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A B S T R A C T

Data regarding which microenvironments drive exposure to air pollution in low and middle income countries are
scarce. Our objective was to identify sources of time-resolved personal PM2.5 exposure in peri-urban India using
wearable camera-derived microenvironmental information. We conducted a panel study with up to 6 repeated
non-consecutive 24 h measurements on 45 participants (186 participant-days). Camera images were manually
annotated to derive visual concepts indicative of microenvironments and activities. Men had slightly higher daily
mean PM2.5 exposure (43 μg/m3) compared to women (39 μg/m3). Cameras helped identify that men also had
higher exposures when near a biomass cooking unit (mean (sd) μg/m3: 119 (383) for men vs 83 (196) for
women) and presence in the kitchen (133 (311) for men vs 48 (94) for women). Visual concepts associated in
regression analysis with higher 5-minute PM2.5 for both sexes included: smoking (+93% (95% confidence in-
terval: 63%, 129%) in men, +29% (95% CI: 2%, 63%) in women), biomass cooking unit (+57% (95% CI: 28%,
93%) in men, +69% (95% CI: 48%, 93%) in women), visible flame or smoke (+90% (95% CI: 48%, 144%) in
men, +39% (95% CI: 6%, 83%) in women), and presence in the kitchen (+49% (95% CI: 27%, 75%) in men,
+14% (95% CI: 7%, 20%) in women). Our results indicate wearable cameras can provide objective, high time-
resolution microenvironmental data useful for identifying peak exposures and providing insights not evident
using standard self-reported time-activity.

1. Introduction

Fine particulate matter (particle matter with diameter of 2.5 μm or
less, PM2.5), has diverse adverse health effects (WHO Regional Office
for Europe, 2013) and is associated with a large public health burden
globally (8% of global deaths) (Cohen et al., 2017; Gakidou et al.,
2017). Data on exposure to particulate matter and the influence of
specific microenvironments on exposure in low and middle income
countries such as India are scarce (Pant et al., 2016). Current knowl-
edge indicates that the sources of exposure to PM2.5 in India are diverse
(Pant et al., 2016) and include occupational (Semple et al., 2008),
household (e.g. solid-fuel cooking) (Andresen et al., 2005; Balakrishnan
et al., 2011), and travel-related sources (Pant et al., 2017). However,
most studies have focused on a single source of exposure, providing
little insight into the relative contribution to personal exposure of

different microenvironments and sources.
Developing effective interventions to reduce PM2.5 exposure re-

quires understanding which sources drive personal exposure, which is
influenced by concentrations in each microenvironment and time spent
in that microenvironment (Duan, 1982). Microenvironmental informa-
tion is often derived from time-activity diaries or questionnaires
(Buonanno et al., 2014; Deffner et al., 2016; Gu et al., 2015; Gurung
and Bell, 2012; Steinle et al., 2015), which rely on participants' moti-
vation and memory and are therefore potentially biased. Moreover,
these data typically provide coarse temporal resolution that can be
improved only with significant increase in the burden for participants.
Microenvironments are only partially measured via Global Positioning
System (GPS) data, which may not capture information on different
activities performed at the same location. There is therefore a need for
tools collecting more objective, precise, and time-resolved
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microenvironmental information in personal exposure studies.
Wearable camera technology has been recently used in health stu-

dies to assess physical activity, nutrition, and the environment, e.g.,
amount of green space (Doherty et al., 2013a; Mavoa et al., 2013;
Oliver et al., 2013). To our knowledge this technology has not pre-
viously been used to identify drivers of exposure to air pollution, nor
worn with time-resolved environmental monitors.

Our study represents the first use of wearable cameras in combi-
nation with a personal PM2.5 monitor; we employ high temporal re-
solution data in a panel study with repeated sampling per participant.
Our objective was to identify sources of time-resolved personal PM2.5

exposure using wearable camera-derived microenvironmental in-
formation in a sample of the general population in peri-urban India.

