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Abstract

Batch effects are technical sources of variation introduced by the necessity of conducting

gene expression analyses on different dates due to the large number of biological samples

in population-based studies. The aim of this study is to evaluate the performances of linear

mixed models (LMM) and Combat in batch effect removal. We also assessed the utility of

adding quality control samples in the study design as technical replicates. In order to do so,

we simulated gene expression data by adding “treatment” and batch effects to a real gene

expression dataset. The performances of LMM and Combat, with and without quality control

samples, are assessed in terms of sensitivity and specificity while correcting for the batch

effect using a wide range of effect sizes, statistical noise, sample sizes and level of bal-

anced/unbalanced designs. The simulations showed small differences among LMM and

Combat. LMM identifies stronger relationships between big effect sizes and gene expres-

sion than Combat, while Combat identifies in general more true and false positives than

LMM. However, these small differences can still be relevant depending on the research

goal. When any of these methods are applied, quality control samples did not reduce the

batch effect, showing no added value for including them in the study design.

Introduction

Various OMICS techniques are increasingly being used in human population studies to link

dietary factors, environmental exposures or therapeutic use of medication to adverse health

outcomes and related molecular changes in numerous tissues. Transcriptomics is the study of

RNA transcripts produced by the genome using high-throughput technology. Gene expression

analysis provides a snapshot of expressed genes and transcripts responding to environmental

changes. Since external environmental conditions can change the expression profiling, tran-

scriptomics has become an emerging and promising tool for biomarker discovery [1, 2].

The expression level of mRNAs can be measured using microarray technology. The tech-

nique relies on a series of complex chemical reactions between large amounts of RNA
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molecules and reagents to convert the RNA to cDNA. The gene expression levels are measured

by quantifying hybridized and labelled cDNA. The efficiency of these reactions is highly sensi-

tive to experimental settings such as the physical and chemical conditions in which the experi-

ment took place (e.g. temperature, humidity, pH, etc.) and to compliance with the standardized

experimental protocol [3, 4]. In real-life studies, numerous biological samples (i.e. hundreds or

thousands) from population-based studies are analysed, and the acquisition of gene expression

profiles from these biological samples cannot be performed in a single go but rather in lots. The

need to perform the analysis on different dates has the potential to induce variability in the mea-

sured profiles which is usually referred to as batch effect, producing technical and non-biologi-

cal variations in the measurements [5–9]. The resulting technically-induced variations in RNA

measurements may introduce noise in the data, which in-turn dilutes effects of interest [7]. In

order to preserve statistical power and ensure robustness of the identified associations, espe-

cially while investigating subtle and complex effects, careful attention should be paid to the

methods used to correct for batch effects.

In mRNA microarray technology, the batch effects mainly originate from the isolation of

the mRNA, dye labeling of the samples and hybridization onto the microarray [10, 11]. In pre-

vious studies, several methods have been applied to account for batch effects that may be pres-

ent in microarray-based gene expression data sets. These include linear mixed models (LMM)

where technical confounders are modelled as random intercepts [10, 12] by assuming a sys-

tematic transcript-specific shift in the expression levels in relation to experimental conditions.

More complex algorithms such Distance-Weighted Discrimination (DWD) [13], mean-cen-

tering Prediction Analysis for Microarrays in R (PAMR) [14, 15], geometric ratio-based meth-

ods [16] and Combining Batches of Gene Expression Microarray Data (ComBat) [17] have

also been proposed. ComBat, from the Surrogate Variable Analysis (sva) package [18], adjusts

batch effects using an empirical Bayesian framework and was shown to outperform the other

mentioned methods in a systematic comparison [19]. Quantile normalization in combination

with ComBat has been shown to reduce batch effects without dampening the biological effect

[6]. On the other hand, it has also been reported that using ComBat for batch effect removal in

datasets where groups are distributed among batches in a unbalanced way can hide important

associations for both large and small batch sizes [20].

In order to facilitate the quantification of the (possibly differential) measurement error

across batches, the inclusion of the same and characterized quality control (QC) sample in all

batches is a powerful, but sometimes costly, approach.

In the current study, we propose to investigate the relative performances of the two main

approaches to correct for batch effects, linear mixed models correcting for batch as a random

effect and Combat. Both approaches will also be investigated in conjunction with the use of

QC samples to assess whether these technical replicates, used for calibration purposes, actually

improve the models’ performances. For the sake of comparison we also included linear models

correcting for batch as a fixed effect. This third approach is equivalent to the genewise one-

way ANOVA adjustment performed by some methods like PAMR.

We use existing microarray gene expression data from 251 blood samples of individuals

that belong to the EXPOsOMICS project. Standard numerical summaries on the batch effect

are estimated from the existing data and used to generate new data. Therefore, we simulate

gene expression data using the existing expression data, these numerical summaries and added

effect in order to be able to identify the true positives and negatives. We assess the perfor-

mances of the main approaches to correct for batch effects in the simulated data and the poten-

tial added value of including QC samples. Furthermore, the simulated set of effects and batch

effects that are introduced in the existing gene expression dataset follow different scenarios,

allowing us to evaluate the impact of the effect size, sample size and additional random error.

Comparison of statistical methods for batch effect removal
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The aim of the simulation study is to assess (i) the impact of batch effect in terms of statistical

performances (sensitivity and specificity), (ii) the absolute and relative ability of the proposed

methods to improve the models performances in a linear regression context and (iii) the utility

of the QCs.

