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Abstract  

Background: In the Indian subcontinent, visceral leishmaniasis (VL) incidence is on track to 

reach elimination goals by 2020 in nearly all endemic districts.  Although not included in official 

targets, previous data suggest post-kala-azar dermal leishmaniasis (PKDL) patients can act as an 

infection reservoir.   

Methods: We conducted xenodiagnosis on 47 PKDL patients and 15 VL patients using 

laboratory-reared Phlebotomus argentipes.  In direct xenodiagnosis, flies were allowed to feed 

on the patient’s skin for 15 minutes.  For indirect xenodiagnosis, flies were fed through a 

membrane on the patient’s blood.  Five days later, blood-fed flies were dissected and examined 

by microscopy and/or PCR. A 3-mm skin snip biopsy (PKDL) or venous blood VL) was 

processed by quantitative PCR.  

Results: Twenty-seven PKDL patients (57.4%) had positive results by direct and/or indirect 

xenodiagnosis.  Direct was significantly more sensitive than indirect xenodiagnosis (55.3% vs 

6.4%, p <0.0001). Those with positive xenodiagnosis had median skin parasite loads >1 log10 

unit higher than those with negative results (2.88 vs 1.66, p<0.0001).  In a multivariable model, 

parasite load, nodular lesions and positive skin microscopy were significantly associated with 

positive xenodiagnosis.  Blood parasite load was the strongest predictor for VL.  Compared to 

VL, nodular PKDL was more likely and macular PKDL less likely to result in positive 

xenodiagnosis, but neither difference reached statistical significance.  

Conclusions: Nodular and macular PKDL, and VL, can be infectious to sand flies. Active PKDL 

case detection and prompt treatment should be instituted and maintained as an integral part of 

VL control and elimination programs. 
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Summary 

We report xenodiagnosis results for 47 PKDL and 15 VL patients. Skin parasite load was 

strongly associated with positive xenodiagnosis.  Compared to VL (66.7%), nodular PKDL was 

more likely (86%) and macular PKDL less likely (35%) to result in positive xenodiagnosis.   
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Introduction 

Visceral leishmaniasis (VL), also known as kala-azar, is characterized by prolonged fever, 

hepatosplenomegaly, wasting, and high mortality unless treated. Between 2005 and 2008, the 

estimated incidence in the Indian subcontinent ranged from 160,000 to 315,000 cases annually, 

figures amounting to 80% of the global burden of VL [1].  In this region, Leishmania donovani is 

transmitted by a single sand fly species, Phlebotomus argentipes, and VL patients provide the 

major infection reservoir during high incidence time periods [2].   In 2005, India, Bangladesh 

and Nepal announced a regional initiative aimed at the elimination of VL as a public health 

problem, defined as VL incidence < 1 case per 10,000 population per year at the subdistrict level 

[3].   

In Bangladesh, rapid diagnostic tests were provided at health facilities starting in 2010, 

indoor residual spraying was introduced in 2012, and single dose AmBisome was implemented 

for VL treatment in 2014 [4].  However, VL incidence, which peaked in 2006, had already 

declined by 54% by 2009 and 80% by 2012, even before vector control began [4].  The cyclic 

incidence curve in Bangladesh is consistent with a century of observations in the subcontinent, 

where cycles of 5-10 years of high VL incidence followed by 10-20 years of low incidence have 

been documented since the early 20th century [2].  The fall in incidence after several peak years 

has been attributed to herd immunity, with resurgence occurring when the susceptible population 

has been replenished through births, in-migration and/or waning immunity in those previously 

infected [5, 6].  

A dermatosis called post-kala-azar dermal leishmaniasis (PKDL) occurs in 5-15% of 

South Asian VL patients months to years after apparent cure [7].  PKDL is even more frequent in 

East Africa, particularly in Sudan [8].  Around 10% of PKDL patients report no history of VL 
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[5].  Characteristic lesions include hypo-pigmented macules, papules and nodules.  Since PKDL 

patients are rarely systemically ill, most do not seek treatment and will be missed by passive 

surveillance [9].  Their public health importance stems from their potential role as reservoir 

hosts, capable of infecting the sand fly vector [10].   

