1 Whole genome sequencing identifies independent outbreaks of Shigellosis in 2010

2 and 2011 in La Pampa Province, Argentina

- 3
- 4 Isabel Chinen¹, Marcelo Galas¹, Ezequiel Tuduri¹, Maria Rosa Viñas¹, Carolina Carbonari¹,
- 5 Anabella Della Gaspera ¹, Daniela Nápoli ¹, David M Aanensen ^{2,3}, Silvia Argimón ²,
- 6 Nicholas R Thomson⁴, Darren Hughes⁵, Stephen Baker⁶, Caterina Guzmán-Verri⁷,
- 7 Matthew TG Holden⁸, Alejandra M Abdala⁹, Lucia P Alvarez⁹, Beatriz Alvez¹⁰, Rosana Barros¹¹,
- 8 Shirley Budall ¹², Constanza Campano ¹³, Luciana S Chamosa ¹⁴, Paul Cheddie ¹⁵, Daniel Cisterna ¹,
- 9 Denise De Belder ¹, Milena Dropa ¹⁶, David Durand ¹⁷, Alan Elena ¹⁴, Gustavo Fontecha ¹⁸,
- 10 Claudia Huber ¹⁹, Ana Paula Lemos ²⁰, Luciano Melli ²¹, Roxana Elizabeth Paul ¹, Lesly Suarez ²²,
- 11 Julian Torres Flores ²² and Josefina Campos ^{1*}
- 12
- 13 ¹ Instituto Nacional de Enfermedades Infecciosas, ANLIS, Buenos Aires, Argentina
- 14 ² Centre for Genomic Pathogen Surveillance, Hinxton, Cambridge, United Kingdom
- 15³ Imperial College London, London, United Kingdom
- 16 ⁴ The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- 17 ⁵ The Wellcome Genome Campus Advanced Courses, Hinxton, Cambridge, United Kingdom
- 18 ⁶ The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University
- 19 Clinical Research Unit, Ho Chi Minh City, Vietnam
- 20 ⁷ Universidad Nacional, 3000 Heredia, Costa Rica
- 21 ⁸ The University of St. Andrews, St. Andrews, Scotland
- 22 ⁹National Institute for Agricultural Technology (INTA)CONICET, Argentina
- 23 ¹⁰ Universidad Central de Venezuela, Caracas, Venezuela
- 24 ¹¹ Fluminense Federal University, Niterio, Brazil
- 25 ¹² University of the West Indies, Mona campus, Kingston, Jamaica
- 26 ¹³ Institute of Public Health of Chile, Santiago, Chile
- 27 ¹⁴ Universidad de Buenos Aires, Buenos Aires, Argentina

- 28 ¹⁵ University of Guyana, Georgetown, Guyana
- 29 ¹⁶ University of Sao Paulo, Sao Paulo, Brazil
- 30 ¹⁷ Universidad Peruana Cayetano Heredia, Lima, Perú
- 31 ¹⁸ Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa,
- 32 Honduras
- 33 ¹⁹ Laboratorio Central de Salud Pública, Asunción, Paraguay
- 34 ²⁰ Adolfo Lutz Institute, Sao Paulo, Brazil
- 35 ²¹ Universidad Nacional de San Martín, Buenos Aires, Argentina
- 36 ²² Cayetano Heredia University, Lima, Perú
- 37
- 38 * Corresponding Author. Josefina Campos, Genomics and Bioinformatics Platform, INEI-ANLIS Dr.
- 39 Carlos G. Malbran, Avenida Dr Velez Sarsfield, C1282AFF, Buenos Aires, Argentina. Email:
- 40 jcampos@anlis.gov.ar
- 41
- .-
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
 - -
- 53

