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Abstract

Background: Reconstructing individual transmission events in an infectious disease outbreak can provide valuable
information and help inform infection control policy. Recent years have seen considerable progress in the development
of methodologies for reconstructing transmission chains using both epidemiological and genetic data. However, only a
few of these methods have been implemented in software packages, and with little consideration for customisability and
interoperability. Users are therefore limited to a small number of alternatives, incompatible tools with fixed functionality,
or forced to develop their own algorithms at considerable personal effort.

Results: Here we present outbreaker2, a flexible framework for outbreak reconstruction. This R package re-implements
and extends the original model introduced with outbreaker, but most importantly also provides a modular platform
allowing users to specify custom models within an optimised inferential framework. As a proof of concept, we implement
the within-host evolutionary model introduced with TransPhylo, which is very distinct from the original genetic model in
outbreaker, and demonstrate how even complex model results can be successfully included with minimal effort.

Conclusions: outbreaker2 provides a valuable starting point for future outbreak reconstruction tools, and represents a
unifying platform that promotes customisability and interoperability. Implemented in the R software, outbreaker2 joins a
growing body of tools for outbreak analysis.
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Background
Determining ‘who infected whom’ during an outbreak
can yield precious insights into transmission dynamics
of an infectious disease and subsequently inform infec-
tion control policies. Transmission tree reconstruction
has been used to specify the contribution of individual
cases and locations to overall transmission [1], charac-
terise heterogeneous infectiousness within outbreaks [2,
3], evaluate the impact of control measures on transmis-
sion intensity [4, 5] and identify transmission routes [6].
Consequently there exists significant interest in design-
ing methodologies for the inference of transmission trees
from outbreak data, including temporal data (e.g. date of

symptom onset), contact data, pathogen whole genome
sequences (WGS) and geographic locations.
A large number of studies have addressed this problem

in recent years (Table 1) [6–15]. These approaches differ
in multiple ways, including in their underlying epidemio-
logical models (e.g. SIR [8, 11], SEIR [9, 12] or branching
process models [7, 14, 15]) and genetic models (e.g.
non-phylogenetic [7, 10, 12, 16] or phylogenetic models
[11, 13–15]), as well as their ability to account for unob-
served cases and multiple infectious introductions. This
methodological diversity is beneficial, providing various
theoretical frameworks for outbreak reconstruction in
different epidemic scenarios.
Unfortunately, the implementation of these method-

ologies in a user-friendly computational framework to
encourage their use by the wider scientific community
has so far remained limited. Primarily, a large proportion
of the methods described in the literature is not available
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as readily useable software (Table 1), requiring the user
either to directly modify the original code if it is avail-
able, or implement the algorithm themselves if not.
Moreover, the existing software tools were developed in
parallel with little consideration for interoperability,
accepting similar types of data or outputting similar re-
sults in different formats. This results in unnecessary
time spent preparing and formatting the data, and hin-
ders effective comparison of results produced under dif-
ferent models. Finally, the current software are generally
inflexible, with few options to specify algorithm behav-
iour without modifying the often complex source code
(e.g. [7]). This ranges from simple implementation is-
sues, such as being limited to specific distributions for
priors [14, 15], to more fundamental restrictions on the
inferential process itself, in that the underlying epi-
demiological and genetic models are hardcoded and not
customisable by the user.
To address these issues, we have developed out-

breaker2, a flexible software tool for outbreak recon-
struction. outbreaker2 exploits the fact that most
transmission tree inference methods, though based on
very different models, are generally implemented in a
similar manner. Most consider the same data, namely
WGS and some form of temporal data (i.e. dates of
symptom onset and assumptions on the distribution of
incubation and infectious periods [7, 9, 12, 14, 15], or
explicitly defined exposure intervals [10, 13]). The ma-
jority are also implemented in a Bayesian framework,
and therefore describe prior distributions on parameters
and likelihood functions that evaluate the plausibility of
a given parameter sets under specific transmission and
evolutionary models. Unobserved data, including the
transmission tree itself, times of infection and unob-
served cases, are generally modelled using augmented
data [17]. Finally most methods use a Markov Chain
Monte-Carlo (MCMC) algorithm to derive samples from
the posterior distributions, using often complex proposal
functions to explore alternative transmission scenarios.

outbreaker2 generalises this procedure and allows the
user to implement their own models by specifying
custom prior distributions, likelihood functions and
movement functions, which are then employed within a
wider inference framework. This enables sophisticated
customisation of the algorithm with minimal effort by
the user, allowing a greater focus on methodological
developments rather than their implementation. Import-
antly, it also permits for different modules to be developed
and easily combined, so that outbreak reconstruction
approaches can be tailored to specific diseases and
epidemiological contexts. outbreaker2 is implemented as a
package for the R software [18], as part of a larger toolkit
for epidemics analysis developed under the R Epi-
demics Consortium (www.repidemicsconsortium.org).
In the following, we explain the rationale of this im-
plementation and illustrate its modularity using a
simple case study.