The only accepted proof of reservoir infectiousness is xenodiagnosis, which consists of 

feeding laboratory-reared sand flies on the putative reservoir host and demonstrating subsequent 

infection in the fly [11]. Indian VL patients were first shown to be infectious in 1924, findings 

confirmed in experiments over the subsequent decade [12-16] (Supplemental Table S1).  In 

1928, a patient with nodular PKDL lesions was shown to be infectious to P. argentipes [17].  By 

1933, further experiments suggested that longer incubation and repeated feeding of flies, either 

on the same PKDL patient or uninfected laboratory animals, increased the yield; these same 

experiments showed that both nodular and macular PKDL patients could infect sand flies [18, 

19].  These studies were followed by a hiatus of more than 50 years during which no human 

xenodiagnosis experiments were published.   

In 1992, investigators in West Bengal described a community without previous VL that 

became an epidemic center in 1980 [10].  The authors postulated that the parasite was introduced 

by a single patient with nodular PKDL.  The lack of previous VL cases implied lack of herd 

immunity, increasing the likelihood of rapid transmission.  This history, together with positive 

xenodiagnosis results from 4 PKDL patients, including the community index case, provided data 

in support of the long-standing hypothesis that PKDL patients constitute an important inter-

epidemic infection reservoir [6, 10].   

Despite the evidence in the literature, no PKDL incidence target is included in South 

Asian VL elimination validation requirements, and recent papers have questioned the role of 
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PKDL as an infection reservoir [20].  With VL incidence at its lowest level in decades, 

elucidating the role of PKDL patients in transmission has become increasingly urgent. We report 

here the results of xenodiagnosis from 47 PKDL and 15 VL patients, the largest such study 

conducted to date.  Our major aim is to provide quantitative data on the importance of PKDL 

patients as potential infection reservoirs in the context of regional VL elimination.  

 

Materials and Methods 

The protocol was approved by the Ethical Review Committee of ICDDR,B (#PR-14010). All 

patients provided written informed consent.  Those with concurrent illness or a history of allergy 

to insect bites were excluded. Procedures were conducted at the Surya Kanta Kala-azar Research 

Centre (SKKRC), Mymensingh Medical College, under the supervision of two physicians. There 

were no adverse events.  Following xenodiagnosis, patients were referred for treatment following 

national protocols.  

Procedures.  Lacking previous PKDL data, we based our sample size calculations on experience 

in Leishmania detection in cutaneous leishmaniasis (CL), and extrapolated to PKDL. Based on 

CL data, we assumed that 80% of probable PKDL cases would have parasites detectable by 

qPCR in skin specimens. We further assumed that at least 10% of confirmed PKDL cases would 

be infective to sand flies, with a precision of +5%.  Based on these assumptions, we estimated 

that 44 confirmed PKDL cases would be needed for robust results. To allow a stratified analysis 

by lesion type, we decided to enroll a similar number of macular and nodular patients. The 3 

patients enrolled in our previously published proof-of-concept paper [21] were not included in 

the present analyses.  To provide a comparison group, we also included 15 VL patients. 
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PKDL patients 18 years or older were identified through active community searches, and 

were eligible if the diagnosis was confirmed by microscopy or PCR. Lesions were classified as 

macules, papules or nodules, and the affected area was quantified following published methods 

[22].  Following antisepsis, a snip biopsy was collected by elevating a 3-mm diameter cone of 

skin with a needle from an area with lesions and shaving it off with a scalpel.  One-half was used 

for molecular assays; the other was used to prepare an impression smear, stained with Giemsa 

and examined by light microscopy.  