2. Material and methods

2.1. Study design

We used data from the Cardiovascular Health effects of Air pollution
in Telangana, India (CHAI) project (Tonne et al., 2017), nested in the
Andhra Pradesh Children and Parents Study (APCAPS). APCAPS is an
intergenerational cohort of about 6000 participants living near Hy-
derabad, Telangana, India (Kinra et al., 2014). The study population
lived in 28 villages spread over a 22 km×35 km region southeast of
Hyderabad; population per village ranged from 187 to 5065 house-
holds. CHAI was approved by the Ethics Committees of Parc de Salut
MAR (Barcelona, Spain), the Indian Institute of Public Health-Hyder-
abad (Hyderabad, India), and the National Institute of Nutrition (Hy-
derabad, India).

CHAI recruited a random sample of 538 APCAPS participants for
personal monitoring, including a subsample of 60 participants willing
to participate in an intensive panel study. Panel study measurements
included up to six 24-hour non-consecutive sessions with a PM2.5

monitor and a wearable camera. Sessions were performed between May
2015 and February 2016. Sessions typically started at 8 am when a field
worker set up the devices at the participant's home and ended 24 h later
when a field worker recovered the devices. Sessions included weekends
and weekdays; starting times were planned to avoid disrupting parti-
cipants' usual activities. Field workers reported that participants
adapted quickly to wearing the devices and had few complaints.

2.2. Wearable camera data

Participants wore a wearable camera (Autographer, OMG Life,
Oxford, UK) via a neck-worn lanyard on their chest. The camera took a
photograph approximately every 35 s (S-Fig. 1). Participants were
asked to turn cameras off at night due to limited battery life (ap-
proximately 10 h), and to remove or turn them off whenever they felt
uncomfortable wearing them, according to standard ethics procedures
(Kelly et al., 2013).

Trained staff categorized visual concepts to identify microenviron-
ments and activities in each image. Visual concepts corresponded to 5
non-exclusive categories identified a priori as being potentially relevant
for PM2.5 exposure: travel, occupation, cooking, indoor/outdoor loca-
tion, and presence of other types of combustion (annotation protocol in
supporting information). Inter-rater agreement between annotators was
computed using Cohen's Kappa (Cohen, 1960) as in other scientific
studies using Autographers (Doherty et al., 2013b; Kelly et al., 2012;
Nguyen et al., 2009). Annotators were required to achieve inter-rater
agreement of Kappa= 0.85 in each category using a training dataset
before being allowed to annotate main study data. Duplicate annotation
by a second annotator was performed on 45 participant-days (25% of
the total sample, 45 unique participants) to assess inter-rater agreement
during annotation of the main study data.

Details of the aggregation of visual concepts derived from the
wearable cameras for 5-min intervals are in the SI (S-Fig. 2). Briefly, the

annotation process generated a dataset of Boolean values by photo-
graph in which annotation=TRUE indicates that a photograph had a
given annotation. We aggregated this dataset to generate values by
minute (Boolean, annotation=TRUE indicates the annotation was
present at some point during that minute) and subsequently by 5
minute intervals (continuous, indicating the proportion of the 5 minute
interval for which the code was present e.g. 1 when present in all of
them). The 5-min aggregated dataset was used in regression analysis.

2.3. Self-reported time-activity

A questionnaire was administered by a field worker after each
monitoring session. Field workers interviewed participants to complete
an hourly time-activity questionnaire reporting main locations (e.g.,
indoor at home, outdoor in village) and main activities (e.g., cooking,
sleeping, working) for the prior 24 h. This standard questionnaire, de-
veloped at Sri Ramachandra University, has been used in previous
studies involving PM2.5 measurements (Balakrishnan et al., 2004). Each
hour could be associated with 1 or 2 activity-location tuple(s): parti-
cipants could mention one or two activity(ies) per hour, but were not
asked about the proportion of the hour spent in each activity. Ques-
tionnaire data was collected on paper and manually entered into a
database via a custom interface.

