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Abstract

The WHO estimates around a million children contract tuberculosis (TB) annually with over

80 000 deaths from dissemination of infection outside of the lungs. The insidious onset and

association with skin test anergy suggests failure of the immune system to both recognise

and respond to infection. To understand the immune mechanisms, we studied genome-

wide whole blood RNA expression in children with TB meningitis (TBM). Findings were vali-

dated in a second cohort of children with TBM and pulmonary TB (PTB), and functional T-

cell responses studied in a third cohort of children with TBM, other extrapulmonary TB

(EPTB) and PTB. The predominant RNA transcriptional response in children with TBM was

decreased abundance of multiple genes, with 140/204 (68%) of all differentially regulated

genes showing reduced abundance compared to healthy controls. Findings were validated

in a second cohort with concordance of the direction of differential expression in both TBM

(r2 = 0.78 p = 2x10-16) and PTB patients (r2 = 0.71 p = 2x10-16) when compared to a second

group of healthy controls. Although the direction of expression of these significant genes

was similar in the PTB patients, the magnitude of differential transcript abundance was less

in PTB than in TBM. The majority of genes were involved in activation of leucocytes (p =
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2.67E-11) and T-cell receptor signalling (p = 6.56E-07). Less abundant gene expression in

immune cells was associated with a functional defect in T-cell proliferation that recovered

after full TB treatment (p<0.0003). Multiple genes involved in T-cell activation show

decreased abundance in children with acute TB, who also have impaired functional T-cell

responses. Our data suggest that childhood TB is associated with an acquired immune

defect, potentially resulting in failure to contain the pathogen. Elucidation of the mechanism

causing the immune paresis may identify new treatment and prevention strategies.

Introduction

Children account for more than a million new cases of tuberculosis (TB) annually, with

around 80 000 deaths each year [1, 2]. In children dissemination of Mycobacterium tuberculosis
(M. tuberculosis) occurs more frequently than in adults and occurs soon after primary infec-

tion, resulting in extrapulmonary disease and infection of the brain, bones and other organs

[2, 3]. Despite anti-mycobacterial treatment, mortality rates for children with disseminated

disease such as TB meningitis (TBM) are 10–20%, and over 50% of survivors suffer long-term

neurological deficits [1, 2].

Although a vast amount is known about the interaction of pathogen and host immune sys-

tem in TB [4–6], much of this information has been derived from studies in animal models or

from adults with pulmonary TB (PTB). Measurement of gene expression changes following initi-

ation of treatment in adults with PTB have demonstrated rapid changes in transcriptional signa-

tures in whole blood within the first one to two weeks after commencing treatment [7, 8]. The

initial down regulation of expression of inflammatory mediators has been coincident with rapid

killing of actively dividing bacilli, while delayed changes in different networks of genes were

coincident with resolution of lung pathology [8]. Other studies have demonstrated that the dis-

tinct TB transcriptional signature in acute disease reflects both altered gene expression as well as

changes in cellular composition with a coincident reduction in T cell numbers [9, 10]. Remark-

ably little is known about how the developing immune system in young children responds to

infection with M. tuberculosis [3] and whether it is distinct from, or similar to, that observed in

adults. Childhood TB is often a “silent” infection, presenting insidiously and without the intense

inflammatory response seen in other acute bacterial infections [1, 11], thus making diagnosis dif-

ficult. Indeed in Africa, children with TB are often only diagnosed post mortem [12].

The insidious presentation in children [3, 11] frequent association with tuberculin skin test

anergy, and the high rate of extrapulmonary dissemination [1, 2] suggests an underlying fail-

ure of the immune system to both recognise and respond to infection. However, the immuno-

logical mechanisms responsible are incompletely understood [3].

Host gene expression profiling is particularly well-suited as a tool for studying the immuno-

logical mechanisms of childhood disease as it requires very small volumes of blood, little

immediate sample processing and allows interrogation of multiple components of the immune

system from a single sample [13–17].