VL patients were enrolled at the time of presentation at SKKRC. Blood was collected and 

separated into serum, buffy coat and red cells. VL patients fulfilled diagnostic criteria in the 

national guidelines (fever for at least 2 weeks, splenomegaly and positive results by rK39 rapid 

test (InBios, Seattle WA)).  VL patients with a history of previous treatment were excluded. 

Sand fly colony. A colony was established starting with wild blood-fed female P. argentipes. 

Twenty randomly chosen 1st and 2nd generation females were analysed by RT-PCR to rule out 

flavivirus and phlebovirus infection; all were negative. Sand flies used in xenodiagnosis 

belonged to these generations. 

Xenodiagnosis.  Direct xenodiagnosis was conducted as previously described [23].  The 

participant placed a hand into a small cage for 15 minutes.  The cage contained 20 to 25 7-day-

old female P. argentipes and 5 to 10 male flies.  For patients without hand lesions, sand flies 

were placed in a 3-cm tube topped with gauze, which was held against a single lesion and the 

flies were allowed to feed for 15 minutes.  Male and unfed female flies were removed with an 

electrical aspirator while blood-fed female flies were kept for 5 days at 27ºC and 85%-95% 

humidity, and fed on a 30% sucrose diet. Flies still living 5 days after the blood meal were 

anesthetized with CO2 / chloroform, placed in a drop of sterile phosphate-buffered saline (PBS) 
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on a sterile microscope slide, and decapitated with sterile needles. The midgut was drawn out 

and placed in another drop of PBS, covered with a sterile cover slip and examined for 

promastigotes under microscope.  For each patient, flies that died prior to 5 days and 

microscopy-negative flies were processed in separate pools by qPCR.  For indirect 

xenodiagnosis, sand flies were allowed to feed on the patient’s venous blood in a membrane 

feeder, following published methods [24].  Subsequent procedures were as outlined above. 

qPCR:  DNA was extracted from tissue, buffy coat and sand fly mid-gut specimens using Qiagen 

kits.  Real time PCR was performed using Taqman primers and probes targeting the conserved 

region of Leishmania REPL repeats (L42486.1), following published methods [25].  To estimate 

parasite load, each run included a standard curve with DNA concentrations corresponding to 

10,000 to 0.1 parasites and one reaction with molecular grade water as a negative control.  

Samples with cycle threshold (Ct) >40 were considered negative. 

Analysis. The major outcome of interest was positive results by xenodiagnosis, defined as the 

detection of L. donovani promastigotes or DNA in at least one fly or pool of flies fed on that 

patient or their blood.  Data were analyzed in SAS 9.0 and STATA 14.2.  Univariate analyses 

utilized Fisher exact, Wilcoxon or Kruskal-Wallis tests as appropriate.  Stepwise backwards 

elimination procedures were used to construct multivariable logistic regression models with 

p=0.05 for removal and addition. A receiver-operating-characteristic curve was constructed to 

identify the skin parasite load threshold with maximum sensitivity and specificity to differentiate 

PKDL patients positive and negative by xenodiagnosis (by maximizing Youden’s index, the sum 

of the sensitivity and specificity). Bias-corrected 95% confidence intervals (CI) were computed 

for sensitivity and specificity, and area under the ROC curve (AUC) by bootstrapping with 

10,000 replicates. 
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Results 

From July 27 to November 29, 2017, 47 PKDL patients were enrolled. Of these, 22 (46.8%) 

were previously treated and 17 (36.2%) were female (Table 1).   Two-thirds of PKDL patients 

came from the two highest-incidence subdistricts, Fulbaria and Trishal. All had been treated for 