2.4. Personal PM2.5 exposure data

Participants wore the RTI MicroPEM v 3.2A. (MicroPEM, RTI
International, Research Triangle Park, NC 27709, USA) PM2.5 monitor
near the breathing zone. We used four MicroPEM devices throughout
the field work. Prior to data collection, three MicroPEMs were collo-
cated indoors, and we observed good agreement between devices
(median ratios in pairwise comparisons were 0.99, 1.07, and 1.06; see
S-Fig. 3). Further details on collocation results are included in S-
Table 1. We followed the standard operating procedure provided by the
manufacturer (RTI International, USA), which involved cleaning the
inlets and impactor, adjusting the zero offset with HEPA filter attached,
calibrating the pump flow rate using an external mass flowmeter (TSI
4140), and calibrating the temperature and humidity sensors before
each deployment in the field. Post-sampling flow was measured to de-
tect drift in the flow rate. We discarded output files (i.e. one person-day
of measurements) if the difference between pre and post-sampling flow
rate was> 20%. We manually checked parameters (e.g., inlet and or-
ifice pressures) to identify leakage of air in the instrument or other
malfunctions. We also omitted files with abrupt baseline shifts (e.g.,
attributable to contamination of the optics during measurements).

We used the R package rtimicropem (Salmon et al., 2017) for Mi-
croPEM data processing. We identified outliers in the PM2.5 time-series
using the R-function forecast::tsoutlier and removed these data points
before applying temperature sensitivity and gravimetric corrections.
We identified temperature sensitivity in some of the MicroPEM devices
above 30 °C when conducting experiments with HEPA filters attached
to each device during measurements over a range of temperatures. We
derived device-specific correction equations that were applied to each
output file. MicroPEMs can accommodate a 27mm Teflon filter for
gravimetric correction of the time-series based on the mass collected on
the filter paper. We identified small holes in most of the Teflon filter
papers and therefore did not rely on the MicroPEM gravimetric mass
measurements for correcting the nephelometer measurements. Instead,
we used measurements from SKC gravimetric samplers (a SKC pump
which drew air through a sharp cut cyclone attached to a cassette
containing a 37mm filter) worn simultaneously with the MicroPEM to
derive a linear regression equation to correct nephelometer values.
Further details of the temperature and gravimetric correction are in-
cluded in the R package documentation (Salmon, 2017a). The Mi-
croPEM sampling rate was every 10 s; data were processed to obtain
one-minute averages. Gaps in the series smaller than 5min were
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interpolated; gaps> 5min were left as missing.

2.5. Analyses

Although data coverage during the 24-hour session from the
MicroPEM was relatively complete, wearable camera data was limited
during nighttime hours (S-Fig. 4), as per instructions to participants.
Analyses using the wearable camera-derived microenvironmental in-
formation mostly cover the 7 am–8 pm interval. All analyses were
stratified by sex, which was strongly associated with activity patterns in
our study population (Sanchez et al., 2017).

We calculated average PM2.5 concentrations for minutes corre-
sponding with a visual concept from the wearable camera data. Because
more than one visual concept can occur for a given photograph, we
used regression models to estimate the independent effect of a visual
concept on 5-min average PM2.5, accounting for temporal auto-
correlation and the repeated measures design. This analysis allowed us
to identify visual concepts with statistically significant associations
with 5-min average PM2.5 exposure. Models were fit using Gamma fa-
mily generalized linear models, including a random intercept for each
participant-day to account for the repeated sampling and an auto-re-
gressive correlation structure of lag 1 within participant-day to take
into account temporal autocorrelation in the time series. For these
models, the overall intercept corresponds to the 5-minute average PM2.5

when no visual concept was present, and the coefficient corresponds to
the PM2.5 concentration increment for a 5-minute interval in which
100% of the images contained the visual concept. To improve model fit,
we excluded data for infrequent activities (occurring in<100 photo-
graphs). Visual concepts related to location were omitted in the re-
gression model because of collinearity (i.e., many activities only occur
in a single location). We report associations as percent change in ex-
posure associated with a given visual concept: [exp(βi)− 1] ∗ 100
where βi is the regression coefficient for the visual concept. We con-
ducted similar descriptive and regression analyses for the self-reported
activity data in relation to PM2.5. The regression model differed slightly
for hourly PM2.5 in that it included random intercepts for participant
IDs and person-days; here, the intercept corresponded to sleeping. Data
preparation and statistical analyses were conducted in R version 3.3.1
(R Core Team, 2016) using several packages (Boettiger and Jones,
2017; Clifford, 2017; Garnier, 2017; Grolemund and Wickham, 2011;
Henry and Wickham, 2017; Lawrence et al., 2013; Robinson, 2016,
2017; Salmon, 2017b; Salmon et al., 2017; Wickham, 2016a, 2016b,
2017a, 2017b; Wickham et al., 2017; Wilke, 2016; Wood, 2006; Xie,
2015).

