d of age, 10 days post exposure to different 
concentrations of M. anisopliae ICIPE-30 and B. bassi-
ana I93-825. Controls were not exposed to any fungus ('0' 
concentration). Mosquitoes were exposed to the treatments 
for 6 h. The sigmoidal models were fitted to the data using 
probit regression.

The survival of Anopheles gambiae s.s. females after 6 h exposure to different concentrations (1 × 107, 1 × 108, 1 × 109, 2 × 109, 2 × 1010 and 4 × 1010 conidia m-2) of a) Metarhizium anisopliae ICIPE-30 and b) Beauveria bassiana I93-825Figure 2
The survival of Anopheles gambiae s.s. females after 6 h exposure to different concentrations (1 × 107, 1 × 108, 1 
× 109, 2 × 109, 2 × 1010 and 4 × 1010 conidia m-2) of a) Metarhizium anisopliae ICIPE-30 and b) Beauveria bassiana 
I93-825.
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In separate bioassay where conidia concentrations of 2 ×
1010 and 4 × 1010 were compared, at each exposure time;
15 and 30 min, the two concentrations equally reduced
mosquito survival. This was observed for M. anisopliae (X2

= 0.63 - 2.92, P > 0.05) and B. bassiana (X2 = 0.76 - 5.23, P
> 0.05), [see Additional file 1].

Bioassay 4: persistence
Overall, effect of M. anisopliae (P < 0.001) and B. bassiana
(P < 0.001, Tables 4 and 5) on mosquito survival declined
over time regardless of the conidia concentration used.
For M. anisopliae, survival of mosquitoes exposed to each
concentration 1 d post application were lower than sur-
vival of mosquitoes exposed to similar concentrations 14
and 28 d post application (P < 0.001). No difference,
however, was observed for mosquitoes exposed to each
concentration between 14 and 28 d post application (P
>0.05, Table 4). For B. bassiana, survival of mosquitoes
exposed to each concentration 1 d post application was
lower than survival of mosquitoes exposed to same con-
centrations 28 d post application (P < 0.001). No differ-
ence however, was observed for mosquitoes exposed
between 1 and 14 d, as well as 14 and 28 d post applica-
tion (P > 0.05, Table 5). Concentration did not tend to

influence the decline in conidia persistence (P > 0.05, Fig-
ure 5). The MSTs of mosquitoes exposed to 2 × 109

conidia m-2 of either isolate of fungus at all time intervals
post application ranged between 11 - 13 d, while that of 2
× 1010 and 4 × 1010 ranged between 6 - 12 d. The survival
of mosquitoes exposed to fungus was always lower than
that of controls (P < 0.001, Tables 4 and 5). The MSTs of
controls ranged between 15 - 16 d.

Discussion
These experiments were designed to provide preparatory
information necessary for the use of oil-formulated ento-
mopathogenic fungi in field-based mosquito control. Due
to the expense and logistics involved in applying any
insecticidal agent on a large-scale, it is essential to first
define the concentration and time required to infect and
kill mosquitoes. Information concerning persistence is
also needed to determine re-application rates.

Low conidia concentrations and short exposure times can
result in small infective doses that can be countered by
immune responses. Insect responses to entomopathogens
involve melanization, encapsulation and phagocytosis of
invading fungal blastospores [19], but it is likely that

Table 1: Kaplan Meier pair-wise comparisons of the median survival times (MST) of An. gambiae s.s. females exposed to different 
concentrations (1 × 107, 1 × 108, 1 × 109, 2 × 109, 2 × 1010 and 4 × 1010 conidia m-2) of M. anisopliae ICIPE-30 and B. bassiana I93-825 (IMI 
391510) for 6 h.

Concentrations MST ± SE 1 × 107 1 × 108 1 × 109 2 × 109 2 × 1010 4 × 1010

M. anisopliae
Control 11 ± 0.32 χ2 = 15.12 χ2 = 24.00 χ2 = 50.7 χ2 = 195.11 χ2 = 239.68 χ2 = 261.26

p < 0.001* p < 0.001* p < 0.001* p < 0.001* p < 0.001* P < 0.001*
1 × 107 10 ± 0.32 χ2 = 1.87 χ2 = 14.46 χ2 = 138.37 χ2 = 197.25 χ2 = 219.10

p = 0.17 p < 0.001* p < 0.001* p < 0.001* p <0.001*
1 × 108 9 ± 0.37 χ2 = 5.95 χ2 = 98.86 χ2 = 166.80 χ2 = 188.48