VL prior to PKDL onset, 81% with pentavalent antimony.  The median interval from VL 

treatment to PKDL onset was 3.9 years [interquartile range (IQR) 2.9, 5.8], and the median 

duration of lesions at the time of study was 3.5 years [IQR 1.7, 5.8].  Twenty-six (55.3%) 

patients had macular, papular or maculopapular lesions, while 21 (44.7%) had nodules or a 

combination of nodules and macules.  All PKDL patients had positive results by qPCR in skin 

biopsies, with median parasite load of 275.5 parasites/μg tissue [IQR 41, 1232]; 32 (68.1%) also 

had positive results by microscopy.  From August 6 to December 20, 2017, 15 VL patients were 

enrolled.  VL patients were younger (p=0.05) and more likely to come from subdistricts other 

than Fulbaria and Trishal than PKDL patients (p=0.04 by 2-tailed Fisher exact test) (Table 2).  

Thirteen (86.7%) VL patients had positive results by qPCR in venous blood, with a median 

parasite load of 48 parasites/mL [IQR 8.5, 137.6].   

Twenty-seven (57%) PKDL patients and 10 (66.7%) VL patients had positive results by 

xenodiagnosis.  Supplementary Figures S1A-D show the median number of sand flies fed, 

surviving and examined by microscopy and qPCR, and composite xenodiagnosis results by 

patient. Of 47 PKDL patients, 26 had positive results by direct xenodiagnosis (17 by both 

microscopy and qPCR, 5 by microscopy only, and 4 by qPCR only). Three PKDL patients had 

positive results by indirect xenodiagnosis (1 by both microscopy and qPCR, and 2 by qPCR 

only); only one PKDL patient was positive by indirect but not direct xenodiagnosis.  Among 
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PKDL patients, direct xenodiagnosis was much more likely than indirect xenodiagnosis to yield 

positive results (26 (55.3%) vs 3 (6.4%), p <0.0001). For VL patients, the difference in 

sensitivity was not significant (9 (60%) positive by direct vs 6 (40%) by indirect xenodiagnosis, 

p=0.47).  

Among PKDL patients, factors associated with positive xenodiagnosis included having 

nodular lesions, younger age, positive microscopy and skin parasite load (Table 3).  For patients 

with duration 3 to 12 months, 13 to 48 months and longer than 48 months, positive 

xenodiagnosis results were found in 50% (4/8), 59% (13/22) and 50% (10/20) (p>0.05 for all 

comparisons).  Those with positive xenodiagnosis had median skin parasite loads >1 log10 unit 

higher than those with negative xenodiagnosis results (2.88 vs 1.66, p<0.0001) (Figure 1).  Skin 

parasite load was significantly higher in nodular compared to maculopapular PKDL, and in those 

with positive microscopy (Supplemental Table S2).  In the multivariable model, skin parasite 

load, nodular PKDL and positive microscopy all showed significant associations with positive 

xenodiagnosis (Table 4).  Among VL patients, blood parasite load was the strongest predictor of 

positive xenodiagnosis; other factors with significant associations in univariable analyses 

included higher BMI and smaller liver size (Table 5). The small number of VLpatients precluded 

multivariable modeling.  Compared to VL, nodular PKDL was more likely and macular PKDL 

less likely to result in positive xenodiagnosis (66.7% for VL, 85.7% for nodular [p=0.24] and 

34.6% for macular PKDL [p=0.06]).   

A receiver-operating-characteristic curve was constructed for skin parasite load as a 

classifier for positive xenodiagnosis in PKDL patients (Figure 2).  The resulting threshold of 

2.61 log10 parasites/μg genomic DNA showed sensitivity of 0.74 (95% CI 0.44-0.92) and 
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specificity of 0.90 (95% CI 0.64-1), and appears to be a better-than-random classifier since the 

lower bound of the 95% CI for the AUC is greater than 0.5 (AUC 95% CI 0.70–0.90).  