Implementation
outbreaker2 is written in R and C++, making extensive
use of Rcpp [19] to facilitate the integration of C++ into
R. The original method for outbreak reconstruction
introduced with outbreaker [7] has been entirely re-im-
plemented using a modular and highly customisable ap-
proach (Fig. 1). This was achieved by distinguishing the
architecture which underpins the inferential process
from model-specific regions of code (i.e. code that varies
between model implementations), and treating these
components as independent modules (Fig. 1). Non-spe-
cific components of the implementation include data
and overall configuration infrastructure, as well as all
post-processing of outputs including summaries and
graphics. The three central, model-specific components
of our Bayesian inference framework are the prior distri-
butions, likelihood functions and MCMC functions
defining movements of the parameters. By abstracting
these components into algorithmic functions with prede-
fined input and output structures, we designed simple

Table 1 Studies on outbreak reconstruction and their availability as software

Study Available as software Study Available as software

Cottam et al. [23] ✗ Numinnen et al. [24] ✗

Aldrin et al. [25] ✗ Hall et al. [11] ✓

Jombart et al. [26] ✓ Worby et al. [10] ✓

Ypma et al. [27] ✗ Lau et al. [12] ✗

Morelli et al. [28] ✗ Soubeyrand [29] ✗

Ypma et al. [6] ✗ De Maio et al. [13] ✓

Stadler et al. [30] ✓ Kenah et al. [31] ✗

Jombart et al. [7] ✓ Klinkenberg et al. [14] ✓

Didelot et al. [8] ✓ Worby et al. [32] ✗

Mollentze et al. [9] ✗ Didelot et al. [15] ✓
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procedures allowing users to customise most aspects of
the outbreak reconstruction, including the model itself
and the MCMC used to explore the parameter space
(Fig. 1). The following sections describes the structure of
the core components of outbreaker2, and the mecha-
nisms by which they can be changed. Extensive docu-
mentation, including a full description of the API and
example of customised models, are available from the
outbreaker2 website (http://www.repidemicsconsortiu-
m.org/outbreaker2/).

Object classes
outbreaker2 defines several S3 object classes used to
transfer information across modules. The outbreaker_-
data class stores the data which remains unchanged
throughout the inference process. Users pass temporal
data (e.g. sampling times) as a vector of dates, and genetic
data as either DNA sequences (DNAbin objects [20]) or
phylogenetic trees (phylo objects [20]). Generation time
and incubation period distributions are also specified by
the user. Extensive data validation is achieved by the con-
structor of this class to prevent often intractable errors at
a later stage. The outbreaker_config class stores the global
properties of the algorithm and can be optionally specified
by the user. Importantly, this allows the user to declare
which parameters and augmented data should be moved

and inferred during the MCMC procedure. Again, the
constructor of this class ensures validation of the inputs.
The outbreaker_param class is used internally for storing
a single state in the MCMC chain, and describes parame-
ters and augmented data. Objects of this class are pro-
posed, accepted or rejected, and sampled during the
MCMC procedure. The advantage of this fixed internal
structure is that it greatly simplifies writing new, custo-
mised movement functions. Finally, results of the recon-
struction are output as outbreaker_chains objects, for
which various methods (e.g. plot, print, summary) have
been defined to summarise and visualise results, or carry
on further secondary analyses.

Custom prior distributions
A prior distribution describes the probability of observ-
ing a parameter given our previous knowledge of the in-
fectious disease under observation. In outbreaker2,
custom priors are specified as functions with a single ar-
gument of class outbreaker_param, which return a
log-probability of a given parameter value (all probabil-
ities are treated on a log scale). Custom priors can take
any shape as long as this structure is satisfied. Priors can
be specified for each parameter in the model by passing
a named list of functions to the priors argument of the
outbreaker function.

