
Genomic analysis of local variation and recent evolution in 
Plasmodium vivax

Richard D Pearson1,2, Roberto Amato#1,2, Sarah Auburn#3, Olivo Miotto1,2,4, Jacob 
Almagro-Garcia2, Chanaki Amaratunga5, Seila Suon6, Sivanna Mao7, Rintis Noviyanti8, 
Hidayat Trimarsanto8, Jutta Marfurt3, Nicholas M Anstey3, Timothy William9, Maciej F 
Boni10, Christiane Dolecek10, Tinh Tran Hien10, Nicholas J White4, Pascal Michon11,12, 
Peter Siba11, Livingstone Tavul11, Gabrielle Harrison13,14, Alyssa Barry13,14, Ivo 
Mueller13,14, Marcelo U Ferreira15, Nadira Karunaweera16, Milijaona Randrianarivelojosia17, 
Qi Gao18, Christina Hubbart2, Lee Hart2, Ben Jeffery2, Eleanor Drury1, Daniel Mead1, Mihir 
Kekre1, Susana Campino1, Magnus Manske1, Victoria J Cornelius1,2, Bronwyn MacInnis1, 
Kirk A Rockett1,2, Alistair Miles1,2, Julian C Rayner1, Rick M Fairhurst5, Francois 
Nosten4,19, Ric N Price3,20, and Dominic P Kwiatkowski1,2

1Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK 2MRC Centre for Genomics 
and Global Health, Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK 3Global and 
Tropical Health Division, Menzies School of Health Research and Charles Darwin University, 
Darwin, Northern Territories 0811, Australia 4Mahidol-Oxford Tropical Medicine Research Unit, 
Mahidol University, Bangkok 10400, Thailand 5National Institute of Allergy and Infectious 
Diseases, National Institutes of Health, Rockville, Maryland 20852, USA 6National Centre for 
Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia 7Sampov Meas Referral 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence should be addressed to D.P.K. (dominic@sanger.ac.uk). 

URLs
MalariaGEN Plasmodium vivax Genome Variation Project: sample information and genotype calls, https://www.malariagen.net/
resource/17; SNP information and allele frequencies, https://www.malariagen.net/apps/pvgv/. European Nucleotide Archive (ENA), 
http://www.ebi.ac.uk/ena; P. vivax Sal1 reference sequence, http://plasmodb.org/common/downloads/release-10.0/PvivaxSal1/fasta/
data/PlasmoDB-10.0_PvivaxSal1_Genome.fasta; P. vivax Sal1 gene annotations, ftp://ftp.sanger.ac.uk/pub/pathogens/Plasmodium/
P_vivax/2014/May_2014 and http://www.plasmodb.org/common/downloads/release-13.0/PvivaxSal1/txt/
PlasmoDB-13.0_PvivaxSal1Gene.txt; P. cynomolgi Illumina reads, ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/DRA000/
DRA000196/DRX000265; Picard software, http://picard.sourceforge.net; pyvcf software, https://github.com/jamescasbon/PyVCF; 
pysam software, https://code.google.com/p/pysam; pysamstats software, https://github.com/alimanfoo/pysamstats; SciPy stats 
package, http://docs.scipy.org/doc/scipy/reference/stats.html.

Accession codes
A document containing lists of ENA accession codes for all samples used in the present study is available from https://
www.malariagen.net/resource/17.

Author Contributions
C.A., S.S., S.M., R.N., H.T., J.M., N.M.A., T.W., M.F.B., C.D., H.T.T., N.J.W., P.M., P.S., L.T., G.H., A.B., I.M., M.U.F., N.K., M.R. 
and Q.G. carried out field and laboratory work to obtain P. vivax samples for sequencing. C.H., E.D., D.M., M.K., S.C., B.M. and 
K.A.R. developed and implemented methods for sample processing and sequencing library preparation. R.D.P., L.H., B.J. and M.M. 
managed data production pipelines. S.A., O.M., V.J.C., B.M., K.A.R., A.M., J.C.R., R.M.F., F.N., R.N.P. and D.P.K. contributed to 
study design and management. R.D.P., R.A., S.A., O.M., J.A.-G. and D.P.K. performed data analyses. R.D.P., R.A., S.A. and D.P.K. 
drafted the manuscript, which was reviewed by all authors.

Competing Financial Interests
The authors declare no competing financial interests.

Europe PMC Funders Group
Author Manuscript
Nat Genet. Author manuscript; available in PMC 2016 December 27.

Published in final edited form as:
Nat Genet. 2016 August ; 48(8): 959–964. doi:10.1038/ng.3599.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.nature.com/authors/editorial_policies/license.html#terms
https://www.malariagen.net/resource/17
https://www.malariagen.net/resource/17
https://www.malariagen.net/apps/pvgv/
http://www.ebi.ac.uk/ena
http://plasmodb.org/common/downloads/release-10.0/PvivaxSal1/fasta/data/PlasmoDB-10.0_PvivaxSal1_Genome.fasta
http://plasmodb.org/common/downloads/release-10.0/PvivaxSal1/fasta/data/PlasmoDB-10.0_PvivaxSal1_Genome.fasta
ftp://ftp.sanger.ac.uk/pub/pathogens/Plasmodium/P_vivax/2014/May_2014
ftp://ftp.sanger.ac.uk/pub/pathogens/Plasmodium/P_vivax/2014/May_2014
http://www.plasmodb.org/common/downloads/release-13.0/PvivaxSal1/txt/PlasmoDB-13.0_PvivaxSal1Gene.txt
http://www.plasmodb.org/common/downloads/release-13.0/PvivaxSal1/txt/PlasmoDB-13.0_PvivaxSal1Gene.txt
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/DRA000/DRA000196/DRX000265
ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/DRA000/DRA000196/DRX000265
http://picard.sourceforge.net
https://github.com/jamescasbon/PyVCF
https://code.google.com/p/pysam
https://github.com/alimanfoo/pysamstats
http://docs.scipy.org/doc/scipy/reference/stats.html
https://www.malariagen.net/resource/17
https://www.malariagen.net/resource/17