54 Abstract

55 Shigella sonnei is an emergent cause of diarrheal disease in middle-income countries. The 56 organism causes endemic disease and is also associated with sporadic outbreaks in 57 susceptible populations. In 2010 and 2011 there were two suspected outbreaks of diarrheal 58 disease caused by S. sonnei in La Pampa province in central Argentina. Aiming to confirm 59 these as outbreaks and provide insight into the relationship of the strains causing these infections we combined antimicrobial susceptibility testing and pulsed field gel 60 61 electrophoresis (PFGE) with whole genome sequencing (WGS). Antimicrobial susceptibility 62 testing suggested the two events were unrelated; organisms isolated in 2010 exhibited 63 resistance to trimethoprim sulphate whereas the 2011 S. sonnei were non-susceptible 64 against ampicillin, trimethoprim sulphate and cefpodoxime. PFGE profiling confirmed the 65 likelihood of two independent outbreaks, separating the isolates into two main XbaI 66 restriction profiles. We additionally performed WGS on 17 isolates associated with these 67 outbreaks. The resulting phylogeny confirmed the PFGE structure and separated the organisms into two comparatively distantly related clones. Antimicrobial resistant genes 68 69 were common, and the presence of an OXA-1 was likely associated with resistance to 70 ceppodoxime in the second outbreak. We additionally identified novel horizontally 71 transferred genetic material that may impinge on the pathogenic phenotype of the infecting 72 strains. Our study shows that even with a lack of supporting routine data WGS is an 73 indispensible method for the tracking and surveillance of bacterial pathogens during 74 outbreaks and is becoming a vital tool for the monitoring of antimicrobial resistant strains 75 of S. sonnei. 76

77

78

79 **Report**

80	Dysenteric diarrhea caused by members of the bacterial genus Shigella (comprised of the
81	species S. flexneri, S. sonnei, S. boydii and S. dysenteriae) remains an on-going public health
82	issue in many industrializing countries. It is estimated that the global burden of disease
83	caused by <i>Shigella</i> spp. is \sim 125 million cases annually [1], the majority of these cases arise
84	in children aged under five years. The Global Enteric Multicenter Study (GEMS), a case-
85	control study of paediatric diarrheal disease conducted in Africa and Asia, found that
86	enterotoxigenic Escherichia coli (ETEC) and Shigella were the two most common bacterial
87	agents of diarrhea in sub-Saharan Africa and South Asia [2,3]. Notably, Shigella spp. were
88	the most prevalent pathogen among children between 24 and 59 months old [3].
89	
90	Of the four Shigella species S. flexneri and S. sonnei are responsible for the vast majority of
91	the global burden of disease. Traditionally, <i>S. sonnei</i> has been the predominant cause of
92	bacterial dysentery in industrialized countries, whereas S. flexneri has been considered to
93	be associated with endemic disease and travel to lower income countries [4]. However, this
94	trend is changing as <i>S. sonnei</i> is now emerging as a problem in lower middle-income
95	countries, seemingly replacing <i>S. flexneri</i> as the leading cause of dysentery in these locations
96	[5]. This trend has also been observed in parts of Latin America [6,7], roughly correlating
97	with improvements in sanitation, water quality and, potentially, a fall in passive immunity
98	against <i>S. sonnei</i> via a decline in other bacteria associated with poor water quality [8]
99	
100	Argentina is a middle-income country in South America with endemic Shigellosis [9], the
101	number of officially reported cases of Shigellosis in 2014 was 4,116. This represents a
102	comparatively high proportion of the 6,200 cases of confirmed the cases of bacterial
103	diarrhea in 2014. Shigella outbreaks occur sporadically and rapidly and are frequently

