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Macrophages provide front line defense against infections. The study of macrophage–
microbe interplay is thus crucial for understanding pathogenesis and infection control. 
Zebrafish (Danio rerio) larvae provide a unique platform to study macrophage–microbe 
interactions in vivo, from the level of the single cell to the whole organism. Studies using 
zebrafish allow non-invasive, real-time visualization of macrophage recruitment and 
phagocytosis. Furthermore, the chemical and genetic tractability of zebrafish has been 
central to decipher the complex role of macrophages during infection. Here, we discuss 
the latest developments using zebrafish models of bacterial and fungal infection. We 
also review novel aspects of macrophage biology revealed by zebrafish, which can 
potentiate development of new therapeutic strategies for humans.
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inTRODUCTiOn

Macrophages are a major component of the innate immune system, responding efficiently to 
tissue damage and infection (1, 2). During infection, macrophages have diverse roles including 
phagocytosis of foreign bodies, release of cytotoxic factors, and coordination of the inflammatory 
response via the secretion of chemokines and cytokines (3, 4). Phagocytosis can involve the recog-
nition of pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively) 
through pattern recognition receptors (PRRs) on the macrophage surface (5, 6). Further, the 
complement system can mark pathogens for phagocytosis by opsonization (7). Once internalized, 
the pathogen resides inside a vacuole known as a phagosome (8). Subsequent phagosome matura-
tion involves acidification of the lumen, which leads to lysosomal fusion and degradation of the 
internalized microbe (9). Pathogen restriction is enhanced by the nutrient-limiting ability of the 
phagolysosome and the input of antimicrobial agents into the lumen, such as reactive oxygen/
nitrogen species (ROS/RNS) (10). Although the majority of microbes succumb to the microbicidal 
environment within the phagolysosome, some pathogens (including Mycobacterium tuberculosis 
and Salmonella Typhimurium) can survive and replicate within this harsh environment (11, 12). In 
contrast, some bacterial pathogens (including Listeria monocytogenes and Shigella flexneri) have 
mechanisms to escape from the phagosome and proliferate in the cytosol (13).

Mechanisms of cell-autonomous immunity are crucial for protection of the host cell cytosol 
(14). Autophagy is an evolutionarily conserved process of intracellular degradation, recognized 
as an important defense mechanism against intracellular pathogens (15). Targeting of bacterial 
pathogens by the autophagy machinery is often mediated by ubiquitination, a posttranslational 
modification (16, 17). In this case, ubiquitinated substrates (such as bacterial components or 
damaged membrane) are recognized by autophagy receptors, including p62 and NDP52, which 
direct formation of the autophagic membrane around the targeted pathogen (18–20). Autophagy-
related (ATG) proteins also direct immunity-related GTPases (IRGs) and guanylate-binding 
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proteins (GBPs) to pathogens (21). IRGs and GBPs belong 
to a family of GTPases that confer host cell resistance during 
infection by pathogens (22–24). IRGs cooperate with GBPs 
to target non-self vacuoles, trafficking nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase, ATG proteins, and 
inflammasome complex assembly for host defense (25–27). 
Intracellular pathogens are also detected via nucleotide-binding 
oligomerization domain-like receptors (NLRs), a class of 
PRRs that reside in the cytosol (28). An important example 
is NLRP3, which acts as a scaffold protein for inflammasome 
assembly, leading to caspase-1 activation and maturation of 
pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18  
(29, 30). These cytokines enhance the immune response and 
induce pathways leading to pyroptosis, a highly inflammatory 
type of programmed cell death (31).