p <0.001* p <0.001* p < 0.001* p < 0.001*
1 × 109 8 ± 0.43 χ2 = 53.99 χ2 = 119.57 χ2 = 104.37

p < 0.001* p <0.001* p < 0.001*
2 × 109 6 ± 0.15 χ2 = 79.62 χ2 = 104.37

p < 0.001* p < 0.001*
2 × 1010 4 ± 0.12 χ2 = 3.54

p = 0.07

B. bassiana
Control 11 ± 0.32 χ2 = 25.09 χ2 = 47.61 χ2 = 27.13 χ2 = 109.37 χ2 = 251.31 χ2 = 251.60

p < 0.001* p < 0.001* p < 0.001* p < 0.001* p <0.001* p < 0.001*
1 × 107 10 ± 0.47 χ2 = 4.53 χ2 = 0.319 χ2 = 38.97 χ2 = 171.18 p χ2 = 181.16

p < 0.001* p = 0.57 p < 0.001* <0.001* p < 0.001*
1 × 108 9 ± 0.23 χ2 = 1.47 χ = 21.40 χ2 = 158.71 p χ2 = 168.32

p = 0.22 p < 0.001* <0.001* p <0.001*
1 × 109 9 ± 0.58 χ2 = 21.90 χ2 = 112.07 p χ2 = 114.26

p < 0.001* <0.001* p < 0.001*
2 × 109 6 ± 0.17 χ2 = 88.29 χ2 = 130.05

p < 0.001* p < 0.001*
2 × 1010 4 ± 0.11 χ2 = 3.56

p = 0.06

*Significant at p < 0.05
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these responses can be overcome at high concentrations.
In these experiments it was found that for both fungal spe-
cies concentration was positively correlated with mortal-
ity, and that the maximum and most rapid reductions in
mosquito survival were achieved at concentrations of 2 ×
1010 conidia m-2 and above. With well standardized pro-
duction systems, formulations, application methods and

delivery tools, concentration of 2 × 1010 conidia m-2 can
be operationally amenable. The efficacy of M. anisopliae in
terms of mortality against An. gambiae s.s. was slightly,
although not dramatically, higher than that recorded by
Scholte et al [20], and these differences may be related to
the use of mineral oil to formulate the conidia, instead of
sunflower oil. Additionally, the quality of the conidia

Table 2: Kaplan-Meier pair wise comparisons of the median survival times (MST) of An. gambiae s.s. females exposed to 2 × 1010 conidia 
m-2 of co-formulated Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825.

Ratio of Ma:Bb MST ± SE 1:0 1:1 2:1 4:1

Increasing ratio of M. anisopliae
Control 13 ± 0.73 χ2 = 132.57 χ2 = 109.63 χ2 = 134.20 χ2 = 121.23

p < 0.001* p < 0.001* p < 0.001* p < 0.001*
1:0 6 ± 0.12 χ2 = 0.15 χ2 = 0.29 χ2 = 1.37

p = 0.70 p = 0.60 p = 0.24
1:1 6 ± 0.21 χ2 = 0.65 χ2 = 2.59

p = 0.34 p = 0.07
2:1 6 ± 0.16 χ2 = 0.53

p = 0.46

Increasing ratio of B. bassiana
Control 13 ± 0.73 χ2 = 128.01 χ2 = 109.63 χ2 = 133.22 χ2 = 114.34

p < 0.001* p < 0.001* p < 0.001* p < 0.001*
0:1 5 ± 0.19 χ2 = 1.63 χ2 = 0.004 χ2 = 0.29

p = 0.20 p = 0.93 p = 0.59
1:1 6 ± 0.21 χ2 = 0.29 χ2 = 3.10

p = 0.59 p = 0.08
1:2 6 ± 0.19 χ2 = 3.24

p = 0.06

Note: The co-formulation was applied at different ratios of conidia (1:0, 1:1, 2:1 and 4:1) of M. anisopliae to B. bassiana.