104	associated with changes in antimicrobial susceptibility [10,11]. Aiming to better understand
105	the dynamics of Shigellosis in Argentina we gathered bacterial isolates from two suspected
106	outbreaks of Shigellosis investigated by the public health authorities in Argentina between
107	2010 and 2011. The two temporally independent events were attributed to <i>S. sonnei</i> and
108	occurred within the La Pampa province in the central region of the country. In this
109	retrospective study we combined available epidemiological data and microbiological data
110	with Pulsed Field Gel Electrophoresis (PFGE) and whole genome sequencing (WGS) of the S.
111	sonnei isolates from the suspected outbreaks in 2010 and 2011 to investigate their
112	relatedness. We also analysed the discriminatory ability of WGS compared to PFGE, the
113	current international gold-standard method for public health strain tracking.
114	
115	In December 2009 the Gobernador Centeno hospital in the city of General Pico reported an
116	increased number of cases of diarrhea above the expected endemic rate, an outbreak was
117	suspected. The first <i>Shigella</i> (confirmed by standard microbiological methods to be <i>S</i> .
118	<i>sonnei</i>) was isolated on the 7 th January 2010; the last culture confirmed case of <i>S. sonnei</i> was
119	on the 26^{th} February 2010. The cases were distributed throughout (i.e. no apparent case
120	clustering) General Pico. There were 26 reported cases, of which detailed microbiological
121	data was available on nine. Of the 26 reported cases, 13 were in children aged between 0-5
122	years, and 13 cases were aged between 6-69 years (median: five years); 10 cases were
123	female and 16 were male. No epidemiological association was recorded between cases,
124	apart from a potential cluster in a single household (n=4 cases). The most common disease
125	presentations were diarrhea with blood and mucus (13/26; 50%) and diarrhea with blood
126	without mucus (11/26; 42%). Of the nine available <i>S. sonnei</i> organisms isolated during the
127	potential 2010 outbreak, all had an identical antimicrobial susceptibility patterns by disc
128	diffusion [12], exhibiting susceptibility against ampicillin, ciprofloxacin, nitrofurantoin,

fosfomycin, naladixic acid and cefpodoxime and non-susceptibility against trimethoprimsulphate.

131

145

132	The second potential outbreak occurred the city of Castex, also in the province of La Pampa
133	(60 Km from General Pico) in the summer of 2011 (3 rd February 2011 to 30 th March 2011).
134	No supporting epidemiological data were available for this potential outbreak and six <i>S</i> .
135	sonnei were isolated. An equal proportion of males and females were infected and the
136	patient age range was 5-26 years (median: eight years). The antimicrobial susceptibility
137	profile of the organisms demonstrated that all organisms were non-susceptible against
138	ampicillin, trimethoprim sulphate and cefpodoxime. Additional laboratory testing suggested
139	that all organisms in this second potential outbreak exhibited AmpC production.
140	
141	To confirm the likelihood of outbreaks and to investigate the temporal and spatial
142	relationship between organisms we performed PFGE after XbaI digestion on 17 available

143 isolates from 2010 (n=9) and 2011 (n=7) and one additional contextual strain isolated in

144 General Pico in 2013 using standardized PulseNet protocols as previously described (Figure

1) [13]. The Xbal PFGE generated nine differing restriction patterns that could be grouped

146 into two major groups (ARJ16X01.0086 and ARJ16X01.0318) that correlated precisely with

147 their year of isolation; ARJ16X01.0086 is the most frequent pattern described in Argentina.

148 These major restriction patterns differed by six fragments and had 85% pattern similarity.

Additional PFGE with BlnI (again following standardized PulseNet protocols [13]) methods
of on a limited subsample confirmed this grouping, signifying independent outbreaks likely
caused by two differing clones of *S. sonnei* that could be distinguished by their antimicrobial
susceptibility patterns. These cases clusters were additionally confirmed using the SatScan
function in WHONET software.

154

155	PFGE does not provide sufficient resolution for phylogenetic inference, to understand the
156	genetic relationship between the organisms from the two outbreaks we performed WGS on
157	nine <i>S. sonnei</i> isolated in 2010, seven <i>S. sonnei</i> isolated in 2011 and the single contextual
158	isolate from 2013. We identified single nucleotide polymorphisms (SNPs) in comparison to
159	a Chinese reference strain (Ss046, accession number CP000038[14]), as previously
160	described [11,15,16], and constructed a maximum likelihood phylogeny of the 18 strains,
161	identifying approximately 1,500 variable nucleotide sites (Figure 2). Our data confirmed
162	that the outbreaks were associated with two differing, distantly related clones of <i>S. sonnei</i> .
163	The first clone (-10 suffix in Figure 2) was comprised of the 2010 isolates; six were highly
164	related, with three remaining isolates in the same group but located on longer branches.
165	The second clone (-11 suffix in Figure 2) contained all six isolates from 2011; these isolates
166	were almost identical, containing less than 10 nucleotide substitutions across their
167	genomes. An additional isolate from 2011 (1193-11) lay outside this group and was deemed
168	not to part of the same clonal outbreak. Notably, the 2011 clone could be distinguished by
169	non-susceptibility against cefpodoxime (yellow nodes in Figure 2) (Data accessible and
170	viewable at http://microreact.org/project/EkJeuWfx-).
171	