Fig. 1 Schematic representation of the code design of outbreaker2. Each disk represents a different component of the code. Disk size matches
the size of the corresponding component, indicated by numbers (in lines of code, rounded to 50). Separate disks for likelihoods, priors and
movements indicate independent C++ modules. Links represent flows of information between components, colored according to the input.
Infrastructure and tests are globally connected to all components. Functions indicated within rectangles are entry points into the code, indicating
possible customisation by the user
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Custom likelihood functions
Likelihood functions define the probability of a set of
parameters (outbreaker_param object) given some ob-
served data (outbreaker_data object) under a specific
model. In outbreaker2, the overall likelihood is decom-
posed in separate likelihood components, which can be
evaluated independently during the MCMC and there-
fore boost computer efficiency. Customised likelihood
functions can be specified by the user for each of these
components, to use alternative epidemiological or evolu-
tionary models. Note that additional likelihood compo-
nents can also be added, in which case the overall
likelihood function will also need to be re-defined. Like-
lihood components can have any form, as long as they
take an outbreaker_data and an outbreaker_param
objects as arguments, and return a log-probability. As a
result, users can combine different epidemiological and
evolutionary models to fit specific needs.

Custom movements functions
In an MCMC algorithm, movement functions are used
to update the set of parameters and augmented data,
from one MCMC iteration to the next. For example, a
commonly used strategy is to use a Metropolis-Hastings
move, where an update is first proposed and then ac-
cepted or rejected depending on its likelihood. Well de-
signed movement functions are necessary to achieve
efficient chain convergence and ensure rapid and repre-
sentative sampling from the posterior distribution. In
outbreaker2, the MCMC is decomposed as a list of
movement functions, each of which is evaluated at each
step of the chain.
Given the size and complexity of the parameter space

when inferring temporally resolved transmission trees
with unobserved cases, efficient movement functions are
difficult and time-intensive to develop. outbreaker2 al-
lows users to access the optimised, default movement
functions for various parameters and augmented data
(including, crucially, the transmission tree) while using
custom prior distributions and likelihood functions. De-
fault movements, likelihood and prior functions can all
be accessed through the function get_cpp_api, so that
these components can be used when designing new
MCMC procedures.
Unlike priors and likelihood functions which always

take the same arguments, movement functions may have
varying arguments including the data, general settings,
custom priors and likelihoods. To simplify the specifica-
tion of custom movements by the user, outbreaker2 only
requires that new movement functions have an outbrea-
ker_param object for first argument; further arguments
such as data and custom likelihood components are
automatically detected, and internally replaced by the
corresponding components of the code. In other words,

the whole machinery of the code is added seamlessly to
custom movement functions where it is needed. Import-
antly, as the acceptance-rejection step is specified within
movement functions, users are not restricted to
Metropolis-Hastings methods [21], and could use alter-
native MCMCs such as a Gibbs sampler [22].

Results and discussion
Implementing a custom model
The main asset of outbreaker2 is its ability to define new
models easily. We tested this flexibility by implementing
the genetic model developed by Didelot et al. [8, 15] in
the TransPhylo package. In contrast to the model of evo-
lution used by outbreaker2 [7], which treats mutations
between all transmission pairs as independent events,
TransPhylo uses a phylogenetic tree to account for pat-
terns of common evolution amongst the sampled iso-
lates. Briefly, TransPhylo takes a time-stamped
phylogenetic tree as input, and explores ways of “color-
ing” this tree with one color for each infected host, thus
revealing the evolution that occurred within this host.
Transmission events are therefore also represented as
the points of transition from one color to another, or in
other words from one host to another. This approach is
completely different from the one implemented in the
default setting of outbreaker2, making it a good case
study for the flexibility of implementation of custom
models in the outbreaker2 framework.
The genetic likelihood of TransPhylo was already

implemented within the original package, and was there-
fore easily passed on to outbreaker2 as a custom likeli-
hood. To account for restrictions on the topology of the
transmission tree in the TransPhylo model, a custom
movement function on ancestries and infection times
was also developed. This work was implemented in the
R package o2mod.TransPhylo (standing for ‘outbreaker2
module: TransPhylo’), which infers transmission trees
using the TransPhylo genetic model while benefiting
from the epidemiological model exploiting data on the
incubation period and generation time distributions [7],
extending the original Wallinga & Teunis model [5].
The total effort required to implement this model was
minimal: only 185 lines of code (LOC) were necessary to
design o2mod.TransPhylo, which is negligible compared
to the 1434 LOC in the original TransPhylo package, or
the 7633 LOC of outbreaker2.
We compared the performance of o2mod.TransPhylo

and TransPhylo by reconstructing simulated outbreaks,
using the simulator in the phybreak package described
described by Klinkenberg et al. [14]. We used epidemio-
logical and evolutionary parameters of Ebola virus as a
plausible use case (Table 2), and assumed a linearly
growing within-host pathogen population size. A total of
100 outbreaks each with 20 cases were simulated, and
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reconstructed using o2mod.TransPhylo, TransPhylo, and
the default outbreaker2 algorithm.