Hospital, Pursat, Cambodia 8Eijkman Institute for Molecular Biology, Jakarta 10430, Indonesia 
9Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit 
and Queen Elizabeth Hospital Clinical Research Centre, Kota Kinabalu, Sabah, Malaysia 
10Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam 11Papua New Guinea 
Institute of Medical Research, Madang, Papua New Guinea 12Faculty of Medicine and Health 
Sciences, Divine Word University, Madang, Papua New Guinea 13Division of Population Health 
and Immunity, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, 
Australia 14Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia 
15Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São 
Paulo, Brazil 16Department of Parasitology, Faculty of Medicine, University of Colombo, Sri Lanka 
17Institut Pasteur de Madagascar, Antananarivo, Madagascar 18Jiangsu Institute of Parasitic 
Diseases, Key Laboratory of Parasitic Disease Control and Prevention (Ministry of Health), 
Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Wuxi, Jiangsu, People’s 
Republic of China 19Shoklo Malaria Research Unit, Mae Sot, Tak 63110, Thailand 20Centre for 
Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of 
Oxford, OX3 7LJ, UK

# These authors contributed equally to this work.

Abstract

The widespread distribution and relapsing nature of Plasmodium vivax infection present major 

challenges for malaria elimination. To characterise the genetic diversity of this parasite within 

individual infections and across the population, we performed deep genome sequencing of >200 

clinical samples collected across the Asia-Pacific region, and analysed data on >300,000 SNPs and 

9 regions of the genome with large copy number variations. Individual infections showed complex 

patterns of genetic structure, with variation not only in the number of dominant clones but also in 

their level of relatedness and inbreeding. At the population level, we observed strong signals of 

recent evolutionary selection both in known drug resistance genes and at novel loci, and these 

varied markedly between geographical locations. These findings reveal a dynamic landscape of 

local evolutionary adaptation in P. vivax populations, and provide a foundation for genomic 

surveillance to guide effective strategies for control and elimination.

P. vivax is the main cause of malarial illness in many parts of the world and it is estimated 

that over 2.5 billion people are at risk of infection.1–3 It is absent from most of sub-Saharan 

Africa, where the species appears to have originated, because most of the human population 

is protected from infection by the Duffy negative blood group, suggesting that P. vivax has 

been a strong force for human evolutionary selection.4,5 P. vivax is a particularly 

challenging problem for malaria elimination because of its broad geographical range and its 

ability to produce hypnozoites, dormant forms of the liver-stage parasite that cause relapsing 

infection and that are refractory to most classes of antimalarial drugs.6 P. vivax is becoming 

increasingly resistant to chloroquine, the first-line treatment, and the molecular mechanisms 

of resistance remain unknown.7
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In this study we analysed P. vivax genome variation to investigate how the parasite 

population varies between locations and how it is evolving. Microsatellite approaches have 

yielded useful insights into the its epidemiology, population structure and transmission 

dynamics8–10 but analysis of genome variation has previously been restricted to relatively 

small numbers of samples.11–18 Practical obstacles to genome sequencing of P. vivax from 

clinical samples are low levels of parasitaemia and the difficulty of culturing this species of 

parasite for more than a few days. Our approach was to collect blood samples from patients 

with P. vivax malaria and perform leucocyte depletion prior to parasite genome sequencing 

using the Illumina platform.19 Our sampling frame focused on Southeast Asia (Thailand, 

Cambodia, Vietnam, Laos, Myanmar and Malaysia) and Oceania (Papua Indonesia and 

Papua New Guinea), with smaller numbers of samples from China, India, Sri Lanka, Brazil 

and Madagascar (Supplementary Table 1).

In the first stage of analysis, we aligned sequence reads against the Salvador 1 (Sal 1) 

reference genome11 and used the GATK UnifiedGenotyper to discover 726,077 putative 

single nucleotide polymorphisms (SNPs). We then applied a series of quality control filters 

to exclude genomic regions with poor mapping quality, samples with low coverage and 

SNPs with a high risk of genotypic errors (see Methods). The final dataset contained 

303,616 high-quality SNPs called in 228 samples across a core ‘accessible’ genome of 21.4 

Mb, comprising 11.1 Mb coding and 10.3 Mb non-coding sequence (Figure 1, 

Supplementary Figure 1, Supplementary Table 2). For detailed population genetic analyses 

we used 148 samples from western Thailand (WTH), western Cambodia (WKH) and Papua 

Indonesia (PID) that had genotype calls for >80% of the high-quality SNPs (Supplementary 

Table 1). The high-quality SNPs were divided approximately equally between coding and 

non-coding regions (150,739 vs 152,877) and 58% of the coding SNPs were non-

synonymous.

The allele frequency spectrum was dominated by low frequency variants, with over 50% of 

high-quality SNPs being at ≤1% minor allele frequency (Supplementary Figures 2 and 3). 