We next assembled the genome sequences from the two independent outbreaks to identify additional horizontally transferred genetic material that may be associated with each of the clones and to classify the genes associated with changes in antimicrobial susceptibility. We found that the -10 clone contained a *dfrA1* gene, which is associated with resistance against trimethoprim sulphate. Further, we identified genes associated with resistance to additional antimicrobials that were not tested, including streptomycin (*strAB*), tetracycline (*tetAR*) and sulphonomides (*sulII*). The -11 clone also contained a *dfr* gene (A5) and genes associated

179	with resistance against chloramphenicol (<i>catA1</i>), streptomycin (<i>strAB</i>), tetracycline (<i>tetB</i>)
180	and sulphonomides (sulll). We also identified several AmpC β -lactamase genes potentially
181	explaining the non-susceptibility against cefpodoxime including CMY and the Extended
182	Spectrum Beta Lactamase (ESBL) gene, OXA-1. Further, in the -11 clone we identified and
183	assembled a large (>90 Kb) plasmid that exhibited substantial homology and synteny to the
184	recently described 96 Kb p12-4374_96 plasmid in <i>Salmonella</i> Heidelberg [17] (accession
185	number: CP012929). This plasmid, not previously described in Shigella, encoded a
186	multitude of potentially interesting functions including a conjugation system, a type IVb
187	pilus and the ethanolamine utilization protein, EutE.
188	
189	Here we have combined traditional methods for tracking bacterial pathogens
190	(antimicrobial susceptibility testing and PFGE) and combined them with WGS to evaluate
191	two potential outbreaks of Shigellosis in a single province in 2010 and 2011 in Argentina.
192	Our data suggests that there were two independent outbreaks of <i>S. sonnei</i> induced diarrhea
193	in 2010 and 2011, finding that the organisms causing these case clusters were distantly
194	related to each other. This was somewhat unexpected given the geographical proximity of
195	these two locations and signifies that multiple clones of <i>S. sonnei</i> are likely circulating in
196	Argentina, several of which have outbreak potential. We found that the antimicrobial
197	susceptibility profile was sufficient to distinguish between these outbreaks, providing an
198	almost perfect temporal correlation with cefpodoxime resistance. This relationship was
199	further confirmed by PFGE, the current gold standard for strain tracking in such scenarios
200	in Argentina [18]. However, PFGE additionally over predicted the variability within the
201	genomic structures, identifying several banding patterns within the specific clones.
202	
203	In this particular investigation WGS augmented the findings of the conventional approaches

204	and provided new insight into these outbreaks. Firstly, the phylogenetic inference, which
205	has become standard for WGS of <i>S. sonnei</i> [11,15,16], permitted us an exquisite view of the
206	relationship between and within the outbreaks, eventually confirming the two outbreaks.
207	Further, assembly of the genome sequences identified the presence of the range
208	antimicrobial resistance genes, predicting resistance to additional antimicrobials that were
209	not susceptibility tested. These data permitted us to detect the ESBL gene OXA-1 [19], which
210	we hypothesized to be associated with resistance against the third generation
211	cephalosporin, cefpodoxime. ESBL genes are becoming more commonly reported in Shigella
212	in Asia [20]. Our data predict that this concerning phenomenon is additionally occurring in
213	Latin America via differing determinants. Oral third generation cephalosporins are one of
214	the current mainstays of treatment for Shigellosis in Argentina, we recommend further
215	genomic surveillance in this region to detect circulating beta lactamase genes. The
216	assembled genome sequences additionally identified further novel sequences encoding
217	potential virulence associated loci that may have a phenotypic effect during infection. These
218	novel genes require conformation and additional experimentation to confirm their role in
219	disease.
220	
221	Our study contains some limitations including a lack of strain diversity for better
222	phylogenetic inference and a lack of epidemiological data. However, our investigation of
223	these outbreaks represents a "real life" scenario, where limited data hamper
224	contextualization. Here we show that even with a lack of supporting routine data WGS
225	becomes an indispensible method for the tracking and surveillance of bacterial pathogens
226	during outbreaks.
227	