To define the generalised immunological features in childhood TB, we studied temporal

patterns of genome-wide RNA transcript abundance in the peripheral blood of children with

TBM. We validated the findings in a second cohort of children with both PTB and TBM.

We mapped the differentially expressed genes to known biological pathways, and evaluated

T-cell functional responses in a third paediatric TB cohort of PTB, other extrapulmonary TB

(EPTB—disease which has disseminated to bone, lymph node, renal or other organs aside

from the brain) and TBM.

T cell gene expression and function in childhood tuberculosis
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Methods

Cases and controls

The study was conducted at two major children’s hospitals, Tygerberg Hospital and Red Cross

Children’s Hospital, in Cape Town, South Africa. The Western Cape has one of the highest

incidences of childhood TB in the world and both hospitals have specialist research teams

experienced in the management of TB in children. To avoid the confounding effect of HIV,

only HIV negative children were included in the study. We studied three cohorts of cases and

their respective controls. (Table A in S1 File and Figure A in S2 File).

In a region where TB is endemic and the annual incident rate is over 700/100 000, the

choice of controls is always difficult. All children in South Africa receive BCG vaccination at

birth; naive controls of young age may show changes in RNA expression as a secondary effect

of immunisation, or of unrecognised TB exposure. In cohort 1, the choice of well, fully treated

past history TB patients as controls eliminated bias of TB exposure and immunisation and

allowed comparison of active disease with recovery. In cohorts 2 and 3 we aimed to establish

how acute disease differs from children who are clinically well and either have evidence of TB

infection but no disease (Mantoux >10mm and well with a normal chest radiograph) or no

evidence of exposure and infection (well and Mantoux negative).

Controls. All controls were recruited over the same time period as cases, and were from

the same geographic area in the Cape Town Metropole.

Controls for cohort 1 were identified from hospital records of paediatric patients treated for

PTB and<14 years at time of recruitment. Controls for cohorts 2 and 3 were neighbourhood

controls living within three streets of, and unrelated to, the case. All were healthy with a nor-

mal physical examination at the time and blood samples were collected prior to the completion

of Mantoux testing. Exclusion criteria were a past history of TB treatment, age>14 years, pro-

longed treatment with steroids or other immunosuppressive drugs.

Cohort 1 (discovery cohort)—included 9 children with TBM studied sequentially at 0, 1, 4,

and 6 months after their acute presentation. Based on time course analysis of other data sets,

this cohort of well-studied patients with sequential time points, albeit small, was expected to

produce statistically robust changes in expression over time. Diagnosis of TB was confirmed

by two independent clinicians experienced in childhood TB (JFS and CH) based on a combi-

nation of history, examination, characteristic cerebro-spinal fluid (CSF) findings, culture of M.

tuberculosis from sputum, CSF or gastric aspirate and neuro-radiological findings typical of

TBM [18]. Culture negative cases were only included if CSF findings, neuro-imaging, and

response to treatment were typical of TBM, and all other common infectious and inflamma-

tory processes had been excluded. Controls were 9 healthy children at least 1 year after full

completion of treatment for active PTB.

Cohort 2 (confirmation cohort)—were children studied only at the time of diagnosis with

TBM (n = 13) or PTB (n = 28). Cases used were those where diagnosis was confirmed by two

independent clinicians for both PTB (STA, CH) and TBM (JFS and CH). All cases fulfilled the

WHO criteria for definite or highly probable childhood TB. Controls were 14 healthy, Man-

toux negative children with no previous history of TB infection.