Nucleotide diversity (π) was estimated to be 1.5×10−3 when all unfiltered SNPs were 

included, and 5.6×10−4 when restricted to high quality SNPs (Supplementary Table 3). 

Levels of linkage disequilibrium were extremely low, e.g. r2 decayed to <0.1 within <200 bp 

in WTH and WKH samples, and within <500 bp in PID samples, after correcting for 

population structure and other confounders (Supplementary Figure 4). Rates of nucleotide 

diversity (π), Tajima’s D and the ratio of non-synonymous to synonymous variants (N/S 

ratio) were estimated for individual genes (Table 1, Supplementary Dataset 1). A striking 

finding was that π, D and N/S ratio are highly significantly elevated among the >200 genes 

that lack a known ortholog in P. falciparum, P. yoelii or both. High levels of diversity were 

also observed in genes expressed in late schizonts, those containing signal peptides or 

transmembrane domains, vir genes (i.e. those in the accessible genome) and genes encoding 

reticulocyte binding proteins.

Large copy number variations (CNVs) were identified in nine regions of the core genome 

(Figure 2, Supplementary Table 4 and Supplementary Dataset 2) and the four most common 

showed marked geographic variation in frequency. The first was a 9 kb deletion on 

chromosome 8 (present in 73% PID, 6% WKH, and 3% WTH samples) that includes the 
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first three exons of a gene encoding a cytoadherence-linked asexual protein. The second was 

a 7 kb duplication on chromosome 6 (5% PID, 35% WKH, 25% WTH) encompassing 

pvdbp, the gene that encodes the Duffy binding protein which mediates P. vivax invasion of 

erythrocytes.2 Pvdbp duplications have been shown to be common in Malagasy strains of P. 
vivax infecting Duffy-negative individuals21, and these findings show they can also reach 

relatively high frequency in places where nearly all individuals are Duffy-positive22. The 

third common CNV was a 37 kb duplication on chromosome 10 that includes pvmdr1. 

Duplication of pvmdr1 duplication has previously been associated with resistance to 

mefloquine23 and is homologous to the pfmdr1 amplification responsible for mefloquine 

resistance in P. falciparum. Mefloquine has never been a recommended treatment for P. 
vivax; it is therefore of considerable interest that pvmdr1 duplication is present in 19% of 

WTH samples, but not in WKH or PID samples. In Western Thailand, mefloquine has been 

used extensively as the first-line treatment for P. falciparum, either as a monotherapy or in 

combination with artesunate, and likely induces high selective pressure on relapsing P. vivax 
infections, which occur frequently following P. falciparum infection24. The fourth common 

CNV was a 3kb duplication on chromosome 14 that includes the gene PVX_101445 and was 

seen only in Papua Indonesia. Notably, this locus also shows signals of recent selection and 

is discussed further below.

The genetic complexity of P. vivax infection is of particular interest since hypnozoite-

induced relapses cause longstanding infections6 which can include sibling parasites 

inoculated by the same mosquito, or unrelated parasites from separate mosquito bites.

16,25,26 Approximately 45% of the samples in this study had genetically mixed infections 

as determined by the FWS metric27 and within-sample heterozygosity (Figure 3, 

Supplementary Figure 5). Analysis of heterozygous SNPs revealed that 28% of samples had 

a strikingly bimodal and symmetrical allele frequency distribution, the signature of two 

dominant clones, while 16% of samples had a more complex allele frequency distribution 

indicating the presence of 3 or more dominant clones. These estimates are averaged across 

WTH, WKH and PID, but broadly similar patterns were observed in each population 

(Supplementary Table 5).

To get a more detailed picture of the genetic structure of mixed infections, we analysed long 

runs of homozygosity (RoH) within heterozygous samples (Figure 3B and Supplementary 

Figure 5). These RoH are analogous to the long blocks of haplotype-sharing that have been 

observed by single cell genome sequencing of meiotic sibling parasites isolated from the 

same infected individual.28 RoH extending across ~50% of the genome indicates that the 

two clones are meiotic siblings, while less extensive RoH indicates more a distant 

relationship, and more extensive RoH is indicative of inbreeding over multiple generations. 

We observed significant RoH in 25 of 43 samples with two dominant clones, covering <40% 

of the genome in 9 samples, 40-60% in 11 samples, and >60% in 5 samples. A few samples 

with >2 dominant clones also displayed RoH, suggesting that these infections were 

dominated by a group of closely related parasites. These data demonstrate the potential 

utility of deep sequencing data as an epidemiological tool to differentiate mixed infections 

that are due to separate mosquito bites from those that are due to sibling parasites inoculated 

by the same mosquito.6,16,25,26,28
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Major geographic divisions of parasite population structure were identified both by principal 

components analysis and using a model-based approach (ADMIXTURE) which clearly 

distinguished the three main groups of samples from western Thailand, western Cambodia 

and Papua Indonesia (Figure 4, Supplementary Figure 6).30 These differences can also be 

visualised on a neighbour-joining tree (Figure 4) which has three distinct branches 

separating Western Southeast Asia (Western Thailand, Myanmar and China), Eastern 

Southeast Asia (Cambodia, Vietnam, Eastern Thailand and Laos) and Southeast Asian and 

Pacific Islands (Malaysia, Papua Indonesia and Papua New Guinea). The separation of the P. 
vivax population of Southeast Asia into distinct Western and Eastern groups is consistent 

with observations in P. falciparum31 and reflects the malaria-free corridor that has been 

established through central Thailand. Samples from outside Southeast Asia were too 

disparate and small in numbers to be reliably assigned to specific groups of population 

structure by this analysis.