3. Results

Main characteristics of the study population are presented in
Table 1. The mean age was 44 years (sd= 14). Women were older, and
more likely to be illiterate and to have unskilled manual occupation
than men. Among men, 27% reported current active smoking; no
women reported active smoking. We excluded 24 participant-days
(11% of the raw data) because of non-compliance or lack of wearable
camera or MicroPEM data. Excluded men were younger, less often
married, and smoked less than included men while excluded women
were less likely to be in agricultural-related occupations than included
women (S-Table 2). However, there were no statistically significant
differences between included participants and a random sample of the
APCAPS cohort (S-Table 2) indicating good representativeness of the
data to the APCAPS population. Overall 286,302 photographs were
collected for 186 participant-days (45 participants) with both Auto-
grapher and MicroPEM data, with a median of 1330 photographs per
participant-day (median wear-time: 12.3 h per participant-day). The
mean (sd) number of monitoring sessions by participant was 4.1 (1.5);
9% of participants had only one session.

Camera annotation inter-rater agreement values (S-Table 3)

reflected almost perfect agreement, except for the relatively infrequent
travel by auto-rickshaw visual concept for which the Kappa was 0.61,
reflecting fair agreement. No Kappa could be computed for travel by
bus because the visual concept did not occur in the duplicate annotation
set.

For women, the most frequent visual concepts were presence in the
kitchen (median time spent in that visual concept= 77min/d), pre-
sence on road (55min/d) and food preparation (48min/d) (Fig. 1, S-
Table 4). The most frequent visual concepts for men were presence on
road (85min/d) and eating (34min/d), although some men also spent
several hours in offices or shops and industry (Fig. 1, S-Table 4). By
comparison, when considering self-reported time activity information
(S-Table 5) covering the full 24-hour period, participants spent the most
time sedentary, sleeping, and working. In self-report data, women spent
a median of 3 h/d doing household chores and 2 h/d cooking and men
spent 6 h/d working and 0 h/d cooking.

Overall PM2.5 exposures (24-h average including time periods with
and without presence of visual concepts) were 39.3 μg/m3 for women
and 42.8 μg/m3 for men. Average PM2.5 per visual concept varied from
32 to 84 μg/m3 for women and 37 to 138 μg/m3 for men (Table 2, S-
Fig. 5). With few exceptions (e.g., presence in informal work, travel by
bicycle), average exposure was higher for men than women for a given
visual concept (Table 2), including some cooking-related activities:
biomass cooking unit, food preparation, and presence in the kitchen;
however, time linked to those cooking-related visual concepts was
smaller for men than for women. Measured PM2.5 according to self-
reported activity similarly showed that men often had higher exposures
for a given self-reported activity (S-Table 6).

Illustrative examples of personal exposure time series with si-
multaneous wearable camera derived data for one female and one male
participant are presented in Fig. 2. According to the wearable camera
data, the female participant spent the majority of the monitoring period
in the kitchen, with a few short periods outside on the road (Fig. 2A). A
LPG stove was visible in photos at several times throughout the day,
including the period around 14:30 that corresponded with food pre-
paration and eating, most likely the mid-day meal. A biomass stove was
visible in photos around 18:30, during which food preparation and
eating were also visible, suggesting the evening meal. While periods
with a visible LPG stove corresponded with no or only moderate short-
term increases in personal PM2.5, the biomass stove corresponded with

Table 1
Characteristics of study population.