The survival of Anopheles gambiae s.s. females after exposure to 2 × 1010 conidia m-2 of co-formulated Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 under laboratory conditionsFigure 3
The survival of Anopheles gambiae s.s. females after exposure to 2 × 1010 conidia m-2 of co-formulated 
Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 under laboratory conditions. The co-formulation 
was applied at different ratios of conidia (1:0, 1:1, 2:1 and 4:1) of M. anisopliae to B. bassiana.
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batch, the method of application and the target species
can also impact on the efficacy of fungal applications. For
example, in this study the efficacy of these two fungal spe-
cies against An. gambiae s.s. was comparable, yet when a
similar range of conidial concentrations were tested
against Anopheles stephensi, B. bassiana was found to be
much more effective than M. anisopliae [12]. Overall, a

similar positive relationship between conidial concentra-
tion and mortality, as observed here, is also evident in the
published literature [12,20,21]; it is difficult to directly
compare studies because of differences in fungal isolate,
oil formulation, target species, bioassay protocols and
units used to express conidial concentration.

The survival of Anopheles gambiae s.s. females after exposure to 2 × 1010 conidia m-2 of a) Metarhizium anisopliae ICIPE-30 and b) Beauveria bassiana I93-825 for different times (15 min, 30 min, 1 h and 6 h)Figure 4
The survival of Anopheles gambiae s.s. females after exposure to 2 × 1010 conidia m-2 of a) Metarhizium anisop-
liae ICIPE-30 and b) Beauveria bassiana I93-825 for different times (15 min, 30 min, 1 h and 6 h).

Table 3: Kaplan-Meier pair wise comparisons of the median survival times (MST) of An. gambiae s.s. females exposed to M. anisopliae 
ICIPE-30 and B. bassiana I93-825 (IMI 391510) for different exposure times (15 min, 30 min, 1 h and 6 h).

Exposure time MST ± SE 15 min 30 min 1 h 6 h

M. anisopliae
Control 13 ± 0.32 χ2 = 124.1 χ2 = 154.65 χ2 = 149.59 χ2 = 150.98

p < 0.001* p < 0.001* p <0.001* p < 0.001*
15 min 6 ± 0.32 χ2 = 36.89 χ2 = 26.07 χ = 28.39

p < 0.001* p <0.001* p < 0.001*
30 min 5 ± 0.37 χ2 = 1.15 χ2 = 0.57

p = 0.28 p = 0.44
1 h 5 ± 0.43 χ2 = 0.86

p = 0.77

B. bassiana
Control 13 ± 0.32 χ2 = 118.5 χ2 = 97.98 χ2 = 79.84 χ2 = 103.81

p < 0.001* p < 0.001* p < 0.001* p < 0.001*
15 min 6 ± 0.17 χ2 = 42.68 χ2 = 16.28 χ2 = 14.97

p < 0.001* p < 0.001* p < 0.001*
30 min 5 ± 0.11 χ2 = 0.50, χ2 = 0.29

p = 0.23 p = 0.59
1 h 5 ± 0.10 χ2 = 0.06

p = 0.81

*Significant at p < 0.05
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When M. anisopliae and B. bassiana were applied as a co-
formulation against An. gambiae s.s., neither an additive
nor synergistic effect was evident. Similar results have
been found when entomopathogens were evaluated in
combination against arthropods other than mosquitoes
[22-25]. The initial interaction between the two fungal
species occurs at the point of mosquito exposure. Even if
conidia of both species adhere to the mosquito cuticle, a
competitive advantage would be gained if one of the fungi
was faster to invade and colonize the mosquito haemo-
coel. Following colonization, the successful fungus could
prevent other fungi from becoming established by com-
petitive exploitation, limiting resource availability,
actively synthesizing and releasing inhibitory metabolites
or stimulating host immune responses [26]. Considering
that exposure to the co-formulation had no additive
effect, it is likely that the activity of one fungal species was
partially or completely redundant. The complete absence
of co-sporulation and the predominance of M. anisopliae
suggest a competitive advantage of M. anisopliae over B.
bassiana. Additive [27] and synergistic [28,29] effects of
co-infection have been recorded for other entomopatho-
gens at sub-optimal temperature regimes. Thus the possi-
bility remains that fluctuating temperature and or relative
humidity either in the laboratory or field may affect co-
formulations of M. anisopliae and B. bassiana.