 

Discussion 

This study positions PKDL as one of the central challenges to VL elimination in the Indian 

subcontinent.  Our data provide proof and quantification of the infectious potential of both 

nodular and macular PKDL patients, and strongly support the official policies in India and 

Bangladesh that all PKDL patients should be treated.  However, without active case detection, 

most PKDL patients are never diagnosed and will continue to constitute a threat to sustained VL 

control [7, 9].  In our data, nodular PKDL and VL were both highly infectious, while macular 

PKDL patients were less so. However, PKDL patients go untreated for years. Hence their 

cumulative transmission potential may be higher than that of VL patients.  Finally, our molecular 

results suggest a way forward for epidemiological studies, an endpoint for clinical trials, and a 

more effective public health approach to PKDL.  

For some years succeeding peak VL incidence, herd immunity is high, especially within 

and close to households with previous VL cases [26]. Ninety percent of PKDL cases are 

themselves previous VL cases, so their households already have high immunity rates before 

onset of their skin lesions [5].  Onward transmission from PKDL cases will therefore become 

detectable only after sufficient time has passed for local susceptibility to rise, or when a PKDL 

patient migrates to a non-endemic community, as in the 1992 publication [10].  These factors 

may explain the failure to demonstrate transmission from PKDL patients in locations where herd 

immunity is likely still very high [20].    
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Our PCR cut-off was not a perfect predictor of xenodiagnosis results, and xenodiagnosis 

is not a perfect reflection of infectiousness in the field. Nevertheless, xenodiagnosis is still our 

best measure of infectiousness. Both measures have inherent biological variability. Recent 

animal models demonstrate that parasite distribution in skin is heterogeneous [27]; no human 

data exist to address the relative load in skin with and without lesions, or in different anatomical 

locations.  Multiple skin biopsies from different locations would give a more nuanced picture of 

parasite load.  Repeated blood meals were reported to increase xenodiagnosis yield in historical 

studies, and in an experimental animal-sand fly model system, a second blood meal caused a 

second cycle of parasite replication in flies and higher metacyclic promastigote production [18, 

19, 28].  Serial xenodiagnoses, as in canine studies [29], would likely yield higher estimates of 

infectiousness. However, ethical considerations preclude repeated xenodiagnosis and multiple 

skin biopsies in humans.  

Xenodiagnosis is not a practical assay for field studies.  Less invasive skin specimens, if 

validated for accurate parasite load quantification, could open the door to population-based 

studies of transmission dynamics [30, 31].  Although there may be some individual-level 

misclassification, our data suggest that at the population level, qPCR results are likely to provide 

a useful reflection of transmission potential. Such studies would provide crucial inputs to model 

the interventions necessary to prevent VL resurgence when intensive elimination efforts are 

scaled back.  For PKDL treatment trials, quantification of parasite load in skin could also provide 

a functional marker more relevant to disease control than, for example, repigmentation [7].   

Xenodiagnosis has inherent challenges and potential biases.  A sand fly colony is, by 

definition, a single population selected by captive breeding success, and different colonies of the 

same species show different feeding behavior and susceptibility to leishmanial infection [32].  
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Having more than one colony per region will contribute to more robust knowledge.  Another 

limitation of our data was that flies were forced to feed in tubes from lesions; ethical 

considerations preclude allowing flies to feed on any accessible site as in canine xenodiagnosis 

[33].  Importantly, we did not demonstrate transmission from the infected fly to a subsequent 

mammalian host. Onward transmission has been clearly demonstrated in human studies in India 

[34] and more recently for other leishmanial species in experimental animals  [35, 36].  

Quantification of parasite loads and percentage of metacyclic promastigotes in individual flies 

infected via direct xenodiagnosis would be a first step towards assessing onward transmission 

potential and its relation to parasite load in infected humans [36].   

