Smit, M; Cassidy, R; Cozzi-Lepri, A; Girardi, E; Mammone, A; Antonorri, A; Angarano, G; Bai, F; Rusconi, S; Magnani, G (2016) Quantifying the future clinical burden of an ageing HIV-positive population in Italy: a mathematical modelling study. International Congress of Drug Therapy in HIV Infection 23-26 October 2016, Glasgow, UK. Journal of the International AIDS Society, 19 (8 (Sup)). 119–120. ISSN 1758-2652 DOI: https://doi.org/10.7448/IAS.19.8.21487

Downloaded from: http://researchonline.lshtm.ac.uk/4649752/

DOI: 10.7448/IAS.19.8.21487

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
Abstract supplement

International Congress of Drug Therapy in HIV Infection
23-26 October 2016, Glasgow, UK

Joint Academic Sponsors

UCL
University College London Medical School (UCLMS), UK

amC
Academic Medical Centre University of Amsterdam The Netherlands

Weill Cornell Medicine New York, USA

IAS
International AIDS Society

Volume 19, Supplement 7
October 2016

Scan this QR code with your mobile device to view the supplement online
Ending the HIV/AIDS pandemic: follow the science
Anthony Fauci
National Institute of Allergy and Infectious Diseases (NIAID)/National Institutes of Health (NIH), Bethesda, MD, USA

Scientific advances over the 35 years since AIDS was first recognized as a new disease, have put us on a clear path towards ending the HIV/AIDS pandemic. Scaling-up access to antiretroviral therapy (ART) and HIV prevention strategies, such as pre-exposure prophylaxis, could dramatically decrease HIV-related deaths and the rate of new HIV infections. Current and future scientific advances, notably in HIV vaccine and cure research, will accelerate this process. Two major directions in HIV vaccine development will be discussed: building on the results from RV 144, the clinical trial in Thailand that resulted in the first modest signal of efficacy for a HIV vaccine; and structure-based immunogen design to elicit broadly neutralizing antibodies.

Cure research has accelerated greatly over the past few years in two areas. The first is the prospect of eradicating the HIV reservoir altogether (i.e. a classic cure), which might involve novel latency-reversing and immunotoxic regimens and gene editing techniques to create a host cellular environment that does not allow HIV replication. The second approach involves controlling viral rebound following discontinuation of ART to achieve sustained virological remission employing strategies, such as passive transfer of broadly neutralizing antibodies and therapeutic vaccination. In 2016, the arsenal of scientifically proven interventions available, as well as the hope of others to come, offer unprecedented opportunities to make major gains in the fight against HIV/AIDS. With a major global commitment to implement these scientific advances, the end of the HIV/AIDS pandemic is now achievable.

Treatment for cancer, HIV and viral hepatitis in Europe using low-cost generic drugs: what could be done?
Andrew Hill
St Stephens AIDS Trust, Chelsea and Westminster Hospital, London, UK

Across Europe, high drug prices can limit access to treatment for hepatitis C, cancer and pre-exposure prophylaxis for HIV. Fifteen years ago, it was shown that antiretrovirals for HIV/AIDS could be mass produced at very low costs. This led to treatment programmes which now supply drugs to more than 17 million people with HIV worldwide. Similar analyses of drug production show that viral hepatitis, tuberculosis and certain cancers could also be treated at very low costs. Several key drugs will become generic in Europe within the next 5 years. There is a potential to expand treatment coverage for key diseases, while lowering overall costs of treatment. For mass treatment with low-cost generic drugs to be successful, five key conditions need to be met:
1. When any drug becomes generic, it should become available to publicly run health services at prices close to the cost of production, with an acceptable profit margin. These prices are freely available from India.
2. Pharmaceutical companies should not be able to inflate the prices of drugs after initial approval.
3. When a drug becomes generic and a low price is established, the effects of this lower price on the value of other drugs should be evaluated. Higher prices for newer drugs may no longer be justified.
4. Any secondary patent on a drug should be carefully evaluated for validity.
5. Pharmaceutical companies involved in bribery, false advertising or suppression of clinical trial results should pay significant fines, which are then used to sponsor national treatment access schemes.

Revolution in prevention in low- and middle-income settings
Linda-Gail Bekker
The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa

After 2000, we saw a remarkable era of HIV treatment roll out with consequent notable public health gains. This will be remembered as a treatment revolution. Most recently, with a number of important human trials marking at least partial efficacy with male circumcision, topical and systemic antiretroviral-based prophylaxis, HIV vaccines and other promising primary prevention modalities in the pipeline, this next decade could well be thought of as the prevention revolution. How the prevention revolution plays out in resource-constrained settings will depend on political will, resources and the competing need to reach the other half of the treatment pool effectively.
O11 - Antiretrovirals: Progress and Remaining Challenges

O111

HIV treatment as prevention, from a research hypothesis to a new global target and beyond

Julião Montaner

British Columbia Centre for Excellence in HIV/AIDS, and University of British Columbia, Vancouver, Canada

Antiretroviral therapy (ART) has dramatically reduced progression to AIDS and premature death among people living with HIV (PLHIV). Furthermore, ART is highly effective in preventing HIV transmission. We refer to this combined effect of ART as treatment as prevention (TasP). HIV TasP has proven cost-effective, because beyond its impact on morbidity and mortality, TasP decreases viral incidence, which acts as a multiplier on the return-on-investment. In 2014, under the Joint United Nations Programme on HIV/AIDS leadership, we developed the 90–90–90 target for global HIV treatment to “End the AIDS Pandemic” as a public health threat by 2030. The 90–90–90 target, proposes by 2020, ≥90% of all PLHIV will know their HIV status; ≥90% of them will have access to ART; and ≥90% of them will achieve sustained HIV viral suppression. The success of HIV-TasP has fuelled enthusiasm that this approach could be successfully exported and adapted to other infectious diseases, such as hepatitis C infection. Similarly, there is growing interest regarding a possible role TasP may play dealing with conditions where there is “social contagion” (i.e. any condition where increased prevalence is associated with increased incidence through behavioural contagion; including smoking, addiction or obesity-related diseases). We believe that TasP offers a unique means to optimize the management of selected high burden conditions, with a view to reduce morbidity and mortality, as well as prevalence and incidence within a highly cost-effective framework, and as such, to promote healthcare sustainability.

O112

Initiation of ART early in HIV infection: START to Finish

Jens Lundgren

Initiation of CHIP and PERSIMUNE, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

The strategic question on when to initiate antiretroviral therapy (ART) was finally resolved in 2015: since all HIV-positive persons stand to benefit from ART, this treatment should be offered to all. The START study provided key evidence by demonstrating a substantial reduction from early ART favours the benefit across a wide spectrum of pathophysiological processes. In conclusion, global consensus on evidence for universal access to ART now exists; implementation research is key, as only half of the infected population is currently receiving ART.

O113

Transition to adult care

Pablo Rojo

Paediatric Infectious Diseases, Hospital 12 de Octubre, Complutense University, Madrid, Spain

The presentation is given by a Spanish paediatrician, who will be directing his presentation mainly to European adult HIV physicians. This presentation will refer to the situation of HIV-infected adolescents and young adults, mainly perinatally infected, being transferred from paediatric HIV clinics to adult HIV clinics in Europe. The presentation will focus specifically on three issues: 1) the special pattern of adolescence and young adulthood in relation to neurocognitive development, behaviour and chronic illness; 2) to review what are the main clinical, immunovirological, psychological and social characteristics of the adolescents and young adults who are being transferred currently and in the near future to the adult HIV clinics. Special attention will be on the differences between the children born before and after combined antiretroviral treatment, which was available in the paediatric population; and 3) the system where they come from: the insights of a paediatric HIV clinic in Europe.

O114

Persistent disparities in meeting WHO/UNAIDS targets for ART coverage and HIV RNA suppression across Europe

Kamilla Grønborg Laut1,2; Leah Shepherd3; Roxana Radoi4; Igor Karpov5; Milosz Parczewski6; Cristina Mussini7; Fernando Maltez8; Marcello Losso9; Nikoloz Chkhartishvili10; Hila Elina11; Helen Kovari12; Anders Blaxhult13; Robert Zangerle14; Tatiana Trofimora15; Brygida Knysz16; Kai Zilmer17; Elena Kuzovatova18; Therese Staub19; Dorthe Raben1-2; Jens Lundgren1-2; Amanda Mocroft3 and Ole Kirk1,2

1CHIP-Centre for Health and Infectious Disease Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark. 2Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark. 3Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark. 4Department of Infection and Population Health, University College London, London, UK. 5Spitalul de Boli Infectioase si Tropical, Dr Victor Babes Hospital, Bucharest, Romania. 6Department of Infectious Diseases, Belarus State Medical University, Minsk, Belarus. 7Department of Infectious and Tropical Diseases, and Immune Deficiency, Pomeranian Medical University, Szczecin, Poland. 8Department of Infectious and Tropical Diseases, University of Modena and Reggio Emilia, Modena, Italy. 9Servicio de Doencas Infecciosas, Hospital de Curry Cabral, Lisbon, Portugal.

function, beneficial effects from ART on opportunistic disease, invasive bacterial infections, cancer, and kidney and bone marrow function. Overall, the data demonstrate that the balance of benefits versus risks from early ART favours the benefit across a wide spectrum of pathophysiological processes.
Abstract O114—Figure 1. Unadjusted estimates of ART coverage and proportion with ART-induced HIV RNA suppression by EuroSIDA country and region in two different time periods. Each bubble represents a country. The area of the bubble is proportional to the number of people under follow-up in each country. The two dotted lines indicate >90% ART coverage (x-axis) and >90% ART-induced HIV RNA suppression (y-axis). **Eastern Europe:** Belarus, Estonia, Georgia*, Latvia, Lithuania, Russia, Ukraine. **East Central Europe:** Bosnia-Herzegovina*, Croatia*, Czech Republic, Hungary, Poland, Romania, Serbia, Slovakiat, Slovenia*. **Western Europe:** Austria, Belgium, France, Germany, Luxembourg, Switzerland. **Southern Europe:** Argentina, Greece, Israel, Italy, Portugal, Spain. **Northern Europe:** Denmark, Finland, Iceland*, Ireland, Netherlands, Norway, Sweden, UK. *included only in 2014/15 cohort; †included only in 2004/05 cohort.

Introduction: Direct comparisons between countries in core HIV care parameters are often hampered by different data collection. We compared temporal changes in country-specific rates of the UNAIDS/WHO targets of >90% ART coverage and >90% ART-induced HIV RNA suppression for a given population.

Materials and methods: EuroSIDA participants under follow-up between the periods 1 January 2004 to 31 December 2005 and 1 January 2014 to 31 December 2015 were followed from first visit until latest of CD4, HIV RNA or follow-up visit. Based on the included EuroSIDA centres, country-specific proportions of persons on ART (≥3 antiretrovirals) and HIV RNA suppression (<500 copies/mL) among patients on ART were assessed. Missing HIV RNA was considered as unsuppressed. Temporal changes were analyzed using generalized estimating equations, accounting for repeated measurements and adjusting for age, gender, mode of infection, CD4 at first visit, HBV and HCV status.

Results: A total of 11,975 people were under follow-up in the 2014/15 cohort (n = 8978 in 2004/05), in 105 clinics in Eastern Europe (EE) (n = 1748), East Central (EC) Europe (n = 1884), Western Europe (WE) (n = 2512), Southern Europe (SE) (n = 3109) and Northern Europe (NE) (n = 2722). Overall ART coverage within EuroSIDA increased from 68.0% in 2004/05 to 82.4% in 2014/15 [adjusted odds ratio (aOR) of being on ART in 2014/15 versus 2004/05: 1.90 (95% CI 1.77–2.03)], and among those on ART, the proportion with suppressed HIV RNA increased from 74.5 to 86.9% [aOR 2.09 (1.91–2.27)]. Overall odds of being on ART and virologically suppressed doubled from 2004/05 to 2014/15 [aOR 2.13 (2.00–2.26)]. Improvements in ART coverage and HIV RNA suppression varied significantly across regions (p < 0.001) and were greatest in EE where ART coverage and HIV RNA suppression were lowest in 2004/05: in EE, aOR of being on ART and virologically suppressed in 2014/15 versus 2004/05 was 1.90 (95% CI 1.77–2.03), compared with EC aOR 2.39 (2.04–2.80), WE aOR 2.69 (2.38–3.04), SE aOR 1.97 (1.77–2.19) and NE aOR 1.75 (1.53–1.99). In 2014/15, 6/35 (17%) countries had >90% ART coverage and >90% ART-induced HIV RNA suppression [0/7 (0%) EE, 1/8 (13%) EC, 1/6 (17%) WE, 4/8 (50%) NE and 0/6 (0%) SE countries]. However, the pattern differed significantly between participating clinics across countries, with country-specific proportions of ART coverage ranging from 63 to 98%, and viral suppression from 31 to 100% of those on ART (Figure 1).

Conclusions: Despite marked improvements over the last decade, we observed persistent large variation among countries in our cohort in meeting the UNAIDS/WHO targets for treatment coverage and virological suppression. The representativeness of clinics and patients,
as well as underlying factors differentiating individual countries’ ability to meet the targets, are under investigation.

O12 - Treatment Strategies

O121

Simplification to atazanavir/ritonavir + lamivudine versus maintaining atazanavir/ritonavir + 2NRTIs in virologically suppressed HIV-infected patients: 96-week data of the ATLAS-M trial

Roberta Gagliardi1; Massimiliano Fabbiani1; Eugenia Quiros Roldán2; Alessandra Latini3; Gabriella D’Ettorre4; Andrea Antinori5; Antonella Castagna6; Giancarlo Orofino7; Daniela Francisci8; Pierangelo Chinello9; Giordano Madeddu10; Pierfrancesco Grima11; Stefano Rusconi11; Barbara Del Pin11; Annalisa Mondi11; Alberto Borghetti12; Emanuele Focà13; Manuela Colaficì13; Roberto Cauda13; Simona Di Giambedetto3 and Andrea De Luca13

1Institute of Infectious Disease, Catholic University of Sacred Heart, Rome, Italy. 2Division of Infectious and Tropical Diseases, University of Brescia, Brescia, Italy. 3Infectious Dermatology and Allergology, IFO San Gallicano Institute (IRCCS), Rome, Italy. 4Department of Infectious Diseases, La Sapienza University, Rome, Italy. 5Department of Infectious Diseases, Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Florence, Italy. 6Department of Infectious and Tropical Diseases, San Raffaele Hospital, Vita-Salute San Raffaele University, Milan, Italy. 7Infectious and Tropical Diseases Unit, Amedeo di Savoia Hospital, Torino, Italy. 8Infectious Diseases Clinic, University of Perugia, Perugia, Italy. 9Department of Infectious and Tropical Diseases, University of Sassari, Sassari, Italy. 10Division of Infectious Diseases, S. Caterina Novella Hospital, Galatina, Italy. 11Dipartimento di Scienze Biomediche e Cliniche, Luigi Sacco, Infectious Disease Unit, University of Milan, Milan, Italy. 12Unit of Infectious Diseases, M. Annunziata Hospital, Florence, Italy. 13Infectious Dermatology and Allergology Unit, IFO San Gallicano Institute (IRCCS), Rome, Italy. 14Infectious Diseases Unit, Siena University Hospital, Siena, Italy

Abstract

Objectives: To explore 96-week non-inferior efficacy of treatment simplification to atazanavir/ritonavir + lamivudine versus continuing atazanavir/ritonavir + 2NRTIs.

Materials and methods: ATLAS-M is a 96-week, multicentre, open-label, randomized study. Subjects on atazanavir/ritonavir + 2NRTIs, without previous virologic failures, with HIV RNA < 50 copies/mL for > 3 months and CD4 > 200 cells/mm³ for > 6 months were eligible. At baseline, 1 atazanavir/ritonavir + lamivudine (dual therapy, DT) or to continue the baseline regimen (triple therapy, TT). At 48 weeks, DT showed a higher proportion of patients free of treatment failure (primary study endpoint) when compared to TT, demonstrating superiority of DT strategy. Here we analyze the treatment failure, including virologic failure (two consecutive HIV RNA > 50 copies/mL or a single value > 1000 copies/mL), and other outcomes at 96 weeks.

Results: A total of 266 patients (78% males, median age 44 years, median CD4 603 cells/μL, 79% treated with tenofovir) were enrolled. Ninety-six-week data were available for 254 (126 in DT and 128 in TT). At baseline, subjects in the two arms did not differ for the main characteristics (Table 1). At 96 weeks, the proportion of patients free of TF were 77.8% (95% CI 70.5–85.1) in the DT and 65.6% (95% CI 57.4–73.8) in the TT arm (difference +12.2%, 95% CI +1.2, +23.2). VF was observed in two (1.6%) patients randomized to DT and eight (6.3%) to TT (p = 0.056). Clinical adverse events occurred at similar rates in the two arms, mostly transient and not leading to treatment discontinuation. More frequent in the DT arm were new-onset grade 3 to 4 hypertriglyceridemia (7.6% vs. 1.6%, p = 0.027) and hyperbilirubinemia (59.6% vs. 35.8%, p = 0.001). No significant differences in CD4 changes from baseline at week 96 were observed between the two arms (mean +83 cells/μL in DT vs. +49 in TT, p = 0.233). A greater increase in total cholesterol (+15 vs. +0 mg/dL, p = 0.005) and HDL (+5 vs. +0 mg/dL, p < 0.002) was observed in the DT arm without differences of other lipid parameters. Change from baseline estimated glomerular filtration rate was significantly better in the DT arm as compared to the TT arm (+5 vs. < 3 mL/min/1.73 m², p < 0.001). No significant differences in other laboratory parameters were observed between the study arms.

Conclusions: This 96-week data demonstrated non-inferiority and even superior efficacy of treatment simplification to atazanavir/ritonavir + lamivudine as compared to continuation of atazanavir/ritonavir + 2NRTIs in virologically suppressed patients. A numerically higher rate of VF was observed in the TT arm. Switch to DT was

| **Abstract O121 - Table 1. Baseline patients characteristics based on randomization arm (interim 96-week population n = 254)** |
|-----------------|-----------------|-----------------|-----------------|
| **Age, years** | **ATV/r + 3TC (DT arm) n = 126** | **ATV/r + 2NRTIs (TT arm) n = 128** | **p** |
| **Male gender** | 43.4 (35.7–49.2) | 44.2 (36.2–51.0) | 0.963 |
| **IDU (risk factor)** | 107 (84.9) | 96 (75.0) | 0.069 |
| **HCV co-infection** | 8 (6.3) | 11 (8.6) | 0.659 |
| **Previous AIDS events** | 12 (9.5) | 14 (10.9) | 0.836 |
| **Years from HIV diagnosis** | 17 (13.5) | 11 (8.6) | 0.961 |
| **Years from first cART initiation** | 4.2 (2.1–8.6) | 4.9 (2.5–10.4) | 0.102 |
| **Therapeutic line** | 2.7 (1.7–4.8) | 2.7 (1.6–6.5) | 0.207 |
| **Months from last regimen initiation** | 2 (1–3) | 2 (1–3) | 0.628 |
| **TDF-containing backbone** | 27.6 (17.9–52.5) | 28.7 (16.1–52.0) | 0.352 |
| **CD4 nadir, cells/μL** | 100 (79.4) | 109 (85.2) | 0.296 |
| **CD4, cells/μL** | 277 (132–359) | 257 (144–349) | 0.848 |
| **Months with viral load < 50 copies/mL** | 621 (466–777) | 614 (485–784) | 0.806 |

Values are expressed as n (%) except for median (interquartile range, IQR). 3TC, lamivudine; ATV/r, atazanavir/ritonavir; HCV, hepatitis C virus; NRTI, nucleos(t)ide reverse transcriptase inhibitors; TDF, tenofovir.
O122

Dual therapy with a boosted protease inhibitor plus lamivudine is an effective maintenance strategy in patients on second-line antiretroviral therapy in Africa: the ANRS 12286/MOBIDIP trial

Laura Ciaffi1; Sinata Kouilla-Shiro2; Adrien Sawadogo3; N Fatou Ngom Gueye1; Vincent Le Moing1; Sabrina Eymard-Duvernoy4; Suzanne Izard1; Jacques Zoungrana3; Pretty Mbouyap5; Mamadou Diallo5; Guillaume Bado3; Komba Toure Kane5; Avelin Aghokem5; Martine Peeters1; Jacques Reyes9 and Eric Delaporte1

1IRD INSERM, UMI 233, Montpellier, France. 2Facility of Medicine and Biomedical Sciences, University of Yaounde 1, Yaounde, Cameroon. 3Hôpital de Jour, Centre Hospitalier Universitaire de Souro Sanou, Bobo Dioulasso, Burkina Faso. 4Hôpital de Jour, Centre Hospitalier Universitaire de Fann, Dakar, Senegal. 5Projet MOBIDIP, Agence Nationale de Recherche sur le SIDA et les hépatites virales (Cameroun Site), Yaounde, Cameroon. 6Centre Hospitalier Universitaire de Fann, CRCF, Dakar, Senegal. 7Laboratoire de Bactériologie-Virologie, Centre Hospitalier Universitaire Aristide Le Dantec, Dakar, Senegal. 8Virology laboratory IMPP-IRD, Centre de Recherche sur les Maladies Emergentes et, Yaounde, Cameroon. 9Maladies Infectieuses, Centre Hospitalier Universitaire Montpellier, Montpellier, France

Introduction: Second-line ART regimens with ritonavir-boosted protease inhibitor (PI/r) plus nucleoside reverse-transcriptase inhibitors (NRTIs) have shown good efficacy in resource-limited settings [1–3]. But issues of costs, toxicity and future options make a simplified maintenance treatment a strategy of interest. We aimed to compare two maintenance treatments with PI/r in mono- or dual therapy [plus lamivudine (3TC)] in a group of virally suppressed patients on second-line ART.

Material and methods: A randomized, open-label, multicentre clinical trial was conducted in Cameroon, Senegal and Burkina Faso. HIV-1 positive patients followed in the ANRS 12186 2LADY trial [3] on stable PI plus NRTIs second-line ART with HIV-1 RNA viral load (VL) below 200 copies/ml, CD4 above 100 cells/mm³ and adherence ≥ 90%, were included in a two arms trial comparing monotherapy with the ongoing PI/r: darunavir (DRV/r) or lopinavir (LPV/r) – mono arm – with the same PI/r associated with 3TC 300 mg – dual arm. The primary outcome was failure rate at 96 weeks. Treatment failure was defined as: 1) a confirmed VL above 500 copies/ml, 2) re-introduction of the NRTI backbone or 3) the interruption of PI.

Results: From March 2014 to January 2015, 265 patients were randomized (133 in mono arm and 132 in dual arm). Included patients were mainly women (73%), with a median age of 42 years ([interquartile range (IQR) 36–50); median CD4 was 475 cells/mm³ (IQR 379–652) and median time on second line was 37 months (IQR 30–47). At the failure of first line, 96% had the M184V mutation. For the Data Safety Board meeting in March 2016, 48 data were analyzed. The Board advised for the interruption of the mono arm. In the ITT analysis, 3.0% (95% CI 0.8–7.6) and 12.0% (95% CI 15.8–30.6) of patients failed in the dual and mono arm respectively (p < 0.001). Median time to failure was 24 weeks. All failing patients, except one, were resuppressed to less than 200 copies/ml in a median time of 12 weeks after reintroduction of the NRTI backbone. Increase in CD4 was significantly higher in the dual arm (48 vs. 7 cells/mm³). No differences in adverse events were observed. Neither adherence, nor nadir CD4 count, nor PI drug were associated with failure.

Conclusions: After viral suppression with PI plus NRTIs in second-line therapy, maintenance with PI/r plus 3TC is associated with a high rate of success despite the presence of M184V while PI/r mono-therapy cannot be recommended.

References

O123

Resistance profile analysis of treatment-experienced HIV-1-infected patients switching to elvitegravir/cobicistat/emericitabine/tenofovir alafenamide (E/C/F/TAF) plus darunavir (DRV)

Nicolas Margot1; Renee Ram1; Moupali Das2; Marshall Fordyce2; Scott McCallister2; Michael Miller4 and Christian Callebaut4

1Clinical Virology, Gilead, Foster City, CA, USA. 2Clinical Research, Gilead, Foster City, CA, USA

Introduction: In study GS-US-292-0119, virologically suppressed, treatment-experienced patients on complex multi-tablet regimens [1] were switched to a simpler, more convenient antiretroviral regimen. After 48 weeks, suppression was maintained in 94.4% of patients who switched to E/C/F/TAF + DRV compared to 76.1% in the DRV-containing “Stay on Baseline Regimen” arm. All patients had documented resistance to > 2 classes of antiretroviral (ARV) agents at baseline. Detailed ARV regimens and the resistance profile of the study population are described.

Methods: Historical genotypic reports were analyzed for resistance-associated mutations (RAMs) to ARVs. The Stanford HIVdb algorithm version 8.01 was used to calculate genotypic susceptibility scores (GSS). For each drug, a 5-point scale was used: susceptible, potential low-level resistance, low-level resistance, intermediate-level resistance and high-level resistance were scored as 1, 0.75, 0.5, 0.25 and 0, respectively. The total GSS for a given regimen was calculated as the sum of the scores for each individual drug.

Results: A total of 94.8% had documented resistance to > 2 classes of ARVs, including protease inhibitors (PIs; 34.8%), non-nucleoside RT inhibitors (NNRTIs; 88.1%) and NRTIs (94.8%). The most common PI-RAMs were L90M (15.6%) and V82A/F/L/S/T (22.6%); median time on second line was 37 months (IQR 30–47). At the failure of first line, 96% had the M184V mutation. For the Data Safety Board meeting in March 2016, 48 data were analyzed. The Board advised for the interruption of the mono arm. In the ITT analysis, 3.0% (95% CI 0.8–7.6) and 12.0% (95% CI 15.8–30.6) of patients failed in the dual and mono arm respectively (p < 0.001). Median time to failure was 24 weeks. All failing patients, except one, were resuppressed to less than 200 copies/ml in a median time of 1.1 weeks after reintroduction of the NRTI backbone. Increase in CD4 was significantly higher in the dual arm (48 vs. 7 cells/mm³). No differences in adverse events were observed. Neither adherence, nor nadir CD4 count, nor PI drug were associated with failure.
Within each treatment group, patients maintained virologic suppression similarly regardless of their GSS at study entry.

Conclusions: Despite the high incidence of pre-existing resistance in this population, including resistance to ≥2 classes of ARV agents and presence of K65R or ≤3 TAMs, strategic simplification to E/C/F/TAF + DRV was statistically superior to staying on the baseline regimen. Patients benefited from switching regimen regardless of their prior DRV dose and their GSS. Treatment with E/C/F/TAF + DRV offers a simpler and more convenient option for treatment-experienced patients on complex multi-tablet regimens.