Methods

Study Population

The study population is derived from the EU-funded research project EXPOsOMICS which

aims to link environmental exposures with biomarkers of exposure, effect and disease. Gene

expression levels were obtained from blood samples collected from subjects with asthma and

their matched controls (demographics of the population in S1 Table).

Gene expression data and pre-processing

For each of the study participants, one blood sample was collected at recruitment. Ethical

approval was obtained from the Ethics Committee of Basel EKBB and the Ethical Committee

of Hospital East Limburg and followed the rules for ethics and data protection, which were in

accordance with the Declaration of Helsinki. Written informed consent was given from the

subjects. RNAlater was added to the blood samples to preserve RNA quality and the mixture

was stored at -80˚C within two hours. Total RNA was isolated and hybridized on Agilent

8x60K Whole Human Genome microarrays. Only samples with a 260/280 ratio close to 2 and

RNA Integrity Number (RIN) value > 6 were selected for data analysis. All the QCs are the

result of one blood withdrawal from one independent subject whose blood was divided into

different tubes, mixed with RNAlater and stored using the same procedure as the study sam-

ples. Therefore, each of these QCs is a technical replicate. QCs also follow the same quality cri-

teria as the study samples with respect to the 260/280 ratio and RIN values for the RNA

isolation. Together with the study samples, two quality control samples (QCs) or technical rep-

licates per batch of microarray hybridization were included in order to assess the potential var-

iation of these QCs which in that case would be a result of the possible variation in the signal

across batches.

The original sample set consisted of 291 samples. However, 40 samples belonging to two

batches are excluded due to poor quality of the QCs from those batches, resulting in 251 sam-

ples and 27 QCs included in the current study. The total number of batches is 14.

Normalization procedure

Normalization is performed using Bioconductor in R [21]. Local background correction, flag-

ging of bad spots, controls and spots with unacceptably low intensity and log2 transformation

are applied using the quantile method (github.com/BiGCAT-UM/arrayQC_Module). We

adopt two normalization approaches: (i) a two-step approach where independent normaliza-

tions of the data from each batch separately are performed followed by normalized data

merge, and (ii) a single-step procedure where all samples across batches are normalized

together.

After normalization, genes with less than 30% flagged bad spots are selected, transcript rep-

licates are merged by calculating their median and missing values are imputed using the k-

nearest neighbors (k-NN, k-value 15) [22] for all samples except for QCs. The total number of

probes is 27,522.
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Calibration using Quality Control samples

In some of the analyses, normalization is complemented by applying a multiplicative correc-

tion factor to measured gene expression levels and therefore ensuring optimal consistency in

measurements obtained across QC samples.

In practice for a given gene i, measured in batch j, the correction factor QCij is defined by

the following ratio:

QCij ¼

P2

k¼1
qijk

2Pb

j¼1

P2

k¼1
qijk

n

; ð1Þ

where the numerator is the mean expression level for gene i across the k = 2 measurements

(there are two QC samples per patch) in batch j, and the denominator the mean expression lev-

els of gene i measured across all batches (denoting b the number of batches, mean calculated

on 2�b values). The resulting set of calibration coefficients are subsequently applied to all gene

expression measurements.

Regression Methods

Several analyses are performed for comparison purposes in both normalization per batch and

merged normalization. For each normalization method, QC correction either is or is not per-

formed. Batch effects are removed by using maximum likelihood for the linear regression

methods and by the empirical Bayesian framework for Combat. The statistical methods that

we use are linear mixed models (LMM) correcting for batch as a random effect, linear models

(LM) correcting for batch as a fixed effect (LMBatch), LM without batch correction as a con-

trol and Combat. Thus, there are two methods of normalization, presence or absence of a QC

correction and the four modelling methods for a total of 16 different statistical analyses (Fig 1).

The variables sex and body-mas index (BMI) are used to find association between these var-

iables (one at a time) and gene expression. In Combat a linear regression model using gene

expression corrected for batch as the dependent variable is implemented.

Principal component analysis (PCA)

Principal components analysis (PCA) is used to identify batch effects by examining patterns in

plots of the first two principal components.

De-noising gene expression

The statistical models (Fig 1) are fit to the data and estimated parameters from each model are

used to calculate new gene expression data that are corrected for batch effect. PCA plots are

generated using the new gene expression data to examine the degree to which the various

approaches for removing the batch effect have been successful.

We compute the association between the first five Principal Components (PCs) and the

batch variable using R2 for the data before and after correcting for batch effect.

Correlation among QCs

A Pearson correlation test (R package “stats”) is applied to the QC samples after batch effect

removal to determine the level of agreement between the QC sample values. If the batch effect

removal approach is successful, the QC sample values should be highly correlated.

Comparison of statistical methods for batch effect removal
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Fig 1. Workflow of the regression methods.

https://doi.org/10.1371/journal.pone.0202947.g001
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Simulation of batch and effect in gene expression

Examining a single dataset across multiple batch correction methods provides limited infor-

mation for determining how methods compare. This is mainly due to not knowing if there is a

batch effect and the actual magnitude of the true effect when it exists. In simulation experi-

ments the random data is generated from a situation where the magnitude of the batch effect is

known, which enables the appropriate evaluation of the correctness and suitability of the

methods in handling the batch effect. The simulation experiment conducted here creates gene

expression data for numerous individuals that are analyzed in batches with two QCs for each

batch without the limitation of not knowing the true positives. A known set of effects or “treat-

ment” effects and batch effects is then used to evaluate how well a method procedure corrects

for batch while still identifying the treatment effects. Rather than generating random gene

expression datasets from normal distributions (an underlying assumption of the analytical

methods), data is generated by resampling from a real gene expression dataset. The known set

of effects and the batch effect are simulated at random and added to the expression values. The

four models are then fit to each randomly-generated dataset. One-thousand (1000) random

datasets are generated for each case in the simulation study.