In recent community-based studies in Bangladesh and India, 60 to 95% of PKDL cases 

were macular or maculopapular, while fewer than 10% were nodular [5, 9, 20].  Nevertheless 

35% of macular PKDL patients also had positive xenodiagnosis results.  Ignoring this form of 

the disease imperils the progress made in VL control in the Indian subcontinent. Our data, while 

generated in Bangladesh, also have implications for other regions of the world.  No 

infectiousness data exist for East Africa, which now accounts for more than half the global VL 

disease burden [37].  In Sudan, PKDL is reported to occur in more than 50% of all VL patients, 

and unlike South Asia, nodular forms are frequent [8].  Because many PKDL cases resolve 

without treatment, long-standing policy in Sudan mandates withholding treatment for the first 

year unless the disease is severe [8].  Our data showed no difference in infectiousness based on 

PKDL duration and suggest that waiting 12 months for resolution provides a substantial parasite 

reservoir to sustain ongoing transmission.  

 In summary, our data indicate that all PKDL patients, regardless of lesion type or 

duration, should be treated promptly, and that active PKDL case detection should be instituted 
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and maintained to ensure comprehensive diagnosis and minimize the time that infectious patients 

go untreated.  Great strides have been made in the control of VL in the Indian subcontinent.  

PKDL must be addressed in order to consolidate and sustain elimination, and perhaps eventually 

to permanently interrupt transmission.     
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Figure Legends 

 

Figure 1. Median log10 calculated parasites/μg genomic DNA in skin biopsies from post-kala-

azar dermal leishmaniasis patients by composite xenodiagnosis results.  Box indicates 

interquartile range, whiskers indicate minimum and maximum.  

 

Figure 2. Receiver-operating-characteristic curve for skin parasite load as the predictor of 

positive results by xenodiagnosis in post-kala-azar dermal leishmaniasis patients.  The indicated 

threshold of 2.61 log10 parasites/μg genomic DNA in skin biopsy shows sensitivity of 0.74 (95% 

CI 0.44-0.92) and specificity of 0.90 (95% CI 0.64-1).  The threshold appears to be a better-than-

random classifier because the lower bound of the 95% confidence interval for the area under the 

curve (AUC) is greater than 0.5 (AUC 95% CI 0.70–0.90). (All CIs are bias-corrected CIs 

computed by bootstrapping with 10000 replicates). 
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Supplemental files  

 

Figure S1. Median numbers [interquartile range] of sand flies exposed and examined (top box), 

and composite xenodiagnosis results for VL and PKDL patients, Mymensingh, Bangladesh 2017. 

(A) direct xenodiagnosis of 47 post-kala-azar dermal leishmaniasis patients (PKDL) patients; (B) 

indirect xenodiagnosis of 47 PKDL patients; (C) direct xenodiagnosis of 15 visceral 

leishmaniasis (VL) patients; (D) indirect xenodiagnosis of 15 VL patients.   

 

Table S1. Xenodiagnosis studies of visceral leishmaniasis and PKDL patients in the Indian 

subcontinent, 1924-2018. 

 

Table S2.  Skin parasite loads by xenodiagnosis results and type of PKDL lesions. 
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Table 1. Characteristics of post-kala-azar dermal leishmaniasis (PKDL) patients included in the 

xenodiagnosis study, Mymensingh, Bangladesh, 2017. 

 
 PKDL patients 

N=47 

Female N (%) 17 (36.2) 

Age (years)  

    Mean [SD] 35.3 [12.0] 

    Median [IQR] 33 [26, 45] 

Residence  

    Fulbaria 16 (34.0) 

    Trishal 15 (31.9) 

    Other upazilas of Mymensingh 12 (25.5)1 

    Outside Mymensingh District 4 (8.5)2 

Antecedent visceral leishmaniasis (VL) 47 (100) 

Initial KA treatment drug  

    SSG monotherapy 38 (80.9) 

    AmBisome monotherapy 5 (10.6)3 

    Other   4 (8.5)4 

Treated more than once for VL 6 (12.8)5 

KA treatment to PKDL onset (years)  

    Mean [SD] 5.2 [4.0] 

    Median [IQR] 3.9 [2.9, 5.8] 

Duration of PKDL lesions (years)  