Reference

O124
Switching from rilpivirine/emtricitabine/tenofovir disoproxil fumarate (RPV/FTC/TDF) to rilpivirine/emtricitabine/tenofovir alafenamide (RPV/FTC/TAF): safety and efficacy through 48 weeks
Chloé Orkin¹; Edwin Dejesus²; Moti Ramgopal²; Gordon Crofoot⁴; Peter Ruane⁵; Anthony LaMarca⁶; Anthony Mills⁷; Bernard Van der Cam⁸; Joseph De Wet⁹; Jurgen Rockstroh¹⁰; Adriano Lazzarin¹¹; Bart Rijnders¹²; Daniel Podzamczer¹³; Anders Thalme¹⁴; Marcel Stoeckle¹⁵; Danielle Porter¹⁶; Hui Liu¹⁷; Andrew Cheng¹⁸; Erin Quirk¹⁹; Devi SenGupta¹⁸ and Huyen Cao¹⁸

1Infection and Immunity, Royal London Hospital, Barts Health NHS Trust, London, UK. 2Private Practice, Orlando Immunology Center, Orlando, FL, USA. 3Research Facility, Midway Immunology and Research Center, Fort Pierce, FL, USA. 4Research Facility, The Crofoot Research Center, Houston, TX, USA. 5Private Practice, Peter Jerome Ruane, Los Angeles, CA, USA. 6Research Facility, Therafirst Medical Center, Fort Lauderdale, FL, USA. 7Private Practice & Research Facility, Mills Clinical Research, Los Angeles, CA, USA. 8Department of Internal Medicine, Cliniques Universitaires St Luc, Bruxelles, Belgium. 9Private Practice, Dr Joseph J de Wet, Vancouver, Canada. 10Department of Medicine, Bonn University Hospital, Bonn, Germany. 11Dipartimento di Malattie Infettive, Ospedale San Raffaele, Milan, Italy. 12Department of Internal Medicine, Erasmus MC, Rotterdam, Netherlands. 13AIDS Unit in Infectious Diseases Service, Hospital Universitari de Bellvitge, Barcelona, Spain. 14Division of Infectious Diseases, Department of Medicine, Karolinska University Hospital, Stockholm, Sweden. 15Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland. 16Clinical Virology, Gilead Sciences, Inc., Foster City, CA, USA. 17Biostatistics - HIV, Gilead Sciences, Inc., Foster City, CA, USA. 18Clinical Research - HIV, Gilead Sciences, Inc., Foster City, CA, USA.

Introduction: Tenofovir alafenamide (TAF) is a novel tenofovir (TFV) prodrug that achieves 91% lower plasma TFV levels than seen with TDF, reducing the risks of renal and bone toxicities. The impact of switching from TDF (300 mg) to TAF (25 mg), as a fixed-dose combination with RPV (25 mg) and FTC (200 mg), was evaluated in this first phase 3 clinical trial of RPV/FTC/TAF. Primary endpoint (week 48) results are presented.

Materials and methods: A randomized (1:1), double-blind, active-controlled, phase 3 study was conducted in virologically suppressed (HIV-1 RNA < 50 copies/mL) and HIV-infected adults with estimated glomerular filtration rate (eGFR) > 50 mL/min taking RPV/FTC/TDF for at least 6 months. Eligible study participants were randomized to switch to RPV/FTC/TAF or to continue RPV/FTC/TDF. Primary endpoint was virologic suppression (HIV-1 RNA < 50 copies/mL) at week 48 by FDA snapshot algorithm with a pre-specified non-inferiority margin of 8%. Bone and renal safety, and tolerability endpoints were evaluated.

Results: A total of 630 patients were enrolled (RPV/FTC/TAF 316 vs. RPV/FTC/TDF 314); median age 45 years, 10% women and 19% black. Across week 48, switching to RPV/FTC/TAF was non-inferior to remaining on RPV/FTC/TDF (94% vs. 94%; exact difference: −0.3%; 95% CI −4.2% to +3.7%). General safety was similar between the arms with low rates of grade 3 to 4 adverse events (AEs). The rate of discontinuations due to AEs was 0.1% in both groups. Improvement in bone mineral density was observed in the RPV/FTC/TAF group compared to the RPV/FTC/TDF group, with higher mean changes from baseline: hip + 1.04% versus −0.25% (p < 0.001) and spine + 1.61% versus +0.08% (p < 0.001), respectively. Median eGFR increased by 4.5 mL/min for RPV/FTC/TAF and +0.7 mL/min for RPV/FTC/TDF (p = 0.002). Improvements in quantitative proteinuria, including tubular proteinuria, were seen in patients switching to RPV/FTC/TAF (p < 0.001) (Table 1). No cases of Fanconi syndrome or proximal renal tubulopathy were reported.

Conclusion: Through 48 weeks, virologically suppressed patients switching to RPV/FTC/TAF maintained high rates of virologic suppression, with improved markers of bone and renal safety compared to those remaining on RPV/FTC/TDF.

O125
Long-term (96-week) efficacy and safety after switching from tenofovir disoproxil fumarate (TDF) to tenofovir alafenamide (TAF) in HIV-infected, virologically suppressed adults
Francois Raff¹; Chloé Orkin²; Amanda Clarke³; Laurence Slama⁴; Joel Gallant⁵; Eric Daar⁶; Mingjin Yan⁷; Michael E Abram⁸; Sandra Friberg⁹; Andrew Cheng¹⁰ and Martin Rhee¹¹

1C.H.U. de Nantes, Infectious & Tropical Diseases, Nantes, France. 2Barts Health NHS Trust, Infection and Immunity, London, UK. 3Brighton & Sussex University Hospitals NHS Trust, HIV Unit, Brighton, UK. 4Hôpital Tenon, Infectious and Tropical Diseases, Paris, France. 5Southwest Care Center, Specialty Services, Santa Fe, NM, USA. 6Los Angeles Biomedical Research Institute at Harbor-UCLA, Division of Adult Infectious Diseases, Torrance, CA, USA. 7Gilead Sciences, Biostatistics - HIV, Foster City, CA, USA. 8Gilead Sciences, Clinical Virology, Foster City, CA, USA. 9Gilead Sciences, Clinical

Table 1. Changes in proteinuria at week 48

<table>
<thead>
<tr>
<th>Proteinuria Type</th>
<th>RPV/FTC/TDF</th>
<th>RPV/FTC/TAF</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urine protein: creatinine ratio</td>
<td>Median baseline value (mg/g)</td>
<td>53.2</td>
<td>50.0</td>
</tr>
<tr>
<td></td>
<td>Median % changes at week 48</td>
<td>−18.8</td>
<td>+7.3</td>
</tr>
<tr>
<td>Urine albumin: creatinine ratio</td>
<td>Median baseline value (mg/g)</td>
<td>5.5</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>Median % changes at week 48</td>
<td>−7.8</td>
<td>+16.8</td>
</tr>
<tr>
<td>Urine retinol binding protein: creatinine ratio</td>
<td>Median baseline value (µg/g)</td>
<td>101.2</td>
<td>111.1</td>
</tr>
<tr>
<td></td>
<td>Median % changes at week 48</td>
<td>−18.0</td>
<td>+21.5</td>
</tr>
<tr>
<td>Urine beta-2-microglobulin: creatinine ratio</td>
<td>Median baseline value (µg/g)</td>
<td>111.6</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>Median % changes at week 48</td>
<td>−29.0</td>
<td>+12.0</td>
</tr>
</tbody>
</table>
Table 1. Changes in renal, bone and lipid parameters from baseline to week 96

<table>
<thead>
<tr>
<th>Parametersa,b</th>
<th>FTC/TAF (N = 333)</th>
<th>FTC/TDF (N = 330)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGFR, mL/min (Cockcroft Gault)</td>
<td>10.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Urine protein: creatinine ratio, %</td>
<td>—26.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Urine albumin: creatinine ratio, %</td>
<td>3.4</td>
<td>27.0</td>
</tr>
<tr>
<td>Urine beta-2-microglobulin: creatinine ratio, %</td>
<td>—29.7</td>
<td>46.8</td>
</tr>
<tr>
<td>Urine retinol binding protein: creatinine ratio, %</td>
<td>—4.1</td>
<td>42.6</td>
</tr>
<tr>
<td>Lumbar spine BMD, %</td>
<td>2.153</td>
<td>—0.167</td>
</tr>
<tr>
<td>Hip BMD, %</td>
<td>1.853</td>
<td>—0.331</td>
</tr>
<tr>
<td>Total cholesterol, mg/dL</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>LDL cholesterol, mg/dL</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>HDL cholesterol, mg/dL</td>
<td>1</td>
<td>—1</td>
</tr>
<tr>
<td>Triglycerides, mg/dL</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Total cholesterol: HDL ratio</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

These parameters were assessed up to W96.

Methods: In this double-blind, active-controlled study, virologically suppressed HIV-infected participants receiving FTC/TDF-containing regimens were randomized (1:1) to switch to FTC/TAF versus continue FTC/TDF while remaining on the same third agent. Virologic suppression (HIV-1 RNA <50 c/mL) by FDA snapshot analysis, markers of bone and renal safety, and safety and tolerability were assessed up to W96.

Results: A total of 663 participants were randomized and treated (FTC/TAF N = 333, FTC/TDF N = 330): median age 49 years, 15% women, median estimated glomerular filtration rate (eGFR, Cockcroft Gault) 100 mL/min. Third agents included boosted protease inhibitors (46%), integrase inhibitors (28%) and non-nucleoside reverse transcriptase inhibitors (25%). Median duration of FTC/TDF use prior to enrolment was 5.1 years. Through W96, virologic suppression was maintained in 89% of participants in both groups [difference = —0.5%; 95% CI (-—5.3%, 4.4%)]. One FTC/TAF participant developed M184V in the first 48 weeks. Drug-related serious adverse events (AEs) were rare (FTC/TAF: 0 vs. FTC/TDF: 0.3%). Drug discontinuation due to AEs was low (FTC/TAF: 2.4% vs. FTC/TDF: 2.2%). No cases of Fanconi syndrome or proximal renal tubulopathy occurred with FTC/TAF; one FTC/TDF participant discontinued study drug due to proximal tubulopathy. Biomarkers of renal safety favoured FTC/TAF (Table 1). Lumbar spine and hip bone mineral density (BMD) increased in the FTC/TAF group, while decreasing in the FTC/TDF group (Table 1), with ≥3% improvement at W96: lumbar spine BMD 40% versus 18%, hip BMD 29% versus 11%, respectively. There were greater increases in lipids [including high-density lipoproteins (HDL)] with FTC/TAF versus FTC/TDF but no difference in total cholesterol to HDL ratio (Table 1) or initiation of lipid-lowering agents (FTC/TAF: 7% vs. FTC/TDF: 6%).

Conclusion: In virologically suppressed participants switching from FTC/TDF to FTC/TAF high rates of virologic suppression were maintained, while renal and bone safety parameters improved. These long-term data support FTC/TAF as a safe and durable backbone, which can be used in combination with various third agents for treatment of HIV-1 infection.

O131 - Keeping the Patient in the Centre of Quality Care: What Matters?

O131
Confidentiality matters: innovative HIV testing
Cheryl Johnson
World Health Organization, Geneva, Switzerland

The global scale-up of HIV testing services (HTS) has been tremendous; however, many of these tests never reach those with undiagnosed HIV and at high ongoing risk, for example, key populations, men and adolescents. Approximately 40% of people with HIV remain undiagnosed, and thus unable to receive life-saving treatment or effective prevention to stop onward transmission. To achieve the United Nation’s 90–90–90 goals, greater efforts and innovations are needed, starting with the first 90 goal, which calls for the diagnosis of 90% of all people with HIV by 2020. Globally, 35% of new HIV infections are among key populations and their partners. Yet, HTS coverage and uptake among key populations remains poor and irregular worldwide. Men also remain unreached and untested, and evidence shows men present late in disease stage and have higher HIV-related mortality compared with women. Young people in high incidence settings, particularly sub-Saharan Africa, also remain untested and unlinked to prevention and treatment. It is well documented that among these populations, unfriendly services, fear of stigma and discrimination, and lack of privacy and confidentiality are barriers to HTS uptake. In many environments, this is further exacerbated by restrictive policies, such as age of consent laws and policies which criminalise key populations for their behaviour, deterring HTS uptake among those with greatest need. HTS approaches must evolve and utilize innovative methods that are effective, acceptable and meet the patient’s need for confidentiality, such as HIV self-testing, anonymous and assisted HIV partner notification, and community- and facility-based models which take place in discreet locations, offer night-time hours, use trusted peers and lay providers, and are designed to be friendly and attractive to key populations, men and adolescents. Placing people at the highest risk of HIV at the centre of HIV testing programmes is essential, and this is the only way to reach and go beyond the first 90 goal.

O132 - Convenience matters: catalogue STI testing and PrEP
Patrick S Sullivan
Rollins School of Public Health, Emory University, Atlanta, USA

Mathematical modelling suggests that reducing HIV incidence among men who have sex with men (MSM) will require achieving high coverage of multiple HIV prevention interventions [e.g. HIV testing, sexually transmitted infections (STI) testing, condom promotion and pre-exposure prophylaxis (PrEP)]. For reasons of convenience and to minimise the burden on healthcare providers, we have developed...
systems to offer self-service options for HIV self-testing with telemedicine counselling, if requested; home specimen collection with mail-in processing of tests for HIV, urethral and rectal STIs; and at-home self-monitoring of behaviours and laboratory screens for MSM on PrEP. Acceptability has been high among MSM and their healthcare providers for these programmes. However, some challenges remain in the evaluation of programmes and in bringing programmes to a broader scale in the United States. Mail-out kits for STI testing and for PrEP monitoring offer important options to reach the highest risk MSM with a higher frequency of STI testing, and to lower the burden of follow-up PrEP care.

O133
Context matters: one-stop medical care from Eastern Europe to downtown London
Jeffrey V Lazarus
CHIP, Centre for Health and Infectious Disease Research and WHO Collaborating Centre on HIV and Viral Hepatitis, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
Despite great advances in HIV medicine, people living with HIV (PLHIV) in many European settings are not attaining optimal health outcomes. This situation raises important questions about how well national and local health systems are meeting the full spectrum of PLHIV health needs. The public health community’s increasing interest in health system performance in recent years presents important opportunities for researchers, policy-makers, community stakeholders and others to explore how PLHIV healthcare can be advanced in tandem with efforts to improve overall health system functioning. A key issue in this realm is the goal of making health systems more people-centred. As health system experts continue to explore what constitutes a “people-centred health system” in theory and in practice, the HIV field stands poised to make unique contributions to this emerging body of knowledge, which is greatly needed by policy-makers who seek to make health systems more cost-efficient and more equitable. Providing integrated “one-stop” medical care is one important aspect of people-centred health systems, but how can critical practices stemming from integrated care be transferred to HIV care and applied effectively in markedly different settings within and across countries? This presentation draws on the paradigm of people-centred health systems to provide strategic thinking into how to utilize local and national healthcare contexts to drive forward this next step in HIV care, which includes how to improve the quality of life of PLHIV.

O134
Choice matters: differentiated models of care
Helen Bygrave
SAMU (Southern Africa Medical Unit), Médecins Sans Frontières, Cape Town, South Africa
Differentiated care is a patient-centred approach that simplifies and adapts HIV services across the cascade to reflect the preferences and expectations of various groups of people living with HIV, while reducing unnecessary burdens on the health system. By providing differentiated care, the health system can refocus resources to those most in need. Antiretroviral therapy (ART) delivery may be differentiated according to the medical needs of the patient, subpopulation and contextual factors. Using the “building blocks” of differentiated care, a model may be built to determine whether, how often and to whom ART is provided to. Differentiated ART delivery for stable patients has demonstrated positive outcomes for both health systems and patients. In South Africa, HIV Adherence Clubs, where groups of 20 to 30 patients meet at either a facility or community location to receive their ART, have demonstrated higher rates of both retention (97% vs. 85%), virological uptake and suppression than those in conventional care. Community ART groups in Tete, Mozambique, where self-formed groups of patients on ART collect medication for each other, demonstrated retention within the model of 98%, 96%, 93% and 91% at 12, 24, 36 and 48 months, respectively. Such group models of ART delivery have also demonstrated an impact on reducing clinical visits, along with enhancing peer and community support. Moving forward, differentiated ART delivery must be adapted beyond stable patients and the principles applied across the HIV cascade. By adopting such patient-centred approaches, differentiated care will be a part of the solution to reach the United Nation’s 90-90-90 target in the era of start all.

O21 - Co-morbidities and HIV Management
O211
Helping the HIV physician through the challenges of co-morbidities
Edouard Battegay
Center of Competence Multimorbidity, University Hospital Zurich, Zurich, Switzerland
Between 20 and 30% of the population and about 90% of inpatients hospitalized in General Internal Medicine have multiple concurrent acute or chronic diseases, that is, multi-morbidity (MM). Complexity increases proportionally with the number of concurrent diseases, probably partially due to disease–disease interactions (DDIs). Risk factors for HIV, such as intravenous (IV) drug use and successful near-normalization of life expectancy in HIV, have increased the likelihood of other concurrent diseases to occur and to determine life expectancy. In one study, people living with HIV/AIDS had a prevalence of one or more co-morbidity of 29%, a rate similar to the population at large. Concurrent diseases associated with IV drug use include hepatitis and sometimes severe mental disorders. However, in ageing HIV patients especially, diseases constitute very typical MM clusters that include vascular risk factors and disease, heart and pulmonary disease, major mental disorders and a broad array of various other medical diseases and conditions. These occur sometimes in characteristic dyadic or triadic, or higher combinations (painful syndromes and depression; non-adherence and depression, and hypertension and HIV, pain treatment for arthritis and hypertension; non-adherence and mental disorders, etc.). Some of these conditions and combinations of interactions interact with HIV to worsen the prognosis. There are limited evidence-based guidelines for MM, be it without or with HIV, even for more prevalent forms of MM and frequent interacting combinations (mentioned earlier). This leaves MM care heavily reliant upon clinical guidelines intended for the treatment of single diseases. However, these guidelines do not adequately address the combined risk to multi-morbid patients and tend to ignore adverse DDI’s (disease–disease, drug–disease and drug–drug interactions, due to multiple drug regimens, i.e. polypharmacy), especially if a condition is outside the usual realm of those specialists from the same field of expertise that wrote the guidelines. Decision-making concerning therapeutic conflicts due to adversely interacting treatments usually remains to be resolved at the discretion of involved clinicians. These conflicts typically demand prioritizing and reconciling adverse DDIs with the most suitable, best acceptable and sometimes surprising therapeutic strategy. They also require medical doctors to communicate these dilemmas and the corresponding lack of evidence-based security to patients in order to allow for shared decision-making, if possible and if wished. Furthermore, decision-making in dilemma situations can induce psychological
stress upon patients, especially on conscientious medical doctors that they need to consciously deal with.

O212
HIV patients today and 10 years ago: do they have the same needs? Results from cross-sectional analysis of ANRS CO3 Aquitaine cohort

Fabrice Bonnet1; Fabien Le Marec2; Olivier Leleux3; Claire Auzanneau4; Esteban Martinez5; Rebollar3; Montserrat Laguno; Amparo Tricas; Ana Rodriguez; Jordi Blanch; Montserrat Lonca; Berta Torres; Maria Martinez-Gemma Sanchez; Ana Gonzalez-Cordon; Jhon Rojas; Jose Blanco; Jordi Blanch; Montserrat Lonca; Berta Torres; Maria Martinez-Rebollar; Montserrat Laguno; Amparo Tricas; Ana Rodriguez; Josep Mallolas; Jose Gutell; Judit Periñol; Elisa de Lazari and Esteban Martinez

1Service de Médecine Interne et Maladies Infectieuses, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France. 2INSERM U1219, ISPED, Université de Bordeaux, Bordeaux, France. 3Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France

Introduction: Nowadays, people living with HIV (PLHIV) live longer, due to highly effective ART. Also, due to age, risk factors exposure, ART and HIV-related factors, they are more likely to develop comorbidities, potentially requiring different, long-term healthcare management. This study aimed to describe the PLHIV characteristics, HIV markers, comorbidities and their risk factors and scores, in the same patients 10 years apart.

Materials and methods: The ANRS CO3 Aquitaine cohort prospectively collects epidemiological, clinical, biological and therapeutic data on PLHIV in the French Aquitaine region. Inclusion criterion for this analysis was ≥ 1 visit in both calendar years. Two cross-sectional analysis were performed (2004 and 2014), regarding patient characteristics, HIV markers, the prevalence of comorbidities (chronic kidney disease (CKD), fractures, cardiovascular disease (CVD), diabetes, dyslipidaemia and hypertension, defined via ICD-10 diagnosis code, treatments or values for these comorbidities) and treatment (ART and comedication).

Results: A total of 3289 PLHIV had at least a visit registered in the cohort in 2004 and 3880 in 2014, out of which 2138 had a visit in both years. Seventy-one percent of those were male, and in 2014 the median age was 52.2 (IQR 47.6–58.1). When compared to 2004, in 2014 there were more patients virologically suppressed (91.5% in 2014 vs. 50.9%; p < 0.0001) and 72.0% in 2014 versus 43.6% patients in 2004 had CD4 count ≥ 500 cells/ml (p < 0.0001). Table 1 shows a statistically significant increase in the prevalence of diagnosed CKD, fractures (anywhere), CVD events, hypertension, diabetes and dyslipidaemia, but also for their treatment: statins use for dyslipidaemia (9.2% in 2004 vs. 24.0% in 2014; p < 0.0001); clopidogrel and aspirin use for CVD events prevention (clopidogrel: 0.8% vs. 4.1%; p < 0.0001; aspirin: 0.9% vs. 8.0%; p < 0.0001; 2004 and 2014, respectively). This is also reflected in the higher proportion of patients in the high risk or very high groups in the different disease risk scores for CKD, CVD and bone fracture score.

Conclusions: As PLHIV life expectancy increases, age-related comorbidities are increasing, leading to different needs in today’s HIV disease management. Even for the patients in this analysis who present favourable HIV disease progression, there is still a significant increase on the comorbidity burden, and therefore a need for a more holistic, long-term, multidisciplinary approach that considers not only the ART, but also lifestyle, to manage HIV patients, potentially leading to improved outcomes.

O213
Long-term impact of lipodystrophy on the risk of morbidity and mortality: a 20-year longitudinal cohort study

Gemma Sanchez; Ana Gonzalez-Cordon; Jhon Rojas; Jose Blanco; Jordi Blanch; Montserrat Lonca; Berta Torres; Maria Martinez-Rebollar; Montserrat Laguno; Amparo Tricas; Ana Rodriguez; Josep Mallolas; Jose Gutell; Judit Periñol; Elisa de Lazari and Esteban Martinez

Hospital Clinic-Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Infectious Diseases Unit, Barcelona, Spain

Introduction: Nowadays, people living with HIV (PLHIV) live longer, due to highly effective ART. Also, due to age, risk factors exposure, ART and HIV-related factors, they are more likely to develop comorbidities, potentially requiring different, long-term healthcare management. This study aimed to describe the PLHIV characteristics, HIV markers, comorbidities and their risk factors and scores, in the same patients 10 years apart.

Materials and methods: The ANRS CO3 Aquitaine cohort prospectively collects epidemiological, clinical, biological and therapeutic data on PLHIV in the French Aquitaine region. Inclusion criterion for this analysis was ≥ 1 visit in both calendar years. Two cross-sectional analysis were performed (2004 and 2014), regarding patient characteristics, HIV markers, the prevalence of comorbidities (chronic kidney disease (CKD), fractures, cardiovascular disease (CVD), diabetes, dyslipidaemia and hypertension, defined via ICD-10 diagnosis code, treatments or values for these comorbidities) and treatment (ART and comedication).

Results: A total of 3289 PLHIV had at least a visit registered in the cohort in 2004 and 3880 in 2014, out of which 2138 had a visit in both years. Seventy-one percent of those were male, and in 2014 the median age was 52.2 (IQR 47.6–58.1). When compared to 2004, in 2014 there were more patients virologically suppressed (91.5% in 2014 vs. 50.9%; p < 0.0001) and 72.0% in 2014 versus 43.6% patients in 2004 had CD4 count ≥ 500 cells/ml (p < 0.0001). Table 1 shows a statistically significant increase in the prevalence of diagnosed CKD, fractures (anywhere), CVD events, hypertension, diabetes and dyslipidaemia, but also for their treatment: statins use for dyslipidaemia (9.2% in 2004 vs. 24.0% in 2014; p < 0.0001); clopidogrel and aspirin use for CVD events prevention (clopidogrel: 0.8% vs. 4.1%; p < 0.0001; aspirin: 0.9% vs. 8.0%; p < 0.0001; 2004 and 2014, respectively). This is also reflected in the higher proportion of patients in the high risk or very high groups in the different disease risk scores for CKD, CVD and bone fracture score.

Conclusions: As PLHIV life expectancy increases, age-related comorbidities are increasing, leading to different needs in today’s HIV disease management. Even for the patients in this analysis who present favourable HIV disease progression, there is still a significant increase on the comorbidity burden, and therefore a need for a more holistic, long-term, multidisciplinary approach that considers not only the ART, but also lifestyle, to manage HIV patients, potentially leading to improved outcomes.

Abstract O212 – Table 1. Prevalence of comorbidities, their treatments and risk factors in 2004 and 2014

<table>
<thead>
<tr>
<th>Comorbidity/Drug</th>
<th>2004; N = 2,138</th>
<th>2014; N = 2,138</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with CD4 count ≥ 500 cells/ml, %</td>
<td>43.6</td>
<td>72.0</td>
<td><0.0001</td>
</tr>
<tr>
<td>Patients with HIV RNA > 50 copies/mL, %</td>
<td>50.9</td>
<td>91.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>Prevalent CKD (diagnose or 2 consecutive eGFR <60), %</td>
<td>3.6</td>
<td>18.3</td>
<td><0.0001</td>
</tr>
<tr>
<td>DAD CKD high risk score, %</td>
<td>29.9</td>
<td>50.7</td>
<td><0.0001</td>
</tr>
<tr>
<td>Prevalent fractures (anywhere), %</td>
<td>0.7</td>
<td>7.0</td>
<td><0.0001</td>
</tr>
<tr>
<td>10-year FRAX high risk score group, %</td>
<td>0.3</td>
<td>2.9</td>
<td><0.0001</td>
</tr>
<tr>
<td>Prevalent CVD events (ever), %</td>
<td>3.6</td>
<td>14.0</td>
<td><0.0001</td>
</tr>
<tr>
<td>DAD CVD very high risk score group, %</td>
<td>5.3</td>
<td>19.9</td>
<td><0.0001</td>
</tr>
<tr>
<td>Framingham high risk score group, %</td>
<td>11.6</td>
<td>26.2</td>
<td><0.0001</td>
</tr>
<tr>
<td>Patients on clopidogrel, %</td>
<td>0.8</td>
<td>4.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>Patients on aspirin, %</td>
<td>0.9</td>
<td>8.0</td>
<td><0.0001</td>
</tr>
<tr>
<td>Prevalent hypertension, %</td>
<td>18.8</td>
<td>56.3</td>
<td><0.0001</td>
</tr>
<tr>
<td>On blood-lowering treatment, %</td>
<td>6.0</td>
<td>22.7</td>
<td><0.0001</td>
</tr>
<tr>
<td>Prevalent diabetes, %</td>
<td>8.4</td>
<td>18.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>On antidiabetics, %</td>
<td>2.4</td>
<td>5.8</td>
<td><0.0001</td>
</tr>
<tr>
<td>Prevalent dyslipidaemia, %</td>
<td>14.3</td>
<td>54.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>On treatment with statins, %</td>
<td>9.2</td>
<td>24</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

CKD, chronic kidney disease; CVD, cardiovascular disease; eGFR, glomerular filtration; DAD, Data Collection on Adverse Events of Anti-HIV Drugs; FRAX, WHO Fracture Risk Assessment tool.
Abstract O213 – Table 1. Incidence rate ratios (IRR) (95% CI) of any lipoatrophy (LA), any lipohypertrophy (LH) or both lipodystrophy (LD) for non-AIDS comorbidities, AIDS events or death

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Any LA (n = 207)</th>
<th>Any LH (n = 109)</th>
<th>Any LD (n = 227)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any non-AIDS comorbidity (n = 379)</td>
<td>1.05 (0.81–1.36)</td>
<td>1.25 (0.93–1.68)</td>
<td>1.06 (0.82–1.38)</td>
</tr>
<tr>
<td>Hypertension (n = 70)</td>
<td>1.77 (1.10–2.86)</td>
<td>2.41 (1.49–3.90)</td>
<td>2.00 (1.22–3.28)</td>
</tr>
<tr>
<td>Non-AIDS neoplasia (n = 65)</td>
<td>1.19 (0.73–1.93)</td>
<td>1.21 (0.70–2.11)</td>
<td>1.04 (0.64–1.70)</td>
</tr>
<tr>
<td>Cardiovascular events (n = 56)</td>
<td>1.30 (0.77–2.19)</td>
<td>1.38 (0.78–2.47)</td>
<td>1.53 (0.89–2.61)</td>
</tr>
<tr>
<td>Diabetes mellitus (n = 42)</td>
<td>2.27 (1.19–4.31)</td>
<td>2.51 (1.35–4.65)</td>
<td>2.51 (1.28–4.90)</td>
</tr>
<tr>
<td>Bone fractures (n = 39)</td>
<td>0.53 (0.27–1.03)</td>
<td>0.61 (0.26–1.46)</td>
<td>0.58 (0.31–1.11)</td>
</tr>
<tr>
<td>Chronic kidney disease (n = 38)</td>
<td>1.09 (0.58–2.05)</td>
<td>1.05 (0.50–2.22)</td>
<td>1.06 (0.56–2.00)</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease (n = 34)</td>
<td>0.58 (0.29–1.17)</td>
<td>1.06 (0.48–2.34)</td>
<td>0.57 (0.29–1.15)</td>
</tr>
<tr>
<td>Hepatic decompensation (n = 18)</td>
<td>0.31 (0.10–0.93)</td>
<td>–</td>
<td>0.27 (0.09–0.82)</td>
</tr>
<tr>
<td>Neurocognitive impairment (n = 17)</td>
<td>0.58 (0.22–1.58)</td>
<td>0.73 (0.21–2.52)</td>
<td>0.51 (0.19–1.38)</td>
</tr>
<tr>
<td>AIDS events (n = 104)</td>
<td>0.53 (0.33–0.86)</td>
<td>0.68 (0.37–1.24)</td>
<td>0.53 (0.33–0.85)</td>
</tr>
<tr>
<td>Death (n = 71)</td>
<td>0.41 (0.25–0.70)</td>
<td>0.48 (0.25–0.92)</td>
<td>0.43 (0.26–0.71)</td>
</tr>
</tbody>
</table>

Introduction: Lipodystrophy is considered to accelerate the process of aging in HIV-infected persons, but long-term data showing an impact on morbidity and mortality are lacking. We hypothesized that lipodystrophy would increase the risk of comorbidities and death.