In mathematical terminology, the process is as follows:

The general form of the linear models used in the analyses is

Ym ¼ b0 þ X1b1 þ εm ð2Þ

where Ym defines the expression level for sample m, β0 the intercept of the model, X1 the vari-

able of interest (the effect), β1 the regression coefficient associated with the variable of interest

and εm the residual error.

The general form of the linear mixed model used in the analyses has an additional term:

Ym ¼ b0 þ X1b1 þ uAm þ εm ð3Þ

where uAm defines the shift associated with Am, the batch effect variable from sample m (10).

The rest of the parameters are as defined in the LM equation.

The general form of the model used in the Combat analysis is:

Yijm ¼ b0i
þ X1b1i

þ gij þ dijεijm ð4Þ

where γij and δij represent the additive and multiplicative batch effects of gene i from batch j
[23]. The rest of the parameters are as defined in the LM equation.

Define X to represent the array of gene expression responses X = {X1, X2, . . . Xw} where Xi is

the individual response for a given gene, and define x as the realization of that variable from a

specific sample, x = {x1, x2, . . . xw}. Define the variable associated with the gene expression data

for the quality control as Q = {Q1, Q2, . . . Qw}, with q being a realization of Q from a given sam-

ple. There are 14 batches (b) in the dataset we are using to generate data, 251 subjects (m) and

27 QCs (n). The data for an individual gene for a specific person can then be characterized as

xijl where i refers to the gene, j refers to the batch and l refers to the individual. Replacing I or j
with a dot denotes an analysis is done over the entire subscript. For example, xij• would refer to

the values for gene i across all individuals in batch j. Similarly, define qijk where k represents

each QC in a batch (k = {1,2} in this specific study design, except for one batch where there is

only one QC available).

Simulation parameters are calculated from the control dataset (EXPOsOMICS) using a decon-

volution approach. So, x = {xijl: i = 1, . . .w, j = 1, . . .b, and l = 1, . . .m} and q = {qijk: i = 1, . . .w,

j = 1, . . .b, k = 1,2} denote the data from the control dataset. The data are first log-transformed
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and QC corrected. A mean QC value is then calculated across batches:

ti�� ¼

Pb
j¼1

P2

k¼1
qijk

n
ð5Þ

For each gene in the dataset in each batch, a mean gene expression value is calculated after

QC correction:

qij� ¼

P2

k¼1
qijk

2
ð6Þ

mij� ¼

Pm
l¼1

xijl � qij� þ ti��

m
ð7Þ

Notice that the term “−qij• + τi••” in (7) is equivalent to the previous equation QC factorij in

Eq (1) but applied to log2-transformed data using a deconvolution approach.

A grand mean for all batches is then calculated:

m�i�� ¼

Pb
j¼1

mij�

b
ð8Þ

Finally, across all batches, a standard deviation for the batch effect is calculated:

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

bw
Pw

i¼1

Pb
j¼1
ðmij� � m�i��Þ

2

r

ð9Þ

These estimated values are now used to generate new data. The batch correction values are

assumed to come from a normal distribution with mean zero and standard deviationγ (Eq 9)

or N(0, γ). For each batch, a random batch effect rj = rnorm(0, γ) is generated, where rnorm is

the function for generating normally distributed random numbers in R. The vector r = {rj,

j = 1, . . .b} is a simulated realization of the batch effects for each batch.

In order to simulate “treatment”, a variable is generated with one value per subject and

gene. The simulation is implemented assuming that the treatment affected the first 500 genes

with value ti (i = 1,2,. . .,500). The additive effect introduced as treatment is generated as sijl =

xijl + qij• − τi•• + rj + ti, where "+qij• − τi••" is the QC correction factor, rj is the randomly-gener-

ated batch effect and ti the additive change in the mean that is expected for gene i (note ti = 0

for i>500). The random treatment, which can be seen as a proxy for an effect of exposure, is

generated as rnorm(0,SD) for i�500 and 0 for i>500, with SD = {0.1, 0.2, 0.3, 0.4, 0.5, 1, 3} for

the various simulations. These values are chosen to provide a range of treatment effects from

very small to large. The same value is used afterwards as the variable of interest for the regres-

sion analysis. Alternatively, simulations without the term "+qij• − τi••" are implemented to

compare results with and without QC correction.

Once a dataset is simulated, regression analyses are performed in order to identify genes

that are significantly impacted by the treatment. P-values are estimated from the linear mixed

models (LMM) approach, linear models (LM), linear models correcting for batch as a covariate

(LMBatch) and Combat followed by linear models (LMcom). P-values are adjusted using the

Benjamini and Hochberg method with threshold at 5%.

The script is available at:

https://github.com/alespre/Batch_Effect/blob/master/SImulation_batcheffect_QCs.R
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The simulations are repeated using an independent experimental dataset (The ENVIRo-

nAGE: ENVIRonmental influence ON AGEing in early life [24]) with a similar sample size to

test the statistical methods under different conditions.

Finally, the area under the curve (AUC) is calculated for each simulation in order to quan-

tify the overall performance of the different statistical methods to correct for batch effect (R

package “pROC”).