Strong evidence of recent selection was observed in six genomic regions on chromosomes 2, 

5, 10, 13 and 14. In all cases there was evidence of geographically localised selection based 

on the XP-EHH test, with P values of 10−8 to 10−18, supported by other evidence such as the 

iHS test and highly differentiated SNPs (Figure 5, Supplementary Table 6 and 

Supplementary Figure 7). Each of these signals of selection encompasses multiple genes, 

such that we cannot be certain of the specific gene under selection, but several noteworthy 

candidates are summarised below.

The signals of selection on chromosome 5 and 14 are strongest in western Thailand, and 

contain known resistance genes for pyrimethamine (pvdhfr) and sulfadoxine (pvdhps)32,33. 

Although chloroquine has been the main treatment for P. vivax malaria, sulfadoxine-

pyrimethamine was introduced to Thailand in 1973 as first-line treatment for P. 
falciparum34, and selective pressure on P. vivax may have been considerable because of its 

widespread use in the private sector and the high frequency of P. vivax relapses following 

treatment of P. falciparum infection24. Selective sweeps at pvdhfr and pvdhps have also 

been observed in South America.17,18

The two strongest signals of selection of selection were observed in Papua Indonesia, where 

high-grade chloroquine resistance of unknown cause is now firmly established.7 

Interestingly they did not include pvcrt-o, the P. vivax orthologue of the main chloroquine 

resistance gene in P. falciparum.36 One of these signals encompassed 22 genes on 

chromosome 14, of which the strongest candidate appears to be PVX_101445, a 

hypothetical membrane protein which has a striking pattern of copy number variations seen 

in PID but not elsewhere (Figure 1, Supplementary Table 4, Supplementary Dataset 2). The 

other signal encompassed 29 genes on chromosome 10: the peak of the signal was at 

PVX_079910, a conserved protein of unknown function, and this signal lies close to (but 

does not include) pvmdr1, which has been implicated in chloroquine resistance in ex-vivo 
studies in PID37.

Two other notable signals of selection were observed in WTH and WKH on chromosome 2, 

and in WTH on chromosome 13. The chromosome 2 signal contains four genes including 

pvmrp1 (PVX_097025) which encodes an ABC transporter that has been implicated as a 
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drug resistance candidate12,18 and whose P. falciparum homologues are associated with 

resistance to multiple anti-malarial drugs38,39. The chromosome 13 signal includes 

PVX_084940, which encodes a putative voltage-dependent anion-selective channel 

containing a porin domain proposed to be implicated in antibiotic resistance35. Further 

details of the above signals of selection can be found in the Supplementary Note.

SNPs that are highly differentiated between populations can provide additional evidence of 

evolutionary selection. Pairwise comparisons between WTH, WKH and PID identified 40 

SNPs with FST >0.9 (Supplementary Table 7). Half of these were associated with the signals 

of selection discussed above and the remainder had a significantly higher proportion of non-

synonymous changes than the genome-wide average (12/20 vs 87,877/303,616; P=3.3×10−4 

by Fisher’s exact test), identifying additional new candidate genes for investigations of drug 

resistance (Supplementary Note). More generally, this study provides a rich resource of data 

on the population diversity of P. vivax, which can be explored through a web application 

(www.malariagen.net/apps/pvgv) which provides summary data on SNP allele frequencies 

in different populations.

This study demonstrates the feasibility of population-level genome sequencing of P. vivax, 

despite the low levels of parasitaemia in clinical samples and the lack of an effective culture 

method. As well as characterising common patterns of genome variation that are the result 

of ancient events, the present findings reveal a dynamic evolutionary landscape, in which the 

parasite population is adapting to local selective pressures that reflect ongoing 

epidemiological processes. The difficulty of investigating P. vivax in the laboratory provides 

a strong incentive to exploit genomics to address gaps in knowledge of parasite phenotype. 

Genomic signals of recent selection could help identify local emergences of resistance, both 

to the drugs used specifically to treat P. vivax and to those that are targeted at P. falciparum. 

Knowledge of the genetic structure of individual infections is an important step towards 

understanding local patterns of malaria transmission, the epidemiology of relapsing 

infection, and the dynamics of genetic recombination in natural populations of P. vivax. 

Taken together, these findings point to various ways in which genomic analyses might be 

integrated into future clinical and epidemiological studies of P. vivax, and highlight the 

importance of translating this information into more effective strategies for malaria control 

and elimination.

Methods

Ethics statement

All samples used in this study were derived from patient blood samples obtained with 

informed consent from the patient or a parent or guardian. At each location, sample 

collection was approved by the appropriate local ethics committee: Eijkman Institute 

Research Ethics Committee, Jakarta, Indonesia; Human Research Ethics Committee of NT 

Department of Health and Families and Menzies School of Health Research, Darwin, 

Australia; Oxford Tropical Research Ethics Committee, Oxford, UK; Ethics Committee, 

Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Research Review 

Committee of the Institute for Medical Research and the Medical Research Ethics 

Committee (MREC), Ministry of Health Malaysia; Review Board of Jiangsu Institute of 
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Parasitic Diseases, Wuxi, China; National Ethics Committee for Health Research, Phnom 

Penh, Cambodia; Institutional Review Board, National Institute of Allergy and Infectious 

Diseases, Bethesda, Maryland, USA; National Ethics Committee for Health Research, Lao 

Peoples’ Democratic Republic; The Government of the Republic of the Union of Myanmar, 

Ministry of Health, Department of Medical Research (Lower Myanmar); Institutional 

Review Board of the Institute of Biomedical Sciences, University of São Paulo, Brazil; 

Scientific and Ethical Committee of the Hospital for Tropical Diseases in Ho Chi Minh City, 

Vietnam; Ethics Review Committee, Faculty of Medicine, University of Colombo, Sri 

Lanka; Papua New Guinea Institute of Medical Research Institutional Review Board, the 

Medical Research Advisory Committee of Papua New Guinea and the Walter and Eliza Hall 

Institute Human Research Ethics Committee; National Ethics Committee of Madagascar.