Methods: Within a previously well-defined cohort [1], including all consecutive antiretroviral-naive HIV-infected adults who began two nucleoside reverse transcriptase inhibitors plus at least one protease inhibitor from October 1996 to September 1999, moderate or severe body fat changes were clinically assessed and categorized as lipoatrophy (LA), lipohypertrophy (LH) or both lipodystrophy (LD). Clinical and laboratory data were periodically registered into a specific database. Patients were followed until December 2015, death or lost-to-follow-up, whichever came first. A person-years analysis was used to calculate the incidence of specific non-AIDS comorbidities (first diagnosis), AIDS events (new events) or death. Incidences were compared with Poisson or negative binomial regression models.

Results: Of 494 patients included, 118 (24%) developed LA only, 20 (4%) LH only, and 89 (18%) both; 71 (14%) patients died and 106 (22%) were lost to follow-up. Increasing age, HIV acquisition through sexual contact, AIDS events (new events) or death. Incidences were significantly higher in patients with LA compared to those without LA (IRR 1.35, 95% CI 1.05–1.75, p = 0.021), higher proportion of viral suppression in plasma (87% vs. 72%, respectively). Patients with any LA also had significantly higher CD4 cell counts (572 vs 492 per mm³, p = 0.0025), higher proportion of viral suppression in plasma (87% vs. 69%, p < 0.0001) and higher haemoglobin (146 vs. 145 g/dL, p = 0.0210) at the end of follow-up compared with patients without any LA. Incidence rate ratios (IRR) (95% CI) of any LA, any LH or any LD for non-AIDS comorbidities, AIDS events or death are shown in Table 1 (IRR 1 is the reference for patients without both LA and LH).

Conclusion: Hypertension and diabetes were the only non-AIDS comorbidities showing a higher risk in patients with any LA, any LH or any LD. However, contrary to our hypothesis, any LA, any LH or any LD were associated with a lower risk of death; in addition, any LA or any LD (but not any LH) were also associated with a lower risk of AIDS events and hepatic decompensation.

Reference

O214

Higher rates of neuropsychiatric adverse events leading to dolutegravir discontinuation in women and older patients

Michael Sabranski¹; Christoph Wyen²; Christian Hoffmann²; Tanya Welz²; Michael Kolb²; Eva Wolf² and Hans-Juergen Stellbrink²

1Infectious Diseases, ICH Study Center Hamburg, Hamburg, Germany.
2Infectious Diseases, Praxis am Ebertplatz, Cologne, Germany.

Introduction: Dolutegravir (DTG), a second-generation integrase strand transfer inhibitor (INSTI), is now among the most frequently used antiretroviral agents. However, recent reports have raised concerns about potential neurotoxicity.

Methods: We performed a retrospective analysis of a cohort of HIV-infected patients who had initiated an INSTI in two large German outpatient clinics between 2007 and 2016. We compared discontinuation rates due to adverse events within 2 years of starting between DTG, raltegravir (RAL) or elvitegravir (EVG)/cobicistat. We also evaluated factors associated with DTG discontinuation.

Results: A total of 1950 INSTI-based therapies were initiated amongst 1704 patients eligible for analysis within the observation period. The estimated rates of any adverse event (AE) and of neuropsychiatric AEs leading to discontinuation within 12 months were 7.6% and 5.6% respectively for DTG (n = 985), 7.6% and 0.7% for EVG (n = 287) and 3.3% and 1.9% for RAL (n = 678). Neuropsychiatric AEs leading to DTG discontinuation were observed more frequently in women (hazard ratio [HR] 2.42; 95% CI 1.42–4.09, p = 0.0012) in patients older than 60 years (HR 2.86; 95% CI 1.42–5.77, p = 0.003) and in HLA-B*57:01-negative patients who initiated abacavir at the same time (HR 2.42; 95% CI 1.38–4.12, p = 0.002).

Conclusion: In this large cohort, the discontinuation rate of DTG due to neuropsychiatric AEs was significantly higher than with the other INSTIs at almost 6% within 12 months. Almost three-fold higher discontinuation rates observed amongst women and older patients underscore the need for further investigation, especially in patient populations usually under-represented in clinical trials.

O215

Cognitive function and depression in HIV-positive individuals and matched controls

Davide De Francesco¹; Jonathan Underwood²; Marta Boffito³; Frank Post¹; Patrick Mallon²; Jaime Vera²; Ian Williams¹; Jane Anderson¹; Margaret Johnson¹; Caroline Sabin¹ and Alan Winston²
Abstract O215 - Figure 1. Differences (with 95% CI) in the median global Z-score across cohorts (≥50 PLWH, <50 PLWH and HIV-negative controls).
Novel hepatitis C virus (HCV) therapies have revolutionized the management of hepatitis C in only half a decade. The new direct-acting antiviral agents (DAAs) inhibit the HCV protease, the NS5A protein or the NS5B polymerase, and hereby block viral replication, assembly and release. These drugs have greatly improved treatment tolerability and efficacy compared with the previous interferon-based therapies. Fortunately, the promising results of clinical trials hold true in real-life settings. Even previously difficult-to-treat populations, including cirrhosis, can now be treated with safe and extremely effective regimens. However, despite the unprecedented success of novel HCV treatments, challenges remain: the most urgent priority is to greatly increase treatment uptake, which is only possible if DAA costs are lowered substantially. The remarkable success in scaling-up HCV treatments in Egypt exemplifies how coordinated efforts involving patients, physicians and public health authorities can impact the global burden of HCV infection. Another challenge is the emergence of HCV epidemics among HIV-infected men who have sex with men, and the surge in HCV infections among people who inject drugs in Eastern Europe and Southeast Asia. These epidemics can only be controlled if advances in treatment uptake and efficacy are accompanied by reductions in high-risk behaviour. Finally, it is important to note that cure of HCV infection substantially reduces the risk of liver-related complications, but does not eliminate it, particularly in those with multiple liver-related risk factors. Despite remaining challenges, the future of HCV therapy is bright with the potential to eliminate one of the most common infectious diseases worldwide.

O222
HPV-associated malignancies in HIV
Deborah Konopnicki
Service des Maladies Infectieuses, CHU Saint-Pierre, Brussels, Belgium

Oncogenic human papillomaviruses (HPV) are responsible for the development of cancer and pre-cancerous lesions in the anogenital area (namely in the cervix, vulva and vagina, penis and anus) and in the oropharyngeal cavity. These lesions are more frequent and more difficult to treat in HIV-positive patients. In Europe, less than 30% of HIV-positive men and less than 70% of HIV-positive women have access to anal and cervical cancer screening, respectively. We will discuss the different strategies of screening for these cancers, which have been recently developed or are currently under investigation in randomized controlled studies and how to implement them. Preventive vaccines against HPV have been available for almost a decade, and their use in primary and secondary prophylaxis should be proposed to HIV-positive patients. Issues on vaccines schedules, costs and HPV genotypes coverage will be raised. Non-invasive therapy of HPV-related lesions, such as local administration of antiviral drugs or the use of therapeutic vaccines, will be presented.

O223
Screening for malignancies: what is new?
Jean-Philippe Spano
Department of Medical Oncology, University Institute of Oncology (IUC)/University Pierre and Marie CURIE (UPMC), Paris, France

Since the emergence of the HIV pandemic, several viral-induced cancers were frequently diagnosed: Kaposi’s sarcoma associated with human herpesvirus 8, non-Hodgkin lymphoma mostly associated with Epstein–Barr virus and cervical cancer associated with onco- genic human papillomavirus types. However, in the late 1990s, several population-based cohort studies, comparing the incidence of cancers in the HIV population and in the general population, found higher rates of other cancers (defined as non-AIDS-related malignancies) in people living with HIV (PLWHIV), such as anal cancer, Hodgkin lymphoma (HL), skin cancers, lip cancer, liver cancer and lung cancer. In the era of highly active antiretroviral therapy, additional registry studies and meta-analyses have also shown an increased rate of cancers in PLWHIV compared with the general population. Nowadays, the most frequent are HL, cancers of the lung, anus and liver. Factors implicated in this increased incidence, such as higher rates of smoking, chronic immunodeficiency and oncogenic virus, are among the main ones. Strategies to increase cancer survival in PLWHIV are needed. Beyond the recommendations in terms of therapeutic strategies likely used in the general population, screening programme and prevention actions can provide a positive impact on survival, such as in the general population. For instance, for lung cancer screening with low-dose chest computed tomography has shown to be efficient in the general population at risk, so why not in PLWHIV? The objective of this presentation is to discuss the main screening for malignancies in PLWHIV and to present some guidelines, already approved for some cancer types.

O224
Differences in virological and immunological risk factors for non-Hodgkin lymphoma (NHL) and Hodgkin (HL): the D:A:D study
Leah Shepherd1; Lene Ryom2; Matthew Law3; Camilla Hatleberg4; Stephane de Wit5; Antonella d’Armini Monforte5; Manuel Battegay6; Andrew Phillips2; Fabrice Bonnet7; Peter Reiss8,9; Christian Pradier10; Andrew Grulich11; Caroline Sabin3; Jens Lundgren3 and Amanda Mocroft4

Department of Infection and Population Health, University College London, London, London, UK. 1Department of Infectious Diseases, CHIP, Section 2100, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark. 2The Kirby Institute, University of New South Wales, Sydney, Australia. 3Division of Infectious Diseases, Saint Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium. 4Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland. 5Université de Bordeaux, CHU de Bordeaux and INSEMER U897, Talence, France. 6Division of Infectious Diseases, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands. 7Department of Global Health, HIV Monitoring Foundation, Amsterdam, Netherlands. 8Department of Public Health, Nice University Hospital, Nice, France

Introduction: Non-Hodgkin (NHL) and Hodgkin lymphomas (HL) are common in HIV+ people. Since the introduction of cART, a decline in NHL but not HL incidence has been observed. Factors affecting risk of NHL and HL appear to differ in HIV+ persons.

Materials and methods: D:A:D participants were followed from the earliest of study entry or January 1, 2004 until first NHL or HL diagnosis, last visit plus 6 months, death, or February 1, 2015. Crude incidence rates (IR) of NHL and HL were calculated. Adjusted incidence rate ratios (aIRR) were calculated using Poisson regression with generalized estimating equations. Both current and historical incidence rates (IR) of NHL and HL were calculated. Adjusted incidence rate ratios (aIRR) were calculated using Poisson regression with generalized estimating equations. Both current and historical

Results: About 41,583 persons were included contributing 337,020 person-years of follow-up (PYFU) (median of 9 (IQR 6–11) years per
Of which, 392 developed NHL (IR 1.2/1000 PYFU, 95% CI 1.1–1.3) and 149 developed HL (IR 0.4/1000 PYFU, 95% CI 0.4–0.5). In age-adjusted analyses, NHL incidence declined by 15% (95% CI 12–17)/year from 2004–2015, whereas IR of HL was stable (change/year: +3% (95% CI 8–2%). At diagnosis, persons who developed HL versus NHL were of similar age (46.2 vs. 46.9 years, p = 0.25), with a higher current CD4 (400 vs. 325 cells/mm³, p < 0.01), lower current log₁₀ VL (1.7 vs. 2.3 log₁₀ copies/mL, p < 0.01), and lower log₁₀ VL AUC (4.8 vs. 5.1 log₁₀ copies/mL, p < 0.01). After adjustment, the IR of NHL and HL was over 50% lower in females relative to males (Figure 1). Persons of older age had higher IR of NHL only. Lower current CD4 was the strongest predictor of higher NHL IR; however, higher current VL and VL AUC were also associated. Nadir and CD4 AUC were not associated with NHL after adjustment for current CD4 (both p > 0.05). The declining trend over time in NHL IR attenuated, but remained after adjustment (−8% (95% CI −4%–11%)/year). HL IR was also associated with lower current CD4, but not with other markers of VL or CD4 in addition to current CD4. HL IR remained stable over time (aIRR 1.01; 95% CI 0.95–1.07).

Conclusion: NHL incidence was associated with lower current CD4 and both current and historical exposure to viral replication, suggesting historical exposure to uncontrolled viral replication may play a part in NHL development in addition to current immunodeficiency. Conversely, HL incidence was elevated in those with current immunodeficiency, but current and historical exposure to uncontrolled HIV replication were not associated when adjusting for current CD4.

Abstract O223 - Critical issues in Eastern and Central Europe including MDR TB and Hepatitis Co-infection

O233
Tackling the HCV epidemic in the EECA region: a physician’s perspective

Nikoloz Chkhartishvili
Infectious Diseases, AIDS and Clinical Immunology Research Center, Tbilisi, Georgia

Eastern Europe and Central Asia (EECA) has the largest hepatitis C virus (HCV) epidemic in the World Health Organization European region. The epidemic in EECA has been closely linked to economic, social and public health dislocations in the 1990s that created an environment supportive of the rapid spread of HCV. It is estimated that 6 million people are living with chronic hepatitis C infection in the region, including up to 2.5 million people who inject drugs (PWID). While EECA is home to a large drug epidemic, the coverage with prevention interventions, such as needle exchange and opioid substitution therapy, is very low, and this contributes to sustainment and further growth of the HCV epidemic. There is a significant burden of HCV among people living with HIV in EECA, with prevalence exceeding 80% among HIV-positive PWID. There are differences in the HCV prevalence between countries, with Georgia having the
highest adult viraemic prevalence. Access to HCV therapy in the region is limited and only a small proportion of patients receive appropriate treatment. Georgia is an exception to this situation, where the national HCV elimination programme was launched in April 2015 as a result of support from the US Centers for Disease Control and Prevention and commitment from Gilead Sciences to donate direct-acting antiviral agents (DAAs). The impact of DAAs in the EECA region is limited and only a small proportion of patients receive treatment. The overall goal of the cost-effectiveness analyses is to maximize the health of the population with the available budget. Previous modelling studies based around MSM in North America and Australia found PrEP to be generally not cost-effective. However, there are issues to consider over appropriate costs, time horizon considered and groups targeted. We present results from two cost-effective evaluations of introducing PrEP among MSM in the UK (which I led) and in The Netherlands (led by Brooke Nichols). The two evaluations take into account a time horizon long enough to evaluate the full benefit of PrEP, target similar groups to those in the PROUD and IPERGAY studies, and consider a realistic uptake. While the UK and Dutch models differ greatly in structure, the primary conclusions are the same – PrEP can generally be considered cost-effective (or even cost-saving) for use among MSM in Europe, when appropriately considering a long time scale, given that each infection averted is saving the health service ART costs for many decades to come. However, if the time horizon under consideration is – we would argue inappropriately – restricted to the short-medium term, significant reductions in drug prices are required for PrEP to be considered cost-effective.

O311 - PrEP in High Income Settings

O311
Update on the evidence for PrEP effectiveness
Sheena McCormack
MRC Clinical Trials Unit, University College London, London, UK

Nine randomized controlled clinical trials have demonstrated a reduction in HIV incidence when antiretrovirals are offered to HIV-negative individuals as tenofovir-based oral regimens, tenofovir vaginal gel or dapivirine released from a vaginal ring. Three trials failed to show benefit; all three were placebo-controlled, and all three were conducted in women in low-income settings in sub-Saharan Africa. The diversity of populations studied in the nine trials, with a positive result, underscores the breadth of impact that adding antiretrovirals to the toolkit for HIV-negative individuals could have. The impact is apparent in some cities in the United States but yet to be realized elsewhere as other countries have been slow to accept the evidence and implement models of delivery. The commonest reason for this delay is the cost of the drug as demand for pre-exposure prophylaxis (PrEP) is uncertain, although countries that do not currently fund sexual health services or HIV prevention services tailored to key populations are also struggling to work out the feasibility and cost of delivering PrEP. Feasibility and cost of delivery are not reasons for delay in the UK as a well-established, professionally linked network of sexual health clinics already exists, albeit with ever-diminishing funding. As well as the cost of the drug, policy makers cite concerns about an increase in sexually transmitted infections as a result of PrEP. The evidence from pre-PrEP Europe demonstrates that syphilis and gonorrhoea have been increasing for a decade in men who have sex with men, and this mirrors an increase in new HIV infections. PrEP may contribute further to the increase in STIs but at least HIV will be curtailed. Whilst policy makers deliberate, key populations are purchasing PrEP for themselves and services have already changed practice to support them.

O312
Brief overview of cost-effectiveness of PrEP
Valentina Cambiano
Department of Infection and Population Health, University College London, London, UK

HIV incidence among men who have sex with men (MSM) remains high despite the widespread use of antiretroviral therapy (ART) and high rates of virological suppression. Pre-exposure prophylaxis (PrEP) has been shown to be highly effective in preventing infections in MSM. Healthcare systems are facing the decision of whether to introduce it. The overall goal of the cost-effectiveness analyses is to maximize the health of the population with the available budget. Previous modelling studies based around MSM in North America and Australia found PrEP to be generally not cost-effective. However, there are issues to consider over appropriate costs, time horizon considered and groups targeted. We present results from two cost-effective evaluations of introducing PrEP among MSM in the UK (which I led) and in The Netherlands (led by Brooke Nichols). The two evaluations take into account a time horizon long enough to evaluate the full benefit of PrEP, target similar groups to those in the PROUD and IPERGAY studies, and consider a realistic uptake. While the UK and Dutch models differ greatly in structure, the primary conclusions are the same – PrEP can generally be considered cost-effective (or even cost-saving) for use among MSM in Europe, when appropriately considering a long time scale, given that each infection averted is saving the health service ART costs for many decades to come. However, if the time horizon under consideration is – we would argue inappropriately – restricted to the short-medium term, significant reductions in drug prices are required for PrEP to be considered cost-effective.

O313
Lessons from implementation in France
Jean-michel Molina
Department of Infectious Diseases, University of Paris Diderot, Paris, France

In the wake of the striking efficacy results of the PROUD and IPERGAY trials, France has approved the use of TDF/FTC for PrEP to reduce the risk of sexual acquisition of HIV among adults in January 2016. In July 2016, more than 1000 patients have been registered on the Gilead website put in place at the request of the French Drug Agency to collect information on patients’ characteristics, PrEP efficacy and safety. PrEP is fully covered by the National Health System. Visits to doctors and tests for PrEP monitoring are partly reimbursed. PrEP can only be prescribed in hospitals and Sexual Health Clinics. More than 90 clinics are currently offering PrEP throughout France. The vast majority of people requesting PrEP self-select and are MSM (96.4%), although PrEP is also recommended in other high-risk individuals but prevention campaigns on the use of PrEP have not yet started. Interestingly, more than 60% of people receive PrEP on demand according to the dosing regimen used in the IPERGAY trial, and so far only two seroconversions have been reported in patients most likely infected at the time they started PrEP. Also 30% of patients had experienced STIs before starting PrEP, and the implementation of PrEP is a clear opportunity for a better prevention, diagnosis and treatment of STIs. Finally, the implementation of PrEP programmes represents a challenge for hospitals and STI clinics since no additional resources have been provided, suggesting more research is needed in defining the best models of care delivery and monitoring.

O314
Utilization of emtricitabine/tenofovir (FTC/TDF) for HIV pre-exposure prophylaxis in the United States by gender (2013-1Q2016)
Staci Bush1; Keith Rawlings2; David Magnuson2; Patty Martin3; Olga Lugo-Torres1 and Robertoino Mera-Giler3
1Medical Affairs, Gilead Sciences, Foster City, CA, USA. 2Drug Safety & Public Health, Gilead Sciences, Foster City, CA, USA. 3Epidemiology, Gilead Sciences, Foster City, CA, USA
Table 1. Gender differences in FTC/TDF for PrEP utilization by race

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>White</th>
<th>Hispanic</th>
<th>Asian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>17%</td>
<td>65%</td>
<td>15%</td>
<td>3%</td>
</tr>
<tr>
<td>Male</td>
<td>9%</td>
<td>76%</td>
<td>11%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Introduction: The availability of FTC/TDF for pre-exposure prophylaxis (PrEP) in combination with other strategies to reduce the risk of sexually acquired HIV-1 in adults at high-risk has altered the HIV prevention landscape in the United States. While previous analyses have shown gender differences among individuals started on FTC/TDF for PrEP, this is the first study to explore the characteristics and differences in utilization trends by gender and race.

Materials and methods: National electronic patient-level data were collected from 82% of all US retail pharmacies that dispensed FTC/TDF between January 1, 2013 and March 31, 2016. A previously described algorithm identified use of FTC/TDF for PrEP. De-identified prescription refill data, medical claims and patient demographics were analyzed through categorical methods. Data were projected to all retail pharmacies in the United States.

Results: During this time period, a total 67,403 unique individuals started FTC/TDF for PrEP in the United States. Overall, women accounted for 9685 (14.4%) of total FTC/TDF for PrEP users. Age distribution revealed that 9.8% of men and 24.1% of women were <24 years of age. Between 1Q2013 and 1Q2016 quarter-over-quarter utilization grew 770%; with growth of 72% for women and 1350% for men. The Northeast was the region with the highest percentage of overall FTC/TDF for PrEP starts (29.3%) as well as unique starts among women (35.2%), while the Western US had the highest percentage of starts in men (89.9%). Table 1 shows the gender differences in FTC/TDF for PrEP utilization by race.

For the five quarters ending March 2016, White women were 3.4 and 4.2 times more likely to start PrEP than Black or Hispanic women, while White men were 8.1 and 6.6 times more likely to start than their Black or Hispanic counterparts.

Conclusion: The overall population of PrEP user increased steadily since 2012. The number of starts among males significantly increased while female uptake remained flat for all racial groups. Despite having some of the highest lifetime risks of acquiring HIV (1 in 2 for Black men and 1 in 48 among Black women) PrEP starts have been disproportionately low. HIV prevention messaging and services need to be gender and racially focused to decrease new infections in populations with the most severe burden of HIV in the United States.

O315

Xinthus Wang1; Nneka Nwokolo2; Roxanna Korologou-Linden1; Andrew Hill2; Gary Whitlock3; Isaac Day-Weber2; Myra McClure1 and Marta Boffito1

1Faculty of Medicine, Imperial College London, London, UK. 2Chelsea and Westminster Hospital, London, UK. 3St Stephen’s AIDS Trust, Chelsea and Westminster Hospital, London, UK

Introduction: The UK National Health Service (NHS) does not provide TDF/FTC for PrEP in the UK. This forces people to purchase generic versions of the internet (e.g. www.iwantprepnow.co.uk [1]), which is legal under UK import laws. However, there are concerns about the authenticity of medicines purchased online. In February 2016, we established an innovative service offering plasma tenofovir (TFV) and FTC therapeutic drug monitoring (TDM) for people buying generic PrEP online, to ensure that drug concentrations were consistent with previously published data.

Materials and methods: HIV-negative individuals who attended the GUM clinic (from February to June 2016) who reported purchasing PrEP on the internet: 74% were White, 94% were taking daily PrEP and 6% event-driven. The majority of patients received generic TDF/FTC from Cipla Ltd. There were 118 patients with TDM results: median (range) TFV concentration was 104 ng/mL (23–1400 ng/mL); median (range) FTC concentration was 157 ng/mL (77–1876 ng/mL). All TFV and FTC concentrations were above our established median plasma TFV and FTC cut-offs of 19 ng/mL and 22 ng/mL, respectively, at 24 hours post-dose, based on previously published data [2,3]. Seven samples were repeated; six were confirmed to be above cut-off. Baseline eGFR was normal in all evaluable individuals. Thirty-nine (26%) had an STI at baseline or within 3 months of starting PrEP and 13 had an STI at a follow-up visit. No new cases of HIV, hepatitis B/C were seen in this cohort.

Conclusions: In a population at high-risk of STI who cannot yet access PrEP from the UK NHS, concentrations of TFV and FTC in generic formulations purchased over the internet were similar to those on the original formulation from Gilead, which have demonstrated high levels of protection against HIV infection in previous clinical trials.

References

O316
New approaches and new technologies to improve access to HIV testing

Teymur Noori
European Centre for Disease Prevention and Control, Stockholm, Sweden

The epidemiological trends of HIV among men who have sex with men (MSM) in Europe will be discussed in this presentation. The speaker, Teymur Noori, who works at the European Centre for Disease Prevention and Control (ECDC), is responsible for monitoring the HIV response in Europe and Central Asia through the Dublin Declaration monitoring process, will make the case that additional tools for HIV prevention among MSM are needed in order to reduce HIV infections. The latest data on the status of pre-exposure prophylaxis (PrEP) implementation in Europe will also be discussed. In addition, results from a PrEP survey conducted in
Collaboration with the Hornet Gay Social Network on the informal use of PrEP among Hornet network users in Europe will be shown.

O317 Implementation from the community perspective
Bruno Spire1,2
1French National Institute for Medical Research (INSERM), Marseilles, France. 2AIDES, Marseilles, France
In France, over the last decade, AIDES has been strongly involved in research to support early community access to biomedical prevention tools. As a community-based organization founded in 1984 and engaged in advocacy as well as in the provision of services to people living with HIV and most at-risk groups, AIDES has extensively contributed to major shifts in the French HIV Public Health policy. Among its achievements are the implementation or rapid HIV and HCV tests, a drug users’ peer education programme on safe injecting practices and, more recently, access to HIV pre-exposure prophylaxis (PrEP). From a community perspective, implementing PrEP in real life is far more complex than in research. Despite scientific evidence and a wide consensus among researchers, clinicians and the community, months of constant advocacy work were necessary to reach a legal frame around access to PrEP. Scaling-up PrEP was impeded by existing regional inequalities in access to care, along challenges at the level of care centres. Also, the implementation of PrEP requires an increase of human resources and dedicated funding, which creates new challenges for community-based organizations: how can we implement a new programme without limiting other pre-existing ones - in a context of ongoing budget cuts? Finally, it is essential to overcome hesitations and reluctance among community leaders and healthcare workers; and to adequately inform those people who would benefit the most from PrEP, and encourage them to use PrEP.