Random error in the treated data

Random error (eijl) is added to the simulated expression data such that sijl = xijl + qij• − τi•• + rj

+ ti + eijl, where eijl = rnorm (0, σei••):

sei�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

l¼1

�il� �

Pm
l¼1
�il�

m

� �2
s

where �il• is defined as the residuals for gene i from subject l. Simulations are also run without

the QCs correction(qij• = 0).

Reduction of the sample size

The same simulations excluding error (eijl) are performed with a smaller dataset (first four

batches, 85 samples) in order to assess the influence of the population size. Additional simula-

tions were performed to test the effect of the batch size by designing scenarios where the num-

ber of samples per batch increases by three (scenario 1 = 14 batches with 3 samples in each

batch, scenario 2 = 14 batches with 6 samples in each batch, etc.). This test was run using 100

simulations with SD 0.1 and SD 0.5 as effect sizes in the approach with no quality control

samples.

Unbalanced study design

The same simulations are performed with an unbalanced dataset, meaning that the “treat-

ment” variable is not randomly distributed across batches. The analysis was performed by sort-

ing the metadata values (e.g. “treatment”) in such a way that the first batch contained the

highest values, the second batch the second highest, etc. The last batch contained the lowest

values. Then, 20% of the samples are randomized, meaning that the variable “treatment” is

perfectly sorted according to batch in 80% of the samples and randomly distributed in 20% of

the samples.

ANOVA tests are run in order to measure the relationship between batches and”treatment”

values. The p-values after sorting the data were very close to zero, while before sorting they

were non-significant (before sorting overall non-significant p-values across the simulations as

it is expected since samples are randomly distributed among batches). Additional simulations

were used to test the effect of the association between batches and “treatment” by designing

scenarios where a certain number of samples are randomly distributed and another number of

samples are not randomly distributed. Using the sorted data as input, 10% of the samples were

randomly distributed among batches, resulting in 90% of the “treatment” variable unbalanced

and 10% randomly distributed. This approach was repeated for the next deciles (80% unbal-

anced and 20% randomly distributed, 70% unbalanced and 30% randomly distributed, etc.).

This test was run using 100 simulations with SD 0.5 as effect size in the approach with no qual-

ity control samples.

Comparison of statistical methods for batch effect removal
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Results

Statistical analysis using real variables

S2 Table shows the number of genes with significant treatment effects in the EXPOsOMICS

dataset for the statistical methods LMM, LM correcting for batch, LM without batch and Com-

bat followed by LM using sex and BMI as variables of interest. The different statistical

approaches gave different numbers of hits. However, the true or false positive rate is unknown.

PCA for each set of batch correction methods

PCA plots of the gene expression data from the four different approaches demonstrate a clear

batch effect (Fig 2). The approach that includes per batch normalization and QC factors (B)

shows a larger influence of batch than the merged normalization or no inclusion of QCs (A,C

and D). Batching could be distinguished to a certain extent in the first Principal Component

Fig 2. PCA from the four different pre-processing approaches. Each color corresponds to a different batch. A = per batch normalization with no

QCs, B = per batch normalization with QC correction, C = merged normalization with no QCs, D = merged normalization with QC correction.

https://doi.org/10.1371/journal.pone.0202947.g002
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(PC), the PC that explains the largest proportion of variability in the data. Removing QCs or

merged normalization shifts the batch effect to the second PC. The normalization per batch

with QCs has the largest amount of variability explained in the PCs (48% for the first PC and

18% for the second PC). The merged normalization with QCs (42% and 9% of the variability)

explains the second largest amount of variability, very close to the per batch normalization

without QCs (36% and 17%). Merged normalization without QCs (36% and 9%) explains the

least.

De-noising gene expression

PCA plots of the gene expression data from the different approaches after batch effect removal

show that the methods efficiently removed the batch effect, even in the cases where batch had

a significant impact in the PCA plots from Fig 2 (see S1 Fig).

Table 1 shows the association between the PCs and the batch effect using R2 for the pre-pro-

cessed data and the denoised data after removing batch effect using the three different statisti-

cal methods. The correlation values decrease toward zero after correcting for batch effect using

any of the three methods, with or without QC correction.

Correlation among QCs

S2 Fig shows the QCs clustering together as expected for repeated samples. All three statistical

batch effect removal methods (LMM, LM correcting for batch and Combat) show a high cor-

relation, meaning that there are no extreme disturbances in gene expression after batch effect

removal (S3 Table, 6 first rows). For all four methods (LMM, LM correcting for batch, Combat

and LM not correcting for batch), the per batch normalization presents the biggest correlation

values among QCs but with small differences from the merged normalization. For both per

batch and merged normalization, Combat reveals slightly higher QC correlation values. The

closer the value is to 1, the less technical effect and disruption is present since a perfect correla-

tion would be expected for repeated samples in the absence of noise. The three methods show

Table 1. Association between the first five Principal Components (PC) and the batch effect using R2 before and after correcting for batch effect. We underlined the

highest correlation value per row.