Cohort 3 (T-cell functional studies)—T-cell function (in whole blood) was studied sequen-

tially (see supplementary methods) and comprised 36 children with acute TBM, 59 with acute,

other EPTB and 57 with active primary PTB. Controls were 75 children with evidence of expo-

sure and infection with M. tuberculosis (Mantoux�10mm, but no clinical disease). All cases

enrolled fulfilled the WHO criteria for TB, with diagnoses confirmed by two independent clini-

cians (STA, BE) and were further categorised as suffering from PTB, other EPTB, or TBM

based on CSF findings, imaging or culture of the organism from non-pulmonary sites.

T cell gene expression and function in childhood tuberculosis
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All patients were enrolled following written informed parental consent and with the

approval of the local hospital and university Research Ethics Committees of St Mary’s Hospital

London and the University of Cape Town (EC 02/225; CT 013/2000).

RNA expression profiling and analysis. Peripheral blood collected into PAXgene tubes

(PreAnalytiX) was frozen at -80˚C for samples in both cohorts 1 and 2. RNA was extracted, lin-

early amplified and competitively hybridised with Stratagene Universal reference to a cDNA

spotted microarray (Stanford Lymphochip) containing 38 000 genetic elements representing

18 000 unique human genes [19]. Full details for hybridisation, scanning and quality control

have been described previously [15, 20] and are detailed in the online S1 Methods section.

Statistical methods: Time course analysis. We analysed serial gene transcript abundance

in the peripheral blood from a cohort of children (cohort 1) with the most severe form of dis-

seminated TB i.e. TBM, from presentation until completion of treatment at six months—the

WHO standard treatment regimen for TBM at the time of this study [21]. Temporal analysis

of gene expression from diagnosis until recovery post treatment was performed in order to

identify disease-associated, differentially expressed genes. Time-course rather than single

point analysis was chosen in order to control for individual genomic background variability.

To account for the temporal and between-individual variation in RNA expression levels, the

temporal behaviour of each unique probe on the microarray was modelled using a linear

mixed-effects model. This model allows interpolation of individual time points and prediction

of missing observations, summarising each probe with a fitted line that describes the mean

changes in expression levels over time across all individuals. Statistically significant probes can

then be detected using the slopes of these mean lines as test statistics. Full details are given in

the supplementary web methods. The controls from cohort 1 were used as a visual reference

for the cases in the time course analysis.

Statistical methods: Confirmation cohort. To validate the results of the time course anal-

ysis, we compared the admission time point of cohort 1 cases, with the PTB and TBM single

time point (admission) cases in cohort 2. To define RNA expression in TBM and PTB as up-

or down-regulated, we compared the mean expression level in TBM and PTB with the mean

expression in the healthy, Mantoux negative controls using a logistic model and t–test. In

order to confirm that the direction of gene regulation in TB relative to both the time course

controls (healthy children with previous PTB) and single point cohort 2 controls were the

same, we compared the mean expression of TBM cases in cohort 1 at day 180, with the cohort

1controls. As shown in Figure B in S2 File, the TB cases after treatment were concordant in

direction of expression with healthy controls.

Biological pathway analysis. Significantly differentially expressed (SDE) genes were ana-

lysed using Ingenuity Pathways Analysis (IPA) (www.ingenuity.com) to give the biological

functions and pathways represented in the dataset. A Fisher’s exact test with a Benjamini-

Hochberg multiple testing correction was used to test if there was an association between the

SDE genes and the pathway/biological function, and whether this was due to chance alone.

Pathways were also assessed using the ratio of the number of SDE genes that mapped to a path-

way divided by the total number of genes that existed in the canonical pathway.

Validation by quantitative RT-PCR. Differentially expressed genes identified by the

microarray analysis were selected for confirmation by RT-PCR in paired admission and 6

month time point samples from cohort 1 (n = 8). Details of the genes, primers and experimen-

tal protocol are detailed in the online data supplement.

Functional T cell assays. T-cell proliferative and interferon gamma (IFNγ) responses to

phytoheamaglutinin (PHA) stimulation were measured using the incorporation of tritiated

thymidine and by measurement of IFNγ by ELISA respectively, as previously described [22]

and detailed in the on-line supplementary methods.