O322 Where next for ARVs?
Roy M Gulick
Weill Cornell Medicine, New York, NY, USA
Currently, there are 29 antiretroviral (ARV) drugs approved for the treatment of HIV infection in six mechanistic classes. ARV therapy (ART) guidelines worldwide recommend an initial treatment regimen consisting of a combination of two nucleoside analogue reverse transcriptase inhibitors (NRTIs) and a third drug, either a non-nucleoside reverse transcriptase inhibitor (NNRTI), a boosted protease inhibitor (PI) or an integrase inhibitor (I). Current ART regimens are highly potent, safe, tolerable and convenient. Current virological suppression rates can exceed 90% in clinical trials and cohort studies, and one pill, once-daily regimens are widely available. Newer strategies, formulations and investigational ARV agents continue to move ARVs forward. Although a three-drug ART regimen is standard, potent two-drug regimens are under investigation. Long-acting compounds are under study, including an injectable investigational formulation of the approved NNRTI, rilpivirine, and an investigational II, cabotegravir, that can be dosed together every 1 to 2 months. Other investigational formulations include implantable devices that provide sustained release of ARVs, and other newer technologies. The investigational ARV pipeline contains new agents in existing classes (NRTI, NNRTI, PI, II) and some of these are associated with either less toxicity [e.g. NRTI, tenofovir pro-drug TAF (tenofovir alafenamide fumarate); NNRTI, doravirine] or different resistance profiles (II, bictegravir) than current drugs. Two new mechanistic ARV classes under investigation are the CD4 attachment inhibitors and the HIV maturation inhibitors, and candidate drugs in each class are in clinical development. Currently, we can control HIV infection long-term with potent, safe and convenient ART that leads to prolonged healthy survival in our patients.

O33 - Antiretroviral Strategies and New Drugs
O331 Non-inferiority of dual-therapy (DT) with darunavir/ritonavir (DRV/r) plus 3TC versus triple-therapy (TT) with DRV/r plus TDF/FTC or ABC/3TC for maintenance of viral suppression: 48-week results of the DUAL-GEISDA-8014 trial
Federico Pulido1; Esteban Ribera2; Maria Lagarde3; Ignacio Perez-Valero4; Jesus Santos5; Jose Iribarren6; Antonio Payeras1; Pere Domingo2; Jose Sanz3; Miguel Cervero3; Adrian Curran4; Francisco Rodriguez10; Maria Telles11; Pablo Ryan12; Pilar Barrufet13; Hernando Knobel14; Antonio Rivero15; Beleń Alejos16; Maria Yllescas16; José Arribas18 and Study Group GEISDA-8014-DUAL17
1HIV Unit, Hospital Universitario 12 de Octubre, Madrid, Spain. 2Servicio de Enfermedades Infecciosas, Hospital Vall d’Hebron, Barcelona, Spain. 3HIV Unit, Hospital La Paz, IDIPAZ, Madrid, Spain. 4Unitad de Enfermedades Infecciosas, Hospital Virgen de la Victoria, Málaga, Spain. 5Servicio de Enfermedades Infecciosas, Hospital Donostia, San Sebastián, Spain. 6Servicio de Medicina Interna, Hospital Son Llatzer, Palma de Mallorca, Spain. 7Servicio de Medicina Interna, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. 8Servicio de Medicina Interna, Hospital Principce de Asturias, Alcalá de Henares, Spain. 9Servicio de Medicina Interna, Hospital Severo
Ochoa, Leganés, Spain. 10Unidad de Enfermedades Infecciosas, Hospital Infantia Elena, Huelva, Spain. 11Servicio de Medicina Interna, Hospital Clínico San Carlos, Madrid, Spain. 12Servicio de Medicina Interna, Hospital Infantia Leonor, Madrid, Spain. 13Servicio de Medicina Interna, Hospital de Matarró, Matarró, Spain. 14Servicio de Enfermedades Infecciosas, Hospital del Mar, Barcelona, Spain. 15Seción de Enfermedades Infecciosas, Hospital Reina Sofia, Córdoba, Spain. 16Fundación de Investigación, SEIMC-GESIDA, Madrid, Spain. 17GESIDA-B014-DUAL Study Group, Spain

Introduction: DT with DRV/r plus 3TC may be as effective, better tolerated and substantially less costly than TT with DRV/r plus TDF/FTC or ABC/3TC for maintenance of viral suppression. Methods: DUAL is a 48-week multicentre, randomized, open-label, non-inferiority (margin – 12%) clinical trial. HIV-1 infected patients with <50 copies/mL for ≥6 months on TT with DRV/r plus TDF/FTC or ABC/3TC, with no resistance to DRV/r or 3TC/FTC, were randomized (1:1) to continue TT or switch to DT with DRV/r and 3TC QD. Primary endpoint: proportion of patients with HIV-1 RNA <50 copies/mL at week 48 after randomization (FDA snapshot algorithm) in the exposed-ITT population (e-ITT, excluding never exposed patients). Secondary endpoints: proportion of patients with persistently suppressed viremia, overall tolerability, emerging resistance changes in CD4 cells, renal function and lipids.

Results: Two hundred and forty-nine patients (75% with TDF/FTC, 25% with ABC/3TC) were randomized to switch to DT (n = 126) or to continue TT (n = 123). Baseline characteristics were balanced between arms except a significant shorter duration of virologic suppression in the DT group (21 vs. 28 months). Proportion of patients with HIV-1 RNA <50 copies/mL at week 48 (DT vs. TT): in the e-ITT population 89% (112/126), versus 93% (114/123), difference – 3.8% (95% CI – 11.3 to +2.32); in the observed population (censoring discontinuations due to non-virologic reasons) 97% (112/116), versus 98% (114/116), difference – 1.7% (95% CI – 5.8 to +1.4). The proportion of patients (e-ITT) maintaining HIV RNA-1 <50 copies/mL in all determinations was 89% in DT and 87% in TT (difference 1.9%; 95% CI – 6.2 to +10). Severe adverse events occurred in 5% of patients in both groups.

Conclusions: DT with DRV/r plus 3TC was non-inferior and as well tolerated as DRV/r plus TDF/FTC (or ABC/3TC) for maintenance of viral suppression. DT has the added benefit of preserving options and reducing the cost.

French national survey of resistance to integrate inhibitors shows high differences of resistance selection rate in case of virological failure in a context of routine hospital care (ANRS-AC11 virology network)

Anne-Genevieve Marcelin1; Maxime Grude2; Charlotte Charpentier2; Panteika Belcave4; Audrey Rodallec4; Coralie Pallier6; Ingeborg Wijting1; Casper Rokx1; Charles Boucher2; Jeroen Van den Bossche1; Wouter Bierman4

Introduction: Integrate inhibitors (INIs) are now one of the most important drug classes in clinical practice. With potential for INI cross-resistance, there is a need to get more resistance related data in patients failing an INI-containing regimen in a context of routine hospital care. Doing so with more cases than observed in clinical trials to date would provide a more precise description about the robustness to resistance selection of the three INIs used in clinical practice.

Materials and methods: This national survey of resistance to INIs was conducted through the ANRS AC11 virology network: patients who failed to any INI-containing regimens were included to search for selection of resistance to INI and associated factors. Virological failure was defined as two consecutive plasma viral load >50 copies/mL. All the genotypic resistance tests were performed on the second plasma sample with detectable viral load and interpreted following the ANRS V25 algorithm. Patients who failed to RAL and EVG did not fail to any INI before. However, DTG was used either as the first INI or in patients who failed before to RAL or EVG.

Results: About 489 patients failing to INI (270 to RAL, 111 to EVG and 96 to DTG)-containing regimen were analyzed (median age 48 years, CD4 398/mm3, viral load 3.13 log copies/mL at time of failure). In combination with one INI, 250 (51%) patients received two NRTIs, 34 (7%) one NNRTI, 47 (9%) one PI, 76 (16%) one NRTI + one PI, 19 (4%) one NRTI + one NNRTI, 22 (4%) one NNRTI + one PI and 41 other regimens. Among patients failing to RAL, 32% harboured a virus resistant to RAL and among patients failing to EVG, 40% harboured a virus resistant to EVG. Among patients failing to DTG (used as the first INI or used in patients previously exposed to RAL- or EVG-containing regimen) 19% harboured a virus resistant to DTG. Among the 96 patients failing to DTG, 49 received DTG as the first INI, neither INI resistance mutations among the major pathways (92, 118, 121, 140, 143, 148, 155) nor the R263K mutation were present at failure. Conclusions: In this national survey, RAL and EVG are associated with 32 to 40% resistance at failure. However, INI-nave patients, failing to DTG when used as the first INI, no resistance to INI was detected whatever the antiretroviral associated to DTG.

Switching from cART to dolutegravir (DTG) maintenance monotherapy in virologically suppressed HIV-1 infected adults: a randomized multicenter, non-inferiority clinical trial (DOMONO)

Ingeborg Wijting1; Casper Rokx1; Charles Boucher2; Jeroen Van Kampen2; Dorine De Vries-Sluijs3; Karin Schurink1; Hannelore Bax4; Maarten Derksen1; Eloyo Andrinopoulos1; Ineke Van der Ende1; Eric Van Gorp5; Jan Nouwen5; Annelies Verbon5; Wouter Bierman4 and Bart Rijnders1
Introduction: DTG-containing cART showed equal or superior viral suppression when compared with raltegravir-, efavirenz- or darunavir-containing cART and is one of the preferred regimens in current treatment guidelines. As short- and long-term side effects of cART remain a concern, maintenance HIV therapy with fewer drugs is an attractive goal. Given the high genetic barrier to resistance, DTG is a potential candidate for maintenance monotherapy.

Materials/methods: In a randomized, open-label, multicentre study, we compared DTG maintenance monotherapy (50 mg QD = DOLUMONO) with continued cART (con-CART). After 24 weeks, the con-CART patients switched to DOLUMONO as well (‘delayed switch’). Eligible patients were on cART and suppressed (<50 c/mL) for >6 months, had a CD4 nadir >200 cells/μL, HIV RNA zenith <100,000 copies/mL, no history of virologic failure and HIV immune. The primary endpoint was the proportion of patients with virologic suppression at 24 weeks defined as a viral load (VL) <200 copies/mL in the on treatment population. With an anticipated viral suppression of 95% on con-CART, 104 patients were needed to demonstrate non-inferiority of DOLUMONO (delta 0.12, power 80%, alpha = 0.025). Predefined secondary endpoints were (1) proportion with a VL <50 copies/mL at 24 weeks of DOLUMONO versus con-CART and (2) proportion with a VL <200 copies/mL and <50 copies/mL after 12, 24 and 48 weeks of DOLUMONO in the entire study population (= immediate + delayed switches combined). The study was registered as NCT02401828.

Results: The 104 patients included were predominantly male (89%), had a median age of 45, a HIV RNA zenith of 21,840 copies/mL (IQR 7045–59,550), CD4 nadir of 345 cells/μL (IQR 270–500) and on cART for 40 months. One patient discontinued DTG at 12 weeks (VL <50 copies/mL) for disturbed sleep. Of 103, 102 patients had a VL <200 copies/mL at week 24: 98% (49/50) on DOLUMONO and 100% (53/53) on con-CART. DOLUMONO was therefore non-inferior to con-CART (delta 2% with exact 95% CI 12–5%). The single patient on DOLUMONO with virologic failure had a VL at 4 weeks of 70,000 copies/mL despite 100% compliance by pill-count and therapeutic DTG plasma levels of 1.3 mg/L. Integrase sequencing on stored pre-cART plasma and at DTG failure did not reveal resistance-associated mutations. At 24 weeks, more patients on DOLUMONO had low level viraemia (VL of 50–200 copies/mL in 3/49 vs. 0/53, p = 0.12). Week 24 results of all 104 patients on DOLUMONO (= immediate and delayed switches combined) will be presented.

Conclusions: In a carefully selected HIV-1 population on suppressive cART, DTG monotherapy was well tolerated and non-inferior to cART. Although these results are promising, longer follow-up is needed as more patients on DOLUMONO had low-level viraemia.

O334A

HIV-1 attachment inhibitor prodrug BMS-663068 in antiretroviral-experienced subjects: week 96 subgroup analysis

Enrique Rafael Granados-Reyes1; Louis Sloan2; Jerome Ernst3; Mey Leon2; David Stock2; Cyril Llamoso2; Samit Joshi2; George Hanna2 and Max Latallade2
1Centro de Investigación Clinica Gramel SC, Mexico City, Mexico.
2Research Department, North Texas Infectious Diseases Consultants, P.A., Dallas, TX, USA.
3AIDS Community Research Initiative of America, New York, NY, USA.
4Infectious and Tropical Diseases, Asociacion Civil Impacta Salud y Educacion, Lima, Peru. Research and Development, Bristol-Myers Squibb, Wallingford, CT, USA.
5Research and Development, ViH Healthcare, Wallingford, CT, USA.
6Research and Development, Bristol-Myers Squibb, Princeton, NJ, USA.
Abstract O334

Table 1. Proportion of subjects with HIV-1 RNA < 40 copies/mL at week 48 by prognostic and demographic factors (observed failure approach)

<table>
<thead>
<tr>
<th>Virologic response by subgroup</th>
<th>RAL 1200 mg QD</th>
<th>RAL 400 mg BID</th>
<th>Difference (QD - BID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N % <40 c/mL</td>
<td>N % <40 c/mL</td>
<td>% [95% CI]</td>
<td></td>
</tr>
<tr>
<td>All subjects</td>
<td>501 94.2</td>
<td>251 93.6</td>
<td>0.6 (−2.8−4.7)</td>
</tr>
<tr>
<td>Baseline plasma HIV RNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(copies/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤100,000 copies/ml</td>
<td>358 97.2</td>
<td>177 97.7</td>
<td>−0.5 (−3.2−3.1)</td>
</tr>
<tr>
<td>>100,000 copies/ml</td>
<td>143 86.7</td>
<td>74 83.8</td>
<td>2.9 (−6.5−14.1)</td>
</tr>
<tr>
<td>Baseline plasma HIV RNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(copies/ml)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤500,000 copies/ml</td>
<td>479 95.2</td>
<td>237 95.8</td>
<td>−0.6 (−3.6−3.1)</td>
</tr>
<tr>
<td>>500,000 copies/ml</td>
<td>22 72.7</td>
<td>14 57.1</td>
<td>15.6 (−15.6−45.9)</td>
</tr>
<tr>
<td>Baseline CD4 cell counts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(cells/mm³)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤200 cells/mm³</td>
<td>67 85.1</td>
<td>33 87.9</td>
<td>−2.8 (−16.0−14.0)</td>
</tr>
<tr>
<td>>200 cells/mm³</td>
<td>434 95.6</td>
<td>218 94.5</td>
<td>1.1 (−2.2−5.3)</td>
</tr>
<tr>
<td>Hepatitis co-infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatitis B or C positive</td>
<td>13 100</td>
<td>7 85.7</td>
<td>14.3 (−11.7−52.2)</td>
</tr>
<tr>
<td>Hepatitis B and C negative</td>
<td>488 94.1</td>
<td>244 93.9</td>
<td>0.2 (−3.3−4.3)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>415 94.7</td>
<td>220 93.6</td>
<td>1.1 (−2.6−5.5)</td>
</tr>
<tr>
<td>Female</td>
<td>86 91.9</td>
<td>31 93.5</td>
<td>−1.7 (−11.1−13.3)</td>
</tr>
<tr>
<td>Viral subtype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clade B</td>
<td>313 94.6</td>
<td>175 93.7</td>
<td>0.9 (−3.3−5.9)</td>
</tr>
<tr>
<td>Non-clade B</td>
<td>187 93.6</td>
<td>74 93.2</td>
<td>0.3 (−5.7−8.9)</td>
</tr>
<tr>
<td>Geographic region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td>41 95.1</td>
<td>12 100</td>
<td>−4.9 (−16.3−20.0)</td>
</tr>
<tr>
<td>Asia/Pacific</td>
<td>84 94.0</td>
<td>43 93.0</td>
<td>1.0 (−7.7−13.3)</td>
</tr>
<tr>
<td>Europe</td>
<td>190 96.3</td>
<td>108 94.4</td>
<td>1.9 (−2.9−8.2)</td>
</tr>
<tr>
<td>Latin America</td>
<td>73 94.5</td>
<td>26 100</td>
<td>−5.5 (−13.3−7.7)</td>
</tr>
<tr>
<td>North America</td>
<td>113 90.3</td>
<td>62 88.7</td>
<td>1.6 (−7.5−12.7)</td>
</tr>
</tbody>
</table>

a95% CIs by Miettinen and Nurminen’s method; bHepatitis B surface antigen and/or HCV RNA by PCR.
N = number in subgroup.

Introduction: BMS-663068 is a prodrug of BMS-626529, an attachment inhibitor that binds directly to HIV-1 gp120, preventing initial viral attachment and entry into the host CD4+ T-cell. AI438011 is an ongoing, phase Ib, randomized, active-controlled trial investigating the safety, efficacy and dose-response of BMS-663068 versus atazanavir/ritonavir (ATV/r) in treatment-experienced, HIV-1-positive subjects. Through week 96, BMS-663068 showed generally similar efficacy to ATV/r. We report a subgroup analysis of viral efficacy and immunologic response through week 96.

Materials and methods: Treatment-experienced subjects (exposure to ≥1 antiretroviral for ≥1 week) with susceptibility to all study drugs and BMS-626529 IC₅₀ < 100 nM were randomized to four BMS-663068 arms (400 or 800 mg BID; 600 or 1200 mg QD) or control arm (ATV/r 300/100 mg QD), with tenofovir disoproxil fumarate 300 mg (QD) + raltegravir 400 mg (BID). Pooled data for BMS-663068 are presented as BMS-663068 1200 mg QD was selected as the open-label continuation dose after week 48. Efficacy (observed data) was evaluated following stratification by age, gender, race, baseline viral load (VL) and baseline CD4+ T-cell count. The study was not powered to detect statistically significant differences between subgroups.

Results: A total of 251 subjects were treated (BMS-663068: 200; ATV/r: 51). Median age was 39 years, 60% were male and 38% white. Median baseline VL was 4.85 log₁₀ copies/mL, 43% > 100,000 copies/mL and median CD4+ T-cell count 230 cells/mm³ (38% < 200 CD4 cells/mm³). At week 96, response rates (HIV-1 RNA < 50 copies/mL) were generally similar between BMS-663068 and ATV/r arms regardless of gender, age, race, baseline VL (< 100,000 copies/mL vs. ≥100,000 copies/mL) and baseline CD4+ T-cell count (< 200 cells/mm³ vs. ≥200 cells/mm³) (Table 1). Mean increases in CD4+ T-cell count from baseline to week 96 were similar among BMS-663068 arms regardless of age, gender, race and baseline CD4+ T-cell count. Increase in CD4+ T-cell count from baseline to week 96 were similar among BMS-663068 arms regardless of age, gender, race and baseline CD4+ T-cell count. These results are mostly consistent with those reported at
A phase III trial is underway to evaluate BMS-663068 for use in heavily treatment-experienced adults with limited therapeutic options (NCT02362503).

HIV-1 attachment inhibitor prodrug BMS-663068 in antiretroviral-experienced subjects: week 96 safety analysis

Cyril Llamoso 1; Johannes Bogner 2; Larissa Afonina 3; Mey León 4; Alexey Yakovlev 5; David Stock 6; Samit Joshi 6; George Hanna 7 and Max Lataillade 1

1Research and Development, ViV Healthcare, Wallingford, CT, USA. 2Section for Infectious Diseases, Med. IV, Hospital of the University of Munich, Munich, Germany. 3Clinical Research and Medical Information, Republic Hospital of Infectious Diseases, St Petersburg, Russian Federation. 4Infectious and Tropical Diseases, Asociacion Civil

Table 1. Response rates (HIV-1 RNA < 50 copies/mL) at week 96 by subgroup (observed)

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>BMS-663068 pooleda (N = 136)</th>
<th>ATV/r (N = 30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of responders (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td><40 years (n = 65)</td>
<td>60 (92.3)</td>
<td></td>
</tr>
<tr>
<td>≥40 years (n = 71)</td>
<td>62 (87.3)</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n = 78)</td>
<td>69 (88.5)</td>
<td></td>
</tr>
<tr>
<td>Female (n = 58)</td>
<td>53 (91.4)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black (n = 40)</td>
<td>37 (92.5)</td>
<td></td>
</tr>
<tr>
<td>White (n = 54)</td>
<td>49 (90.7)</td>
<td></td>
</tr>
<tr>
<td>Other (n = 42)</td>
<td>36 (85.7)</td>
<td></td>
</tr>
<tr>
<td>Baseline viral load</td>
<td></td>
<td></td>
</tr>
<tr>
<td><100,000 copies/mL (n = 84)</td>
<td>73 (86.9)</td>
<td></td>
</tr>
<tr>
<td>≥100,000 copies/mL (n = 52)</td>
<td>49 (94.2)</td>
<td></td>
</tr>
<tr>
<td>Baseline CD4+ T-cell counts</td>
<td></td>
<td></td>
</tr>
<tr>
<td><200 cells/mm³ (n = 42)</td>
<td>37 (88.1)</td>
<td></td>
</tr>
<tr>
<td>≥200 cells/mm³ (n = 93)</td>
<td>85 (91.4)</td>
<td></td>
</tr>
</tbody>
</table>

*Pooled data are presented because BMS-663068 1200 mg QD was selected as the open-label continuation dose after week 48; one subject did not have a baseline CD4 value.

Table 2. Mean increases in CD4+ T-cell count from baseline to week 96 by subgroup (observed)*

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>BMS-663068 pooledb (N = 134) cells/mm³</th>
<th>ATV/r (N = 31) cells/mm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td><40 years (n = 64)</td>
<td>215.5</td>
<td>244.0</td>
</tr>
<tr>
<td>≥40 years (n = 69)</td>
<td>221.8</td>
<td>255.8</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (n = 75)</td>
<td>210.1</td>
<td>151.9</td>
</tr>
<tr>
<td>Female (n = 58)</td>
<td>230.0</td>
<td>386.0</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black (n = 38)</td>
<td>213.9</td>
<td>415.4</td>
</tr>
<tr>
<td>White (n = 54)</td>
<td>231.0</td>
<td>259.8</td>
</tr>
<tr>
<td>Other (n = 41)</td>
<td>207.2</td>
<td>105.2</td>
</tr>
<tr>
<td>Baseline viral load</td>
<td></td>
<td></td>
</tr>
<tr>
<td><100,000 copies/mL (n = 81)</td>
<td>184.2</td>
<td>208.0</td>
</tr>
<tr>
<td>≥100,000 copies/mL (n = 52)</td>
<td>272.6</td>
<td>338.4</td>
</tr>
<tr>
<td>Baseline CD4+ T-cell counts</td>
<td></td>
<td></td>
</tr>
<tr>
<td><200 cells/mm³ (n = 42)</td>
<td>202.5</td>
<td>216.4</td>
</tr>
<tr>
<td>≥200 cells/mm³ (n = 91)</td>
<td>226.2</td>
<td>274.4</td>
</tr>
</tbody>
</table>

*One subject did not have a baseline CD4 value; *Pooled data are presented because BMS-663068 1200 mg QD was selected as the open-label continuation dose after week 48.

Abstracts of the HIV Glasgow supplement
Journal of the International AIDS Society 2016, 19 (Suppl 7)

Oral Abstracts

week 48. A phase III trial is underway to evaluate BMS-663068 for use in heavily treatment-experienced adults with limited therapeutic options (NCT02362503).

O335B

HIV-1 attachment inhibitor prodrug BMS-663068 in antiretroviral-experienced subjects: week 96 safety analysis
Abstract O335B Table 1. Week 96 pooled safety results

<table>
<thead>
<tr>
<th>Parameter, n (%)</th>
<th>BMS-663068a</th>
<th>TDF (300 mg QD) + RAL (400 mg BID) N = 200</th>
<th>ATV/r (300/100 mg QD) + TDF (300 mg QD) + RAL (400 mg BID) N = 51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects with ≥ 1 AE (grade 1–4)</td>
<td>181 (91)</td>
<td></td>
<td>50 (98)</td>
</tr>
<tr>
<td>Related grade 1–4 AEs</td>
<td>64 (32)</td>
<td>28 (55)</td>
<td></td>
</tr>
<tr>
<td>Related grade 2–4 AEs</td>
<td>17 (8.5)</td>
<td>19 (37)</td>
<td></td>
</tr>
<tr>
<td>SAEs</td>
<td>24 (12)</td>
<td>7 (14)</td>
<td></td>
</tr>
<tr>
<td>AEs leading to discontinuationb</td>
<td>5 (2.5)</td>
<td>5 (10)</td>
<td></td>
</tr>
<tr>
<td>Deathsb</td>
<td>1 (0.5)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

aPooled data are presented because BMS-663068 1200 mg QD was selected as the open-label continuation dose after week 48; bNone were related to BMS-663068.

Impacta Salud y Educacion, Lima, Peru. 1Department of Infectious Diseases, St Petersburg Botkin Clinical Infectious Diseases Hospital, St Petersburg, Russian Federation. 2Research and Development, Bristol-Myers Squibb, Wallingford, CT, USA. 3Research and Development, Bristol-Myers Squibb, Princeton, NJ, USA

Introduction: BMS-663068 is a prodrug of BMS-626529, an attachment inhibitor that binds directly to HIV-1 gp120, preventing initial viral attachment and entry into host CD4+ cells. A438011 is an ongoing, phase IIb, randomized, active-controlled trial investigating the safety, efficacy, and dose-response of BMS-663068 versus atazanavir/ritonavir (ATV/r) in treatment-experienced, HIV-1-positive subjects. Through week 96, BMS-663068 showed generally similar efficacy to ATV/r. We report the complete safety profile through week 96.

Materials and methods: Treatment-experienced subjects (exposure to ≥1 antiretroviral for ≥1 week) with susceptibility to all study drugs and BMS-626529 IC50 < 100 nM were randomized to four BMS-663068 arms (400 or 800 mg BID; 600 or 1200 mg QD) or a control arm (ATV/r 300/100 mg QD), with tenofovir disoproxil fumarate (TDF) 300 mg QD + raltegravir (RAL) 400 mg (BID). Pooled safety data for BMS-663068 are presented because BMS-663068 1200 mg QD was selected as the open-label continuation dose after week 48.

Results: A total of 251 subjects received treatment (BMS-663068: 200; ATV/r: 51). No BMS-663068-related adverse events (AEs) led to discontinuation (Table 1). Grade 2–4 drug-related AEs occurred in 17/200 (8.5%) BMS-663068 treated subjects; these were all single instances. In the ATV/r arm, grade 2–4 drug-related AEs occurred in 19/51 (37%) subjects: most were attributable to gastrointestinal and/or hepatobiliary disorders. Across BMS-663068 arms no trends for grade 3–4 laboratory abnormalities were observed. Serious AEs (SAEs) occurred in 24/200 (12%) and 7/51 (14%) subjects receiving BMS-663068 and ATV/r, respectively; most were attributable to infections (BMS-663068: nine [5%]; ATV/r: three [6%]). One unrelated death occurred (gunshot wound). The most common AE reported for BMS-663068 was grade 1–4 transient headache (32/200, 16%), which was reported in 5/51 (10%) subjects for ATV/r.

Conclusions: BMS-663068 was generally well tolerated, with no new BMS-663068-related AEs leading to discontinuation, and no new safety signals from the previously described safety profile. No trends were observed for grade 2–4 AEs or clinical laboratory abnormalities. These results support the ongoing phase III trial evaluating BMS-663068 for use in heavily treatment-experienced adults with limited therapeutic options (NCT02362503).