    Mean [SD] 4.7 [4.0] 

    Median [IQR] 3.5 [1.7, 5.8] 

PKDL Score  

    Mean [SD] 146.4 [144.0] 

    Median [IQR] 97 [14, 255] 

PKDL lesion types  

    Macular, papular or maculopapular  26 (55.3)6 

    Nodular or nodules plus macules 21 (44.7)7 

BMI (kg/m2)  

    Mean [SD] 20.8 [2.9] 

    Median [IQR] 20.6 [18.7, 22.9] 

Skin biopsy positive by microscopy  32 (68.1) 

Skin biopsy positive by qPCR 47 (100) 

Parasite load (per μg genomic DNA)  

    Mean [SD] 2164.7 [5636] 

    Median [IQR] 275.5 [41,1232] 

1Bhaluka (6), Gaffargaon (1), Muktagachha (3), Mymensingh Sadar (2). 
2Kaliakoir/Gazipur (2), Sreepur/Gazipur (1), Modhupur/Tangail (1). 
3AmBisome single dose (2), multiple doses (2), unspecified (1). 
4Miltefosine (2), AmBisome-paromomycin (1), miltefosine-paromomycin (1). 
5Five treated twice, SSG then AmBisome (2); SSG followed by miltefosine (1);  miltefosine followed by SSG (2); one patient 

treated 3 times, two courses of SSG followed by AmBisome.  
6Macular only (24), papules only (1), maculopapular (1). 
7Nodules only (1), mixed nodules and macules (20). 
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Table 2. Characteristics of visceral leishmaniasis (VL) patients included in the xenodiagnosis study, 

Mymensingh, Bangladesh, 2017. 

 
 Visceral 

leishmaniasis patients 

N=15 

Female N (%) 7 (46.7) 

Age (years)  

    Mean [SD] 28.7 [12.1] 

    Median [IQR] 24 [19, 35] 

Residence  

    Fulbaria 3 (20) 

    Trishal 2 (13.3) 

    Bhaluka 3 (20) 

    Other upazilas of Mymensingh1 2 (13.3) 

    Outside Mymensingh district2 5 (33.3) 

BMI (kg/m2)  

    Mean [SD] 17.0 [2.4] 

    Median [IQR] 16.6 [15.8, 18.4] 

Spleen size (cm below costal margin)  

    Mean [SD] 8.7 [6.6] 

    Median [IQR] 6.0 [4, 12] 

Liver size (cm below costal margin)  

    Mean [SD] 4.0 [4.2] 

    Median [IQR] 3.0 [0, 8] 

Blood positive by qPCR 13 (86.7) 

Parasite load (per mL blood)  

    Mean [SD] 159.8 [270.9] 

    Median [IQR] 48.0 [8.5, 137.6] 

1Gaffargaon (1), Mymensingh Sadar (2) 
2Ashuganj/Brahmanbaria (1), Gazipur Sadar/Gazipur (1), Gurudaspur/Natore (1), Dhonbari/Tangail (1), Gopalpur/Tangail (1) 
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Table 3. Factors associated with positive xenodiagnosis results among 47 PKDL patients, Mymensingh, 

Bangladesh, 2017.* 

 
 Xenodiagnosis results1  

 Negative Positive P value 

PKDL patients N=20 N=27  

Age    

  Mean [SD] 40.0 [12.0] 31.9 [11.0]  

  Median [IQR] 42.5 [28.5, 50] 30 [12, 40] 0.04 

Female Sex n (%) 9 (45.0) 8 (30.0) 0.36 

Previously treated PKDL 8 (40) 14 (51.9) 0.55 

Duration of PKDL lesions (years)    

  Mean [SD] 5.1 [4.5] 4.4 [3.7]  

  Median [IQR] 3.6 [1.8, 8.9] 3.5 [1.5, 5.4] 0.84 

PKDL Score    

  Mean [SD] 153 [174] 142 [121]  