Sample preparation

Samples were collected from patients presenting at hospitals or health centres with 

symptomatic, uncomplicated P. vivax malaria as determined by microscopy. Venous blood 

was drawn into tubes coated with ethylenediaminetetraacetic acid (EDTA) or lithium 

heparin, and leukocyte depletion was carried out to minimise the amount of human DNA in 

the sample to be sequenced. Methods for leukodepletion included magnetic cell separation 

technology and filtration using non-woven fabric filters or cellulose-based constructs44,45. 

Some samples were also cultured ex vivo for up to 48 h to enrich for schizonts45. DNA 

extraction was typically performed using the QIAamp Blood Midi or Maxi kits (Qiagen) 

according to the manufacturer’s instructions. Total DNA concentration was measured using 

the Quant-iT™ dsDNA HS assay (Invitrogen) as per the manufacturer’s protocol, and the 

proportion of human DNA in each sample was determined by RT-qPCR.45

DNA sequencing

Sequencing was performed on the Illumina GA II or HiSeq 2000 platform at the Wellcome 

Trust Sanger Institute. Paired-end multiplex or non-multiplex libraries were prepared using 

the manufacturer’s protocol, with the exception that genomic DNA was fragmented using 

Covaris Adaptive Focused Acoustics rather than nebulisation. Multiplexes comprised 12 

tagged samples. Cluster generation and sequencing were undertaken according to the 

manufacturer’s protocol for paired-end 75 bp, 76 bp or 100 bp sequence reads. We initially 

used 272 samples from confirmed cases of P. vivax malaria that had at least 50 ng total 

gDNA with ≤80% human DNA. At the analysis stage, we included 20 additional samples 

from presumed cases of P. falciparum malaria, which were found by sequencing to have 

substantial proportions of reads mapping to the P. vivax reference genome (Supplementary 

Table 1). Illumina sequence reads have been submitted to the European Nucleotide Archive.

Overview of sequence analysis

We initially aligned sequence reads from 292 samples against the Salvador 1 (Sal 1) 

reference genome11 using bwa, and then successively applied the Picard tools CleanSam, 

FixMateInformation and MarkDuplicates, followed by GATK indel realignment. We used 

GATK CallableLoci to determine a subset of 247 samples for which at least 50% of the 14 

chromosomal sequences of the Sal1 reference could be reliably called. After trimming the 
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dataset to remove instances of multiple samples from the same individual, we were left with 

228 samples for further analysis.

We used GATK UnifiedGenotyper to discover 726,077 putative single nucleotide 

polymorphisms (SNPs) amongst the 247 samples. SNPs were annotated using standard 

GATK annotations as well as a previously described Uniqueness score and a novel 

HyperHeterozygosity score. We genotyped SNPs using previously define rules and created a 

Missingness score for each SNP based on the number of missing genotypes across the 247 

samples.

We determined SNPs with evidence of genotyping errors by analysis of genotype 

discordance between technical replicate samples. We masked out subtelomeric regions and 

three internal chromosome regions (13 SERA family genes on chromosome 4, 11 msp3 

family genes on chromosome 10 and 11 msp7 family genes on chromosome 12) which had 

lower mapping quality, higher levels of missingness, greater SNP density and greater levels 

of genotype discordance between technical replicates. We also filtered out SNPs in the 

unmasked regions that had extreme values of the annotation metrics described in the 

previous paragraph. Thresholds for extreme levels of these metrics were determined using 

rates of technical replicate discordance.

Read mapping and coverage

Reads mapping to the human reference genome were removed before all analyses, and the 

remaining reads were mapped to the P. vivax Sal1 reference genome11 using bwa46 version 

0.5.9-r16 with default parameters. Standard alignment metrics were generated for each 

sample using the bamcheck utility from samtools47.

The Picard version 1.110 tools CleanSam, FixMateInformation and MarkDuplicates were 

successively applied to the bam files of each sample. GATK version 3.1-1 indel 

realignment48 was applied using default parameters and no list of known indels. The output 

of this stage was a set of 292 “improved” bam files, one for each sample.

We ran GATK’s CallableLoci49 on each improved sample bam file to determine the 

proportion of genomic positions callable in each sample using parameters --minDepth 5 --

minBaseQuality 27 --minMappingQuality 27. This identifies a site as callable if there are ≥5 

reads with base and mapping quality of ≥27 and if ≤10% of reads have mapping quality 0.

The P. vivax Sal1 reference genome11 consists of 14 large chromosomal sequences ranging 

in size from 0.76-3.12 Mbp, and 2,733 shorter contigs ranging in size from 200-101,928 

bases. It is assumed that these shorter contigs are sequences from the subtelomeric ends of 

the autosomal chromosomes. In all subsequent analyses, we have analysed only those reads 

that mapped to the 14 large chromosomal sequences, which are named Pv_Sal1_chr01 - 

Pv_Sal1_chr14.