O336 Efficacy and safety of long-acting HIV fusion inhibitor albuuviride in antiretroviral-experienced adults with HIV-1: interim 48-week results from the randomized, controlled, phase 3, non-inferiority TALENT study

Hao Wu1; Cheng Yao2; Tong Zhang3; Qingxia Zhao2; Weiping Cai4; Min Wang5; Hongzhou Lu6; Hui Wang7; Yuhuang Zheng6; Biao Zhu2; Jianhua Yu9; Yongtao Sun10; Min Zhao12; Wenhui Lun13; Wei Xia13; Qingshan Zheng14; Haiyan Peng15; Rongjian Li16; Jianhua Hu2; Xing Hui5; Yiming Shao17; Meixia Wang18 and Dong Xie19

1Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, China. 2Clinical Development, Frontier Biotechnologies Co., Nanjing, China. 3Infectious Diseases Hospital of Henan Province, Zhengzhou, China. 4Infectious Diseases, The Eighth People’s Hospital of Guangzhou, Guangzhou, China. 5AIDS, The First Hospital of Changsha, Changsha, China. 6Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai, China. 7AIDS, The Third People’s Hospital of Shenzhen, Shenzhen, China. 8AIDS, The Second Xiangya Hospital of Central South University, Changsha, China. 9Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China. 10AIDS, Xixi Hospital of Hangzhou, Hangzhou, China. 11Infectious Diseases, Tandgu Hospital of The Fourth Military Medical University, Xian, China. 12AIDS, 302 Military Hospital of China, Beijing, China. 13AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China. 14Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China. 15Clinical Operation, Beijing Co-CRO Medical Development Co., Ltd, Beijing, China. 16Research and Development, Frontier Biotechnologies Co., Nanjing, China. 17Virology, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. 18Clinical Research, Beijing You’an Hospital, Capital Medical University, Beijing, China. 19Research and Development, Frontier Biotechnologies Co., Nanjing, China

Introduction: Albuuviride is a once-weekly injectable HIV-1 fusion inhibitor. We present interim data of the TALENT study (Clinical-Trials.gov, NCT02369965), that assessed the safety and efficacy of albuuviride plus lopinavir-ritonavir in antiretroviral-experienced adults with HIV-1.

Materials and methods: We carried out the 48-week, phase 3, randomized, controlled, open-label non-inferiority trial at 12 sites in China. Adults on WHO-recommended first-line treatment for >6 months with plasma viral load >1000 copies/mL were enrolled and randomly assigned (1:1) to receive albuuviride (once weekly) plus ritonavir-boosted lopinavir (albuuviride) or WHO-recommended second-line treatment (control). The primary endpoint was the proportion of patients with plasma viral load <50 copies/mL at 48 weeks. Non-inferiority was pre-specified with a margin of 12%.

Results: At the time of analysis, 1185 patients were screened and 372 were enrolled. For the modified intention-to-treat population, 24 weeks data were available for 83 and 92 patients, and 48 weeks for 46 and 50 patients in the albuuviride and control groups respectively. At 48 weeks, 80.4% patients in the albuuviride group had HIV-1 RNA <50 copies/mL versus 66.0% in the control group (difference 14.4%, 95% CI

Abstracts of the HIV Glasgow supplement
Journal of the International AIDS Society 2016, 19 (Suppl 7)
— 3.0%–31.9%), meeting the non-inferiority criteria. For the per-protocol population, superiority of albuvidride to control was demonstrated (94.9% vs. 74.4%, difference 20.5%, 95% CI 5.7–35.2, p = 0.01). Grade 3–4 adverse event frequencies were similar across groups (14.0% vs. 11.1%); the most common adverse events for albuvidride versus control were diarrhoea (8.6% vs. 14.1%), upper respiratory tract infection (4.3% vs. 6.1%), grade 3-4 elevated triglycerides (6.5% vs. 4.0%). Renal function impairment was significantly less at 12 weeks in patients of the albuvidride group compared with those of the control group who received TDF (mean change in eGFR —11.47 vs. —1.22 mL/min/1.73 m², p = 0.02).

Conclusions: TALENT study is the first phase 3 trial of an injectable long-acting HIV drug. This interim analysis suggests that once-weekly albuvidride in combination with ritonavir-boosted lopinavir is clinically practical, well tolerated and non-inferior to WHO-recommended second-line regimen in patients failed first-line treatment. Analysis is scheduled when all enrolled patients complete 48 weeks treatment to confirm these data.
ARV-BASED PREVENTION: MOTHER-TO-CHILD TRANSMISSION

P001
High prevalence of hepatitis C co-infection and adverse pregnancy outcomes among HIV-infected pregnant women in Switzerland
Karoline Aebi-Popp1; Tracy Glass2; Christoph Rudin3; Begoña Martínez de Tejada4; Irene Hoeßl5; Claudia Grawe6; Tina Fischer7; Andrea Duppenthaler8; Andrei Rauch9 and Christian Kahler2
1Infectious Diseases, University Hospital Bern, Bern, Switzerland. 2Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland. 3Nephrology, University Children's Hospital, Basel, Switzerland. 4Obstetrics and Gynecology, University Hospital Geneva, Geneva, Switzerland. 5Obstetrics and Gynecology, University Hospital Basel, Basel, Switzerland. 6Obstetrics and Gynecology, University Hospital Zurich, Zurich, Switzerland. 7Obstetrics and Gynecology, Cantonal Hospital St. Gallen, St.Gallen, Switzerland. 8Infectious Diseases, University Children's Hospital Bern, Bern, Switzerland. 9Pediatric Infectious Diseases, Cantonal Hospital St. Gallen, St. Gallen, Switzerland

Introduction: Hepatitis C virus (HCV) infection is more prevalent in HIV-infected compared to HIV-negative women. Limited data on pregnancy outcomes in HIV/HCV co-infected women are available. This study aimed to investigate prevalence, immunological parameters and pregnancy outcomes associated with HIV/HCV co-infected pregnant women.

Methods: Prospectively collected data of the Swiss Mother and Child HIV Cohort Study including pregnancies and deliveries documented between 2000 and 2015 were analysed. Hepatitis C co-infection was defined as HCV antibody positivity. Multiple pregnancies were excluded.

Results: Of 548 women, 75 (13.7%) were HCV seropositive. Compared with HIV seronegative women those with HIV/HCV co-infection reported more often a history of injecting drug use (IDU) (65.3% vs. 1.5%, p < 0.001), were older at conception (>31 years: 74.7% vs. 56.9%, p < 0.001) and more were Caucasian (90.7% vs. 30.2%, p < 0.001). More co-infected women were already on antiretroviral therapy (ART) at time of conception (80.8% vs. 55.3%, p < 0.001). More ART switches during pregnancy, but did not differ in terms of first CD4 cell count during pregnancy or viral suppression (<400 copies/μL) at time of delivery (92.6% and 92.9% respectively). Strikingly, HIV/HCV co-infected women were twice as likely to deliver preterm (<37 weeks) compared to HIV mono-infected women (28% vs. 16.5%, OR 2.0, 95% CI 1.14–3.50, p = 0.015). Older age, cigarette smoking and a history of IDU were associated with preterm delivery in univariable analysis. After adjustment for those factors and for duration of ART, HIV/HCV co-infected women still had a higher odds of preterm delivery, but the result was no longer statistically significant (aOR 1.60, 95% CI 0.59–4.33, p = 0.36). We found more newborns of HIV/HCV-infected mothers with birth weight below 2500 g (63.4% vs. 36.6%, p < 0.001) and any development delay at 6 months of age (aOR 6.07, 95% CI 1.34–27.38, p = 0.019). Regarding vertical transmission, 7/526 (1.3%) babies were HIV infected (none of these from HIV/HCV co-infected mothers), and 2/71 (2.8%) were HCV infected.

Conclusion: We found a high HCV co-infection rate in HIV-infected pregnant women in Switzerland. Women with HCV were more likely to have an adverse pregnancy outcome in terms of preterm delivery and lower birth weight of the newborn. Treatment of hepatitis C in HIV co-infected women at childbearing age before pregnancy should be evaluated to avoid adverse pregnancy outcomes including vertical transmission of HCV.

P002
A mother-to-child HIV-1 transmission bottleneck? A new understanding of the selection biases underlying successful perinatal infection
Christie Noble1; Emily Adland1; Vanessa Naidoo2; Thumbi Ndung’u2 and Philip Goulder1
1Department of Paediatrics, University of Oxford, UK. 2Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa

Introduction: Heterosexual HIV-1 transmission has been described as a severe genetic bottleneck; with a stringent selection bias favouring the transmission of a high fitness viral variant [1]. Recent work has also suggested that the selection bottleneck present during transmission in men who have sex with men (MSM) has notable differences [2]. There is poorer understanding of the mechanisms underlying successful mother-to-child transmission, where rates of transmission are much higher. In this study, we tested the hypothesis that a similar bottleneck is seen in mother-to-child transmission, and that a viral variant with high viral replicative capacity (VRC) is responsible for establishing infection in the child.

Materials and methods: Thirty-eight mother-child HIV transmission pairs were included in the study (26 children were infected by intrauterine [IU] transmission and 12 by intra-partum [IP] transmission). These pairs were taken from a previously described, treatment-naive cohort recruited in Durban, South Africa, between 2003 and 2005 [3]. Samples were taken from the mothers antenatally, within 4 months of delivery, and from the child up to 14 weeks after birth. Authenticity of the mother-child transmission pairs was validated by phylogenetic analysis of the viral sequences. Gag-protease chimeric viruses were generated from mother and child plasma samples and used in a VRC assay as previously described [4].

Results: The VRC of chimeric viruses derived from the children was compared with those of their respective mothers. In an unexpected finding, we show that, overall, the VRC in the children was lower than in the mothers (mean VRC 0.70 vs. 0.80; p < 0.0001). Although this difference was noted for both IU and IP transmission, it was more notable in the pairs where IU transmission had taken place (IP: mean VRC difference −0.06, p = 0.027; IU: mean VRC difference −0.12, p = 0.0002). Mother and child VRCs were very strongly correlated (r = 0.760, p < 0.0001). Interestingly, we also observed that female children tended to have lower VRCs than male children, although this did not reach significance.

Conclusions: Future treatment interventions will require a detailed understanding of the mechanisms involved in successful mother-to-child HIV transmission. Here, we present the new and surprising finding that, overall, VRC in children is significantly lower than in their mothers. This finding is the opposite of what is seen during horizontal HIV transmission. It offers a new understanding of the selection pressures involved in mother-to-child transmission and will potentially indicate new therapeutic approaches.
Posters Abstracts

P003 Raltegravir in HIV-1-infected pregnant women: MTCT prophylaxis and children safety case series
Melissa Soares Medeiros1; Henrique Pires Moreira2; Érica Antonio Gomes Arruda3; Eduardo Austregesilo Correa2; Yasmin Camelo de Sales2; Geisele Facanha Diogenes Teixeira2; Ederson Aragão Ribeiro2 and Raquel Silveira Dantas2
1Medicine/Infectious Diseases, Hospital Sao Jose/Unichristus University, Fortaleza, Brazil; 2Infectious Diseases, Unichristus University, Fortaleza, Brazil; 3Infectious Diseases, Hospital Sao Jose/Ceara State University (Uece), Fortaleza, Brazil

Introduction: Antiretroviral reduced perinatal transmission for less than 1% in several countries, but mother-to-child transmission (MTCT) was not eliminated. 1. Raltegravir (RAL) has demonstrated good tolerability during pregnancy in previous studies [2] and could be beneficial to HIV mothers detected in late pregnancy without prenatal care and demanding rapid viral load control, in association regimens for HIV mothers failing therapy during pregnancy or resistant virus [3]. In developing countries, where HIV late detection in pregnancy is still a serious problem, associate RAL in third trimester could be a valid prevention approach to MTCT.

Materials and methods: Seven women were followed in Hospital Geral de Fortaleza between 2014 and 2016. They received RAL 400 mg twice daily. Four were HIV late diagnosed in third trimester; two had previous diagnosis with antiretroviral expose and viral load higher than 1000 copies; and one presented viral resistance. Mothers were followed during pregnancy and children after birth for 6 months.

Results: Mean age was 26.3 years (var 20–36). Previous therapy exposure: naïve (four), TDF/3TC/EFV (one), TDF/3TC/NVP (one) and ZDV/3TC/ATV 300 mg/100 mg (one). Mean weeks of pregnancy at RAL initiation 32.3 (var 21–37). Associated medications in regimens with RAL: ZDV/3TC/LPVr (four), TDF/3TC/ATV (two) and TDF/3TC/ NVP (one). Mean CD4 before RAL 486 cells/mm3, and at birth time 616 cells/mm3. Mean CD8 before RAL 884 cells/mm3, and at birth time 1015 cells/mm3. Five patients had undetectable viral load at birth; one had 45 copies/mL and one had 2662 copies/mL. Mean falling viral load was 3.56 log. One patient documented viral load falls of 3.8 log in 21 days, another 3.08 log in 7 days and one with 2.2 log in 23 days. Mothers tolerated regimen with RAL without adverse effects. Six children were not infected, and all seven did not present malformation. One child was infected, her mother initiated ZDV/3TC/ LPVr/RAL just 5 days prior to birth (viral load 2662). Child presented viral load after birth of 308,718 (2 months) and 386,152 (3 months), and genotypic test HIV subtype B, 211K mutation in reverse transcriptase and 41K, 63P, 71V, 77I, 93L in protease. These results suggest intraterine transmission and transmitted resistance mutations in HIV.

Conclusions: We detected rapid viral load falls during pregnancy with RAL in standard doses, good tolerability in women and safety in children. Alert for previous transmitted resistance in mother-to-child prophylaxis, suggesting importance of genotypic test in pregnancy and early HIV diagnosis.

References

P004 Prophylactic antiretroviral treatment in new-born infants from HIV-positive mothers in 2012 to 2015, for the North-Eastern part of Romania
Carmen Manciuc1; Andrei Vata2; Cristina Nicolau2 and Alexandra Largu2
1Infectious Diseases, Gr. T. Popa University of Medicine and Pharmacy, Iasi, Romania; 2HIV/AIDS, Sf. Parascheva Infectious Diseases Clinical Hospital, Iasi, Romania; 3Behavioral Sciences, Gr. T. Popa University of Medicine and Pharmacy, Iasi, Romania

Introduction: In the North-Eastern region of Romania most of the female HIV-positive population is sexually active and at child-bearing age. In Romania, there is a strict protocol regarding HIV vertical transmission [1]. We aim to evaluate the efficiency of this protocol and the degree of appliance, reflected in the HIV status of new-born infants from HIV-positive mothers for a period of 3 years.

Materials and methods: Of the 1424 patients actively monitored in the HIV/AIDS Regional Center in Iasi, Romania, 46.5% (663) are female. We evaluated retrospectively the files of all new-born infants from HIV-positive mothers for a period of 4 years (January 2012–December 2015).

Results: In the period mentioned above, 127 children were born (36 in 2012, 38 in 2013, 26 in 2014, 27 in 2015); one death occurred 10 days after birth, due to multiple organ malformations; the lowest weight at birth was 750 g; three of the children (3%) had a detectable viral load at birth; in two cases we could not evaluate the viral load; 125 children (98%) were born through caesarean section; two were born through normal labour (2%), one of which at home. Mothers received treatment with lopinavir/ritonavir + zidovudine/lamivudine throughout the whole pregnancy in 81 cases, other antiretroviral regimens in 27 cases, and in nine cases the mothers did not receive any treatment, being tested for HIV at birth. For all new-borns prophylaxis was made with zidovudine-lamivudine for 6 weeks. Three children remained positive at 18 months, and therapy for them consisted of zidovudine-lamivudine-nevirapine.

Conclusions: Evaluation of pregnant HIV-positive women and prophylaxis for new-born infants in the evaluated period was conducted according to protocols, which resulted in a small percentage of HIV-positive children (2.3%) [2,3].
References

P005
Determinants and risk of HIV infection among HIV-exposed infants in western Ethiopia
Eyasu Ejeta Duken1; Dabsu Regea 2 and Obsa Siyum2
1Medical Laboratory Sciences and Pathology, Jimma University, Jimma, Ethiopia. 2Medical Laboratory Sciences, Wollega University, Nekemte, Ethiopia
Introduction: Ethiopia is one of the sub-Saharan African countries hard-hit by HIV/AIDS and unfortunately, one of every three children born to those women gets infected with HIV in the country. Monitoring and evaluation of the rate and its risk factors for HIV infection among infants born to HIV-positive mothers are among the major indicators of the performance of a national HIV control program. However, this is not well documented in Oromia Regional State of Ethiopia which is the first largest, most populous and one of the hardest HIV/AIDS-hit regions in the country. Hence, this institutional-based retrospective study was conducted in 43 health facilities from November 2014 to January 2015 in selected administrative zones of western Oromia, Ethiopia. The study participants were HIV-exposed infants enrolled between June 2012 and October 2014 in the institution.
Method: Medical records of HIV-exposed infants and their mothers enrolled into the program were reviewed to collect the data.
Results: A total of 492 HIV-exposed infants having HIV DNA/PCR test result were included in the study. The overall prevalence of HIV among HIV-exposed infants was 7.70%.
Conclusion: Failure to receive either antiretroviral therapy or prophylaxis for more than 4 months (AOR 4.2, 95% CI 1.4–12.6), not receiving co-trimoxazole preventive therapy (AOR 7.8, 95% CI 2.6–23.7), failure to receive prophylaxis at birth (AOR 18.1, 95% CI 5.2–63.4) and mixed feeding (AOR 2.302, 95% CI 1.167–4.539) were the factors that increase the risk of mother-to-child transmission of HIV. In conclusion, the risk of HIV infection among infants born to HIV-infected mothers is high in the study area. Therefore, education and promotion for seeking obstetric care and HIV services during their course of pregnancy, focusing on exclusive breast feeding counselling and promotion, and early initiation of antiretroviral treatment to HIV-infected pregnant women are recommended to curb the devastating consequences of HIV on pregnant women and their newborns.

P006
Preventing mother-to-child transmission of HIV in a general hospital: are we following the guidelines?
Funmi Awosusi and Maha Al-Harbi
Pharmacy, Barts Health NHS Trust, London, UK
Introduction: Mother-to-child transmission of HIV has declined to less than 2% in the UK [1,2]. This decline was a result of the development in perinatal care and preventive measures offered to HIV-positive pregnant women [3,4]. In the UK, management of HIV-infected pregnant women is according to the British HIV Association (BHIVA) pregnancy guidelines, recently reviewed in 2014. The aim of the audit was to measure the extent of adherence to the BHIVA pregnancy guidelines.
Methods: A total of 117 women were identified as HIV-positive pregnant women registered to deliver at the hospital, between May 2012 and December 2015. A total of seven maternal and neonatal factors were evaluated to measure extent of adherence to the guidelines. Data were collected retrospectively from the hospital database and medical notes of these women and their neonates. Eleven women had miscarriages, ten delivered in other different hospitals and one infant died at birth. These were excluded from analysis, leaving a total of 95 patients. Data were compiled onto a spreadsheet and analyzed.
Results: Adherence to the guidelines varied in all the aspects examined. Areas where less optimal adherence were observed included viral load testing at delivery for women taking HAART and HIV polymerase chain reaction (PCR) testing for neonates at 12 weeks. Majority of women were undetectable at 36-week gestation (80%), but only 60% delivered vaginally, even though appropriate mode of delivery was planned for the patients at 36 weeks. For neonatal antiretroviral, 55% were documented to have received zidovudine monotherapy or triple therapy, as appropriate, within 4 hours.
Conclusion: There are variations in adherence of the care provided at the hospital, to the BHIVA guidelines. Areas for development include improvement in documentation, maternal viral load testing at delivery and neonatal HIV PCR testing at 12 weeks.

References

P007
Influence of HIV infection in choosing to terminate pregnancy
Elza Campos1; Liliana Pedro2; Filipa Azevedo2; Raquel Pinho2; Manuela Simão2; Conceição Santos2; Domitília Faria3; Carlos Santos3 and Luisa Aze2
1Medicine, Algarve Hospital Center, Portimão, Portugal. 2Obstetrics and Gynaecology, Algarve Hospital Center, Portimão, Portugal
Introduction: Pregnant HIV patients are often concerned with foetal development and IU transmission of HIV. Therefore, they frequently opt for an abortion. Antiretroviral therapy brought new options to these women due to reduced risk of mother-foetal transmission [1,2]. We estimated the incidence of abortion in HIV-infected pregnant women in our clinic, for the last 15 years.
Material and methods: Data were retrospectively collected. The incidence of abortions in women with a known diagnosis of HIV between 2000 and 2015 was compared with the incidence of abortions in
women who were newly diagnosed with HIV during pregnancy. Statistical analysis with linear regression was done with SPSS version 23.

Results: Seventy-six women were included, with an average age at HIV diagnosis of 26.6 (standard deviation 5.5) years. Of 110 pregnancies, 27 (24.5%) ended in a planned abortion (Table 1). There was a significant relationship between the number of women with known HIV infection prior to pregnancy and the choice for abortion (R = 0.276, p = 0.004). There was no association between the prevalence of abortion and the maternal age at the time of HIV diagnosis.

Conclusion: This study shows that, in our sample, women already infected with HIV choose to terminate pregnancy more often than those who are already pregnant at the time of first diagnosis. Although the use of HAART reduces HIV transmission to the foetus, the presence of an HIV infection seems to play a role in deciding to terminate pregnancy. It is necessary to develop more studies about this and thoroughly inform these patients and help them to make informed decisions about termination of pregnancy.

References

PO08
The association between preterm delivery and the risk of mother-to-child transmission of HIV
Svitlana Posokhova; Sergey Petrovych and Svitlana Shevchenko
Perinatal Center, Odessa Oblast Clinical Hospital, Odessa, Ukraine

Introduction: The prevalence of HIV among Ukrainian women is estimated to be more than 1%. Increased preterm delivery has been reported among HIV-infected women in several industrialized countries. Recent studies have identified HIV as a leading contributor to preterm delivery. Premature babies born to HIV-positive mothers are at an increased risk of vertical transmission. The aim of the study was to evaluate the rate and the risk factors for the mother-to-child transmission (MTCT) of HIV in women who had preterm delivery (PTD; < 37 weeks of gestation).

Methods: A retrospective study looking at all premature babies born to HIV-infected mothers between 2010 and 2014 years in Odessa Regional Perinatal Center. The prematurity risk factors and the rate of MTCT of HIV were analyzed.

Results: In total, 122 HIV-infected women out of the 1115 eligible for inclusion into the study had spontaneous preterm delivery (10.9%) of which 40% were severe preterm (< 34 weeks of gestation). The rate of MTCT in children born prematurely was 21.3%. All women with preterm birth were divided into two groups. The first group included 26 women whose children were HIV positive and the second group consisted of 96 women whose children were healthy. Mothers who gave birth to HIV-infected children more frequently had a combina-
gestation (p < 0.001), had several STD (RR 1.81; 95% CI 1.20–2.56), the vaginal delivery and length of ROM before delivery > 12 hours (RR 1.43; 95% CI 1.10–1.86), a high viral load > 10,000 copies/mL (RR 1.62; 95% CI 1.25–2.23) and who were untreated with HAART (p < 0.001).

P009

Efficacy of prophylactic antiretroviral treatment in new-born infants from HIV-positive mothers in 2012–2014, for the North-Eastern part of Romania

Carmen Doina Manciuc; Liviu Prisacariu; Cristina Nicolau and Alexandra Largu

HIV/AIDS, St. Parascheva Infectious Diseases Clinical Hospital, Iasi, Romania

Introduction: In the North-Eastern region of Romania most of the female HIV-positive population is sexually active and at child-bearing age [1]. In Romania, there is a strict protocol regarding HIV vertical transmission [2]. We aim to evaluate the efficiency of this protocol and the degree of appliance, reflected in the HIV status of new-born infants from HIV-positive mothers for a period of 3 years.

Material and methods: Of the 1424 pregnant actively monitored in the HIV/AIDS Regional Center in Iasi, Romania, 46.5% (663) are female. We evaluated retrospectively the files of all new-born infants from HIV-positive mothers for a period of 3 years (January 2012–December 2014).

Results: In the period mentioned above, 100 children were born (36 in 2012, 38 in 2013, 26 in 2014); one death occurred 10 days after birth, due to multiple organ malformations; the lowest weight at birth was 750 g; three of the children (3%) had a detectable viral load at birth; in one case we could not evaluate the viral load; 98 children (98%) were born through caesarean section; two were born through natural labour (2%), one of which at home. Mothers received treatment with lopinavir/ritonavir + zidovudine/lamivudine through the whole pregnancy in 81 cases; in eight cases the mothers did not receive any treatment, being tested for HIV at birth. For all new-borns prophylaxis was made with zidovudine + lamivudine through the whole pregnancy in 81 cases; in eight cases the mothers did not receive any treatment, being tested for HIV at birth. For all new-borns prophylaxis was made with zidovudine + lamivudine for 6 weeks. Three children remained positive at 18 months, and therapy for them consisted of zidovudine + lamivudine + nevirapine.

Conclusions: Evaluation of pregnant HIV-positive women and prophylaxis for new-born infants in the evaluated period was conducted according to protocols, which resulted in a small percentage of HIV-positive children (3%). This is one of the aspects that make the Romanian HIV-positive population different from that of other countries [3].

References

ARV-BASED PREVENTION: PEP/PREP

P010

Compliance of fixed-dose single tablet EVG/Cobi/FTC/TDF (Stribild) regimen versus LPV/r /d4T/3TC for PEP in sexual assault victims: a retrospective sequential period study

Stéphane De Wite1; Agnès Libois2; Pierre Mols2; and Stefano Malinverni3

1Infectious Diseases, Saint-Pierre University Hospital, Brussels, Belgium. 2Emergency, Saint-Pierre University Hospital, Brussels, Belgium

Introduction: Post-exposure prophylaxis (PEP) is recommended in most cases of sexual assaults. Due to many reasons, compliance is poor in this situation. A single-tablet regimen for PEP showed good results in terms of adherence and completion [1]. Following a previous study in our institution indicating a low compliance (40%) to PEP for sexual assault victims [2], drug regimen has been changed on 1 January 2015 from LPV/r/d4T/3TC to single tablet EVG/Cobi/FTC/TDF aiming to improve compliance. In this study, we evaluate the impact of this change on compliance.

Materials and methods: We conducted a retrospective sequential period analysis between January 2011 and December 2015 of persons consulting at our institution for PEP following sexual assault. Data were extracted from a prospective PEP registry. Patients receiving 28 days of treatment were considered compliant. Compliance was extracted from medical records and calculated from pharmacy records.

Results: A total of 368 cases were included, 283 received PEP. Ninety-six percent were female with a mean age of 27 years, 50% were migrant. Exposure was vaginal receptive in 82% of cases, anal receptive in 21% and oral receptive in 27%. Seventy-one patients received a single tablet EVG/Cobi/FTC/TDF and 212 received a multitablet regimen LPV/r/d4T/3TC twice daily. Baseline characteristics of the two groups were not statistically significantly different. Compliance was higher in EVG/Cobi/FTC/TDF compared with LPV/r/d4T/3TC (52% vs. 42% respectively, p = 0.158), but this did not reach statistical significance.

Conclusion: Switching to a well-tolerated single-pill regimen (EVG/Cobi/FTC/TDF) modestly improves compliance suggesting that in sexual assault victims other drug regimens and other interventions should be implemented.