Normalization QCs Method PC 1 PC 2 PC 3 PC 4 PC 5

Batch YES Pre-processed 0.892112 0.766016 0.478084 0.682604 0.242133

Batch NO Pre-processed 0.678239 0.278946 0.364995 0.171706 0.373264

Merged YES Pre-processed 0.683395 0.772337 0.526378 0.698785 0.864989

Merged NO Pre-processed 0.225295 0.317774 0.364029 0.24137 0.290742

Batch YES LMM -0.05030 -0.04602 -0.05376 -0.05324 -0.05176

Batch NO LMM -0.04203 -0.03936 -0.05262 -0.04783 -0.04776

Batch YES LMBatch -0.05479 -0.05089 -0.05477 -0.05474 -0.05398

Batch NO LMBatch -0.05484 -0.05088 -0.05477 -0.05474 -0.05402

Batch YES LMcom -0.04890 -0.05446 -0.05479 -0.05388 -0.05466

Batch NO LMcom -0.03133 -0.05319 -0.05436 -0.05259 -0.05316

Merged YES LMM -0.04843 -0.03939 -0.04990 -0.05247 -0.05004

Merged NO LMM -0.03925 -0.02522 -0.04116 -0.04310 -0.04617

Merged YES LMBatch -0.05469 -0.05096 -0.05461 -0.05481 -0.05399

Merged NO LMBatch -0.05477 -0.05095 -0.05462 -0.05481 -0.05403

Merged YES LMcom -0.04974 -0.05357 -0.05447 -0.05056 -0.05303

Merged NO LMcom -0.04198 -0.04972 -0.05080 -0.04832 -0.04802

https://doi.org/10.1371/journal.pone.0202947.t001
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differences in magnitude of around 0.002 in the average correlation value. The same correla-

tions are repeated, using a random set of samples from the study instead of QCs, revealing cor-

relation values of around 0.965 (S3 Table, 7–12 rows). There is a difference of 0.02 between the

correlation values from the different subjects and the ones from the QC samples, giving an

indication of the impact of the inter-individual variation in this dataset. Therefore, the differ-

ences between the gene expression correlations among different individuals and from the

same individual (QC sample) after batch effect removal have a magnitude 10 times bigger than

correlations from the same individual (QC sample) using different batch effect removal statis-

tical methods. Correlations among study samples without batch effect (raw gene expression

values from samples from the same batch) show a 10 times higher magnitude than correlations

among QCs using different batch effect removal statistical methods (S3 Table, 12–14 rows).

The correlation test might not be enough to capture some systematic changes in gene

expression caused by batch since all genes contribute to the test (one test per pair of QCs).

Some genes can be more susceptible to batch effects than others [7] and therefore the batch

effect should be addressed by a different method.

Simulation of batch and effect on gene expression

Table 2 summarizes the results from the simulation of 1,000 random datasets. The first col-

umn, “Norm”, indicates the type of normalization performed (per batch in all cases). The col-

umn “QCs” identifies when quality control sample correction is applied to the gene expression

dataset. The next two columns, “Subjects” and “N Batches” provide the population size and the

number of batches used in the simulation. “Effect” indicates the simulated treatment magni-

tude or effect size, expressed as the standard deviation of the normal random values with mean

zero. “N effect genes” gives the number of genes in which treatment was added, or in other

words, the number of true positives expected to be seen as output from the statistical analysis.

The column “Gamma” indicates the standard deviation for the batch effect that was used to

Table 2. Number of true positives (TP) and false positives (FP) found in the different simulations: with and without QCs for the different effect sizes.

Norm. QCs Subjects N Batches Effect N effect genes Gamma Error LMM LM LMBatch Lmcom

TP FP TP FP TP FP TP FP

Batch No 251 14 3 500 2.72 0 500.0 64.9 500.0 577.4 500.0 64.5 500.0 66.8

Batch Yes 251 14 3 500 2.72 0 500.0 64.9 500.0 518.8 500.0 64.5 500.0 66.9

Batch No 251 14 1 500 2.72 0 500.0 64.9 481.3 577.4 500.0 64.5 500.0 66.9

Batch Yes 251 14 1 500 2.72 0 500.0 64.9 473.8 518.8 500.0 64.5 500.0 66.9

Batch No 251 14 0.5 500 2.72 0 500.0 64.9 166.6 557.3 500.0 64.5 500.0 67.0

Batch Yes 251 14 0.5 500 2.72 0 500.0 64.9 143.6 513.2 500.0 64.5 500.0 67.1

Batch No 251 14 0.4 500 2.72 0 499.5 64.8 83.0 556.7 499.5 64.4 499.7 67.0

Batch Yes 251 14 0.4 500 2.72 0 499.5 64.9 67.8 512.5 499.5 64.4 499.7 67.0

Batch No 251 14 0.3 500 2.72 0 494.4 64.3 25.0 556.7 494.4 63.8 495.6 66.4

Batch Yes 251 14 0.3 500 2.72 0 494.4 64.2 20.3 512.3 494.4 63.8 495.6 66.5

Batch No 251 14 0.2 500 2.72 0 446.0 60.6 8.2 556.7 445.8 60.1 453.3 63.3

Batch Yes 251 14 0.2 500 2.72 0 446.0 60.6 7.4 511.5 445.8 60.1 453.2 63.4

Batch No 251 14 0.1 500 2.72 0 151.9 43.8 7.7 556.8 151.3 43.4 166.6 48.5

Batch Yes 251 14 0.1 500 2.72 0 151.9 43.8 7.4 511.3 151.3 43.4 166.5 48.6

“Norm” indicates the type of normalization, “QCs” if a quality control sample correction is applied, “Subjects”the population size, “N Batches” the number of

batches,“Effect” the magnitude or effect size,“N effect genes” the number of true positives, “Gamma” the batch effect, “Error” if a random error was added. The next

eight columns show the number of TP and FP found in the simulations.

https://doi.org/10.1371/journal.pone.0202947.t002
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generate the random effect (γ parameter calculated from the real dataset). “Error” specifies if a

random error was added on top of the previous simulated values. The next eight columns

show the results of the simulation. Each statistical approach (LMM, LM not correcting for

batch, LM correcting for batch and Combat or LMcom) is subdivided into two columns,

where the number of expected genes and not expected genes is indicated. Thus, “TP” stands

for true positive and “FP” for false positives. The values are calculated from the average of val-

ues found from the 1,000 simulations per approach.