228

229 Acknowledgements

230	This work was	conducted as a	i component o	f the genomics	and epidemi	iological s	urveillance
				0		0	

- of bacterial pathogens course held from the 17-22 April 2011 in the Dr. Carlos G. Malbran
- 232 Institute in Buenos Aires, Argentina. We wish to acknowledge the Wellcome Genome
- 233 Campus Advanced Courses for providing financial and administrative support for the course
- that supported this investigation, including travel scholarships for attending students. We
- additionally wish to acknowledge the Dr. Carlos G. Malbran Institute for providing access to
- these data for training and publication purposes.
- 237

238 **Declaration of interests**

- 239 The authors declare no competing interests.
- 240

241 **References**

- Bardhan P, Faruque a SG, Naheed A, Sack D a (2010) Decrease in shigellosis-related
 deaths without Shigella spp.-specific interventions, Asia. Emerg Infect Dis 16: 1718–
- 2441723.
- 245 2. Kotloff KL, Blackwelder WC, Nasrin D, Nataro JP, Farag TH, et al. (2012) The Global
- 246 Enteric Multicenter Study (GEMS) of diarrheal disease in infants and young children
- in developing countries: epidemiologic and clinical methods of the case/control
 study. Clin Infect Dis 55 Suppl 4: S232–S245.
- 249 3. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, et al. (2013) Burden and
- 250 aetiology of diarrhoeal disease in infants and young children in developing countries
- 251 (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study.
- 252 Lancet 382: 209–222.
- 4. Keusch GT (2009) Bacterial Infections of Humans. Brachman PS, Abrutyn E, editors

254		Boston, MA: Springer US.
255	5.	Thompson CN, Duy PT, Baker S (2015) The Rising Dominance of Shigella sonnei: An
256		Intercontinental Shift in the Etiology of Bacillary Dysentery. PLoS Negl Trop Dis 9:
257		e0003708.
258	6.	Fullá N, Prado V, Durán C, Lagos R, Levine MM (2005) Surveillance for antimicrobial
259		resistance profiles among Shigella species isolated from a semirural community in
260		the northern administrative area of Santiago, Chile. Am J Trop Med Hyg 72: 851–854.
261	7.	Sousa MÂB, Mendes EN, Collares GB, Péret-Filho LA, Penna FJ, et al. (2013) Shigella in
262		Brazilian children with acute diarrhoea: prevalence, antimicrobial resistance and
263		virulence genes. Memorias Inst Oswaldo Cruz 108: 30–35.
264	8.	Shepherd JG, Wang L, Reeves P (2000) Comparison of O-antigen gene clusters of
265		Echerichia coli (Shigella) Sonnei and Plesiomonas shigelloides 017: Sonnei gained its
266		current plasmid-borne O-antigen genes from P. shigelloides in a recent event. Infect
267		Immun 68: 6056–6061.
268	9.	Casabonne C, González A, Aquili V, Balagué C (2016) Prevalence and virulence factors
269		of Shigella spp. isolated from patients with diarrhoea in Rosario, Argentina. Jpn J
270		Infect Dis.
271	10.	Huang I, Chiu C, Wang M, Wu C, Hsieh K, et al. (2005) Outbreak of Dysentery
272		Associated with Ceftriaxone-Resistant Shigella sonnei : First Report of Plasmid-
273		Mediated CMY-2-Type AmpC [№] -Lactamase Resistance in S . sonnei. Society 43: 2608–
274		2612.
275	11.	Holt KE, Thieu Nga TV, Thanh DP, Vinh H, Kim DW, et al. (2013) Tracking the
276		establishment of local endemic populations of an emergent enteric pathogen. Proc
277		Natl Acad Sci U S A 110: 17522–17527.
278	12.	Clinical and Laboratory Standards Institute (2014) Performance Standards for