References

P011

Increased rate of C. trachomatis infection after being prescribed PrEP

Vinh-Vim Nguyen1; Helen Trottier1; Hermione Gbego Tossa1; Louise Charest2; Danielle Longpré2; Stéphane Lavoie2; Martha Cadieux3; and Réjean Thomas3

1Département de Médecine Sociale et Préventive École de Santé Publique de l’Université de Montréal, Montréal, Canada. 2Clinic and Outpatient Services, Clinique l’Actuel, Montréal, Canada. 3Epidémiologie, Clinique l’Actuel, Montréal, Canada

Introduction: Increasing use of HIV pre-exposure prophylaxis (PrEP) using Truvada following clinical trials that have shown nearly 100% efficacy for high-risk men who have sex with men (MSM) raises concerns that resulting decreased condom use could increase sexually transmitted infections (STIs). Clinique l’Actuel (CA) is a sexual health clinic in Montréal, Québec, Canada and the largest provider of health care for MSM and people living with HIV in the city; in 2015, CA
treated 60% of *N. gonorrhoea* (NG) cases in Quebec province; a marked increase in NG treatments has been noted at CA since January 2016. Since August 2015 PrEP has been offered to MSM coming for STI screening and assessed as high risk by physicians; as of July 2016, 1059 MSM are receiving PrEP (85% continuous regimen, 15% intermittent regimen) at CA. PrEP may lead to a shift away from condoms as a prevention strategy, or alternatively offers a new prevention strategy for those who already engage in condom-less sex.

Methods: To assess whether PrEP increases condom-preventable STIs, we enrolled patients with >1 year of follow-up before and after PrEP prescription. Hundred and thirty-three patients were included. Patients were seen every 3 months for a physician evaluation, behavioural questionnaire and full STI screen that included PCR swabs for anal, oral or urethral NG and *C. trachomatis* (CT). Cases were ascertained by electronic results with a manual chart review to confirm positives. The proportion of individuals infected with CT and NG were compared before and after exposure to PrEP using two-sided chi squared (χ^2) test.

Results: The proportion of individuals infected with anal, oral or urethral CT in the year prior to PrEP were 10%, 2%, 3%, respectively and in the year post-PrEP were 20%, 2%, 11% in the exposure period (p-value 0.00, 1.00, 0.01, respectively). The percentage of individuals infected with CT at any site pre- and post-PrEP were 13% and 26% ($p = 0.01$). The proportion of individuals infected with anal, oral or urethral NG in the year prior to PrEP were 9%, 8% and 8%, respectively, and in the year after PrEP were 14%, 11%, 6% (p-value 0.24, 0.29, 0.62, respectively). The percentage of individuals infected with NG pre- and post-PrEP were 17% and 26% ($p = 0.07$), respectively.

Conclusion: Increased rates of CT post-PrEP suggest a shift away from condom use. Increased rates of asymptomatic STIs such as CT but not NG post-PrEP warrant further study.

P012

Risk perception in MSM taking PrEP

Stefano Boccino; Ushaa Kanagalinghan; Nneka Nwokolo and Gary Whitlock
Chelsea and Westminster Hospital, London, UK

Introduction: There are concerns that those taking pre-exposure prophylaxis (PrEP) may increase their frequency of condomless sexual intercourse and hence increase their risk of acquiring STIs other than HIV. We wished to survey the perception of these concerns for those on PrEP in the UK.

Materials and methods: Between 6 February and 7 June 2016, we surveyed MSM attending a central London sexual health clinic for PrEP monitoring. The survey was a self-reported anonymous paper questionnaire asking about respondents’ PrEP regimen, length of time on PrEP and how respondents’ sexual activity and partner selection had changed and how they felt about the risk of acquiring STIs and HIV since starting PrEP. P-values were computed using Fisher’s exact test.

Results: Hundred questionnaires were completed: all respondents were MSM. The majority (77%) were taking daily PrEP, 19% event-driven and four not-specified. The median time on PrEP was 3 months. Since starting PrEP most respondents indicated they were more relaxed about their risk of acquiring HIV (83%). With regard to risk of acquiring other STIs, 20% were less relaxed and most “felt the same” (78%). Most (63%) indicated that the number of times they had had condomless sex had not changed since starting PrEP; 30% indicated it had increased. There was a reported increase in condomless intercourse in those taking PrEP for longer than 4 months compared with those more recently starting ($p = 0.049$) (Table 1).

<table>
<thead>
<tr>
<th>Table 1. Since you’ve started PrEP how do you think the number of times you have had condomless sex has changed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length on PrEP</td>
</tr>
<tr>
<td>4 months or more</td>
</tr>
<tr>
<td>Less than 4 months</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

*Two respondents did not indicate length on PrEP.

Conclusions: Our survey suggests that MSM taking PrEP in London, UK are more relaxed about acquiring HIV but less so about other STIs. There appears to be an association between length of time on PrEP and increase of condomless sexual activity. It is important that PrEP guidelines incorporate regular STI screening and risk reduction interventions.

P013

Attitudes towards pre-exposure prophylaxis against HIV infection among individuals seeking voluntary counselling and testing for HIV in Taiwan

Lan-Hsin Chang1; Wen-Chun Liu1; Cheng-Hsin Wu1; Yi-Chieh Lee2; Hsin-Yun Sun1; Chien-Ching Hung1 and Shan-Chwen Chang1

1Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
2Internal Medicine, Lotung Poh-Ai Hospital, Medical Lo-Hsu Foundation, Internal Medicine, Yilan City, Taiwan

Introduction: Pre-exposure prophylaxis (PrEP) using tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) against HIV infection have been shown to be efficacious in clinical trials. Successful implementation of PrEP in the field settings requires understanding of the knowledge and opinions of PrEP among the individuals who will benefit most from the intervention. This survey aimed to understand the attitudes towards PrEP among individuals in Taiwan who sought voluntary counselling and testing (VCT) for HIV at a university hospital, where the HIV incidence rates among men who have sex with men (MSM) was estimated 5.5 per 100 person-years of follow-up between 2007 and 2015.

Materials and methods: Between April and June, 2016, a survey was conducted among VCT clients who completed an anonymous questionnaire interview with the assistance of a trained counsellor to inquire about the risks for HIV infection or other sexually transmitted infections and the knowledge of PrEP against HIV infection. We collected information on demographics, educational achievement, occupation, income and risk exposures that prompted the VCT visits. Tests for anti-HIV antibody and syphilis were performed. Multivariate logistic regression analysis was performed to identify the associated factors with consideration to initiate PrEP. All of the variables with p < 0.2 in univariate analysis when comparisons were made between those who would consider PrEP and those who would not were entered into multivariate analysis.

Results: During the 3-month study period, all 611 individual clients with a mean age of 30.1 years (SD 8.3) seeking VCT service agreed to participate in this survey; 87.6% were male, 68.2% MSM, and 74% had full-time or part-time jobs, and 20% were students. About one-third of the clients reported unprotected anal sex with fixed (32.5%) or unfixed partners (35.0%) within 3 months and use of recreational drugs (6.4%) or alcohol consumption (18.0%). Less than 40% (37.5%) knew PrEP while 68.8% knew post-exposure prophylaxis before this survey. Overall, 309 individuals (50.6%) would consider to initiate PrEP and 83.5% of them would choose event-driven PrEP strategy. In
multivariate analysis, knowledge of PrEP (adjusted odds ratio [AOR] 5.252; 95% CI 1.066–25867) and having unprotected anal sex with unfixed partners (AOR 19.574; 95% CI 2.259–169.575) before this survey was statistically significantly associated with consideration to initiate PrEP with TDF/FTC.

Conclusions: To facilitate successful implementation of PrEP against HIV infection, increase of awareness by providing information, education and communication with respect to PrEP is important to the population at risk.

P014 “Self-perceived” pre-exposure prophylaxis adherence and its relationship to self-reported “actual adherence” among Thai men who have sex with men and transgender women

Tanadeep Anand1; Stephen Kerr1; Tanakorn Apompong2; Chattiyi Nitpolprasert1; Jintanat Ananworanich1; Praphan Phanuphak4 and Nittaya Phanuphak5

1Adam’s Love, Thai Red Cross AIDS Research Centre, Bangkok, Thailand. 2Biotestistics, HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Centre, Bangkok, Thailand. 3Therapeutics Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA. 4Thai Red Cross AIDS Research Centre, Bangkok, Thailand. 5HIV Prevention, Thai Red Cross AIDS Research Centre, Bangkok, Thailand

Introduction: In Bangkok, one in three Thai men who have sex with men (MSM) or transgender (TG) women range from 10 to 17% [2]. Pre-exposure prophylaxis (PrEP) is a safe and effective HIV prevention method [3]. Thai MSM and TG have shown high interest in PrEP uptake, but data on PrEP adherence and retention remain suboptimal. We sought to understand how self-perceived adherence related to actual adherence, to inform the development of future PrEP adherence interventions.

Methods: Between January 10 and 11 April 2016, the Thai Red Cross AIDS Research Centre (TRCARC)’s Adam’s Love (www.adamslove.org) enrolled MSM and TG into free PrEP services using its real-time PrEP eCounselling and novel Online-to-Offline (O2O) model at four sites in Bangkok including TRCARC Anonymous Clinic, Adam’s Love private clinic and two community-based drop-in centres. Data were gathered on their self-perceived adherence at PrEP initiation and PrEP eCounselling and novel Online-to-Offline (O2O) model at four sites in Bangkok including TRCARC Anonymous Clinic, Adam’s Love private clinic and two community-based drop-in centres. Data were gathered on their self-perceived adherence at PrEP initiation and compared with self-reported adherence 1 month post PrEP use. Logistic regression was used to calculate the OR for demographic and behavioural characteristics associated with 100% self-reported adherence. Factors significant in univariate analysis at p<0.1 were adjusted for in a multivariate model. Participants who withdrew or were lost to follow-up were imputed as non-adherent.

Results: A total of 168 participants were enrolled into the programme. Data from 132 participants with available adherence data after 1 month of PrEP were analyzed. At enrolment, 105 (79.5%) participants believed they were likely or extremely likely to be adherent to daily PrEP, but only 13 (9.8%) had reported taking all seven pills in the week prior to the month 1 visit. After adjusting for selling sex and cannabis use in a multivariate model, two factors were independently associated with perfect (100%) self-reported adherence. These were having no income because they were students or unemployed (OR 5.6, 95% CI 1.3–23.4; p = 0.02) and being aware of sex partners’ HIV status (OR 6.7, 95% CI 1.6–28.7; p = 0.02).

Conclusions: Although most Thai MSM and TG believed they would be highly adherent to PrEP at enrolment, this perception correlated poorly with actual adherence. Participants without income and those aware of the HIV status of their sexual partners were significantly more likely to report 100% adherence. Innovative PrEP adherence interventions to help overcome daily adherence barrier and promote consistent high levels of PrEP adherence are urgently needed.

References

P015 Polish infectious diseases physicians’ attitudes and beliefs about pre-exposure prophylaxis for HIV prevention

Jacek Kolodziej; Tomasz Mikula and Alicja Wiercinska-Drapalo

Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland

Introduction: Pre-exposure prophylaxis (PrEP) for HIV prevention is rarely implemented in Polish setting. It remains controversial among infectious diseases specialists, yet no research was undertaken to identify the concerns. Providing deeper understanding of the exact nature of physicians’ attitudes about PrEP should help direct further efforts into resolving the controversies.

Materials and methods: Anonymous questionnaires (150) were distributed among Polish infectious diseases specialists with questions addressing their attitudes, beliefs, expectations and experiences related to PrEP. Data were collected in regard to sex, age, years of practice, city of practice and whether they were members of academic faculty.

Results: Overall, 62 physicians (41.3%) returned the questionnaires (mean age 42.5, SD 10.5; 69.4% women). Only nine doctors (14.7%) had ever prescribed PrEP to patients. Majority considered there were indications for use of PrEP in seronegative women (70.5%) and seronegative men (65.6%) planning pregnancy with a serodiscordant partner and consequently believed PrEP should be funded by the state in these circumstances (63.9% and 60.7%, respectively). No other presented situation (such as: men who have sex with men with a history of unprotected anal intercourse, serodiscordant couples and intravenous drug users) was considered an indication for PrEP or a justification for state funding. In the sample, 63.9% of doctors agreed or strongly agreed with a statement that PrEP was a well-known issue to them compared to 8.2% who disagreed or strongly disagreed. Majority (67.7% vs. 11.3%) believed PrEP was efficacious in preventing new infections and 56.5% (vs. 21%) shared the view it was a major accomplishment in HIV prevention. Common concerns included: PrEP leading to abandonment of safer sex practices (64.5% vs. 16.1%) or serving as an encouragement to risky sexual behaviours (58.1% vs. 24.2%) and potential drug-resistance emergence (54.1% vs. 24.6%). Vast majority (77.4% vs. 11.3%) believed that patients should radically alter their behaviours instead of relying on pharmacologic interventions.

Conclusions: Polish physicians involved in HIV treatment hold generally favourable views of PrEP and majority consider themselves sufficiently educated in this regard. Concerns are raised, however, in terms of encouragement to risky sexual behaviours, which should be addressed in research in Central and Eastern European population of potential PrEP users.
P016
Pre-exposure prophylaxis awareness in individuals accessing a non-occupational post-exposure prophylaxis (NPEP) program
John Peel1; Nathan Lachowsky1; David Moore1; Shahab Jabbari1; Wendy Zhang1; Silvia Guillemi1; Marianne Harris2; Troy Grennan2; Jason Wong2; Val Montessori1; Gina Ogilvie2; Julio Gonzalez Montaner3 and Mark Hull1
1Providence Health Care, British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada. 2Infectious Disease, BC Centre for Disease Control, Vancouver, Canada.

Introduction: Biomedical prevention strategies are an important aspect of combination prevention interventions for HIV infection. Programmes targeting populations at highest HIV risk are likely to be cost-effective. Individuals who require post-exposure prophylaxis (PrEP) have been shown to be at high risk for subsequent HIV seroconversion, yet their knowledge of alternate prevention strategies is unclear. We undertook to assess overall awareness of PrEP amongst individuals accessing an NPEP program in Vancouver, Canada.

Methods: Individuals accessing an NPEP pilot program offered at five sites (four community-based and via an emergency department of a tertiary care hospital) were sequentially recruited to complete a self-administered HIV knowledge questionnaire between July 2012 and March 2014. Awareness of PrEP was initially dichotomized as a yes/no response, and for individuals reporting PrEP awareness, level of self-reported knowledge was further categorized using a four-point Likert scale. Factors associated with PrEP awareness were determined using Fisher’s exact test for categorical values and Wilcoxon rank sum for continuous variables (p < 0.05 considered significant).

Results: Overall 134 individuals were included, 95% male, 70% white, with median age of 36 years (interquartile range [IQR] 28–42). Baseline exposure for NPEP included condomless anal sex (CAS) in 84% of individuals (81% MSM) and IDU in 4% of individuals. Overall n = 75 (56%) individuals reported being aware of PrEP, with 47 (63%) reporting moderate/high levels of knowledge, and 51 (68%) were willing to use PrEP. PrEP awareness was positively associated with reporting MSM partners (89% vs. 72%, p = 0.018), being non-IDU (100% vs. 84%, p = 0.004) and reporting high levels of knowledge regarding role of HIV viral load in transmission (29% vs. 8%, p < 0.001). In a multivariate logistic model, high levels of knowledge significantly associated with awareness of PrEP (aOR 3.34, 95% CI 1.12–9.90, p = 0.042).

Conclusions: MSM individuals accessing NPEP services report both high levels of HIV risk and PrEP awareness. Combination NPEP/PrEP programs should be considered for at-risk individuals.

P017
PrEP use in Lisbon while waiting for a policy
Paula Meireles1; Miguel Rocha2; Maria José Campos2 and Henrique Barroso2
1Epidemiology Research Unit, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal. 2Grupo de Ativistas em Tratamentos, CheckpointX, Lisboa, Portugal. 3Faculdade de Medicina, Universidade do Porto, Porto, Portugal.

Introduction: Pre-exposure prophylaxis (PrEP) with tenofovir/emtricitabine (TDF/FTC) has been shown to be effective in preventing HIV among high-risk HIV-negative men who have sex with men (MSM). These overwhelming results of the trials put pressure on countries to make PrEP available. Few are already dispensing TDF/FTC as PrEP, Portugal is not one of those, although we remain one of the most affected populations in Western Europe. However, some individuals report the use of PrEP. We aimed to assess the frequency of PrEP use and the characteristics of users in an HIV-negative MSM cohort [1].

Materials and methods: Using data from the Lisbon Cohort of MSM, an open prospective cohort of 4243 adult HIV-negative MSM, we performed a case-cohort analysis; 28 (0.7%) reported to have used PrEP, and we randomly selected 112 controls. Proportions were compared using the chi-square or Fisher’s exact test and medians using the Mann-Whitney.

Results: PrEP users had a significantly higher median number of visits in the cohort (3 vs. 1, p < 0.001), were more frequently born in countries other than Portugal (39.1% vs. 17.0%, p = 0.025), reported more frequently to know and to have used post-exposure prophylaxis (PEP) at baseline (34.6% vs. 52.3% did not know about PEP and 11.5% vs. 0.9% used PEP, p = 0.014). Always using condom with an occasional partner were more frequently reported among PrEP users (68% vs. 48%, p = 0.091). Groups were similar in terms of age, education and condom use with an HIV-positive steady partner and a STI diagnosis in the previous 12 months to baseline.

Conclusions: In the absence of an official policy some MSM are already using TDF/FTC in Portugal, particularly those born abroad and are concerned with their protection.

Reference

ARV-BASED PREVENTION: TREATMENT AS PREVENTION (TASP)

P018
Increasing ART coverage and viral suppression are associated with a substantial decline in new HIV infections in the Austrian Tyrol
Gisela Leierer1; Ard van Sighem2; Mario Sarcletti3; Maria Kitchen1; Martin Gisinger1; Michaela Rappold1; Bruno Ledergerber4 and Robert Zangerle1
1Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria. 2Research, Stichting HIV Monitoring, Amsterdam, Netherlands. 3Division of Infectious Diseases, University Hospital Zurich, Zurich, Switzerland.

Introduction: UNAIDS has set the goal that 90% of people living with HIV (PLHIV) are diagnosed, that 90% of all people diagnosed receive ART and 90% of all people receiving ART have viral suppression. Apart from being a challenging goal, there is controversy whether the 90–90–90 UNAIDS targets suffice to curb the HIV epidemic.

Methods: Patients from the University Hospital Innsbruck (UHI; covers ≥ 99% patients with ART) who had their last residency in the Austrian Tyrol. PLHIV estimates were obtained using back-calculation models [1] to estimate HIV incidence and the undiagnosed fraction from the patients referred to UHI. The proportion ever diagnosed and still living in Tyrol who ever initiated ART and the proportion of them who were virally suppressed (< 200 copies/mL) were assessed for the years 2001 to 2015. Missing HIV RNA was considered as unsuppressed.

Results: PLHIV were estimated to be 271 in 2001 and 501 in 2015. The fraction undiagnosed decreased from 18% (95% CI 12–24%) in

Abstracts of the HIV Glasgow supplement
Journal of the International AIDS Society 2016, 19 (Suppl 7)
2011 to 11% (95% CI 7–27%) in 2015. The proportion of diagnosed patients who have ever started ART increased from 64% in 2001 to 91% in 2015 (Figure 1). Among those who started ART, the proportion of individuals virally suppressed improved from 79 to 97% between 2001 and 2015 (Figure 1). The fraction of the virally suppressed among PLHIV increased from 39% in 2001 to 79% in 2015, which is well above the 90% target of 73%.

Estimates of the number of new HIV infections decreased from 26 (95% CI 18–34) in 2009 to eight (95% CI 0–76) in 2015 (Figure 2).

Conclusions: Although the relationship between the fraction of virally suppressed and HIV infections does not demonstrate causality it provides strong supportive evidence that treatment as prevention can reduce the epidemic. In addition, our data support that in this setting the 90% targets may indeed curb the epidemic.

References

PO19
Implementation of isoniazid preventive therapy for people living with HIV in Northwestern Nigeria: integration challenges and issues
Abiola Adepoju1; Ginika Egesemba2; Umar Kangiwa3 and Peace Igene4
1HIV Clinical Care, Management Sciences for Health, Birnin Kebbi, Nigeria. 2Prevention Organization AIDS Care and Treatment, Management Sciences for Health, Abuja, Nigeria. 3Department of Hematology, Federal Medical Center, Birnin Kebbi, Nigeria. 4Science, Loveworld International, Lagos, Nigeria

Introduction: The risk of acquiring tuberculosis (TB) by people living with HIV (PLHIV) could be drastically reduced through provision of isoniazid preventive therapy (IPT). In Nigeria, there is paucity of data on the routine implementation of this intervention and its effectiveness in low-resource settings. The MSH model provides 6 months of IPT at 2-month intervals for eligible PLHIV. This study assessed pattern of IPT provision and impact among PLHIV in six USAID-funded hospitals in Kebbi state, Nigeria.

Methodology: Data were collected in November 2015 by reviewing a total of 1653 folders of adult and paediatric PLHIV placed on IPT across six health facilities between January 2013 and October 2015. Descriptive and inferential statistics were used to analyze findings.

Results: Of the 1653 folders reviewed, 1134 have completed IPT while 519 were still on IPT. Only 13 (1.1%) of those who completed IPT developed TB after average period of 11 months. Only one (0.1%) developed TB while on IPT. Individuals who completed IPT without developing TB have the same IPT default rate (31%) as those who developed TB after IPT completion. Those who completed IPT without developing TB were found to have lower rate (10%) of ART default compared with higher rate (60%) in those who developed TB after IPT completion. IPT default was highest in the first few weeks of ART initiation.

Conclusion: ART and IPT have combined effect of reducing TB incidence among PLHIV. Adherence to ART as measured by default rate has greater impact compared with adherence to IPT in the reduction of the incidence of TB among PLHIV. Coupled with enhanced adherence services, pre-packaging IPT and ART as single prescription will help to overcome integration challenges and reduce TB burden among PLHIV.

Abstract P018- Figure 2. Number of new HIV infections in Tyrol over time.
Cascade of care in TAK project: strong in right side, but weak in left side

Justyna Kowalska 1; Leah Shepherd 2; Magdalena Ankiersztejn-Bartczak 3; Ewa Firlag-Burkacka 4; Andrzej Horban 1 and Amanda Mocroft 2

1 Hospital for Infectious Diseases in Warsaw, Medical University of Warsaw, Warsaw, Poland. 2 Royal Free Campus, University College Medical School, London, UK. 3 Foundation of Social Education, Foundation for Social Education (FES), Warsaw, Poland. 4 HIV Outpatient Clinic, Hospital for Infectious Diseases in Warsaw, HIV Outpatient Clinic, Warsaw, Poland

Introduction: Early cART remains the most effective HIV prevention strategy, yet poor linkage to care after HIV diagnosis may compromise this benefit [1]. It is important to better understand patient characteristics and risk for HIV acquisition and association with response to cART.

Method: The TAK project collects all information on patients diagnosed with HIV in community-based testing facilities (CBVCTs) in central Poland, follows their linkage to care and ongoing routine clinical care [2]. Data collected for persons diagnosed from 2010 to 2013 in CBVCTs were linked with HIV clinic records. Individuals linked to care were followed from first CBVCTs visit until last visit in the HIV clinic or 5 December 2015. Cox proportional hazard models were used to identify factors associated with viral suppression (VS) (first VS: HIV RNA < 50 copies/mL).

Results: Two hundred and thirty-two persons were HIV+, 144 (62%) linked to care, 116 (80% of those linked to care) started cART during follow-up, of which 113 (97%) achieved VS with median time to VS of 5 (IQR 4–5) months. Median time from linkage to starting cART was 6 (IQR 3–9) months. In those who started cART 111 (96%) were men, 98 (84%) homosexual, 26 (22%) had syphilis at baseline, 34 (29%) had a partner who had never tested for HIV, 33 (28%) had a HIV+ partner, 66 (57%) always using condoms with casual partners, 24 (21%) had sex on drugs or alcohol. Median age was 32 (IQR 28–37) years, baseline CD4 count 352 (259–415) cells/μL and HIV RNA 4.5 (3.9–5.1) log copies/mL. After adjustment, factors associated with higher rate of VS were bisexual orientation, non-PI-based regimen, HLA B5701(+) and with lower rate were unknown syphilis status and higher HIV RNA at cART start (Figure 1).

Conclusions: In this community-based setting, although a low proportion of persons were linked to care, almost all those linked to care started cART and achieved rapid VS during follow-up. We observed high rates of VS, irrespective of prior HIV-associated risk behaviours. Linkage to care remains the highest priority in prevention strategies in central Poland.

References
significant improvement in access to early cART — data from Test and Keep in Care (TAK) project. [Abstract PS 8/4.] 15th European AIDS Conference; 2015 Oct 21–24; Spain: Barcelona.