Table 2 shows that, for a big effect size (SD 3), all approaches identify the 500 genes. Not

correcting for batch (LM) increases the number of false positives to a much larger magnitude

than correcting for batch (LMBatch). The smaller the effect size, the fewer true and false posi-

tives are identified. In the case of a very small effect size (SD 0.1), the number of true positives

is reduced dramatically for all approaches, especially for LM. The three methods that correct

for batch effect (LMM, LMBatch and Combat) show similar results. This is also illustrated in

the area under the curve values in S5 Table. Small differences are observed in their perfor-

mance since Combat identifies more true and false positives than the other two approaches. S4

Table shows the average of FDR values for same simulations as Table 2. LMM and LMBatch

reveal lower significance levels for large effect size than Combat (1.37E-76 for LMM and

5.97E-77 for LMBatch against 4.67E-64 for Combat).

Very small differences between correcting and not correcting for QCs are observed except

for the case of LM where no batch effect removal is applied in the statistical method.

S6 Table demonstrates a similar performance of the statistical methods in an independent

experimental dataset. For a big effect size (SD 3), the different approaches identify the 500

genes. The smaller the effect size, the fewer true and false positives are identified.

Random error in the treated data

In the same way as in Table 2, Table 3 displays the results from the simulation adding random

error to the gene expression, treatment and batch effect. Similar trends are observed with

respect to the effect size; the number of true positives is reduced more dramatically than in the

absence of a random error. The three statistical approaches show very similar results, with

Combat showing slightly more true positives and slightly fewer false positives. S7 Table shows

lower significance levels for LMM and larger effect size but to a lesser extent than S4 Table.

Again very small differences are observed between simulations with and without QC

correction.

Reduction of the sample size

Table 4 shows the same as Table 2 but reducing the dataset to 4 batches instead of 14. Trends

are similar in terms of effect size; fewer true positives and more false negatives are found in

general than in the full dataset. The simulation with a small effect size (SD 0.1) suffers a dra-

matic loss of true positives, indicating the lack of statistical power to identify weak associations.

For small SD values, Combat increases slightly the number of true positives while also increas-

ing the number of false positives (around 1 true positive in exchange for 10 false positives). S8

Table shows slightly lower significance levels for LMM and LMBatch than Combat.

Almost no differences are found between simulations with and without QC correction.

The additional simulations using a varied sample size per batch were run in order to study

the performance of the different methods showed a similar performance across methods,

where Combat identified slightly more true positives while also identifies more false negatives

(S9 and S10 Tables using effect sizes SD 0.1 and SD 0.5, respectively).
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Unbalanced study design

Table 5 shows the same as Table 2 but introducing an unbalanced design in the dataset. Trends

are similar in terms of effect size. Fewer true positives with less significance values and more

false negatives are found. Combat shows considerably less FP than LMM, although the FDR

values of the TP are also considerably less significant than for LMM (S11 Table). Also, there is

larger number of FP identified by the LM approach than in a balanced study design.

Almost no differences are found between simulations with and without QC correction.

S12 Table shows the number of true and false positives for the different degrees of associa-

tion between “treatment” variable and the batch (A) and their mean of the FDR values (B).

The column “Random %” shows the percentage of samples that were randomized in the treat-

ment (e.g. 0% corresponds to a perfectly sorted design where all the highest exposures are in

Table 3. Number of TP and FP found in the different simulations after adding random error to the original simulation.

Norm QCs Subjects N Batches Effect N effect genes Gamma Error LMM LM LMBatch LMcom

TP FP TP FP TP FP TP FP

Batch No 251 14 3 500 2.72 Residuals 500.0 33.2 500.0 441.3 500.0 33.2 500.0 31.6

Batch Yes 251 14 3 500 2.72 Residuals 500.0 33.3 500.0 433.9 500.0 33.2 500.0 31.6

Batch No 251 14 1 500 2.72 Residuals 500.0 33.2 476.0 441.0 500.0 33.2 500.0 31.6

Batch Yes 251 14 1 500 2.72 Residuals 500.0 33.3 468.1 433.4 500.0 33.2 500.0 31.7

Batch No 251 14 0.5 500 2.72 Residuals 498.3 33.0 135.0 439.3 498.3 33.0 498.4 31.5

Batch Yes 251 14 0.5 500 2.72 Residuals 498.3 33.1 117.9 430.7 498.3 33.0 498.4 31.6

Batch No 251 14 0.4 500 2.72 Residuals 491.4 32.5 58.6 439.3 491.3 32.4 491.5 31.0

Batch Yes 251 14 0.4 500 2.72 Residuals 491.4 32.5 48.4 430.7 491.3 32.4 491.5 31.0

Batch No 251 14 0.3 500 2.72 Residuals 457.5 30.3 18.8 439.3 457.3 30.2 458.4 29.0

Batch Yes 251 14 0.3 500 2.72 Residuals 457.5 30.4 16.2 430.6 457.3 30.2 458.4 29.0

Batch No 251 14 0.2 500 2.72 Residuals 327.0 23.0 6.1 439.2 326.8 22.9 329.5 21.9

Batch Yes 251 14 0.2 500 2.72 Residuals 327.1 23.0 5.4 430.0 326.8 22.9 329.5 21.9

Batch No 251 14 0.1 500 2.72 Residuals 32.2 5.9 5.6 439.3 32.1 5.9 32.9 5.1

Batch Yes 251 14 0.1 500 2.72 Residuals 32.2 5.9 5.5 430.1 32.1 5.9 32.9 5.1

https://doi.org/10.1371/journal.pone.0202947.t003

Table 4. Number of TP and FP found in the different simulations for the reduced dataset derived from the original population.