A variety of different animal models have made important  
contributions to the study of macrophage-microbe interplay 
in vivo. Originally used for studying development, the zebrafish 
has many similarities with higher vertebrates (including mam-
mals), which has led to their use for studying infection and immu-
nity (32, 33). During the first 4 weeks of development, zebrafish 
lack adaptive immunity and rely on the innate immune response 
for host defense (34). This, together with ex utero development of 
embryos, necessitates the rapid development of innate immune 
cells, progenitors of which can be observed as early as 20  h 
postfertilization (hpf). Although the precise sites of development 
and maturation differ between zebrafish and human phagocytes, 
zebrafish macrophages retain close morphological and functional 
similarities with their mammalian counterparts (35). Primitive 
macrophages, originally identified by Philippe Herbomel and 
colleagues, use phagocytosis to control infection by Escherichia 
coli and Bacillus subtilis (36). Optical accessibility during early 
life stages make zebrafish larvae highly suited for non-invasive 
live microscopy. Studies on the zebrafish immune system identi-
fied macrophage-specific genes (including mpeg1 and csf1ra), 
discoveries that enabled the development of specific reporter lines 
(37, 38). By using transgenic lines that fluorescently label distinct 
leukocyte populations, studies have identified key roles for mac-
rophages during infection control in vivo (6). Furthermore, the 
sequenced zebrafish genome and the ability to manipulate the 
immune system through chemical or genetic means (including 
morpholino oligonucleotides for transient depletion, or CRISPR/
Cas9 for genome engineering) make the zebrafish a unique and 
powerful tool for studying host–pathogen interactions at the 
molecular, cellular, and whole-animal level (39–41).

In this review, we discuss novel aspects of host–pathogen inter-
actions that have been recently revealed using bacterial (myco-
bacteria, Gram-positive, Gram-negative) and fungal zebrafish 
infection models, highlighting key roles for macrophages in host 
defense against a variety of important pathogens.

ZeBRAFiSH MACROPHAGe–BACTeRiA 
inTeRACTiOnS IN VIVO

Mycobacterium marinum is a natural pathogen of zebrafish, 
closely related to the causative agent of human tuberculosis 

(M. tuberculosis). Pioneering studies have shown that M. 
marinum infection leads to the aggregation of macrophages 
into granuloma-like structures that both contain and promote 
bacterial dissemination (Figure 1A) (42, 43). These structures 
are initiated by the ESX-1 secretion system, which induces 
expression of matrix metalloproteinase-9 in epithelial cells 
to recruit macrophages for bacterial phagocytosis (44, 45). 
Tissue-resident macrophages first responding to infection 
are microbicidal. Therefore, to create a replication niche, M. 
marinum induces chemokine (C-C motif) ligand 2 (CCL2) 
expression and recruits uninfected monocytes via the surface 
lipid phenolic glycolipid (PGL) (46). Moreover, M. marinum 
possess cell surface-associated phthiocerol dimycoceroserate 
lipids, which impede PAMP–TLR interactions and prevent 
the microbicidal response in newly recruited monocytes (47). 
Consistent with a protective niche, the granuloma supports 
bacterial growth, alteration of granuloma structure through dis-
ruption of E-cadherin increases immune cell accessibility, and 
reduces bacterial burden (48). Work has shown that macrophage 
deficiency leads to accelerated necrosis of the granuloma and 
increased susceptibility to infection (45). A balanced inflam-
matory response is crucial to prevent necrosis of the granuloma, 
as both low and high levels of tumor necrosis factor (TNF) can 
lead to increased bacterial replication (49). Supporting this, a 
forward genetic screen performed in zebrafish revealed that 
mutation of the lta4h locus (encoding leukotriene A4 hydrolase) 
can modulate production of anti- and pro-inflammatory lipid 
mediators and susceptibility to mycobacterial infection (50). 
Angiogenesis has also been implicated in granuloma expansion 
and bacterial dissemination via a mechanism that requires 
hypoxia-induced vascular endothelial growth factor expression 
and C-X-C chemokine receptor type 4 (CXCR4) signaling  
(51, 52). Collectively, these studies highlight a complex role 
for macrophages in granuloma formation and in host defense 
against mycobacteria.

Infection by Mycobacterium leprae, an ancient pathogen that 
causes leprosy, is restricted to humans and nine-banded arma-
dillos (Dasypus novemcinctus) (57). M. leprae infection causes 
demyelination of peripheral nerves and axonal damage, which 
can lead to symptoms such as muscle weakness and numbness. 
Remarkably, new work has shown that zebrafish can be used to 
study M. leprae pathogenesis in vivo (58). Although M. leprae 
replication is not observed in zebrafish due to its long doubling 
time of 12–15 days, the macrophage response to bacteria is com-
parable to that observed during M. marinum infection. In the 
case of M. leprae, PGL-1 is responsible for mediating structural 
changes in myelin by inducing macrophage RNS production, 
which subsequently causes mitochondrial swelling, demyelina-
tion, and axonal damage.