TREATMENT STRATEGIES: NEW TREATMENTS AND TARGETS

P021

Durability and tolerability of first-line combination including two NRTI and RAL or ATV/r or DRV/r in patients enrolled in the ICONA Foundation cohort

Table 1. Characteristics of the included patients

<table>
<thead>
<tr>
<th></th>
<th>ATV/r (N = 939)</th>
<th>DRV (N = 931)</th>
<th>RAL (N = 202)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender, n (%)</td>
<td>717 (76.4%)</td>
<td>764 (82.1%)</td>
<td>165 (81.7%)</td>
<td>0.007</td>
</tr>
<tr>
<td>Age, years, median (IQR)</td>
<td>39 (32–47)</td>
<td>40 (32–49)</td>
<td>43 (35–51)</td>
<td>0.002</td>
</tr>
<tr>
<td>Italians, n (%)</td>
<td>716 (76.2%)</td>
<td>749 (80.4%)</td>
<td>173 (85.6%)</td>
<td>0.004</td>
</tr>
<tr>
<td>Mode of HIV transmission, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterosexual</td>
<td>430 (45.8%)</td>
<td>388 (41.7%)</td>
<td>89 (44.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>IVDU</td>
<td>113 (12.0%)</td>
<td>57 (6.1%)</td>
<td>8 (4.0%)</td>
<td></td>
</tr>
<tr>
<td>Homosexual</td>
<td>339 (36.1%)</td>
<td>396 (42.5%)</td>
<td>89 (44.1%)</td>
<td></td>
</tr>
<tr>
<td>Other/unknown</td>
<td>57 (6.1%)</td>
<td>90 (9.7%)</td>
<td>16 (7.9%)</td>
<td></td>
</tr>
<tr>
<td>AIDS, n (%)</td>
<td>81 (8.6%)</td>
<td>148 (15.9%)</td>
<td>21 (10.4%)</td>
<td><0.001</td>
</tr>
<tr>
<td>HCV co-infection, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>120 (12.7%)</td>
<td>74 (7.9%)</td>
<td>11 (5.4%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Negative</td>
<td>723 (77.0%)</td>
<td>737 (79.2%)</td>
<td>161 (79.7%)</td>
<td></td>
</tr>
<tr>
<td>Not known</td>
<td>96 (10.2%)</td>
<td>120 (12.9%)</td>
<td>30 (14.8%)</td>
<td></td>
</tr>
<tr>
<td>HBV co-infection, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>40 (4.3%)</td>
<td>33 (3.5%)</td>
<td>13 (6.4%)</td>
<td>0.224</td>
</tr>
<tr>
<td>Negative</td>
<td>760 (80.9%)</td>
<td>745 (80.0%)</td>
<td>152 (75.2%)</td>
<td></td>
</tr>
<tr>
<td>Not known</td>
<td>139 (14.8%)</td>
<td>152 (16.4%)</td>
<td>37 (18.3%)</td>
<td></td>
</tr>
<tr>
<td>CD4 cell/mm³, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–200</td>
<td>98 (10.4%)</td>
<td>11 (1.2%)</td>
<td>13 (6.4%)</td>
<td><0.001</td>
</tr>
<tr>
<td>201–350</td>
<td>350 (37.3%)</td>
<td>264 (28.4%)</td>
<td>32 (15.8%)</td>
<td></td>
</tr>
<tr>
<td>351–500</td>
<td>348 (37.1%)</td>
<td>386 (41.5%)</td>
<td>51 (25.2%)</td>
<td></td>
</tr>
<tr>
<td>501+</td>
<td>143 (15.2%)</td>
<td>270 (29.0%)</td>
<td>106 (52.5%)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>54 (5.7%)</td>
<td>81 (8.7%)</td>
<td>17 (8.4%)</td>
<td></td>
</tr>
<tr>
<td>CD4 cell/mm³, median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>0–200</td>
<td>302 (168–413)</td>
<td>250 (87–393)</td>
<td>351 (206–504)</td>
<td></td>
</tr>
<tr>
<td>HIV RNA copies/mL, n (%)</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>50–20,000</td>
<td>235 (25.0%)</td>
<td>176 (18.9%)</td>
<td>54 (26.7%)</td>
<td><0.001</td>
</tr>
<tr>
<td>20,000–100,000</td>
<td>272 (29.0%)</td>
<td>225 (24.2%)</td>
<td>60 (29.7%)</td>
<td></td>
</tr>
<tr>
<td>100,000–250,000</td>
<td>145 (15.4%)</td>
<td>164 (17.6%)</td>
<td>29 (14.4%)</td>
<td></td>
</tr>
<tr>
<td>250,000+</td>
<td>187 (19.9%)</td>
<td>230 (24.7%)</td>
<td>35 (17.3%)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>100 (10.6%)</td>
<td>136 (14.6%)</td>
<td>24 (11.9%)</td>
<td></td>
</tr>
<tr>
<td>HIV RNA log10 copies/mL, median (IQR)</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>4.2–5.3</td>
<td>4.8 (4.2–5.3)</td>
<td>5.0 (4.4–5.5)</td>
<td>4.7 (4.1–5.3)</td>
<td></td>
</tr>
<tr>
<td>Year of cART start</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>2008–2009</td>
<td>98 (10.4%)</td>
<td>11 (1.2%)</td>
<td>13 (6.4%)</td>
<td><0.001</td>
</tr>
<tr>
<td>2010–2011</td>
<td>350 (37.3%)</td>
<td>264 (28.7%)</td>
<td>32 (15.8%)</td>
<td></td>
</tr>
<tr>
<td>2012–2013</td>
<td>348 (37.1%)</td>
<td>386 (41.5%)</td>
<td>51 (25.2%)</td>
<td></td>
</tr>
<tr>
<td>2014–2015</td>
<td>143 (15.2%)</td>
<td>270 (29.0%)</td>
<td>106 (52.5%)</td>
<td></td>
</tr>
<tr>
<td>NRTIs combination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTC + TDF</td>
<td>808 (86.1%)</td>
<td>803 (86.2%)</td>
<td>173 (85.6%)</td>
<td>0.973</td>
</tr>
<tr>
<td>ABC + 3TC</td>
<td>131 (13.9%)</td>
<td>128 (13.8%)</td>
<td>29 (14.4%)</td>
<td></td>
</tr>
</tbody>
</table>
Abstract P021 – Table 2. Relative hazards of reaching various outcomes from fitting a Cox regression model

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Unadjusted HR (95% CI)</th>
<th>p</th>
<th>Adjusted HR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF (VF > 200 copies/mL or discontinuation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATV/r</td>
<td>1.00</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>DRV/r</td>
<td>0.99 (0.87–1.12)</td>
<td>0.821</td>
<td>0.92 (0.80–1.05)</td>
<td>0.222</td>
</tr>
<tr>
<td>RAL</td>
<td>1.01 (0.80–1.28)</td>
<td>0.930</td>
<td>0.84 (0.66–1.08)</td>
<td>0.175</td>
</tr>
<tr>
<td>VF > 50 copies/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATV/r</td>
<td>1.00</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>DRV/r</td>
<td>0.92 (0.74–1.13)</td>
<td>0.431</td>
<td>0.88 (0.70–1.10)</td>
<td>0.270</td>
</tr>
<tr>
<td>RAL</td>
<td>0.51 (0.30–0.86)</td>
<td>0.011</td>
<td>0.54 (0.32–0.93)</td>
<td>0.026</td>
</tr>
<tr>
<td>All-cause discontinuation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATV/r</td>
<td>1.00</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>DRV/r</td>
<td>1.00 (0.88–1.15)</td>
<td>0.935</td>
<td>0.93 (0.81–1.07)</td>
<td>0.296</td>
</tr>
<tr>
<td>RAL</td>
<td>1.08 (0.85–1.38)</td>
<td>0.509</td>
<td>0.88 (0.69–1.13)</td>
<td>0.321</td>
</tr>
<tr>
<td>Discontinuation due to toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATV/r</td>
<td>1.00</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>DRV/r</td>
<td>0.70 (0.56–0.89)</td>
<td>0.003</td>
<td>0.65 (0.51–0.82)</td>
<td><0.001</td>
</tr>
<tr>
<td>RAL</td>
<td>0.44 (0.26–0.76)</td>
<td>0.003</td>
<td>0.34 (0.20–0.60)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Models were adjusted for gender, age, nation of birth, mode of HIV transmission, hepatitis co-infection status, AIDS diagnosis, nucleoside pair started, baseline CD4 count and viral load and year of starting cART.

Introduction: Although several randomized studies have shown that PI/r-including first-line regimens have lower efficacy as compared to those including integrase inhibitors, they are still used in a number of conditions, mainly due to their high genetic barrier. We aimed to reproduce in a real-life setting results of the ACTG 5257 trial, comparing virologic response, durability and tolerability of first line raltegravir (RAL)-including regimens to regimens including either darunavir/ritonavir (DRV/r) or atazanavir/r (ATV/r).

Materials and methods: Patients from the Icona cohort initiating their first ART regimen from January 2008 (date of availability of RAL in Italy) with TDF/FTC or ABC/3TC plus ATV/r or DRV/r or RAL with at least one visit and one CD4 and VL determination in follow-up were included in the analyses. Primary endpoint: treatment failure (TF): virologic failure (VF) (HIV RNA >200 copies/mL ≥6 months of therapy) or discontinuation of RAL, ATV/r or DRV/r whatever first occurs. Secondary endpoints: VF50 (HIV RNA >50 copies/mL ≥6 months of therapy); discontinuation (TD) of RAL, ATV/r or DRV/r due to all causes and discontinuation due to toxicity/tolerability (TDT). Discontinuation of backbone does not count as endpoint. Survival analysis with Kaplan-Meier curves and Cox regression model.

Results: A total of 2072 patients were analyzed: 939 (45.3%) started ATV/r-including regimens, 932 DRV/r (45.0%) and 202 (9.7%) RAL. Several differences in demographic and clinical characteristics according to the regimen used were identified (see Table 1). In a median follow-up of 1.4 years (IQR 0.6–2.7), TF occurred in 1028 patients, 28.2/100 PYFU (95% CI 25.6–30), VF50 in 372, 7.2/100 PYFU (95% CI 7.0–8.8), and TDT in 326 patients, 8.8/100 PYFU (95% CI 7.8–9.8). In the multivariable analysis, no differences in TF according to regimens was found. RAL-including regimens resulted in 46% lower risk of VF50 compared to ATV/r. Both DRV/r-including and RAL-including regimens resulted in significantly lower risk of TDT compared to ATV/r-including regimens (Table 2).

Conclusion: Concerning the risk of discontinuation for toxicity our results are consistent with those observed in AS257. When considering virologic failure, only with the threshold of 50 copies/mL results were somewhat different from those observed in the randomized comparison, suggesting lower rate of virologic failure for RAL than ATV/r, although the difference was small and likely due to methodology discrepancy and residual confounding cannot be ruled out.
potentially could be self-administered as a long-acting subcutaneous injection.

Methods: Adnectins targeting CD4 and a region of gp41 were isolated and optimized for antiviral potency and biophysical characteristics. The anti-gp41 Adnectin was joined to its amino terminus to the anti-CD4 Adnectin via a peptide linker. A third inhibitor, an alpha-helical peptide fusion inhibitor, was linked to the carboxyl end of the anti-gp41 Adnectin via another linker. Finally, a human serum albumin (HSA) molecule was attached to amino terminus of the anti-CD4 Adnectin to optimize in vivo PK.

Results: The ECSRIs of the isolated anti-CD4 Adnectin, anti-gp41 Adnectin and fusion inhibitor peptide were 8.5, 5.4 and 0.4 nM, respectively. Various synergies were obtained by linking all three inhibitors into a single molecule. Optimally combining the two Adnectins increased potency over 100-fold to ~ 30 pM. Addition of the fusion inhibitor peptide resulted in an increased resistance barrier compared to the separate components, as virus resistant to any one of the three components did not affect the potency of GSK3732394. Addition of HSA to the amino terminus decreased potency to 0.27 nM, but improved PK, leading to a projected weekly human dose. GSK3732394 exhibited broad spectrum activity and was efficacious in a mouse model of HIV-1 infection.

Conclusions: GSK3732394 is a novel recombinant biologic molecule containing three independent HIV inhibitors that has been developed as a potential single long-acting regimen for HIV-1. This molecule has the biophysical characteristics amenable for a self-administered subcutaneous weekly injection.

P023

Mono- and dual suppressive antiretroviral regimens in a real-life setting: the experience of Pitié-Salpêtrière HIV Centre

Fabienne Caby1; Rachid Agher2; Roland Tubiana3; Christine Blanc1; Marie Jaspar4; Yasmine Dudoit1; Ruxandra Calin2; Vincent Calvez2; Anne Simon1; Marc-Antoine Valantin1 and Christine Katlama1

1Infectious Diseases, Pitié-Salpêtrière, INSERM U1136, Paris, France.
2Virology Laboratory, Pitié-Salpêtrière, Paris, France. 3Internal Medicine, Pitié-Salpêtrière, Paris, France

Context: Controlling viral replication with fewer drugs. Identifying light suppressive ART strategies – one-drug (1-DR) or two-drug (2-DR) regimen – has become a key issue in the long-term management of HIV-infected patients for various reasons: cumulative toxicity, unnecessary drugs and cost saving.

Objectives: To evaluate the ART regimen profile in patients with suppressed HIV viraemia in a single large HIV care and research centre in 2015.

Methods: All HIV-infected patients with a suppressed HIV-1 plasma viral load (pVL < 50 copies/mL) in 2015 were included in this observational study through the NADIS computerised medical database which aims to describe suppressive ART profiles by comparing a 1-DR and a 2-DR to a standard triple-drug regimen (3-DR).

Results: Out of the 4129 HIV-infected patients for whom HIV RNA was available, 3807 (92%) had HIV RNA < 50 copies/mL. The ART regimen consisted of a 1-DR in 140 patients (4%), a 2-DR in 710 patients (19%), a 3-DR in 2898 patients (77%) and ≥4-DR in 59 patients (1.5%). PIs were the most frequent single-drug regimen (69%). The 2-DR consisted of INSTI + NNRTI (40%), two NRTIs (13%) and NRTI + PI (11%). When compared to a 3-DR, patients with a 1- or 2-DR were older (p < 0.001) with longer ART duration (p < 0.0001) and those on a 2-DR had a lower nadir (p = 0.006) (Table 1).

Conclusion: Mono- and dual therapies represent, in real life, over 20% of suppressive ART strategies in our centre. These options with fewer drugs warrant further large-scale investigation.

Abstract P023 – Table 1. Suppressive ART strategies in Pitié-Salpêtrière Hospital in 2015

<table>
<thead>
<tr>
<th>Median (%), IQR</th>
<th>1-drug regimen</th>
<th>2-drug regimen</th>
<th>3-drug regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 140 (4%)</td>
<td>n = 710 (19%)</td>
<td>n = 2898 (77%)</td>
<td></td>
</tr>
<tr>
<td>M/F (%)</td>
<td>69% / 21%</td>
<td>68% / 32%</td>
<td>69% / 31%</td>
</tr>
<tr>
<td>ART regimen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRV/r</td>
<td>97 (69%)</td>
<td>2 NRTI</td>
<td>94 (13%)</td>
</tr>
<tr>
<td>DTG</td>
<td>24 (17%)</td>
<td>NRTI + PI</td>
<td>77 (11%)</td>
</tr>
<tr>
<td>ATV/r</td>
<td>10 (7%)</td>
<td>INSTI + PI</td>
<td>66 (9%)</td>
</tr>
<tr>
<td>LPV/r</td>
<td>9 (6%)</td>
<td>NRTI + INI</td>
<td>60 (8%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NRTI + PI</td>
<td>49 (7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other</td>
<td>81 (11%)</td>
</tr>
<tr>
<td>First line ART</td>
<td>3 (2.1%)</td>
<td>53 (7.5%)</td>
<td>384 (13.3%)</td>
</tr>
<tr>
<td>Switch ART</td>
<td>137 (98%)</td>
<td>657 (93%)</td>
<td>2514 (87%)</td>
</tr>
</tbody>
</table>

n = 3748 patients.
P024
Safety and antiviral effect of Elpida (VM-1500), a novel NNRTI (+ Truvada) in treatment-naïve HIV-1-infected patients at 24- to 48-week therapy
Alexey Krawchenko1; Elena Orlova-Morozova2; Fiyara Nagimova3; Oleg Koziien4; Tatyana Shimonova5; Vadim Bichko6; Natalya Vostokova7 and Olga Zozulya7
1Russia AIDS Federal Centre, Moscow, Russian Federation. 2Moscow Region AIDS Center, Moscow, Russian Federation. 3Republic Tatarstan AIDS Center, Kazan, Russian Federation. 4Volgograd Region AIDS Center, Volgograd, Russian Federation. 5Moscow City AIDS Center, Moscow, Russian Federation. 6Virion, Moscow, Russian Federation. 7IPHARMA, Moscow, Russian Federation
Introduction: In treatment-naïve patients, Elpida 20 and 40 mg QD (with TDF/FTC) at week 12 demonstrated potent antiviral activity, comparable to EFV, and favourable safety/tolerability profile. Elpida 20 mg QD was selected for study.
Objective: To evaluate safety and antiviral effect for treatment regimens with Elpida + TDF/FTC in comparison with EFV + TDF/FTC in treatment-naïve HIV-1 infected patients.
Methodology: A randomized, placebo-controlled, double-blind study in patients with HIV infection who are antiretroviral therapy-naïve with median of HIV-1 RNA 4.7–4.8 log10 copies/mL and CD4-lymphocytes – 349 to 379 cells/mm3. A total of 120 patients were randomized to Elpida (20 mg, group 1) or EFV (600 mg, group 2) with 1:1 ratio. All patients received TDF/FTC. Hundred percent of patients completed 24 weeks of treatment and 50% of patients completed 48 weeks of treatment.
Results: After 24 weeks of treatment, the fraction of patients with <50 HIV-1 RNA copies/mL in 1st gr. was 84.5% and 2nd gr. 66.7% (p = 0.031, MITT-analysis). At 48 weeks therapy - 93.3% and 83.5%, respectively. The median CD4-lymphocytes increased from 379 to 486 cells/mm3 (gr.1), from 349 to 491 cells/mm3 (gr.2) at 24 weeks treatment and to 549 cells/mm3 (gr.1) and to 510 cells/mm3 (gr.2) at 48 weeks. AEs (grade 1 – 4) were observed in 78.3% and 86.2% of patients from cohorts 1 and 2, respectively, including drug-related AEs (36.7% and 77.6%, respectively). For the CNS AEs, those numbers were 30% and 62.1% (p < 0.001), including grade 3 to 4 AEs – 1.7% and 8.6%, respectively.
Conclusions: In treatment-naïve patients, Elpida 20 mg QD (with TDF/FTC) at 24 to 48 weeks demonstrated potent antiviral activity, comparable to EFV + TDF/FTC, and favourable safety/tolerability profile. Fewer drug-related AEs were observed for Elpida compared with EFV. The study will be completed at November 2016.

P025
The integrase strand transfer inhibitor bictegravir has a long integrase/DNA dissociation half-life
Kirsten White; Anita Majka; Nikolai Novikov; Michael Miller and Manuel Tsang
Biology, Gilead, Foster City, CA, USA
Introduction: The HIV integrase strand transfer inhibitor (INSTI) bictegravir (formerly GS-9883) has a high barrier to resistance selection in vitro [1]. Bictegravir has an improved in vitro resistance profile for most HIV isolates with resistance to the other INSTIs raltegravir, elvitegravir and dolutegravir [1,2]. The apparent dissociation rate constant of dolutegravir from integrase/DNA complexes was previously shown to be longer than raltegravir and elvitegravir and was predicted to correlate with potent antiretroviral activity and a higher genetic barrier to resistance [3]. Here, the dissociation kinetics of bictegravir was evaluated.

Methods: The apparent association and dissociation kinetics of 3H-labelled INSTIs raltegravir, elvitegravir, dolutegravir and bictegravir were measured using wild-type HIV integrase/DNA complexes and a scintillation proximity assay as previously described [3]. Single exponential decay functions were used to analyze both the binding and competition binding phases yielding apparent association doubling times (t0) and dissociation half-lives (t½). However, the competition binding phases deviated significantly from the single exponential decay function due to the gradual sedimentation of the SPA beads, necessitating modeling of the equilibrium binding with on- and off-rate constants as decreasing functions of time with kon and koff as initial values of each function, respectively.

Results: The INSTIs bictegravir, dolutegravir, elvitegravir and raltegravir showed rapid association with integrase/DNA complexes with apparent association doubling times (t0) ranging from 14 to 34 minutes: elvitegravir (14 ± 4 minutes), raltegravir (22 ± 11 minutes), bictegravir (31 ± 4 minutes) and dolutegravir (34 ± 1 minutes). The apparent dissociation half-lives (t½) of INSTIs from integrase/DNA complexes ranged from 3.6 to 122 hours: elvitegravir (3.6 ± 0.9 hours), raltegravir (15 ± 2 hours), dolutegravir (71 ± 13 hours) and bictegravir (122 ± 14 hours); p = 0.0018 for bictegravir versus dolutegravir. The initial values of the dissociation rate constants (koff) were determined using the model and converted to a t½ which may be more representative of the actual t½: elvitegravir (1.6 ± 0.2 hours), raltegravir (5.4 ± 0.4 hours), dolutegravir (11 ± 2 hours), and bictegravir (35 ± 19 hours); p = 0.046 for bictegravir versus dolutegravir.

Conclusions: The (t½) of bictegravir is the longest reported for any INSTI that is approved or in development. Long residence times of INSTIs on the integrase/DNA complex have been correlated with potent antiretroviral activity against wild-type HIV-1 integrase and a high barrier to resistance in vitro [3]. The barrier to clinical resistance for bictegravir is being assessed in ongoing phase 3 studies with the once-daily, unboosted bictegravir/emtricitabine/tenofovir alafenamide single-tablet regimen.

References

P026
Durability and prescribing patterns of initial HIV regimens in treatment-naïve patients
Ellen Eaton1; Ashutosh Tamhane2; Girish Prajapati3; Bridgett Goodwin4 and Michael Saag3
1Medicine, Infectious Diseases, University of Alabama, Birmingham, AL, USA. 2Center for Observational Research and Real-world Evidence, Merck & Co., Inc., Rahway, NJ, USA. 3Center for Observational Research and Real-world E, Merck & Co., Inc., Upper Gwynedd, PA, USA
Introduction: Literature on ARV regimen durability (persistency) in real-world settings is outdated owing to the introduction of new drug classes and combinations in recent years. We evaluated the...
Abstract P026 Table 1. Summary of median durability of ARV regimen by regimen composition and year of initiation in treatment-naive HIV patients initiating care at an academically affiliated HIV clinic

<table>
<thead>
<tr>
<th>ARV regimen composition</th>
<th>Treatment share N (%)</th>
<th>Median durability, months (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efavirenz/emtricitabine/tenofovir</td>
<td>193 (33)</td>
<td>59 (47–63)</td>
</tr>
<tr>
<td>Elvitegravir/cobicistat/emtricitabine/tenofovir</td>
<td>115 (20)</td>
<td>* (34–*)</td>
</tr>
<tr>
<td>Rilpivirine/emtricitabine/tenofovir</td>
<td>55 (9)</td>
<td>48 (26–*)</td>
</tr>
<tr>
<td>Raltegravir/emtricitabine/tenofovir</td>
<td>42 (7)</td>
<td>50 (28–66)</td>
</tr>
<tr>
<td>Atazanavir/ritonavir/emtricitabine/tenofovir</td>
<td>31 (5)</td>
<td>27 (19–76)</td>
</tr>
<tr>
<td>Darunavir/ritonavir/emtricitabine/tenofovir</td>
<td>27 (5)</td>
<td>44 (36–*)</td>
</tr>
<tr>
<td>Doltegravir/emtricitabine/tenofovir</td>
<td>13 (2)</td>
<td>7 (3–*)</td>
</tr>
<tr>
<td>Doltegravir/abacavir/amprenavir/tenofovir</td>
<td>7 (1)</td>
<td>26 (*)</td>
</tr>
<tr>
<td>Other</td>
<td>106 (18)</td>
<td>32 (26–36)</td>
</tr>
</tbody>
</table>

Year of ARV regimen initiation Treatment share N (%) Median durability, months (95% CI)
2007–2009 177 (30) 57 (45–66)
2010–2012 200 (34) 41 (34–49)

*not estimable.

Composition and durability of contemporary ARV regimens prescribed for treatment-naive patients in a clinical setting.

Methods:* Treatment-naive HIV-infected patients who initiated ART between January 2007 and January 2016 at the HIV clinic affiliated with the University of Alabama, Birmingham, were included. Data on all initial ARV compositions and durations were extracted from the electronic medical record with administrative censoring on 8 June 2016. Manual abstraction was performed to confirm ARV regimen start and stop dates. ARV regimen durability (time to discontinuation) was estimated using Kaplan-Meier survival curves that incorporate censoring and its association with various characteristics by Cox proportional hazard analyses.

Results: Among 589 patients (mean age, 37 years; 79% male; 65% African American), efavirenz/emtricitabine/tenofovir (193, 33%) was the most commonly prescribed initial ARV regimen (Table 1). Median durability of all initial ARV regimens was 45 months (95% CI 41–51). The regimen was discontinued in 332 (56%) patients and a majority of them (203, 61%) had an undetectable viral load at the time of discontinuation. A decrease in durability of ARV regimens was found in more recent years (Table 1, p < 0.046). After adjusting for various covariates in multivariable analysis, patients initiating ART from 2010 to 2012 (aHR 1.4, 95% CI 1.1–1.8; p = 0.02) and 2013 to 2015 (aHR 1.5, 95% CI 1.1–2.1; p = 0.01) were more likely to discontinue ART than those initiating from 2007 to 2009.

Conclusions: Overall durability of most ARV regimens in our cohort was almost 4 years. Two multi-tablet regimens and two regimens recently removed from US first-line treatment guidelines were quite durable. Decreased durability of ARV regimens occurring in more recent years appears to be due to patient and provider preferences for newer regimens and not due to virologic failure.

P027

Integrase inhibitor-based antiretroviral therapy in vulnerable populations

Brian Conway; Ghazaleh Kiani; Rajvir Shahi; Tyler Raycraft; Arpreet Singh; Syune Hakobyan and Arshia Alimohammadi

Clinical Research, Vancouver Infectious Diseases Centre, Vancouver, Canada

Introduction: Current treatment guidelines favour the use of integrase inhibitor (II)-based regimens in the majority of settings where ART is required, based on the results of clinical trials demonstrating the superiority of such approaches. Vulnerable inner-city populations have often been excluded from clinical trials of these agents. There is a need to generate data to better inform the applicability of treatment guidelines in these populations.

Methods: We have conducted a retrospective analysis of the database of a large clinic catering to HIV-infected patients with a high prevalence of people who inject drugs (PWID). We have abstracted records of subjects receiving II-based therapy and evaluated response to therapy. Demographic and clinical correlates of success were evaluated, with a view to comparing the relative efficacy of raltegravir (RAL), elvitegravir (ELV) and dolutegravir (DOL)-based regimens.

Results: A total of 247 patients received IIIs (141 RAL, 68 ELV, 38 DOL). Baseline characteristics include: 85.8% male, 38.5% intravenous drug users, 5.3% previously treatment naive, 45.2% HCV co-infected, and 13.6% on opiate substitution therapy. Median baseline CD4 count and plasma viral load were 410 (range 30–1380) cells/mm³ and 43 (range <40–300,000) copies/mL. After a median follow up of 44 (3–141) months, virologic suppression was achieved in 93.0%/86.7%/97.3% patients on RAL/ELV/DOL with most current median CD4 count of 555 (range 60–1700) cells/mm³. No treatment-limiting toxicity was observed and response rates in PWID (80.7%/66.7%/90.0%) were equivalent to those observed in non-PWID.

Conclusion: II-based therapies are as effective in “real life” and in PWID as they have been reported to be in clinical trials, justifying their selection as regimens of choice for all patients. Medium- and long-term efficacies of all three agents in this class are comparable, and the selection of one agent over another should be based on other criteria than virologic potency and tolerability.

P028

Inhibition of HIV-1 protease and plasmodium falciparum by a modified diketo glucuronic derivative

Ntombenhle Gama¹; Kamlesh Kumar²; Janette Reader¹; Bhavna Gordan³; Lyn-Marie Birkholtsz¹; Bhavesh Kana³; James Darkwa² and Debra Meyer⁴

¹Biochemistry, University of Pretoria, Pretoria, South Africa. ²Chemistry, University of Johannesburg, Johannesburg, South Africa. ³DST/NRF Center of Excellence for Biomedical TB Res, Wits University, Johannesburg, South Africa. ⁴Dean’s Office, University of Johannesburg, Johannesburg, South Africa.
Introduction: HIV-1 remains a major threat to public health [1]. Sub-Saharan Africa has the highest prevalence of HIV/AIDS and the overlap of this infection with other major pandemics that plague the region has become a major challenge in the treatment of the infection. These include tuberculosis and malaria [2]. Although HAART has been successful in the treatment of the virus, these drugs are associated with a number of adverse effects often resulting in non-compliance by the patients and increasing an individual’s susceptibility to these opportunistic infections that are prevalent in the region [3]. It is therefore crucial to develop novel treatments that are not only effective against HIV, but opportunistic infections as well. Indeed, multi-target drugs are becoming increasingly popular with the rise in syndemic diseases in most parts of the world. Finding novel drugs that are effective against two or more different infections or diseases, targeting various pathways within the microorganism / pathology is where research is heading, and in this study metal modified chloroquine (Complex 1) was investigated in a type of repurposing approach for this known malaria drug [4].

Materials and methods: Complex 1 was synthesized and purified in good yield [5]. The complex was screened for inhibition of the enzyme HIV-1 protease using a recombinant enzyme (Bachem, Switzerland) and a fluorescent substrate (Sigma Aldrich, USA). The complex was also evaluated against the drug-susceptible strain of M. tuberculosis, H37Rv (ATCC27264) and the 307 strain of P. falciparum.

Results

It's effects on cell viability were assessed on TZM-bl cells using a tetrazolium dye and confirmed by real-time cell analysis (RTCA). The complex showed inhibition of HIV-1 protease inhibition values of above 50% at 25 μg/mL. The complex showed remarkable inhibition of M. tuberculosis with a minimal inhibitory concentration of 5 μM after 14 days of incubation with the bacterium. The IC50 of 1 on P. falciparum was 0.593 μM, and the CC50 of the complex on TZM-bl cells was 24.34 ± 0.68 μg/mL. RTCA showed non-toxicity of the complex at all tested concentrations, with treatment profiles similar to those produced by untreated cells.

Conclusion: A complex with inhibitory abilities against HIV-1 replication, M. tuberculosis and P. falciparum is presented here. Tuberculosis and malaria play a major role in the mortality of HIV-infected patients, and the development of drugs with dual activities that can control both the viral and opportunistic infections could contribute to the alleviation of the fatal HIV prognosis.