Norm. QCs Subjects N Batches Effect N effect genes Gamma Error LMM LM LMBatch Lmcom

TP FP TP FP TP FP TP FP

Batch No 85 4 3 500 2.72 0 500.0 74.5 500.0 487.8 500.0 74.2 500.0 84.0

Batch Yes 85 4 3 500 2.72 0 500.0 74.4 500.0 475.1 500.0 74.2 500.0 84.3

Batch No 85 4 1 500 2.72 0 500.0 74.5 317.4 485.8 500.0 74.2 500.0 84.0

Batch Yes 85 4 1 500 2.72 0 500.0 74.4 310.1 473.8 500.0 74.2 500.0 84.4

Batch No 85 4 0.5 500 2.72 0 490.2 73.7 77.8 484.9 490.2 73.4 490.5 83.4

Batch Yes 85 4 0.5 500 2.72 0 490.2 73.6 74.0 473.1 490.2 73.4 490.5 83.7

Batch No 85 4 0.4 500 2.72 0 467.5 72.4 44.0 484.8 467.4 72.0 468.5 82.1

Batch Yes 85 4 0.4 500 2.72 0 467.5 72.3 41.8 472.9 467.4 72.0 468.4 82.4

Batch No 85 4 0.3 500 2.72 0 396.3 69.2 20.6 484.7 396.1 69.0 397.9 78.9

Batch Yes 85 4 0.3 500 2.72 0 396.3 69.1 19.7 472.8 396.1 69.0 397.8 79.3

Batch No 85 4 0.2 500 2.72 0 208.3 61.5 8.3 484.6 207.8 61.2 210.2 71.4

Batch Yes 85 4 0.2 500 2.72 0 208.3 61.4 8.4 472.7 207.8 61.2 210.1 71.8

Batch No 85 4 0.1 500 2.72 0 7.7 51.0 8.1 485.0 7.6 50.7 8.2 60.4

Batch Yes 85 4 0.1 500 2.72 0 7.7 50.9 8.0 473.0 7.6 50.7 8.2 61.0

https://doi.org/10.1371/journal.pone.0202947.t004

Comparison of statistical methods for batch effect removal

PLOS ONE | https://doi.org/10.1371/journal.pone.0202947 August 30, 2018 13 / 19

https://doi.org/10.1371/journal.pone.0202947.t003
https://doi.org/10.1371/journal.pone.0202947.t004
https://doi.org/10.1371/journal.pone.0202947


batch 1, all second highest exposures in batch 2, etc.). As expected, the more randomized the

exposure is across batches, the less p-value in the ANOVA test and the more TP.

Discussion

In large population studies, batch effects may be introduced as a consequence of sampling pro-

cedures or other methodological issues and are likely to be unavoidable due to the need to pro-

cess and analyse of large numbers of samples. The differences in ‘omics’ signals induced by

such methodological factors occurring across batches can be bigger than the influence of the

biological variables of interest. Therefore, batch effects may have a large impact on the out-

come of studies that are susceptible to this type of noise in the dataset. There are however sev-

eral methods available to correct or minimize such experimental variation.

We assess the performance of different statistical methods for batch effect removal on gene

expression datasets where batch effect and treatment with a range of different effect sizes are

simulated. The number of significant hits (FDR<0.05) and their level of significance are

extracted from the data analysis of whole-genome gene expression, including both simulated

transcripts with added treatment or true positives and transcripts with non-added treatment

or false positives. In addition, we evaluate the performance of the statistical methods in two

population sizes and the impact of simulated random error, with and without QC correction.

The three methods implemented in this study (LM, LMM and Combat) correct efficiently for

the introduced batch effects and show similar performance by identifying approximately the

same numbers of true and false positives. Nevertheless, small differences in performance are

observed depending on the effect size, noise and population size (Tables 2, 3 and 4 and S3, S4

and S5 Tables). S2 Fig presents the potential disturbance of biological signals by removing the

batch effect (using the two different methods) as shown by the close clustering of the QCs. It is

also shown that differences in the correlations values between different individuals and the

same individual (QCs) have a 10 times higher magnitude than the correlation values from the

same individual (QCs) using different batch effect removal statistical methods, which suggests

a relatively small but potentially still relevant biological impact. These differences among

methods were already observed in the data analysis assessing relationships between real gene

expression and BMI or sex in S2 Table.

Table 5. Number of TP and FP found in the different simulations for the unbalanced study design dataset.