Algorithm performance
MCMC chains of o2mod.TransPhylo converged rapidly,
and mixed more efficiently than those of TransPhylo as
demonstrated both by visual chain inspection (Fig. 2) and
lower autocorrelation between log-likelihood values (0.31
and 0.72 at a lag of 50, respectively). This resulted in a sig-
nificantly higher effective sample size per iteration (95.2

and 27.2 across a 5000 iteration window, respectively).
However, individual iterations were significantly
slower, taking on average 555.2 s per 1000 iterations,
compared to 4.6 s for TransPhylo and 4.5 s for the
basic model of outbreaker2. The vast majority of
computational time by o2mod.TransPhylo was spent
in the custom functions, which could be re-written in
C++ for a performance boost. However, running times
of o2mod.TransPhylo were acceptable for a complex
Bayesian model: final results (well-mixed chain with

Table 2 Epidemiological and evolutionary parameters for Ebola virus. When several studies are cited, the mean value weighted by
the sample size of the study was used

Parameter Value Reference

Generation time in days (SD) 14.4 (8.9) [1, 33, 34]

Time-to-collection in days (SD) 14.4 (8.9) Assumed same as generation time

Basic reproduction number R0 1.8 [33]

Mutation rate (per site per day) 3.1 × 10− 6 [35–37]

Genome length (bases) 18,958 [35, 38]
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Fig. 2 MCMC traces of posterior likelihood for o2mod.TransPhylo and the original TransPhylo package
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10,000 iterations) could be obtained in 1.5 h on a
standard desktop computer. Users can therefore im-
plement their models entirely in R and expect reason-
able runtimes.

Model outputs
Visual inspection of ancestry assignments for a single
outbreak suggests that outbreaker2 successfully explored
the posterior distribution, and demonstrates that the in-
ference framework is general enough to accommodate
new models (Fig. 3). Encouragingly, o2mod.TransPhylo
and TransPhylo appear to describe highly similar poster-
ior distributions of ancestries, and agree on many assign-
ments even if these have a very low posterior frequency.
To better compare the ancestry assignments made by

o2mod.TransPhylo and TransPhylo, we used a consen-
sus tree, defined as the tree with the highest posterior
infector probability for each case, as a summary
statistic. Across 100 outbreaks, on average 76.5% of an-
cestry assignments were equivalent. This represents a

significant increase over the baseline similarity between
the default outbreaker2 model and TransPhylo, which
agree on only 41.3% of ancestries on average, as con-
firmed by individual comparisons of consensus trees in
reconstructed outbreaks (Fig. 4). It is important to note
that 100% agreement between o2mod.TransPhylo and
TransPhylo is not expected, as the epidemiological
model of the latter parametrizes an offspring distribu-
tion and incorporates additional prior knowledge on its
shape. However, the significant convergence in results
upon using a custom likelihood acts as a proof of con-
cept that outbreaker2 can accurately recreate high level
behaviour of largely different inference frameworks,
and therefore represents a promising starting point for
the implementation of future models.

Future developments
outbreaker2 is introduced as a flexible platform for out-
break reconstruction. We believe most future develop-
ments will occur through the creation of new modules

Fig. 3 Posterior distribution of ancestry assignments using o2mod.TransPhylo and the original TransPhylo package. The size of each circle indicates
the frequency of a given individual (“infector”) in the posterior distribution of infectors for a given case (“infectee”). An infector of 0 (bottom row)
indicates that the individual is the index case. Black crosses represent the true simulated ancestries
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by the community, distributed as separate R packages.
Further adjustments may be made to accommodate
additional epidemiological and evolutionary data and
parameters currently not implemented in outbreaker2,
and which may limit the scope for additional modules.
Such changes will however be merely incremental, and
should not represent any substantial development
challenges.

Conclusion
outbreaker2 is a highly flexible outbreak reconstruction
tool that can implement complex epidemiological and
genetic models within an optimised and robust trans-
mission tree inference framework. It allows users to
focus on model development rather than software im-
plementation, and provides a unifying platform for
outbreak reconstruction tools that promotes inter-
operability and ease of use. We encourage the devel-
opment of extensions to outbreaker2 by the wider
scientific community, with the goal of accumulating
an extensive and sophisticated repertoire of methods
for outbreak reconstruction within the R software.

Availability and requirements
Project name: outbreaker2
Project home page: http://www.repidemicsconsortiu-
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License: MIT
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