T cell gene expression and function in childhood tuberculosis
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Cell deconvolution. Celltype COmputational Differential Estimation (CellCODE), which

computes the relative differences in cell proportions was used in order to assess to what extent

the perturbation in gene expression could be due to changes in cell numbers [23]. Using the

IRIS dataset as the reference dataset [24] we applied the CellCODE method to cohort two

(TBM, TB and HC), and we retrieved cell proportions represented in surrogate proportion

variables (SPVs).

Role of the funding source. There was no role played in this research by the funding

source.

Results

Temporal change in gene expression in TBM (Cohort 1)

Analysis by linear mixed effects model [25] for gene transcript abundance in cases with TBM,

over the 180 day time course from presentation to recovery, found 262 transcripts showing sig-

nificant differential expression (SDE) between the admission and 6 month time point. At this

6 month time point, expression was also within the range of healthy children at least 1 year

after active TB infection was diagnosed and fully treated. After filtering for duplicate tran-

scripts, 204 unique transcripts mapped to 165 genes of known function. The majority, 140

transcripts (mapping to 110 known genes) (68%), were less abundant at the time of presenta-

tion with acute disease than they were at the time of recovery, or in the controls (healthy chil-

dren with a past history of PTB at least 1 year after full completion of treatment). Only 64

transcripts (mapping to 55 known genes) were more abundant at the time of acute disease. A

full list of SDE transcripts are shown in the online data supplement Table B in S1 File. Remark-

ably in the cases within 6 months (180 days) of commencing treatment, the differentially

expressed transcripts returned to the levels of expression seen the control children, regardless

of the direction of regulation. A graphical representation of this modelled dataset is shown in

Fig 1A. Examples of the plots showing changes in transcript abundance are shown for two

genes: TARP, increasing in abundance over time, and IL1R2, decreasing in abundance over

time (Fig 1B and 1C).

Confirmation of the repressive effects of TB infection on gene expression

(Cohort 2)

To validate our initial findings and establish if differentially expressed genes in acute TBM

were also differentially expressed in other forms of TB, we compared the admission time point

in the time course cohort (cohort 1), with the acute admission samples in a second cohort of

children with TBM or PTB. We found a high degree of concordance of the direction of differ-

ential expression in the time course patients of cohort 1 and the single time point patients with

TBM (Fig 2A), and PTB (Fig 2B) from cohort 2. As cohort 1 and 2 were analysed on different

print runs of the Stanford Lymphochip array, not all transcripts were represented on both

array batches. From the 262 SDE transcripts identified in the time course study, 140 transcripts

were also represented on the single time point arrays used in the confirmation cohort. Out of

these 140 transcripts, 129 were also significantly differentially expressed in the TBM single

point cohort (i.e. cohort 2), and these allowed nearly complete discrimination between TBM

cases from both cohorts and healthy, Mantoux negative controls (Fig 2C and Table C in S1

File). Although the direction of expression of these significant transcripts was similar in the

PTB patients, the magnitude of differential transcript abundance was less in PTB than in TBM,

and there was often overlap of PTB cases with the expression levels in healthy, Mantoux nega-

tive children (Figure C in S2 File). This suggests that the perturbation of gene expression in

T cell gene expression and function in childhood tuberculosis
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peripheral blood relative to a baseline, health-associated state is more pronounced in dissemi-

nated disease than in PTB.