Norm. QCs Subjects N Batches Effect N effect genes Gamma Error LMM LM LMBatch Lmcom

TP FP TP FP TP FP TP FP

Batch No 251 14 3 500 2.72 0 500.0 79.2 500.0 7383.9 500.0 76.4 499.6 34.8

Batch Yes 251 14 3 500 2.72 0 500.0 80.3 500.0 7374.6 500.0 76.4 499.5 34.6

Batch No 251 14 1 500 2.72 0 500.0 79.2 467.6 7366.9 500.0 76.4 485.1 34.9

Batch Yes 251 14 1 500 2.72 0 500.0 87.0 470.2 6104.1 500.0 83.0 480.9 43.2

Batch No 251 14 0.5 500 2.72 0 497.9 78.9 235.5 7358.1 497.4 75.9 448.3 35.0

Batch Yes 251 14 0.5 500 2.72 0 498.0 80.0 239.1 7347.7 497.4 75.9 447.6 34.7

Batch No 251 14 0.4 500 2.72 0 492.6 78.2 185.3 7357.4 491.7 75.2 429.8 34.9

Batch Yes 251 14 0.4 500 2.72 0 492.9 79.3 191.3 7343.4 491.7 75.2 429.3 34.7

Batch No 251 14 0.3 500 2.72 0 471.5 75.7 144.8 7356.8 469.7 72.8 394.1 34.7

Batch Yes 251 14 0.3 500 2.72 0 472.1 76.9 156.8 7336.9 469.7 72.8 393.6 34.4

Batch No 251 14 0.2 500 2.72 0 383.6 68.1 127.3 7355.5 381.0 65.3 304.9 33.3

Batch Yes 251 14 0.2 500 2.72 0 384.5 69.1 138.7 7325.3 381.0 65.3 304.5 33.0

Batch No 251 14 0.1 500 2.72 0 89.8 36.2 132.2 7533.2 88.5 35.7 66.0 25.6

Batch Yes 251 14 0.1 500 2.72 0 90.9 37.4 139.6 7633.8 88.5 35.7 65.9 21.4

https://doi.org/10.1371/journal.pone.0202947.t005
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LMM and LM show similar results in our study. LMM is based on the maximum likelihood

(ML) and restricted maximum likelihood (REML) methods whereas LM uses the analysis of

variance (ANOVA) method. Therefore, LM generates optimal estimators only for balanced

designs while LMM generates them for both balanced and unbalanced designs. The need to

account for non-independence responses that derive from having different responses by the

same batch and therefore adjusting for the covariance structure may differ for each specific

dataset. Even though LMM does not outperform LM in this analysis, LMM is in principle able

to correct for batch effects in a potentially more efficient way than LM in real datasets in view

of its enhanced performance on unbalanced designs.

Although the number of true and false positives from the three statistical methods did

not differ to a large extent, the interpretation of the magnitude of the differences between

them may depend on the goal of the research studies. For instance, in the development of

diagnostic biomarkers, identification of genes for further validation requires high levels of

confidence in order to prevent misclassifications which potentially have serious conse-

quences to individuals. On the other hand, the impact of false negatives in a biomarker sig-

nature for risk assessment purposes has relatively limited consequences, as the biomarker

profile may still identify potential relationships between environmental exposures and bio-

logical signals. In general, a stronger identification of true positives using LMM compared

with Combat for big effect sizes is observed in this study. Combat identifies in general more

true and false positives for small effect sizes, except for the case of added random error

where the performance of the different methods is very similar; particularly in cases where

there are small sample sizes, Combat shows smaller true positive/false positive rates com-

pared to LMM. An increase of 0.5 true positives in Combat compared to LMM is observed

while the increase of false positives is 10, implying a large occurrence of false positives com-

pared to the identification of true positives when batch correction is applied using the Com-

bat method.

On top of the batch effect removal methods available (LM, LMM and Combat), some study

designs include QCs (technical replicates of the same sample) for additional batch correction.

The variation of signals across batches can be controlled by placing these QCs across the

batches and calculating a correction factor (dividing the mean per gene of QC samples from a

specific batch by the mean per gene of all QCs) that is applied to the rest of the samples from

the same batch. However, this can be costly (e.g. the inclusion of two QCs per batch of 24 sam-

ples increases the budget of the array experiment by up to 8%). Our study shows no significant

differences in the number of true and false positives between approaches with or without QCs.

Therefore, if the inclusion of these additional samples goes at the expense of the number of

samples from the actual study population it results in a reduction of the statistical power.

In this study we evaluate the impact of population size, random measurement error, effect

size and level of balanced/unbalanced designs on the number of true and false positives from

the different statistical methods. In most epidemiological studies, focusing on the link between

environmental exposures and gene expression, the magnitude of the associations to be discov-

ered is relatively small. The participants are usually exposed to relatively low doses of environ-

mental factors and therefore the effect sizes are generally rather modest. In addition, sample

size is often a limitation in epidemiological studies due to budget restrictions. These two issues

increase the likelihood of having noise (e.g. measurement errors or inter-individual variability)

mask the potential relationships of interest. The simulations of this study that included low

effect size (low SD), added noise and/or decreased population size is expected to generally

mimic real environmental studies examples.

The sample size in epidemiological studies should be big enough for the effect of an

expected magnitude to become statistically significant. In our study, batch, treatment and
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error are simulated assuming a Gaussian distribution but this assumption was not implied in

the gene expression dataset. This flexibility in the normality assumption leaves open the possi-

bility of assessing these procedures with other types of datasets such as sequencing data.

Sources of batch effects from RNA sequencing technology include variability in day-to-day

isolation of the mRNA and library preparation, sequencing runs and between different lanes

on the flow-cell [5]. In addition, this procedure would be also applicable to other omics data-

sets (e.g. microRNA, DNA methylation, etc.).

In conclusion, this study shows a comparison of the performance of the most commonly

available methods for batch effect removal, LMM correcting for batch as a random effect, LM

correcting for batch as a fixed effect and Combat. Small differences among the methods are

observed. LMM and LM correcting for batch provide a slightly safer option than Combat by

identifying stronger relationships between big effect size and gene expression and better true/

false positive rates for small effect size. The study also shows no improvement in the batch cor-

rection by adding QCs in the study design when any of the mentioned statistical methods are

applied to correct for batch effect.
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