A total of 247 samples were identified as having at least 50% of Pv_Sal1_chr01 - 

Pv_Sal1_chr14 positions whose genotypes could be reliably called. After trimming the 

dataset to remove instances of multiple samples from the same individual, we were left with 

228 samples for further analysis (Supplementary Table 1).

Pearson et al. Page 8

Nat Genet. Author manuscript; available in PMC 2016 December 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



SNP discovery and annotation

We discovered potential SNPs by running GATK’s UnifiedGenotyper49 across all 247 

sample-level bam files. SNPs were annotated using a number of different methods. 

Functional annotations were applied using snpEff version 2.0.550, with gene annotations 

downloaded from GeneDB51. GATK VariantAnnotator was used to create the following 

standard annotation metrics: BaseQRankSum, DP, Dels, FS, HaplotypeScore, HRun, MQ, 

MQRankSum, MQ0, QD and ReadPosRankSum.

Because GATK’s UnifiedGenotyper outputs unfiltered allele depths at each SNP for each 

sample, we created custom Python scripts based on the pyvcf and pysam modules to 

calculate filtered allele depths (mapping and base quality ≥27). We created a 

“NonUniqueness” score (UQ)27 for each position in the reference genome and annotated 

each SNP with this score. Under Hardy–Weinberg equilibrium, it is expected that 

heterozygosity at a given SNP (the probability of observing multiple alleles in the same 

sample) is related to its allele frequency in the population and to the inbreeding coefficient 

of that population by the relationship h = 2(1 − f)p(1 − p), where p is the frequency of the 

SNP in the population, h its expected heterozygosity, and f the inbreeding coefficient of the 

population. A substantial divergence from this relationship is likely to arise from alignment 

artefacts, such as systematic incorrect mappings of reads from paralogous regions. Given 

that f is unknown and can be influenced by various epidemiological factors, we estimated a 

surrogate from the data as follows. We used the set of all discovered SNPs with MAF >0.05 

to fit a quadratic model of the form y = mx(1 − x), where x represents the allele frequency 

and y the observed heterozygosity. We obtained a robust estimate of m by using the rq 

implementation in the R quantreg package and using a median regression (which is more 

robust to outliers then standard mean regression). The residuals were used as a 

HyperHeterozgosity score, which was subsequently used in variant filtering.

We imputed the ancestral allele at SNPs by comparison with the closely related species P. 
cynomolgi. Illumina reads from this species generated in a recent study52 were mapped 

against the P. vivax reference using bwa46 version 0.6.2-r126. We then selected the SNPs 

discovered in our P. vivax samples and genotyped (with respect to the P. vivax reference) 

these positions in the P. cynomolgi data using GATK’s UnifiedGenotyper (version 3.1-1). 

Where the genotype in the P. cynomolgi was the same as one of the alleles seen in our P. 
vivax data, the allele was defined as ancestral. In this way we were able to impute ancestral 

alleles for 30% of the P. vivax SNPs.

Determining SNP genotype

Because many of our samples exhibit evidence of mixed infection, we did not use the GATK 

genotype calls, as these are made under an assumption of clonality. Instead, genotypes were 

defined based on filtered allele depths using previously defined rules27. For each SNP, we 

created a Missingness score, which was the number of samples from all 247 samples that 

had a missing genotype based on these rules.
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Variant filtering

We determined SNPs with evidence of genotyping errors by analysis of genotype 

discordance between technical replicate samples. We masked out subtelomeric regions and 

three internal chromosome regions (13 SERA family genes on chromosome 4, 11 msp3 

family genes on chromosome 10 and 11 msp7 family genes on chromosome 12) which had 

lower mapping quality, higher levels of missingness, greater SNP density and greater levels 

of genotype discordance between technical replicates. We also filtered out SNPs in the 

unmasked regions that had extreme values of the annotation metrics described in the 

previous paragraph. Thresholds for extreme levels of these metrics were determined using 

rates of technical replicate discordance. Further details of the variant filtering process can be 

found in Supplementary Note 3.

Sequenom analysis of genotyping concordance

The Sequenom® primer-extension mass spectrometry genotyping platform was used to 

validate SNP genotype calls made by Illumina sequencing. Two separate validation 

experiments were performed using laboratory procedures described previously27. In the first 

experiment we assayed 164 SNPs on 142 samples, and in the second experiment we assayed 

107 SNPs in 220 samples. After applying quality control filters to the Sequenom data, 

removing samples with ≥50% missing SNP genotypes, and removing SNPs with artefactual 

genotype calls in blank control samples, we were left with 111 SNPs that could be reliably 

compared between Sequenom and the high quality SNPs typed by Illumina sequencing. This 

gave a concordance rate of 99.98% for homozygous calls and 93.6% when heterozygous 

calls were included (Supplementary Table 8). Previous work on P. falciparum has shown 

Illumina sequencing to be generally more reliable than Sequenom for heterozygous calls 

(see supplementary material to ref 27).

Large copy number variations

Large copy number variations were identified by analysis of read depth after normalisation 

by GC-content. Coverage in non-overlapping 300bp bins was calculated using pysamstats. 

Normalisation was undertaken within each sample by dividing the coverage by the median 

coverage across all bins with the same integer percentage GC content. Copy number variants 

(CNVs) were called using a hidden Markov model with the Python package 

sklearn.hmm.GaussianHMM using a similar procedure to that used previously for P. 
falciparum genetic crosses20. Two samples were removed from this analysis as they had 

excessive variation in read coverage. Our analysis focused on CNVs >3kbp and those 

detected by read-depth analysis were further validated by assessment of read pair orientation 

in the breakpoint regions.