  Median [IQR] 52 [11.5, 325] 111 [44, 230] 0.59 

PKDL lesion types n (%)    

  Macular, papular or maculopapular  17 (85.0) 9 (33.3) 0.0009 

  Nodular or nodules plus macules 3 (15.0) 18 (66.7)  

BMI (kg/m2)    

  Mean [SD] 21.2 [2.9] 20.5 [3.0]  

  Median [IQR] 20.8 [18.6, 23.4] 20.5 [18.7, 22.0] 0.68 

Skin biopsy positive by microscopy n (%)  10 (50.0) 22 (81.5) 0.03 

Positive qPCR in skin n (%) 20 (100) 27 (100) 1.0 

Parasite load (per μg genomic DNA)    

  Mean [SD] 177.4 [304] 3636.8 [7130]  

  Median [IQR] 46.1 [19, 212.6] 761.0 [205, 1958] <0.0001 

Log10 parasite load2    

  Mean [SD] 1.76 [0.69] 2.92 [0.82]  

  Median [IQR] 1.66 [1.26, 2.33] 2.88 [2.31, 3.29] <0.0001 

1Composite results by microscopy and/or PCR in sand flies from any of the xenodiagnosis experiments  

2Parasite load per μg genomic DNA transformed as log10(parasite load +1) to account for the possibility of zero parasite load 

*We have reported both the median + IQR and mean + SD to provide some indication of the skew of the distribution 
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Table 4.  Multivariable logistic regression model for factors associated with positive xenodiagnosis results 

in PKDL patients, based on stepwise backwards elimination with 0.05 significance level for removal and 

addition. 

 

Factor Odds ratio 95% confidence intervals P value 

Log10 parasite load in skin 7.25 1.78, 29.6 0.006 

Nodular PKDL1 11.7 1.37, 100.7 0.03 

Microscopy positive in skin 7.04 1.02, 48.7 0.05 

1Compared to macular/maculopapular PKDL 
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Table 5. Factors associated with positive xenodiagnosis results among 15 visceral leishmaniasis patients, 

Mymensingh, Bangladesh, 2017.* 

 
 Xenodiagnosis results1  

 Negative Positive P value 

Visceral leishmaniasis patients N=5 N=10  

Age    

  Mean [SD] 22 [2.9] 32.1 [13.7]  

  Median [IQR] 23 [20, 24] 31.5 [19, 45] 0.33 

Female Sex n (%) 3 (60.0) 4  (40.0) 0.61 

BMI (kg/m2)    

  Mean [SD] 15.0 [1.8] 18.0 [2.0]  

  Median [IQR] 15.2 [13.8, 15.8] 18.4 [16.4, 18.7] 0.03 

Spleen size (cm below costal margin)    

  Mean [SD] 12.0 [7.4] 7.1 [5.9]  

  Median [IQR] 9.0 [7, 16] 5.5 [3, 12] 0.14 

Liver size (cm below costal margin)    

  Mean [SD] 7.0 [3.1] 2.5 [3.9]  

  Median [IQR] 6.0 [6, 9] 0.75 [0, 3] 0.04 

Blood positive by qPCR 3 (60.0) 10 (100) 0.10 

Parasite load (per mL blood)    

  Mean [SD] 13.5 [20.3] 232.9 [310.1]  

  Median [IQR] 4.2 [0, 15.4] 93.3 [40.5, 321.6] 0.02 

Log10 parasite load    

  Mean [SD] 0.72 [0.75] 2.00 [0.64]  

  Median [IQR] 0.72 [0, 1.22] 1.97 [1.61, 2.51] 0.01 

1Composite results by microscopy and/or PCR in sand flies from any of the xenodiagnosis experiments  

2Parasite load per mL blood transformed as log10(parasite load +1) to account for zero parasite loads 

 

*We have reported both the median+IQR and mean+SD to provide some indication of the skew of the 

distribution 
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