All Women Men

N 45 23 22
Age (years), m (sd) 44 (13.8) 48 (8.8) 40 (16.9)
Min–max 21–65 29–62 21–65

Number of sessions, m (sd) 4.1 (1.5) 4.1 (1.4) 4.1 (1.6)
Only 1 session, n (%) 4 (9) 2 (9) 2 (9)
Marital status, married, n (%) 31 (69) 17 (74) 14 (64)
Education level, illiterate, n (%) 24 (53) 18 (78) 6 (27)
Current smoker, n (%) 6 (13) 0 (0) 6 (27)
Primary occupation, n (%)
Unemployed 4 (9) 2 (9) 2 (9)
Unskilled manual 24 (53) 16 (70) 8 (36)
Semi-skilled manual 6 (13) 3 (13) 3 (14)
Skilled manual 9 (20) 1 (4) 8 (36)
Non manual 2 (4) 1 (4) 1 (5)

Agriculture-related occupation, n (%) 22 (49) 16 (70) 6 (27)
Body mass index (kg/m2), n (%)

< 18.5 12 (27) 6 (26) 6 (27)
18.5–23.0 21 (47) 9 (39) 12 (55)
≥23.0 11 (24) 8 (35) 3 (14)

Primary fuel use, n (%)a

Biomass 15 (33) 3 (13) 12 (55)
Liquefied petroleum gas (LPG) 39 (87) 22 (96) 17 (77)
Others 9 (20) 5 (22) 4 (18)

a More than one primary fuel type is possible.
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a large increase in personal PM2.5. For the male participant, short-term
increases in exposure had good temporal correspondence with photos
containing a cigarette in the hand or mouth of the participant or an-
other individual (Fig. 2B).

In regression analyses smoking was statistically significantly asso-
ciated with higher 5-min average PM2.5 for both sexes, although the
effect was more pronounced for men. Exposure was 93% higher (95%

Confidence Interval (CI): 63%, 129%) when smoking was present
compared to not present in the wearable camera images among men
and 29% higher (95% CI: 2%, 63%) for women (Fig. 3). This could
reflect differences in exposure from active vs passive smoking between
men and women and proximity to cigarette smoke when in the presence
of cigarettes. No women reported being current smokers (Table 1). In
addition to smoking, several other visual concepts were significantly

Fig. 1. Minutes per day according to visual concepts derived from wearable camera. Data are stratified by sex. Whiskers correspond to 1.5*interquartile range; data
beyond the whiskers are considered outliers and plotted as points.

Table 2
Mean and median 1-minute averaged PM2.5 exposure (μg/m3) and frequency (minutes) according to visual concept by sex.

Women: mean (sd) Median Total minutes Men: mean (sd) Median Total minutes

Cooking
Biomass cooking unit 84 (196) 34 1129 119 (384) 384 857
LPG stove 53 (136) 35 2659 91 (213) 213 1260
Other cooking unit 44 (50) 38 935 42 (31) 31 268
Food preparation 60 (130) 36 5691 99 (311) 311 1214
Eating 39 (42) 32 3975 47 (73) 73 3665
Presence in the kitchen 48 (94) 34 12,139 133 (311) 311 2196

Travel
Travel by bus NA NA 0 46 (23) 23 181
Travel by bicycle 48 (15) 50 13 41 (28) 28 983
Travel by auto rickshaw 36 (14) 33 65 42 (34) 34 1212
Travel by motorcycle 39 (33) 32 86 37 (42) 42 2084
Travel by car NA NA 0 48 (38) 38 229
Presence on road 39 (57) 31 9023 47 (154) 154 11,376

Occupation
Presence at office or shop 39 (13) 36 718 49 (58) 58 4699
Presence at work field 32 (11) 30 8384 38 (20) 20 1920
Presence in industry 34 (13) 30 78 54 (145) 145 9394
Presence in informal work 44 (72) 33 1000 39 (62) 62 5519

Presence of non-cooking combustion
Diesel generator NA NA 0 45 (26) 26 21
Smokinga 49 (32) 36 191 104 (217) 217 800
Visible flame or smoke 71 (173) 31 226 138 (416) 416 631