Biological function and pathway analysis of significantly differentially

expressed genes

To identify the immunological pathways whose associated functions might be altered by the

observed changes in RNA abundance, we mapped the genes that were SDE in TBM patients

between the admission and 6 month time point, to biological functions and pathways using

Ingenuity Pathways Analysis (IPA). The most significant functions represented in the category

“Inflammatory response” (Table D in S1 File) were those of “immune response” (p = 8.86E-14),

“activation of leucocytes” (p = 2.67E-11), “activation of lymphocytes” (p = 2.57E-09) and “activa-

tion of mononuclear leukocytes” (p = 3.18E-10), of which the transcript levels for 35/40 genes,

25/27 genes, 20/20 genes, and 21/22 genes respectively, were less abundant at admission than

at the 6 month time point. In the category “haematological system development and function”,

top functions included “T-cell development” (p = 1.02E-07) and “proliferation of T- lympho-

cytes” (p = 1.14E-07) of which transcript levels for 20/20 genes and 16/18 genes respectively,

were less abundant at admission than at the 6 month time point. Further analysis of the SDE

genes identified enrichment of genes in several T-cell related pathways, including the T-cell

receptor signalling pathway (Fig 3A, p = 1.47E-11), and the T-cell cytotoxicity pathway (p =
1.83E-07) (Table E in S1 File). Multiple genes with lower transcript expression were identified

in the T-cell receptor signalling pathway (Fig 3A and Table E in S1 File), including compo-

nents of the T-cell receptor and co-stimulatory molecules (CD3D, CD3G, TCRα) and down-

stream signalling molecules (LAT, LCK, ITK, Ras GRP and NFAT). Differential expression of

genes in this pathway was confirmed by RT-PCR in the same cohort (Fig 3B).

Confirmation of immune cell representation

To exclude the possibility that the genes with lower transcript levels reflected depletion of sub-

populations of immune cells from peripheral blood, or compartmentalisation of immune cells

within the lung, we compared the gene expression profiles of childhood TB with our previ-

ously reported expression profiles of separated populations of CD4 and CD8 T-cells, B-cells,

monocytes and NK cells from peripheral blood of healthy donors [26]. As shown in Table F in

S1 File, the genes with lower transcript levels in TBM represented <10% of normally expressed

T-cell genes, whereas 92% of CD8 and 90% of NK cell genes were normally expressed. Further-

more, reported studies of T cells numbers in acute childhood TB have not identified global

reduction in specific T-cell subsets [27]. In addition, in order to further exclude the possibility

that the changes in expression were due to altered proportions of cells in the blood of children

Fig 1. Modelled temporal changes in gene expression. A. Heat map showing modelled changes in

expression of the significant gene transcripts in TBM patients from the time of diagnosis (0) to 180 days.

Green represents lower transcript abundance, red represents higher transcript abundance and black

represents no difference in expression as compared to healthy children with a past history of TB sampled at

least one year after diagnosis and treatment. The relative degree of transcript abundance is indicated by the

colour intensity derived from the fitted mean expression levels over time (see methods). Genes showing

similar temporal patterns of expression have been clustered together. The apparent linear change in colour is

derived from the statistical model that interpolates the observed time points and can therefore be represented

as a continuum. B and C. Example plots of two significantly differentially expressed gene transcripts.

Expression levels for each TBM patient (red circles n = 9) are shown from diagnosis (time 0) to day 180. Blue

circles are expression levels for healthy children (n = 9) with a past history of TB sampled at least one year

after diagnosis and treatment. M = “minus” and denotes the log2 ratio of the red and green channels. The line

represents the fitted mean gene expression level over time, from linear mixed-effects model (see methods).

1b = TARP; 1c = IL1R2.

https://doi.org/10.1371/journal.pone.0185973.g001
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with TB, we used the bioinformatics tool Celltype COmputational Differential Estimation

(CellCODE), which computes the relative differences in cell proportions from the RNA

expression data (supplementary methods).

When we applied the CellCODE method to cohort two we identified altered proportions of

both T cell and neutrophil populations (Figure D in S2 File). However, when these differences

were included in the differential expression model for TBM vs HC, the changes in gene expres-

sion were not explained by the differences in cell proportions (supplementary methods and

Table J in S1 File).