The length of time required for conidia to infect and kill
mosquitoes is an important consideration for developing
dissemination tools for field use. The exposure times

tested in the current study were selected to represent real-
istic exposure periods. Mosquitoes may spend up to 15
min trying to enter a bed net [30] and after blood-feeding
may rest on a surface for up to 24 h [31], though in areas
of high bed net coverage it is likely that mosquitoes spend
on average less than six hours inside houses [32-34]. In
this study it was found that exposure times as short as 15
and 30 min were sufficient for conidia of both M. anisop-
liae and B. bassiana to infect mosquitoes and reduce sur-
vival. Similarly, no effect of increasing exposure time
beyond 5 minutes up to 6 h on infection rates was found
when An. stephensi were exposed to 2 × 109 conidia m-2 of
B. bassiana [12]. Increasing the exposure time beyond 6 h
and/or concentration did increase mortality of An.
stephensi [12] and other arthropods [35,36]. When the
concentration tested against An. gambiae was increased,
no effect of exposure time was observed, though only rel-
atively short exposure times were tested (15 min - 6 h).
However, longer exposure times (24 h, 48 h and continu-
ous) of An. gambiae to M. anisopliae were tested by Scholte
et al [20] and at high concentrations and no difference
between the exposure times tested was observed. Formu-
lations of either M. anisopliae or B. bassiana could, there-
fore, be used with dissemination tools/surfaces that target
host seeking (short contact) as well as resting (long con-
tact) mosquitoes.

Despite a general decline in the persistence M. anisopliae
and B. bassiana against An. gambiae s.s., conidia were still
pathogenic up to 28 d post application. During the cur-

Percentage mortality of mosquitoes 12 d post exposure to different concentrations (2 × 109, 2 × 1010 and 4 × 1010 conidia m-2) of a) Metarhizium anisopliae ICIPE-30 and b) Beauveria bassiana I93-825 after storage of the treated materials for 1, 14 and 28 dFigure 5
Percentage mortality of mosquitoes 12 d post exposure to different concentrations (2 × 109, 2 × 1010 and 4 × 
1010 conidia m-2) of a) Metarhizium anisopliae ICIPE-30 and b) Beauveria bassiana I93-825 after storage of the 
treated materials for 1, 14 and 28 d. Treated materials were stored under 26°C-27°C temperature and 85-95% humidity 
before successive re-exposures.
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rent study, the conidia were stored under constant tem-
perature (26°C-27°C) and RH (85-95%) thus it is
unknown if fluctuating environmental conditions would
affect the length of residual activity. A slight decline over
time in the germination of conidia when applied in the
field has been reported elsewhere [17], yet 63% of conidia
remained viable after three weeks. Most importantly it
was found that increasing the concentration of conidia
did not increase the residual activity. Although the resid-
ual activity of fungi is short lived compared with tradi-
tional synthetic insecticides, it is comparable with other
successful bio-insecticides such as Bacillus thuringiensis
var. israelensis [37,38]. The MSTs values recorded during
the persistence experiment for exposure immediately after
drying (1 d) were lower than MSTs observed when similar
concentrations were tested elsewhere in this study. The
difference could have been due to variation in the quality
of the conidia batch.

To be capable of transmitting malaria, a mosquito must
survive for longer than the extrinsic incubation period of

the pathogen, 9 - 14 d for Plasmodium spp [39]. This period
is longer than the average mosquito life span and, there-
fore, malaria transmission can be attributed to a small
fraction of the mosquito population. Daily survival is
actually the most sensitive component of vectorial capac-
ity [40,41] and thus control strategies that reduce vector
age are highly desirable. The current study recorded large
reductions in the daily survival of female An. gambiae s.s.
when exposed to relatively high (2 × 1010 and 4 ×
1010conidia m-2) concentrations of both M. anisopliae and
B. bassiana. These concentrations were lower than that
used by Scholte et al [17]. When mosquitoes were exposed
to high conidial concentrations in this and other studies
[11,16,17,20], 100% mortality was often achieved within
10 d. If these results can be replicated in the field this
could lead to a considerable reduction in malaria trans-
mission [42].

Conclusions
Of the few biological control tools targeting adult mos-
quitoes that are currently under development (including

Table 4: Kaplan-Meier pair wise comparisons of the median survival times (MST) of An. gambiae s.s. females exposed to surfaces 1, 14 
and 28 d after treatment with different concentrations (2 × 109, 2 × 1010 and 4 × 1010 conidia m-2) of M. anisopliae ICIPE-30.