Samples used for population genetic analyses

For population genetic analyses we selected samples that were typable at >80% of the 

303,616 high-quality SNPs. They included 88 samples from Western Thailand, 19 from 

Western Cambodia and 41 from Indonesia. All other locations had <10 eligible samples 

which was considered too few for detailed population genetic comparisons. This sample size 

was not pre-determined, but was the largest that we were able to achieve in the timeframe of 
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this study. Supplementary Table 1 identifies the origin of the 148 samples that were used for 

all population genetic analyses (excepting the PCA and neighbour-joining tree for which we 

used all 228 samples).

Diversity,Tajima’s D and N/S ratio amongst gene classes

We classified genes using annotations from PlasmoDB. Nucleotide diversity, Tajima’s D and 

N/S ratio were calculated using custom Python scripts. Statistical analyses were performed 

using the SciPy stats package.

Population structure

We investigated global population structure and FST using previously applied methods31. To 

explore the effects on population structure of using a different reference genome, we aligned 

the same samples to the Papua Indonesia P01 genome assembly (www.genedb.org/

Homepage/PvivaxP01) using GATK Best Practices. As shown in Supplementary Figure 9, 

the neighbour-joining tree was very similar to that obtained with the Sal1 reference genome.

We performed admixture analysis using ADMIXTURE.53 As the ADMIXTURE model 

assumes perfect linkage equilibrium between markers (i.e. they are independent of each 

other), we excluded SNP pairs that appeared to be linked. We discarded SNPs according to 

the observed correlation coefficients by using the PLINK tool set.54 We scanned the genome 

with a sliding window of 60 SNPs in size, advanced in steps of 10 SNPs, and removed any 

SNP with a correlation coefficient ≥ 0.1 with any other SNP within the window. 

Additionally, we removed all SNPs with extremely low minor allele frequency (MAF ≤ 

0.005), as these SNPs are less informative for the inference process. We then ran 

ADMIXTURE 1.3, in haploid mode, using the 76,544 remaining SNPs with 5-fold cross-

validation and several K values (i.e. the number of putative populations) ranging from 1 to 

12. In order to avoid fluctuations in the likelihood due to the stochasticity of the 

optimization process we repeated the process 5 times with different random seeds. We 

assessed the plausible choice for the number of populations by using the delta ΔK metric 

developed by Evanno and colleagues (Supplementary Figure 6).30

Within host diversity

FWS metrics were calculated as previously described for P. falciparum27. Analysis of 

heterozygosity within mixed samples was performed using custom Python scripts.

Recombination

We analyzed the decay of LD with genomic distance for each population separately. 

Complete details are given in Manske et al27.

Signatures of selection

XP-EHH and iHS scores were calculated using previously described methods as per Sabeti 

et al.55 and Voight et al.56. As described in these studies, the distributions of scores follow 

an approximately normal distribution and, hence, P values were based on this distribution. 

Where genotypes exhibited heterozygous calls, the calls were converted to a homozygous 

call for the allele with the largest number of reads at that position. As a consequence, in 

Pearson et al. Page 11

Nat Genet. Author manuscript; available in PMC 2016 December 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.genedb.org/Homepage/PvivaxP01
http://www.genedb.org/Homepage/PvivaxP01


mixed samples, haplotype-based analysis was essentially conducted on the majority strain 

present within each infection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Defining the accessible genome
When short read sequencing data from clinical samples of Plasmodium vivax are aligned to 

the 14 chromosomes comprising the Sal1 reference genome, there is low coverage and 

mapping quality in subtelomeric hypervariable regions (red) and three internal hypervariable 

regions (orange). Excluding these regions, we defined a core genome (white) which 

comprises 94.4% of the chromosomal sequence; coordinates are given in Supplementary 

Table 2. Aggregated across all samples, 99% of nucleotide positions in the core genome are 

alignable (≤10% reads of mapping quality 0) compared to 86% in subtelomeric and 85% in 

internal hypervariable regions; and 94% of positions in the core genome have ≥5x read depth 

compared to 37% in subtelomeric and 54% in internal hypervariable regions. When genome 

assemblies for other P. vivax strains15 were aligned to the Sal1 reference genome, the 

genome-wide coverage was 88.5% for India VII, 89.1% for Mauritania I and 89.6% for 

North Korea strains, whereas the coverage across the core genome was 98.5%, 98.7% and 

99.0% respectively.
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Figure 2. Copy number variation
Common forms of copy number variation in a region of chromosome 8 with a deletion of the 

first three exons of PVX_094265; in regions of chromosome 6 and 14 with copy number 

variations of pvdbp and PVX_101445 respectively; and in a region of chromosome 10 

region where multiple genes including pvmdr1 are duplicated. Top panel shows an 

illustrative sample for each genomic region: upper trace shows GC-normalised coverage 

with inferred copy number marked by red line; lower trace shows the proportion of read 

pairs mapping in opposing directions, indicating the presumptive breakpoints of a 

duplication (note that not all samples have identical breakpoints, Supplementary Dataset 2). 