279		Antimicrobial Susceptibility Testing: Twenty-Fourth Informational Supplement.
280		Wayne, PA, USA: CLSI document M100-S24.
281	13.	Viñas MR, Tuduri E, Galar A, Yih K, Pichel M, et al. (2013) Laboratory-based
282		prospective surveillance for community outbreaks of Shigella spp. in Argentina. PLoS
283		Negl Trop Dis 7:
284	14.	Liang S, Watanabe H, Terajima J, Li C, Liao J, et al. (2007) Multilocus Variable-Number
285		Tandem-Repeat Analysis for Molecular Typing of Shigella sonnei. Society 45: 3574–
286		3580.
287	15.	Holt KE, Baker S, Weill F-X, Holmes EC, Kitchen A, et al. (2012) Shigella sonnei
288		genome sequencing and phylogenetic analysis indicate recent global dissemination
289		from Europe. Nat Genet 44: 1056–1059.
290	16.	Baker KS, Dallman TJ, Ashton PM, Day M, Hughes G, et al. (2015) Intercontinental
291		dissemination of azithromycin-resistant shigellosis through sexual transmission: a
292		cross-sectional study. Lancet Infect Dis.
293	17.	Labbé G, Edirmanasinghe R, Ziebell K, Nash JHE, Bekal S, et al. (2016) Complete
294		Genome and Plasmid Sequences of Three Canadian Isolates of Salmonella enterica
295		subsp. enterica Serovar Heidelberg from Human and Food Sources. Genome Announc
296		4.
297	18.	Pichel M, González Fraga S, Terragno R, Mulki J, Gentile A, et al. (2007) Short report:
298		analysis of clonal relationship among Shigella sonnei isolates circulating in
299		Argentina. Epidemiol Infect 135: 681–687.
300	19.	Paterson DL, Bonomo RA (2005) Extended-Spectrum -Lactamases: a Clinical Update.
301		Clin Microbiol Rev 18: 657–686.
302	20.	Nguyen NTK, Ha V, Tran NVT, Stabler R, Pham DT, et al. (2010) The sudden
303		dominance of blaCTX-M harbouring plasmids in Shigella spp. Circulating in Southern

304 Vietnam. PLoS Negl Trop Dis 4: e702.

305

- **Figure 1**. The relationship between *Shigella sonnei* isolated in independent outbreaks in La
- 307 Pampa province, Argentina in 2010 and 2011
- 308 Dendogram based on PFGE profile after XbaI digestion of *Shigella sonnei* isolated from stool
- 309 samples in 2010 (General Pico) and 2011 (Castex). One additional isolate from 2013
- 310 (General Pico) was included as contextual strain. Information regarding the strain ID, the
- 311 date of isolation and the digestion pattern (according to PulseNet Latinoamerica) are
- 312 provided.
- 313
- 314 **Figure 2**. The phylogenetic relationship of *Shigella sonnei* isolated in independent

315 outbreaks in La Pampa province, Argentina in 2010 and 2011

- 316 Unrooted maximum likelihood tree constructed using approximately 1,500 variable
- nucleotide sites from nine organisms isolated in 2010, seven isolates from 2010 and a single
- 318 isolate from 2013 in La Pampa province, Argentina. *S. sonnei* Ss046 was added as the
- 319 reference strain. Tree was viewed in microreact and nodes are labelled with the strain name
- and the year of isolation suffix collared according to susceptibly against cefpodoxime
- 321 susceptibility (orange; susceptible, yellow, non-susceptible).

Xbal pattern

. .

. .

. .

. .

. .

. .

.....

.

ARJ16X01.0271 ARJ16X01.0410 ARJ16X01.0083 ARJ16X01.0084 ARJ16X01.0086 ARJ16X01.0086 ARJ16X01.0086 ARJ16X01.0086 ARJ16X01.0086 ARJ16X01.0086 ARJ16X01.0086 ARJ16X01.0334 ARJ16X01.0245 ARJ16X01.0318 ARJ16X01.0318 ARJ16X01.0318 ARJ16X01.0338