Listeria monocytogenes, a Gram-positive foodborne pathogen, 
can cause listeriosis and meningitis in immunocompromised 
individuals, and spontaneous abortions during pregnancy (59, 
60). Inside macrophages, L. monocytogenes can escape from 
the phagosome and proliferate in the cytosol (Figure 1B) (61). 
Bacterial escape from the phagosome to the cytosol is linked to 
expression of listeriolysin O (LLO), a pore-forming toxin that 
targets the phagosomal membrane (62). ActA, another major 
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FiGURe 1 | Zebrafish macrophage-microbe interactions in vivo. (A) Differential interference contrast (left) and fluorescent microscopy (right) image of macrophage 
aggregation to Mycobacterium marinum in the tail of wild-type AB larvae. Asterisk (*) indicates an infected macrophage at the aggregate; arrows indicate infected 
macrophages near the aggregate. m, melanocyte; s, striated muscle; scale bar 25 µm. Image adapted from Ref. (42). (B) Electron microscopy images of the caudal 
hematopoietic tissue of wild-type AB larvae injected intravenously with Listeria monocytogenes 3 h postinfection (hpi). Listeria in a macrophage cytosol (arrowheads; 
top image), and Listeria in a macrophage phagosome (bottom image). Scale bar 1 µm. Images adapted from Ref. (53). (C) Confocal time-lapse images of 
Tg(mpeg1:G/U:nfsb-mCherry) larva (red macrophages) infected with Shigella flexneri (green) by caudal vein injection, first frame at 20 min postinjection (mpi). White 
arrow depicts GFP-Shigella phagocytosed by a red macrophage, with a loss of red fluorescence at frame 01:56 indicating macrophage cell death. Maximum 
intensity projection of six planes every 2 µm, scale bar 10 µm. Images adapted from Ref. (54). (D) High content imaging of Tg(fms:Gal4.VP16)il86; Tg(UAS:nfsb.
mCherry)il49 larvae harboring macrophages (middle) injected with Cryptococcus neoformans (top) into the yolk sac circulation valley; bottom panel showing a 
merged image of both macrophages (magenta) and C. neoformans (green). Maximum intensity projection of images obtained 2hpi. Images adapted from Ref. (55). 
(e) Hindbrain ventricle injection of viable (top row) or non-viable (bottom row) Mucor circinelloides spores (cyan) in Tg(mpeg1:G/U:nfsb-mCherry/mpx:GFP) larvae 
harboring red macrophages imaged at 10 h 45 min and 1 h 5 min, respectively. Asterisks (*) indicate spores inside macrophages (red). Z-stack of 15 sections every 
7.3 µm; scale bar 20 µm. Images adapted from Ref. (56). All adapted images were used with the appropriate permissions from the copyright holders of this work.
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virulence factor of Listeria, enables actin tail polymerization 
and autophagy escape (59, 63, 64). In agreement with studies 
performed in vitro using tissue culture cells, virulence of Listeria 
in zebrafish is dependent on LLO and ActA (53). More recent 
work using zebrafish has shown that bacterial dissemination (via 
necrosis of infected macrophages and release of bacterial-con-
taining blebs) is LLO-dependent (65). To counteract this, Gp96 

(an endoplasmic reticulum chaperone) can protect the integrity 
of the host cell plasma membrane against pore-forming toxins. In 
a separate study, zebrafish infection with a Listeria strain ectopi-
cally expressing flagellin (called Lm-pyro) was shown to activate 
the inflammasome in macrophage and reduce infection (66). 
These results highlight the inflammasome as crucial for protec-
tion against Listeria.
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Staphylococcus aureus is an opportunistic pathogen, which 
latently resides in one-third of humans. Invasive surgery or 
lesions can increase the risk of infection, and considering the 
emergence of antibiotic-resistant strains, S. aureus is recognized 
as a major human threat. While systemic S. aureus infections are 
controlled, zebrafish are susceptible to yolk sac infection (i.e., a 
site inaccessible to leukocytes), underscoring the importance of 
leukocytes for infection control (67). Experiments performed 
using larvae depleted of myeloid cells demonstrate a role for 
macrophages in restriction of S. aureus proliferation in the blood 
(67). Interestingly, the incomplete clearance of bacteria by leu-
kocytes can result in an “immunological bottleneck,” viewed to 
select for persisting bacterial populations (68). The zebrafish can, 
therefore, be used to discover mechanisms used by S. aureus to 
evade destruction within leukocytes.