Location
Indoors 40 (55) 32 38,833 51 (112) 112 29,791
In vehicle 36 (15) 33 60 41 (32) 32 2158
Mixed 37 (29) 32 972 57 (79) 79 450

a Includes active and passive smoking.
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associated with increased 5-min PM2.5 exposure among women in-
cluding: biomass cooking unit (69% (95% CI: 48%, 93%)); visible flame
or smoke (39% (95% CI: 6%, 83%)), and presence in the kitchen (14%
(95% CI: 7%, 20%)). However, presence of other cooking unit (−31%
(95% CI: −41%, −20%)) and presence at work in an agricultural field
(−19% (95% CI: −26%, −11%)) were significantly associated with
lower exposures compared to intervals when these visual concepts were
not present (Fig. 3). Among men, visual concepts significantly asso-
ciated with higher 5-minute PM2.5 exposure included visible flame or
smoke (90% higher PM2.5 compared to intervals without visible flame
or smoke present (95% CI: 48%, 144%)), biomass cooking unit (57%
(95% CI: 28%, 93%)), presence in the kitchen (49% (95% CI: 27%,

75%)), and presence in industry (14% (95% CI: 1%, 28%)). In contrast
to women, presence in informal work for men was associated with
lower exposure (−16% (95% CI: −25%, −5%)). Associations between
self-reported activities and hourly PM2.5 are presented in S-Fig. 6.

4. Discussion

Our results indicate that wearable cameras can yield valid data that
are associated with short-term variation in personal PM2.5 exposure.
Our analyses resulted in two main findings. First, the high time re-
solution of the wearable camera data was particularly useful in iden-
tifying predictors of peak exposures. Wearable camera data identified a

Fig. 2. Time series of personal PM2.5 exposure with simultaneous wearable camera derived visual concept for a A) female and B) male participant.
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diverse range of activities and locations that could be difficult to cap-
ture using other single sources of information (e.g. questionnaire or GPS
or temperature loggers used as stove use monitors (Ruiz-Mercado et al.,
2012)). Second, men had higher exposures for most visual concepts,
including those related to cooking and presence in the kitchen. How-
ever, the influence of cooking on exposures in men was not evident
from the self-reported time activity data.

The vast majority of the household air pollution literature has fo-
cused on the influence of cooking activities on exposure for the primary
cook (usually female) and children who spend large amounts of time
with the primary cook, providing little data on exposures for adult men
(Carter et al., 2017; Pope et al., 2017). Our results suggest that cooking-
related activities contributed to high short-term exposures for men.
Although men were not actively cooking and therefore did not report
this activity in the questionnaire, they nonetheless spent time in mi-
croenvironments where cooking was taking place. The higher measured
PM2.5 for men compared to women according to visual concepts related
to food preparation and cooking may be explained by men limiting
their time in these microenvironments to when cooking was taking
place (e.g. immediately before mealtime), whereas women also spent
time in these microenvironments (e.g. kitchen) when cooking was not
occurring.

Mobility patterns and activities are notably different between men
and women in this population (Sanchez et al., 2017). In a prior work
based on GPS tracking in the same study population, we reported that
men typically spend less time in the home, make more trips at high
speed (e.g., in vehicle rather than walking), and travel further distances
from the home compared to women (Sanchez et al., 2017). Nonetheless,
our results here did not identify travel microenvironments as con-
tributing to high short-term PM2.5 exposure for either sex. Other studies
have identified commuting as contributing to high microenvironmental
exposures for PM2.5, as well as for black carbon and ultrafine particles
(Bekö et al., 2015; Nieuwenhuijsen et al., 2015; Pant et al., 2017). This
difference may reflect the peri-urban setting of our study, which does
not typically have high traffic congestion and emissions that would be
encountered in urban environments. In comparison to previous studies
focused on occupationally exposed populations (Semple et al., 2008),
our data shed light on the relative contribution of PM2.5 in occupational

settings in a sample of the general population in India. Five-minute
average PM2.5 was positively associated with visual concepts related to
presence in industry (for men) and informal work (for women), in-
dicating the influence of occupational exposures. However, the strength
of the associations for occupation-related visual concepts was weaker
than for those related to cooking.