Comparison of: Different concentrations within same time post-application The same concentration between different 
times post-application

MST ± SE 2 × 109 2 × 1010 4 × 1010 14 d 28

1 d
Control 15 ± 0.95 χ2 = 15.15 χ2 = 43.34 χ2 = 55.58 χ2 = 0.08 χ2 = 0.01

p < 0.001* p < 0.001* p < 0.001* p = 0.77 p = 0.32
2 × 109 11 ± 0.51 χ2 = 9.32 χ2 = 15.44 χ2 = 5.17 χ2 = 4.10

p < 0.001* p < 0.001* p < 0.001* p < 0.001*
2 × 1010 6 ± 0.46 χ2 = 0.001 χ2 = 9.80 χ2 = 8.95

p = 0.98 p < 0.001* p < 0.001*
4 × 1010 8 ± 0.39 χ2 = 14.74 χ2 = 18.55

p < 0.001* p < 0.001*

14 d
Control 16 ± 1.15 χ2 = 30.48 χ2 = 58.07 χ = 49.02 χ2 = 0.43

p < 0.001* p < 0.001* p < 0.001* p = 0.54
2 × 109 12 ± 0.55 χ2 = 6.59 χ2 = 4.08 χ2 = 0.06

p < 0.001* p < 0.001* p = 0.80
2 × 1010 10 ± 0.64 χ2 = 0.21 χ2 = 0.49

p = 0.22 p = 0.83
4 × 1010 10 ± 0.45 χ2 = 0.003

p = 0.96

28 d
Control 16 ± 1.15 χ2 = 35.94 χ2 = 77.49 χ2 = 62.29

p < 0.001* p < 0.001* p < 0.001*
2 × 109 13 ± 0.33 χ2 = 11.22 χ2 = 5.76

p < 0.001* p < 0.001*
2 × 1010 11 ± 0.49 χ2 = 0.56

p = 0.46
4 × 1010 11 ± 0.61

*Significant at p < 0.05
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fungal, bacterial, viral and protozoan pathogens), ento-
mopathogenic fungi are likely to be developed for pro-
grammatic use. Especially since fungus production and
application all involve relatively simple infrastructures
and processes, which could potentially be adopted in
malaria endemic countries. An application of either M.
anisopliae or B. bassiana at a concentration of 2 × 1010

conidia m-2 should be able to infect mosquitoes in a rela-
tively short time (15 or 30 min) for up to one month after
application. This concentration should provide a consid-
erable safety margin for application error, exposure time
and residual activity. However, there remains a need to
test the fungi in large-scale field trials and to develop pro-
tocols to ensure simple and economical distribution and
application in malaria endemic developing countries. Fur-
ther developments to increase conidia persistence are still
necessary in order to enhance the potential epidemiolog-
ical impact of fungi on malaria transmission.
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Table 5: Kaplan-Meier pair wise comparisons of the median survival times (MST) of An. gambiae s.s. females exposed to surfaces 1, 14 
and 28 d after treatment with different concentrations (2 × 109, 2 × 1010 and 4 × 1010 conidia m-2) of B. bassiana I93-825.

Comparison of: Different concentrations within same time post-application The same concentration between different 
times post-application

MST ± SE 2 × 109 2 × 1010 4 × 1010 14 d 28

1 d
Control 15 ± 0.95 χ2 = 5.73 χ2 = 20.48 χ2 = 16.50 χ2 = 0.08 χ2 = 0.01

p < 0.001* p < 0.001* p < 0.001* p = 0.77 p = 0.32
2 × 109 11 ± 0.42 χ2 = 7.03 χ2 = 5.01 χ2 = 0.61 χ2 = 4.09

p < 0.001* p < 0.001* p = 0.44 p < 0.001*
2 × 1010 9 ± 0.55 χ2 = 0.24 χ2 = 1.74 χ2 = 6.36

p = 0.63 p = 0.19 p < 0.001*
4 × 1010 9 ± 0.79 χ2 = 0.09 χ2 = 6.03

p = 0.77 p < 0.001*

14 d
Control 16 ± 1.15 χ2 = 29.08 χ2 = 52.46 χ2 = 49.02 χ2 = 0.43

p < 0.001* p < 0.001* p < 0.001* p = 0.54
2 × 109 12 ± 0.44 χ2 = 4.23 χ2 = 7.04 χ2 = 5.12

p < 0.001* p < 0.001* p < 0.001*
2 × 1010 10 ± 0.67 χ2 = 0.37 χ2 = 1.79

p = 0.54 p = 0.18
4 × 1010 10 ± 0.45 χ2 = 0.40

p = 0.53

28 d
Control 16 ± 1.15 χ2 = 47.61 χ2 = 34.67 χ2 = 55.76

p < 0.001* p < 0.001* p < 0.001*
2 × 109 13 ± 0.42 χ2 = 7.56 χ2 = 4.92

p < 0.001* p < 0.001*
2 × 1010 12 ± 0.54 χ2 = 0.249

p = 0.11
4 × 1010 12 ± 0.64

*Significant at p < 0.05
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