Analysis of significantly differentially expressed genes for evidence of

regulation by key cytokines

The changes in transcript abundance for T-cell associated genes identified in the TBM patients

are likely to represent selective changes in transcript abundance levels within these cells. IFNγ
and TNFα have been identified as key cytokines for protective immunity to mycobacterial

infection [28–31]. To establish whether the gene expression pattern in children with acute TB

included IFNγ and TNFα-inducible genes, the gene expression profile in our patients was

compared with the genes induced in peripheral blood cells by IFNγ type 1 interferons (IFN)

alpha, beta, and omega, and TNFα, and by IFNγ in specific cell subtypes. As shown in Tables,

G and H in S1 File <5% of the IFN or TNFα inducible genes were included in the significantly

differentially expressed genes in childhood TB, suggesting that disseminated TB was occurring

in the absence of an IFN or TNFα response in our patients, highlighting the surprising

“silence” of the expected immune response to mycobacterial invasion.

Functional studies validating gene expression changes (Cohort 3)

To establish whether the observed lower levels of expression of multiple genes was associated

with impaired T-cell function, T-cell proliferative responses and IFNγ production in response

to the mitogen PHA were studied in a third cohort of patients with PTB, other EPTB or TBM

and compared with healthy, Mantoux positive childhood controls. As shown in Fig 4A, T-cell

proliferative responses were significantly reduced on admission in all children with TB when

compared to HC (TBM p = 0.001, other EPTB p<0.0003 and PTB p = 0.018) but with no dif-

ferences between TB categories. Recovery of the impaired proliferative response occurred fol-

lowing treatment. Similarly, IFNγ production (Fig 4B) in response to PHA was depressed on

presentation in patients with TBM compared to controls (p<0.0003), and recovered over time

following treatment, but there was no significant difference seen with other EPTB or PTB

Fig 2. Confirmation of significantly differentially expressed genes from Cohort 1 in Cohort 2. A.

Average log fold change in the SDE transcripts identified in the time-course study (cohort 1) and their

corresponding log fold change in the single time-point study (cohort 2). 140/262 transcripts identified in cohort

1 were measured in cohort 2. 129 transcripts followed the same regulation pattern (purple crosses); and 11

showed opposite regulation (represented by red crosses, annotated by gene symbol). Correlation coefficient

was r2 = 0.78, 95% CI = [0.71, 0.82] p<2x10-16. The y-axis shows log fold change of SDE gene transcripts in

cohort 1 relative to cohort 1 Healthy Controls (HC), and the x-axis shows their log fold change in cohort 2

relative to cohort 2 HC. B. Average log fold change in TBM patients relative to cohort 2 HC (x-axis) plotted

against average log fold change in PTB patients relative to cohort 2 HC (y-axis) of the significant transcripts

(140) that were identified in cohort 1 and common to both cohorts. Least-squares fitted line is shown in

dashes. Correlation coefficient was r2 = 0.71, 95% CI = [0.62, 0.79] p<2x10-16. C. Heat map showing almost

complete discrimination between TBM cases from cohort 1 and cohort 2 and healthy controls (cohort 2) using

129 transcripts significantly differentially expressed in both cohorts. Gene list is provided in Table C in S1 File.

Hierarchical clustering was performed by the complete linkage method to identify similar clusters. Solid red

bar (top) shows cases, green bar shows controls. Intensity of colour indicates degree of reduced (green) or

elevated (red) abundance of each transcript relative to healthy controls. White indicates no expression.

https://doi.org/10.1371/journal.pone.0185973.g002
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compared to controls. Thus, the T-cell functional impairment parallels the changes in gene

expression, overlapping that of HC in PTB and other EPTB and being most marked in dissem-

inated disease with TBM.