Colonization of humans by Burkholderia cenocepacia has 
severe consequences in cystic fibrosis (CF) patients and other 
immunocompromised individuals. Originally viewed to form 
a biofilm in CF patients, studies using clinical samples have 
shown that B. cenocepacia can reside in alveolar macrophages 
(69). More recently, a zebrafish infection model demonstrated 
that macrophages are crucial for B. cenocepacia replication (70). 
Consistent with this, depletion of macrophages from larvae 
restricts bacterial replication (71). During infection, macrophages 
express IL-1β and recruit uninfected cells to form cellular 
aggregates (70, 71). Paradoxically, the depletion of IL-1β (using 
morpholino oligonucleotide) during B. cenocepacia infection 
results in decreased survival, yet, inhibition of IL-1β signaling 
(using the IL-1 receptor antagonist anakinra) results in increased 
survival (71). Together, these experiments suggest the precise  
role of IL-1β during B. cenocepacia infection, and its manipula-
tion for therapy, is complex.

Salmonella is a well-studied Gram-negative pathogen 
responsible for gastroenteritis, enteric fever, and bacteremia. 
Investigation of S. Typhimurium has made important contribu-
tions to macrophage biology (6, 11). During zebrafish infection, 
S. Typhimurium can replicate within macrophages and also 
extracellularly within the vasculature (72). A subpopulation of 
intracellular bacteria is lysed by mitochondrial-derived ROS 
produced by macrophages via a pathway dependent on immu-
noresponsive gene 1 (IRG1) (73). In addition, macrophages are 
responsible for the “fine-tuning” of the immune response to  
S. Typhimurium via secretion of granulocyte-colony stimulating 
factor (G-CSF), which in turn stimulates the transcription fac-
tor C/ebpβ and enhances neutrophil production by emergency 
granulopoiesis (74).

Shigella is a Gram-negative enteroinvasive pathogen classi-
fied by the WHO as a global threat due to its development of 
antibiotic resistance (75–77). Among the species of Shigella,  
S. flexneri is best recognized as a paradigm for studying mac-
rophage cell death (78). In agreement with studies performed 
in vitro, S. flexneri can induce cell death in zebrafish macrophages 
in vivo (Figure 1C) (54). Despite this, macrophage-depleted trans-
genic zebrafish present increased mortality during infection (79). 
These results suggest that macrophages play an important role in 
the initial collection of injected bacteria, prior to the elimination 
of bacteria and cellular debris by neutrophils. The increasing risk 

of multidrug-resistant bacteria has driven the need for treatments 
that do not strictly rely on antibiotics. Injection of Shigella-infected 
zebrafish with predatory bacteria Bdellovibrio bacteriovorus 
revealed a synergy between predator–prey interactions with the 
host immune system to restrict multidrug-resistant infection 
(80). In this case, the reduction of Shigella burden by Bdellovibrio 
is beneficial for infection control by zebrafish leukocytes.

ZeBRAFiSH MACROPHAGe–FUnGUS 
inTeRACTiOnS IN VIVO

Invasive fungal infections are a growing problem, causing sig-
nificant morbidity and mortality in organ transplant patients. 
Immunosuppression using calcineurin inhibitors is a common 
strategy for the prevention of organ transplant rejection and 
increases the risk of infection by Aspergillus fumigatus (81). 
Alveolar macrophages and inflammatory monocytes in the 
murine lung have been described as critical for early antifungal 
immunity during Aspergillus infection (82). Real-time visualiza-
tion using a zebrafish infection model revealed the inability of 
neutrophils to phagocytose fungal spores, and suggested 
macrophages as crucial for host defense against A. fumigatus  
(83, 84). In mouse models of A. fumigatus infection, treatment 
with calcineurin inhibitor FK506 leads to increased mortality (85). 
Consistent with this, studies using zebrafish infection showed a 
role for calcineurin in protection against Aspergillus (86). In this 
case, calcineurin activation leads to dephosphorylation of nuclear 
factor of activated T cells (NFAT), and FK506 treatment impairs 
neutrophil recruitment because of reduced TNF-α production 
by macrophages (86). A separate study revealed FK506 inhibits 
the calcineurin-dependent lateral transfer of A. fumigatus from 
necroptotic to naïve macrophages, allowing fungal escape and 
unrestricted growth (87). Collectively, these studies highlight the 
indispensable role of calcineurin in macrophages for Aspergillus 
control in vivo.