Beyond high temporal resolution, another advantage of wearable
camera derived activity data is that the data collection does not depend
on the questions asked in the field. Potentially, the data could (if par-
ticipants consent) be re-used for other studies with different annotation
protocols. This technology may have particular value for low-literacy
populations, where feasibility is limited for participants to keep a
written diary of activities. One disadvantage of the wearable camera
technology is scalability due to the time-intensive process of manual
annotation. However, scalability could be improved with future de-
velopments in machine learning to support automatic annotation
(Bolanos et al., 2017). At the time of our study, we did not identify an
annotation algorithm with sufficiently good performance for our study
context, making manual annotation unavoidable. A further dis-
advantage of the wearable camera technology is potential discomfort
and loss of privacy. Important ethical issues associated with using
wearable cameras in research include informed consent (particularly
with third parties), anonymity and confidentiality, data protection and
privacy. These issues have been previously examined in detail (Kelly
et al., 2013; Mok et al., 2015). Suggestions to address these issues in-
clude 1) limiting the scale and scope of data collection as much as
possible; and 2) introducing firewalls around data to isolate them
within the academic research context and to prevent participants from
accessing and sharing their data (Kelly et al., 2013; Mok et al., 2015).
We have taken both steps in our study.

Our study is based on two high temporally-resolved sources of in-
formation, the wearable camera and a continuous PM2.5 monitor, that
are used in combination for the first time. A further strength of our
study is the repeated measures design. The quality of our wearable
camera-derived microenvironmental information was high; we used
best practice for determining inter-rater agreement of photograph an-
notations via duplicate annotation by a distinct annotator and we had
substantial to almost perfect agreement (S-Table 3) (Landis and Koch,

Fig. 3. Percent change and 95% confidence intervals in 5-minute average PM2.5 associated with wearable camera derived visual concepts. Regression coefficients are
mutually adjusted.
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1977). We also conducted extensive post processing and quality control
of the MicroPEM PM2.5 data (Salmon, 2017a). Our population is a
sample of the general population in peri-urban South India, with likely
good generalizability to similar populations (S-Table 2 shows study
population in comparison to random sample of APCAPS cohort). Our
results provide insights into predictors of exposure in multiple exposure
settings, unlike studies focusing only on occupational or home en-
vironments or commuting.

Several methodological limitations should be considered while in-
terpreting our results. The Autographer data was limited by the battery
life of the device and therefore did not provide microenvironmental
data for the full 24 h. The devices also provide low quality images in
indoor conditions with low lighting; as a result, some visual concepts
were potentially missed: 19% of images were uncodeable because of
obstruction of the lens or low lighting conditions, which is consistent
with other wearable camera studies (Doherty et al., 2013b). The re-
gression models (Fig. 3) could not be adjusted by ambient PM2.5 be-
cause of collinearity with some activities and visual concepts with
strong seasonal patterns (e.g., agricultural work). However, relative
ranking of the influence of visual concepts on exposure is unlikely to be
changed by adjustment with ambient values. We cannot rule out the
possibility that participants changed their behavior as a result of
wearing the camera. However, there was no indication of a trend in the
number of photographs collected during each session, which might be
expected if participants became more or less comfortable with wearing
the device (S-Table 7). Similarly, differences in self-reported activities
between people who participated in the panel study versus a random
sample of the APCAPS cohort were modest (S-Table 8). Where there
were statistically significant differences, they suggested that the panel
study participants were slightly more active than the average for the
APCAPS cohort. Female panel participants spent more time (~30min)
cooking, while male panel participants spent more time in the work-
place (~108min) compared to a sample of the APCAPS population.

In conclusion, our results indicate that microenvironmental data
derived from wearable cameras can be valuable for understanding lo-
cations and activities that influence personal PM2.5 exposure. In parti-
cular, the high temporal resolution of these data is well suited for
identifying microenvironments contributing to relatively short-term
peak exposures. The contribution of food preparation and cooking to
personal exposure among men in settings where biomass cooking fuel is
common warrants further investigation. The use of wearable cameras is
part of a promising movement towards the collection of densely sam-
pled objective data with application for exposure science that may
provide insights not possible with self-reported data.
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