Discussion

Our genome-wide transcript analysis has revealed a predominance of reduced, rather than

elevated gene expression in children with TB. We had expected to find evidence of a pro-

inflammatory response (e.g. IL-1α, IL-1β, IL-6, IL-12) as mycobacteria are known to trigger

inflammation through TLR2 and other pattern recognition receptors [32, 33]. Indeed, the

belief that a pro-inflammatory state occurs in TBM has been the basis of attempts to ameliorate

neuronal damage with steroids and other anti-inflammatory agents [34]. We also expected to

find evidence of T-cell activation, and evidence of an IFNγ and TNFα response profile since

patients present several weeks after primary infection, and long enough for T-cell and IFNγ
responses to have developed [6]. Our findings of reduced T-cell responses, and absence of

IFNγ and TNF response signatures is in keeping with the clinical impression that childhood

TB is an immunologically “silent” disease in which mycobacterial invasion and dissemination

occur without the expected host response. While the observed decrease in T cell proliferative

responses could have been due to defective antigen presentation, we used a non-specific T cell

mitogen, PHA, to measure proliferative and IFNγ responses which should, therefore, have

been independent of antigen presentation. The inclusion of M. tuberculosis antigens could,

therefore, have potentially shown differing responses. Similarly, a limitation of our analysis of

functional responses is the lack of other cytokine measurements, with which to confirm the

observed suppression of T-cell expression since it is well-documented that IFNγ responses are

suppressed in acute TB [35].

Assignment of the differentially expressed genes to functional pathways revealed a remark-

able pattern of reduced transcript levels for multiple genes required for T-cell activation,

regulation of the cytotoxic granule mechanism, and surface proteins involved in T-cell homing

and movement. This was mirrored by impaired responses of T-cells to mitogen. These results

suggest that childhood TB is associated with an acquired immune defect, resulting from

depression of multiple gene products required for an effective cellular response to the patho-

gen. Our findings of reduced expression of genes involved in T-cell cytotoxic responses pro-

vide an explanation for the reported reduction in serum granulysin concentrations in acute

childhood TB [36]. These contrast with reported gene expression studies of adult TB in which

up-regulation of pro-inflammatory genes has been observed [10, 37]. Berry et al [10] have pre-

viously reported an RNA expression signature of adult TB in which increased expression of

IFNγ inducible genes and neutrophil genes was observed. Only 23 significantly differentially

expressed genes in our childhood dataset were differentially expressed in the adult TB gene set

Fig 3. Gene expression of T-cell receptor signalling pathway and validation. A. Transcripts that were SDE

in TBM patients at admission compared to the 6 month time point that mapped to the T-cell receptor signalling

pathway. After activation of the T-cell receptor, a cascade of signalling events is initiated leading to gene

induction. Gene products highlighted green are significantly less abundant in TBM patients at admission

compared to the 6 month time point. Corrected p value on Ingenuity Pathways Analysis = 1.47E-11. Gene list

provided in Tables D and E in S1 File. B. Validation of T-cell signalling pathway genes by RT-PCR in TBM

patients (cohort 1). Selected genes in the T-cell signalling pathway were validated by RT-PCR including seven

that were significantly less abundant at admission compared to post treatment (TRA, ZAP70, CD3G, CD3D,

LAT, LCK, NFATC2) and one showing no change (NFATC3). Two genes were also included that were more

abundant at admission compared to post treatment (AREG, SLC7A5) that acted as the positive controls. Fold

change between TBM patients at admission and post treatment (n = 8) are shown relative to Beta actin control.

Boxes show 25th and 75th percentile. Whiskers show lowest and highest data point and horizontal lines show

medians. * p<0.05, ** p<0.01 shows significance using paired Wilcoxon rank test.

https://doi.org/10.1371/journal.pone.0185973.g003
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of 312 genes (7.3%). This may reflect variation between the different arrays, but if real can be

explained by the fact that childhood TB occurs after primary infection, and before T-cell

immunity has developed and is distinct from adult TB, which generally presents as local pul-

monary reactivation and is associated with marked inflammatory reaction. Further analysis

comparing these findings to those in adults will be necessary to confirm that this is a distinct

phenomenon in childhood tuberculosis and forms the basis of ongoing work.