Lower panel shows number of samples in each population having a copy number other than 

one: western Thailand (WTH, n=88), western Cambodia (WKH, n=19) and Papua Indonesia 

(PID, n=41).
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Figure 3. Genetic structure of mixed infections
A shows distribution of FWS across all samples. FWS is analogous to an inbreeding 

coefficient27 and a value of 1 indicates a perfect clone. Left: Distribution of FWS in western 

Thailand (WTH), western Cambodia (WKH) and Papua Indonesia (PID), showing median 

(thick line) and inter-quartile range (thin line). Middle: Distribution of FWS stratified by the 

number of dominant clones in a sample and by whether they are related to each other, 

showing median (thick line) and inter-quartile range (thin line). Right: Distribution of FWS 

(vertical axis) and the proportion of heterozygous genotype calls (horizontal axis) in samples 

with different numbers of dominant clones.

Each row of B shows an illustrative sample. Left: non-reference allele frequency (NRAF) 

distribution across all heterozygous SNPs. Right: vertical axis is heterozygosity calculated in 

20kb bins with the scale truncated (0–0.03) to highlight runs of homozygosity (RoH). 

Sample a is near-clonal as evidenced by FWS = 1 and lack of heterozygous SNPs. Samples 

b-e each contain two dominant clones as evidenced by the bimodal NRAF distribution. 

Sample b contains two unrelated clones (no RoH). Sample c contains two partially related 
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clones (RoH across minority of the genome). Sample d contains two meiotic siblings (RoH 

extending over ~50% of the genome). Sample e contains two clones that are the product of 

inbreeding over multiple generations (RoH extending over ~80% of the genome). Sample f 
appears to contain a complex mixture of related parasites (relatively flat NRAF distribution 

indicates multiple dominant clones but there is substantial RoH).
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Figure 4. Parasite population structure.
Population structure is evident by principal components analysis (panel A), ADMIXTURE 

(panel B) and on a neighbour joining tree (panel C). ADMIXTURE analysis identifies three 

major components of population structure which correspond to the three largest groups of 

samples, i.e. western Thailand (n=88), western Cambodia (n=37) and Papua Indonesia 

(n=55). The neighbour-joining tree shows how these three major components encompass the 

Southeast Asian and Pacific Islands (Malaysia, Papua Indonesia, Papua New Guinea), the 

western part of mainland Southeast Asia (Western Thailand, Myanmar, and China) and the 
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eastern part of the mainland (Cambodia, Vietnam, Eastern Thailand, and Laos). Samples 

from other parts of the world (India, Sri Lanka, Madagascar, and Brazil) are separated from 

Southeast Asian samples by long branches.
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Figure 5. Population-specific signatures of recent positive selection
Metrics of extended haplotype homozygosity were estimated in 88 samples from western 

Thailand (WTH), 19 from western Cambodia (WKH) and 41 from Papua Indonesia (PID). 

The strongest evidence for recent selection was identified by XP-EHH (i.e. by comparing 

populations) and in most cases this was supported by iHS tests within individual 

populations. Horizontal axis represents genome position with chromosomes 1-14 shown in 

alternating colours. Vertical axis shows the results of XP-EHH and iHS tests represented by 

–log10 P values on a scale of 0 to 15. Dashed line shows the Bonferroni-corrected threshold 

for genome-wide significance, red points mark significant P values. Loci with ≥2 SNPs with 

significant P values within 80 kb of each other are marked by red lines in the tracks labelled 

‘Selected regions’. The iHS signal on chromosome 13 in WKH was confined to two adjacent 

SNPs and is therefore not marked as significant. These signatures are described in more 

detail in Supplementary Table 6 and Supplementary Figure 7.
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Table 1
Gene categories enriched for high N/S ratio, nucleotide diversity, and Tajima’s D.

Each metric is represented by its median and P value by Mann-Whitney test, comparing genes in a given 

category versus all others, with bold font indicating significant values (P<0.05 after Bonferroni correction). 

Rows are ordered by π. N/S=non-synonymous/synonymous ratio. π=nucleotide diversity per base. 

D=Tajima’s D. No Pf/Py ortholog=genes that lack a known ortholog in P. falciparum/P. yoelii. TM 

domain=genes containing a transmembrane domain. Max schizont=maximum expression during the 

intraerythrocytic cycle was in late schizont stage42. Max sporozoite/zygote/ookinete=maximum expression in 

the sporozoite/zygote/ookinete43. These estimates are based on high-quality SNPs in genes with ≥10 SNPs in 

the subset of 148 samples used for detailed population comparisons as described in Methods. Estimates for 

individual genes, including all SNPs or restricted to high-quality SNPs, are given in Supplementary Dataset 1.

Comparison Genes N/S P(N/S) π P(π) D P(D)

No Pf ortholog 97 2.23 6.9×10-18 7.3×10-4 7.5×10-9 -1.86 2.6×10-4

No Py ortholog 251 1.86 1.1×10-20 6.7×10-4 7.1×10-11 -1.92 5.3×10-8

Max schizont 844 1.60 2.0×10-13 6.1×10-4 5.1×10-7 -2.04 1.7×10-4

Max sporozoite 422 1.43 3.6×10-1 6.0×10-4 3.2×10-2 -2.03 6.9×10-2

Signal peptide 569 1.46 6.5×10-2 6.0×10-4 6.1×10-6 -1.95 1.3×10-12

TM domain 646 1.50 1.9×10-2 5.9×10-4 1.2×10-4 -1.98 1.7×10-13

Max ookinete 230 1.40 6.1×10-1 5.8×10-4 2.0×10-1 -2.08 8.6×10-1

Has paralog 206 1.38 3.4×10-1 5.7×10-4 6.4×10-2 -2.01 5.8×10-3

Max zygote 339 1.35 2.6×10-2 5.4×10-4 7.4×10-1 -2.10 8.9×10-1

All genes 3062 1.43 5.5×10-4 -2.07
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