Candida albicans is an opportunistic fungal pathogen, which 
primarily affects immunocompromised individuals. Zebrafish 
infection models have been used to identify C. albicans viru-
lence factors and indicate an important role for the filamentous 
(hyphal) form of C. albicans in pathogenesis (88–90). Strikingly, 
real-time microscopy of C. albicans infection showed the  
extrusion of hyphae from the zebrafish hindbrain (88). Fungal 
dissemination is observed by 24 h postinfection (hpi), followed 
by lethality resulting from uncontrolled hyphal growth (89). 
Here, macrophages can restrict germination (but not replica-
tion), and fungal killing by macrophages and neutrophils is a 
rare occurrence (89). Zebrafish infection has also demonstrated 
a new role for NADPH oxidase in controlling hyphal growth, 
helping to recruit macrophages through ROS and preventing 
germination (89, 91).

Another opportunistic fungal pathogen, Cryptococcus neo-
formans can be fatal in immunocompromised individuals and 
is responsible for over 600,000 deaths globally per annum (92). 
Although highly informative, mammalian and non-vertebrate 
infection models have limitations in visualizing fungus-leukocyte 
dynamics and the translatability to higher vertebrate models, 
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respectively. Live imaging of zebrafish during Cryptococcus infec-
tion revealed macrophages are required for pathogen control 
(Figure 1D) (55, 93). In agreement with this, macrophage deple-
tion prior to infection leads to uncontrolled fungal replication 
and increased zebrafish mortality (55, 93). Macrophage-depletion 
postinfection also leads to increased fungal burden (55). The 
Cryptococcus capsule is made of polysaccharides contributing 
immunosuppressive functions, including the inhibition of 
phagocytosis. Consistent with this, capsule enlargement that 
occurs during infection of zebrafish can prevent phagocytosis, 
resulting in fungal proliferation and zebrafish mortality (55). 
By tracking individual macrophages over time, the first in vivo 
observation of vomocytosis (the controlled non-lytic expulsion of 
pathogens from phagocytes) was captured (55). The precise role 
of vomocytosis in host defense is not yet known.

Mucor circinelloides is an emerging fungal pathogen in 
which the incidence of infection is increasingly associated with 
aging populations (94). M. circinelloides causes mucormycosis, 
a disease with a wide range of symptoms including fever and 
gastrointestinal bleeding (95). Treatment of mucormycosis in 
humans remains costly and unsuccessful, and fatalities are often 
linked to corticosteroid treatment and immune defects (96, 97). 
In agreement with this, immunosuppression by corticosteroid 
treatment results in increased zebrafish mortality (56). Moreover, 
macrophage-depleted zebrafish succumb to infection, highlight-
ing a key role for macrophages in M. circinelloides control. 
Remarkably, macrophages accumulate around viable spores 
in a manner similar to the granuloma structures described for  
M. marinum infection (Figure  1E) (56). While the role of 
macrophage clusters during M. circinelloides infection is not 
fully known, the zebrafish infection model can provide a 
novel platform to study macrophage–fungal interplay during 
mucormycosis.

DiSCUSSiOn

Here, we describe recent mechanistic insights into the macrophage 
response to intracellular pathogens as revealed by zebrafish 
infection (Table  1). Although macrophage recruitment and 
phagocytosis is typically observed in response to infection, this 
is not always followed by pathogen restriction. Zebrafish infec-
tion has shown that, in some cases, macrophages can promote 
pathogenesis by shielding the pathogen from immune control 
or by providing a replicative niche. The zebrafish is a relatively 
new model for the study of human infectious disease. Therefore, 
a limitation of the system includes the lack of tools currently 
available, such as zebrafish antibodies and cell lines, which can 
impede in-depth mechanistic studies. On the other hand, the 
rapid development of transgenic zebrafish lines with fluorescently 
tagged proteins/cells, in combination with genome-editing tech-
nologies, compensate for these limitations. Considering advance-
ments in RNAseq and high-resolution microscopy, we can expect 
that zebrafish infection will continue to illuminate fundamental 
aspects of host–pathogen interactions at the molecular, cellular, 
and whole animal level. The hope is that studying macrophage–
microbe interactions in vivo using the zebrafish model can deliver 
therapeutic impact in humans.
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