Our findings have important implications for the understanding of the immunopathogen-

esis of childhood TB and of the severe forms of disseminated disease such as TBM. M. tubercu-
losis has evolved multiple strategies for evading the host immune response [32, 38–42] and our

finding of repression of multiple genes involved in immune recognition of the mycobacteria

and killing of infected cells may indicate an under-recognised, mycobacteria-mediated evasion

strategy. We have observed the same reduced expression of key immune genes in both PTB

and TBM, but with the magnitude of reduced expression being greater in TBM. In childhood,

and particularly in very young children, the distinction between PTB and disseminated forms

of the disease is not absolute, as many young children have features of military spread and

organ involvement, and progression to extra pulmonary disease is much more common than

in adults. Our finding of a gradation of gene expression in PTB and TBM suggest that those

with disseminated forms of TB have a more severe impairment of the immune responses

required to contain infection. Differences in mycobacterial load may also account for the dif-

ferences in gene expression observed between patients with PTB and disseminated disease.

It has been well established that acute TB is associated with repressed IFNγ production [43]

and mycobacteria are known to suppress HLA class II expression on infected monocytes

through repression of CIITA and other genes involved in antigen processing and presentation

[32, 44, 45]. Failure to develop an appropriate T-cell response following primary infection in

children may explain the progression of disease and dissemination to brain and other organs.

It is of interest that an “immune paresis”, similar to that in childhood TB, is also observed after

critical illness and septic shock and, like TB, is associated with depressed T-cell mitogenic

responses, reduced IFNγ production and cutaneous anergy [46]. While the mechanism under-

lying immune paresis in other severe infections is unknown, the reduced expression of multi-

ple key genes in T-cell and other immune pathways that we have observed in TBM may

represent a common mechanism underlying immune paresis in other acute illnesses. In order

to assess if the observed changes in gene expression were due to changes in cell number we

used a computational approach (CellCODE) to compute relative differences in cell population.

While this showed a reduction in CD4 T lymphocytes in TBM, and more neutophils in PTB

when compared to healthy controls, the differences in gene expression were not explained by

the differing cell proportions, suggesting that the changes are due to repression of gene tran-

scription, or rapid degradation of the RNA transcripts. Future studies will be needed to address

the mechanism for the changes we have observed.

Further studies of gene expression in other clinical situations where immune paresis has

been observed are needed to establish if reduced gene expression is a common mechanism for

Fig 4. Functional T-cell responses in cohort 3. A. Adjusted T-cell proliferative responses (cpm) to PHA in

acute TB (TBM n = 19, EPTB n = 29, PTB n = 27) and healthy Mantoux positive controls n = 26. Normalised

proliferative responses were determined by deducting the value for the unstimulated well from that of the PHA

well. Means are shown by horizontal bars together with standard error of the mean. Asterisk denotes

significant differences in corrected p values. PTB vs HC * p = 0.018, TBM vs HC ** p = 0.001, EPTB vs HC

*** p<0.0003. B. IFNγ production in response to PHA in acute TB (TBM n = 36, other EPTB n = 57, PTB

n = 55) and healthy Mantoux positive controls (HC) n = 75. Medians are shown by horizontal bars together

with their interquartile ranges. Asterisk denotes significant difference in corrected p value between TBM and

controls * p<0.0003.

https://doi.org/10.1371/journal.pone.0185973.g004
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impaired immune function. We speculate that M. tuberculosis may be exploiting a common

bacterial mechanism for down-regulating host responses as an immune evasion strategy

enabling intracellular survival.

Our findings have relevance to the global effort to develop improved vaccines and treat-

ment of TB. Further studies are needed to establish whether the reduced expression of host

genes is mediated by specific host or bacterial transcription factors, or through a more wide-

spread epigenetic process that silences multiple host gene.
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