References

4. Oprea TI and Mestres J. Drug repurposing: far beyond new targets for old drugs. AAPS J. 2012;14:759–63. doi: http://dx.doi.org/10.1208/s12248-012-9390-1

P029 Treatment failure of chronic HCV infection with the new direct-acting antivirals: experience of a Portuguese central hospital

Karen Pereira1; Sara Dias Grazi1; Ana Cláudia Miranda1; Teresa Baptista2; Fernando Borges1; Jaime Nina1; Susana Peres1; Isabel Aldir1; Maria José Campos2; Isabel Antunes1; João Pereira3; Fernando Ventura4 and Kamal Mansinho5

1Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, EPE, Serviço de Doenças Infecciosas e Medicina Tropical, Lisboa, Portugal. 2Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, EPE, Serviço de Urgência Geral, Lisboa, Portugal. 3Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, EPE, Serviço de Medicina Interna, Lisboa, Portugal

Introduction: Since the emergence of new direct-acting agents, hepatitis C (HCV) treatment has undergone a rapid evolution, bringing about a radical change in the clinical paradigm. Oral treatment regimens with high virologic efficacy, great tolerability, favourable safety profiles, high genetic barriers, and an easy posology are now available. Despite this, challenges remain to patients who fail the treatment. This study aims to characterize this group of patients in an infectious diseases clinic in Lisbon.

Methods: Retrospective observational study of a cohort of HCV chronically infected patients with or without HIV infection, given new direct-acting agents (DAAs), from 1 January 2015 to 30 April 2016. Demographic, epidemiologic, clinical and laboratory data were collected. Statistical analysis was performed using Microsoft Office® Excel 2012.

Results: During the analysis period, 426 patients were eligible to start HCV treatment with DAA regimens (138 HCV mono-infected and 288 HCV co-infected). Two hundred and nineteen patients have concluded it (56 HCV mono-infected and 163 HCV co-infected), of whom 134 patients had their viral load evaluated 12 weeks after treatment ended: sustained viral response in 126 patients (94%) and detectable viral load in eight patients (6%). In the latter, all patients were male with a mean age of 51 years. Mean time of HCV diagnosis was 12 years. Patients mainly acquired the infection through parenteretic drug use (75%). Seven were HIV co-infected. Regarding genotype characterization, the most common was genotype 1a (50%). Evaluation of IL28B polymorphism revealed CC predominance (50%). At baseline, mean HCV RNA was 7,103,018 IU/mL. Real-time elastography data, using METAVIR score, revealed a fibrosis F2 in one patient, F2/F3 in three patients and F3 in four patients. Concerning previous treatment for HCV, six were treatment experienced, of whom five were null responders. The most requested treatment was sofosbuvir/ledipasvir (63%). Five patients were proposed for 12 weeks and three for 24 weeks of treatment, for which all had a good adherence. One patient died at the end of treatment. The others are waiting for retreatment options.

Conclusions: In this preliminary analysis, the eight patients with non-SVR12 were male and had HIV infection. These factors may be associated with response and outcome with the new direct-acting agents. Regarding the efficacy of these drugs, uncertainties and challenges remain, in addition to continued necessity of identifying response predictive factors and individual strategies for special patient groups.

TREATMENT STRATEGIES - TARGET POPULATIONS: ADOLESCENTS AND CHILDREN

P031 Genetic variants in CYP2B6 and CYP2A6 explain interindividual variation in efavirenz plasma concentrations in routine care of HIV-infected children with diverse ethnic origin
Sandra Soeria-Atmadja; Emma Osterberg; Lars Gustafsson; Marja-Lisa Dahl; Jaran Eriksen; Johanna Rubin and Lars Nàrger

Introduction: Approximately 2.6 million children live with HIV globally, and efavirenz (EFV) is one of the most widely used antiretroviral agents for HIV treatment in children and adults. There are concerns about the appropriateness of current EFV dosing, and it has been discussed whether EFV dosing should be adapted according to genotype in children as suggested for adults. The aim of the study was to investigate if paediatric EFV dosing should be guided by genetic variation in drug-metabolizing enzymes rather than by body weight only.

Materials and methods: EFV plasma concentrations measured for clinical purposes from all children (<18 years old) at Karolinska University Hospital, Stockholm, Sweden, treated with EFV were collected retrospectively. They were genotyped for 11 polymorphisms, identified CYP2B6*6 T/T (p = 0.0005), CYP2B6*11 G/G (p < 0.0005), CYP2B6*9 A/C (p = 0.001) genotypes, age at treatment initiation (p = 0.002) and time from treatment initiation (p < 0.0005) as independent factors significantly related to loge mean concentration (dose/weight). The contribution of the studied gene polymorphisms to the intra- and interindividual variation were 6% and 75%, respectively (Bryk/Raudenbush R-squared level). Asian origin was significantly related to lower loge mean concentration/dose/weight) compared to African (p = 0.0085) and Hispanic origin (p = 0.038).

Conclusions: Genetic polymorphisms in CYP2B6 and CYP2A6 explained a significant proportion of variability in EFV plasma concentration and Asian origin gave substantially lower plasma concentration in HIV-infected children in a multi-ethnic outpatient clinic. Knowledge about individual variants in key drug-metabolizing enzymes could improve clinical safety and be a way to achieve more predictable EFV plasma concentrations in HIV-infected children.

P032

Relative bioavailability and food effect of a paediatric dispersible tablet formulation of the non-nucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV)

Abstract P032 – Table 1. Statistical analysis summary

<table>
<thead>
<tr>
<th>Panel</th>
<th>Test</th>
<th>Reference</th>
<th>N/N</th>
<th>Cmax</th>
<th>AUClast</th>
<th>AUClinf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dispersible tablet, fed</td>
<td>Edurant®, fed</td>
<td>15/16a</td>
<td>1.28 (1.14–1.43)</td>
<td>1.21 (1.10–1.34)</td>
<td>1.33 (1.15–1.53)</td>
</tr>
<tr>
<td>2</td>
<td>Dispersible tablet, fasted</td>
<td>Dispersible tablet, fed</td>
<td>16/16b</td>
<td>0.66 (0.56–0.77)</td>
<td>0.72 (0.63–0.82)</td>
<td>0.69 (0.57–0.83)</td>
</tr>
<tr>
<td></td>
<td>Dispersible tablet, fed (dispersed in orange juice)</td>
<td>Dispersible tablet, fed (dispersed in water)</td>
<td>16/16c</td>
<td>1.11 (0.96–1.30)</td>
<td>1.14 (1.00–1.30)</td>
<td>1.12 (0.94–1.35)</td>
</tr>
</tbody>
</table>

*NA/N: 11/9 for AUClinf; NA/N: 31/11 for AUClast; NA/N: 12/11 for AUClinf.

Data was presented as test/reference least square mean ratio (90% CI). N/N: number of participants in the test/reference; one volunteer discontinued before trial completion. Cmax = maximum plasma concentration; AUClast = area under the plasma concentration-time curve (AUC, calculated by linear = linear trapezoidal summation) from time of administration up to the last timepoint with a measurable concentration post-dose; AUClinf = AUC from time of administration to infinity.

Herta Crauwels; Nico Goyvaerts; Simon Vanveggel and Rodica Van Solingen

Janssen Infectious Diseases BVBA, Beerse, Belgium

Introduction: The NNRTI RPV is approved in several countries as a 25 mg once-daily tablet in combination with other antiretrovirals for treating HIV-1-infected, treatment-naive patients aged ≥12 years with a viral load ≤100,000 copies/mL. Further evaluation of the paediatric use of RPV, including a dose evaluation, is ongoing in children aged ≥6 to <12 years in cohort 2 of the PAINT study (NCT00799864). The current trial evaluated the relative bioavailability and food effect of an age-appropriate RPV formulation for use in children, the RPV dispersible tablet formulation (2.5 mg RPV).

Methods: Open-label, randomized, crossover study in two panels of 16 healthy adults each (NCT02561936). In panel 1, participants received a single 25 mg dose of RPV administered as the Edurant® tablet (reference 1) or as 10 dispersible 2.5 mg tablets (dispersed in water), in fed conditions (standardised breakfast). In panel 2, participants received a single 25 mg dose of RPV administered as 10 dispersible 2.5 mg tablets (dispersed in water) in fed conditions (reference 2) or in fasted conditions, or dispersed in orange juice in fed conditions. In each panel, there was a 14-day washout in between treatments. Plasma samples (over 168 hours after dosing) were analyzed for RPV using a validated LC-MS/MS method (LOQ 1.00 ng/mL). RPV pharmacokinetic parameters were determined using non-compartmental analysis. Least square means and associated 90% confidence intervals of treatment ratios (test/reference) were calculated based on log-transformed pharmacokinetic parameters. Safety and tolerability were assessed throughout the study.

Results: Table 1 summarizes the statistical results. The RPV exposure (AUClinf) with the dispersible tablet was 21 to 33% higher than the reference tablet (Edurant®), in fed conditions. When taken fasted, the RPV exposure with the dispersible tablet was 28 to 34% lower compared with fed conditions. Dispersion in orange juice (acidic beverage) compared with water increased the RPV exposure by 11 to 14%, in fed conditions. One participant discontinued early before dosing in the last session in panel 1 for a grade 3 adverse event (bronchitis), considered not related to RPV. There were no other grade 3 or 4 adverse events and no serious adverse events. Administration of RPV as the dispersible tablet formulation was generally well tolerated in fed and fasted conditions.

Conclusions: A RPV dispersible tablet with good bioavailability was developed for potential use in the ongoing paediatric trial in HIV-infected children aged <12 years. Consistent with the Edurant® tablet formulation, intake of the dispersible tablet with a meal improved the bioavailability.
P033
Predictors of plasma HIV RNA suppression in a cohort of perinatally HIV-infected individuals
German Contreras1; Gilhen Rodriguez1; Gabriela Del Blanco1; Norma Perez2; Laura Benjamin1; James Murphy1 and Gloria Heresi1
1Pediatric Infectious Diseases, University of Texas McGovern Medical School, Houston, TX, USA. 2Adolescence Medicine, University of Texas McGovern Medical School, Houston, TX, USA

Introduction: Knowledge of factors associated with viral suppression (VS) among HIV-infected children and adolescents is central to reduce transmission and improved health outcomes.

Materials and methods: We included individuals attending the UT Health Paediatric HIV Clinic who were ART naive and subsequently started on cART, followed for ≥ 1 year from the start of cART and maintained on the same cART regimen during this interval. VS was defined as maintenance of HIV RNA < 400 copies/mL for 1 year after initial VS was achieved. Cumulative HIV RNA was defined as the overall HIV replication burden in an individual. Median rates of VS were calculated using Kaplan–Meir (KM). A Cox regression model was used to determine predictors of VS.

Results: Thirty perinatally HIV-infected children were included. The study population was mainly black (76.7%) and male (56.7%); 22 individuals (73.3%) were enrolled into clinical care within the 12 months of birth. The median age at cART initiation was 5.1 months (IQR 2.7–27.3). The study population had a CD4 percentage of 33 (24–39), a plasma HIV RNA log10 copies/mL of 5.5 (4.8–5.9) and a cumulative HIV RNA copy-years/mL of 7.1 (6.8–7.7) at the time of cART initiation. The median time from cART initiation to VS was 4.4 months (KM estimate). Time to VS was markedly shorter for those who did not miss a scheduled clinical appointment compared with those who missed at least one scheduled clinical appointment (4.4 vs. 22.9 months). Time to VS was shorter for Hispanics compared with black non-Hispanics (3.7 vs. 10.7 months) and for those living inside the Houston beltway 610 (2.6 vs. 10.7 months) than those living outside the beltway 610. The adjusted Cox analysis showed that there was a lower rate of VS for each log10 of increase in cumulative HIV RNA (HR 0.11; 95% CI 0.02–0.81; p = 0.023) and for each month of delay in initiating routine HIV care (HR 0.87; 95% CI 0.78–0.98; p = 0.01). Individuals born after 2003 had higher rates of VS per unit of time (HR 158.11; 95% CI 2.87–8718.54; p = 0.013).

Conclusions: Early initiation and sustained enrolment in clinical care plays a paramount role for successful treatment of perinatally HIV-infected children and adolescents. Cumulative HIV RNA offers a robust predictive value for detecting individuals at risk of not reaching VS.

P034
Characteristics and outcome of HIV-positive children internationally adopted in France
Olivier Lesens1; Stéphane Blanche2; Violaine Corbin1 and Christine Jacomet1
1Infectious Diseases, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France. 2Unité d’Immunologie, AP-HP, Hôpital Necker-Enfants Malades, Hémato-logie et Rhumatologie p, Paris, France

Introduction: HIV-positive children comprise a larger percentage of the children eligible for international adoption [1]. Little is known about the clinical, immunologic and viral outcomes of these children.

Materials and methods: Twenty-five medical centres agreed to participate. Children living in France and internationally adopted between 1 January 2005 and 1 January 2016 were included after informed consent. Socio-demographic, medical and biologic variables were collected during the first medical evaluation in France and 6 months later. The yearly percentage of HIV-positive adoptees was calculated among new adoptees or new HIV-positive children diagnosed.

Results: Of the 25 medical centres that agreed to participate, 14 gave care to at least one HIV-positive adoptee. Forty-one HIV-positive adoptees were included (female: 56%; median age at arrival: 3.91 years). The majority came from East Asia. HIV-positive adoptees represented about half of newly diagnosed HIV-positive children in 2014 versus less than 20% the preceding years. They represented also about 5% of new adoptees in 2014 versus about 1% the previous years. For three children, a new diagnosis of latent chronic hepatitis B, cured hepatitis B and chronic active hepatitis C was made at arrival in France. Other clinical diagnoses made at the first consult were benign diseases, mainly skin diseases. The mean CD4 percentage was 32.8 ± 9% (range 13–49%). Only one child had a CD4 percentage below 15%. Forty percent had a detectable viral load (VL) > 20 copies/mL at arrival. Among those, resistance to NRTIs was documented in 10%, resistance to NNRTIs in 12.5% and resistance to PI in 2.4%. Thirty-four children received ART in their country of origin. Among those, 24 continued on the same ARV in France. At 6 months, the mean CD4 percentage was 35.6 ± 8%; and the VL was still detectable in 29% children. Of them, one acquired resistance to NRTI and NNRTI during the 6 months of follow-up.

Conclusions: An increasing number of HIV-infected children have been internationally adopted in France since 2005. The immune status was good but detectable VL was frequent at arrival and at 6 months. It can be suspected that adoptive parents will face difficulties to maintain enough adherence to ART in the long term, especially during adolescence [2]. Prolonged support from healthcare providers is needed to face this difficult challenge that combines the management of adoption and HIV disease [3].

TREATMENT STRATEGIES - TARGET POPULATIONS: WOMEN

P035
Efficacy of dolutegravir/abacavir/lamivudine (DTG/ABC/3TC) fixed-dose combination (FDC) compared with ritonavir-boosted atazanavir (ATV/r) plus tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) in treatment-naive women with HIV-1 infection (ARIA study): subgroup analyses
Margaret Johnson1; Caroline Gatey2; Weerawee Manosuthi3; Adriano Lazzarin4; Daniel Podzamczer5; Choy Man6; Alicia Aylott7; Annie Buchanan8; Brian Wynn9; Cindy Vavro10 and Michael Aboud11

1Infectious Diseases, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France. 2Division of Infection and Immunity, University College London, London, United Kingdom. 3National Institute for Communicable Diseases, Johannesburg, South Africa. 4Department of Medicine, University of Turin, Turin, Italy. 5Infectious & Parasitic Diseases, AP-HP, Hôpital Necker-Enfants Malades, Hémato-logie et Rhumatologie p, Paris, France. 6Department of Medicine, University of Turin, Turin, Italy. 7Department of Medicine, University of Turin, Turin, Italy. 8Department of Medicine, University of Turin, Turin, Italy. 9Department of Medicine, University of Turin, Turin, Italy. 10Department of Medicine, University of Turin, Turin, Italy. 11Infectious Diseases, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.

Abstracts of the HIV Glasgow supplement
Journal of the International AIDS Society 2016, 19 (Suppl 7)
Introduction: Built around an unboosted integrase-strand transfer inhibitor (INSTI), the FDC of DTG/ABC/3TC offers a complete regimen that provides a barrier to resistance. To gain additional data for women on this inhibitor (INSTI), the FDC of DTG/ABC/3TC was superior to ATV/r regimen, with 82% and 71%, respectively, achieving HIV-1 RNA <50 copies/mL at week 48 (adjusted difference 10.5%, 95% CI 3.1–17.8%, p = 0.005). Differences were driven by lower rates of both discontinuations due to adverse events (AEs) and snapshot virologic non-response in the DTG/ABC/3TC group. In subgroup analyses conducted based on region and baseline characteristics, higher response rates were consistently observed in the DTG/ABC/3TC group compared to ATV/r group. There were no treatment-emergent primary INSTI or ABC/3TC resistance mutations in the DTG/ABC/3TC group.

Conclusions: DTG/ABC/3TC demonstrated superior efficacy and a favourable safety profile compared to ATV/r+FTC/TDF in treatment-naive women, after 48 weeks of treatment. Subgroup analyses performed based on baseline characteristics and geographic region were consistent with overall results.

P036

Sex and gender differences in rilpivirine-based ART: data from the HIV Center Frankfurt

Gundolf Schüttfort; Kathrin Philipp; Hans-Reinhard Broth; Philipp de Leuw; Siri Göpel; Eva Herrmann; Pavel Khaykin; Christoph Stephan; Timo Wolf and Annette Haberl

1 Infectious Diseases, University Hospital Frankfurt, Frankfurt am Main, Germany. 2 Department for Biostatistics, University Hospital Frankfurt, Frankfurt am Main, Germany. 3 Main FachArzt, Outpatient Center, Frankfurt am Main, Germany.

Introduction: Rilpivirine is a second-generation once-daily non-nucleoside reverse transcriptase inhibitor (NNRTI), which has shown high overall response rates in treatment-naive patients without sex and gender-specific differences in clinical trials [1–3]. Sex- and gender-specific data in treatment-experienced patients receiving a rilpivirine-based regimen are still limited. We conducted a 48-week efficacy and safety analysis in treatment-naive and treatment-experienced men and women using retrospective data from the University Hospital Frankfurt HIV Center.

Materials and methods: Between March 2011 and December 2015, all patients from the HIV Center of the University Hospital Frankfurt receiving a rilpivirine-based regimen were analyzed in this retrospective observational study. The primary endpoint was the proportion of patients with any discontinuation of a rilpivirine-based ART as Caucasian women showed a higher rate of virologic failure in Caucasian women versus non-Caucasian women (36% vs. 16%; p = 0.012; odds ratio 2.14; CI 1.02–4.91). There was no significant sex difference regarding discontinuations between treatment-experienced and treatment-naïve patients (25% vs. 16% and 23% vs. 12%, respectively). Virologic response rates (FDA snapshot analysis; HIV-1 RNA <50 copies/mL) were assessed at week 48.

Results: A total of 188 patients (33% female) were included in the analysis. Seventy-four percent were treatment experienced and 26% were treatment naïve (Table 1). Regarding sex differences, the proportion of discontinuations was significantly higher in women than in men (23% vs. 12%, p = 0.028; odds ratio 2.14; CI 1.02–4.91). There was no significant sex difference regarding discontinuations between treatment-experienced and treatment-naïve patients (25% vs. 16% and 23% vs. 12%, respectively). Virologic response rates (FDA snapshot analysis; HIV-1 RNA <50 copies/mL) were assessed at week 48 and revealed a higher rate of discontinuations due to virologic failure in Caucasian women versus non-Caucasian women (36% vs. 16%; p = 0.071; odds ratio 1.33; CI 0.20–8.71).

Conclusions: While overall response rates to rilpivirine-based regimens were high for both treatment-experienced and treatment-naïve patients, the proportion of discontinuations was significantly higher in female patients. The total number of patients with virologic failure was low (16%); race appeared to influence the efficacy of a rilpivirine-based ART as Caucasian women showed a higher rate of...
virologic failure than non-Caucasian women. Therefore, it should be an interdisciplinary approach to identify and reduce possible barriers for successful antiretroviral treatment in non-Caucasian female HIV-positive patients.

Materials and methods: Cross-sectional multicentre evaluation of HIV-positive women with medical care was performed in Germany between October 2014 and June 2016. All HIV-specialty practices and ambulatory care centres in Germany were invited to participate. Data acquisition was performed using an online questionnaire. Results were compared to a similar analysis performed in 2007/2008 (n = 1557).

Results: Seven hundred and eighty-one HIV-positive women (f) (n = 447 from 10 centres, n = 334 from anonymous centres) and 200 HIV-positive men (m) (five centres) were included. Mean age was 45 (f)/44 (m) years, 30.5% (f)/47.7% (m) smoked (p < 0.001), and 66.7% (f)/60.8% (m) had a partner (p < 0.001). 91.7% (f)/95.0% (m) were currently on ART (77% (f)/82% (m)). Half the women had a migration background, the majority (34%) from Africa, compared to 39% of men (12% from Africa) (p < 0.001). 91.7% (f)/95.0% (m) were currently on ART (77% in 2008). Half the men and 28.5% of women received INSTIs (p < 0.001). 20.5% (m) versus 38.7% (f) PIIs (p < 0.001) and 32.6% (m) versus 41.3% (f) received NNRTIs (p = 0.03). Sixteen percent of women started ART due to pregnancy. Toxicity was the primary reason for ART discontinuation in both women (37% of discontinuations) and men (36%). 30.7% of women and 16.8% of men reported at least one side effect on ART (p < 0.001), with lipodystrophy being more prevalent in females (16.9% vs. 8.9% of persons on ART, p = 0.006; 24.5% in 2007/2008). HIV-1 RNA was < 50 copies/mL in 88.1% (f)/90.5% (m) on ART (48% in 2008 with 82% < 400 copies/mL). Median detectable viral load in treated individuals was 68 (f)/74 (m) copies/mL (IQR 38–350 (f)/32–1821 (m)). Median CD4 cell count was 621 (f)/628 (m) cells/μL (IQR 437–828 (f)/419–868 (m)).

Conclusions: Though certain disease parameters were comparable between HIV-infected women and men, we found significant differences not only socio-demographically, but also in ART use and adverse events. We further noted an improvement in the treatment of HIV-infected women since 2008 as reflected by an increase in both the number of ART-treated women and, more importantly, in the number of successfully treated women. We attribute this to an
increasing awareness of women issues, to specific measures taken, to the updates in treatment guidelines and to novel treatment options.

P039
Discontinuation of first-line ART is associated with female sex and migration background – data from a German outpatient clinic

Sylwia Bilinski1; Philipp De Leuw1; Siri Göpel1; Pavel Khaykin2; Gundolf Schüttritt1; Hans-Reinhard Brodt1; Timo Wolf1; Christoph Stephan1; Eva Herrmann3 and Annette Haberl1

1Department of Infectious Diseases, HIV centre, University Clinic Frankfurt, Frankfurt, Germany. 2Medical Practice, MainFachArzt, Frankfurt, Germany. 3Institute for Biostats and Mathematical Modelling, Goethe University Frankfurt, Frankfurt, Germany

Introduction: Despite individually tailored ART in high-income countries, some patients still discontinue first-line regimens within the first year. This study aimed to characterize treatment discontinuations as well as factors that might be associated with changes in first-line ART.

Methods: Patients who initiated first-line ART between January 2009 and December 2013 at the HIVcenter Frankfurt were enrolled in this study and analyzed for treatment discontinuations and changes in ART during the first 60 weeks of therapy. Statistical comparisons were done with non-parametric tests using a significance level of alpha = 5%.

Results: Overall 557 patients, 420 (75.4%) men and 137 (24.6%) women, were included in this retrospective analysis. Table 1 shows the baseline characteristics of the study population. One hundred and thirty-eight (24.8%) patients discontinued ART within the first 60 weeks, 43 (31.4%) out of 137 women and 92 (22.6%) out of 420 men. ART was interrupted after a mean of 142 days (+/- 124). 81.4% of women who experienced a discontinuation were migrants, mostly from African countries. African origin was significantly associated with discontinuation of first-line ART in men and women (p = 0.007). Overall, patients with therapy interruptions had lower CD4 cell counts at baseline and were more likely to be CDC stage C compared to patients with continuing ART. Most common reasons for ART discontinuation were adverse events (56.4%), comorbidities (21%), virological failure (13.5%), adherence issues (12%) and pregnancies (12%).

Conclusions: Even the potential of individualized ART cannot prevent treatment changes. In 557 patients starting their first-line ART between 2009 and 2013, we identified 24.8% treatment discontinuations. Patients with female sex and African origin showed the highest rate of discontinuations, and despite guideline recommendations, pregnancy still seems to be an issue for ART modification.

Abstract P039 – Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th></th>
<th>All patients (n = 557)</th>
<th>Male patients (n = 420)</th>
<th>Female patients (n = 137)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>40.8 (+/- 11.4)</td>
<td>41.5 (+/- 11.2)</td>
<td>38.3 (+/- 11.5)</td>
</tr>
<tr>
<td>Migration background</td>
<td>30.2% (including 15% African origin)</td>
<td>19.3% (including 7% African origin)</td>
<td>63.5% (including 39% African origin)</td>
</tr>
<tr>
<td>CDC stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>61.8%</td>
<td>58.9%</td>
<td>69.6%</td>
</tr>
<tr>
<td>B</td>
<td>19.5%</td>
<td>20.7%</td>
<td>16.3%</td>
</tr>
<tr>
<td>C</td>
<td>18.6%</td>
<td>20.3%</td>
<td>14.1%</td>
</tr>
<tr>
<td>CD4 count</td>
<td>292 (+/- 207)</td>
<td>290 (+/- 213)</td>
<td>298 (+/- 184)</td>
</tr>
<tr>
<td>HIV RNA</td>
<td>67.600</td>
<td>73.700</td>
<td>41.450</td>
</tr>
<tr>
<td>ART components apart from NRTI backbone:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protease inhibitor</td>
<td>55.7%</td>
<td>53.3%</td>
<td>62.8%</td>
</tr>
<tr>
<td>NNRTI</td>
<td>27.3%</td>
<td>28.6%</td>
<td>23.4%</td>
</tr>
<tr>
<td>Integrase inhibitor</td>
<td>20.5%</td>
<td>22.1%</td>
<td>15.3%</td>
</tr>
</tbody>
</table>

TREATMENT STRATEGIES - TARGET POPULATIONS: LATE PRESENTERS

P040
Risk factors for late presentation over the last 6 years in Athens, Greece (2009 - 2015)

Angeliki Spanos1; Dimitra Kavatha1; Konstantinos Protopapas1; Georgios Siakalis1; Maria Argyropoulou2; Charalampos Moschopoulou3; Emmanuel Antalis2; Paraskevi Fragkou1; Nikolaos Melachrinopoulos1; Sotirios Tsiodras3; Anastasia Antoniadou1 and Antonios Papadopoulos4

14th Internal Medicine Unit, Attikon University Hospital, Athens, Greece. 2Medical School, Kapodistrian University of Athens, Athens, Greece

Introduction: Late presentation (LP) is a major public health concern for HIV disease. Higher rate of disease progression and disease burden are the main reasons for aiming to reduce late presentation. Although there is an ongoing high interest, the exact parameters for LP have yet to be fully described. This study aims to identify risk factors for HIV-infected patients presenting late at an academic tertiary care centre in Athens, Greece, over the last 6 years in order to define methods for better controlling the epidemic.

Materials and methods: We conducted a retrospective case-control study using socio-demographic, behavioural and medical data from patients’ files that were cross-examined by two medical observers. We recorded all new HIV diagnoses presenting between the years 2009 and 2015 at our clinic. Patients enrolled were grouped based on their CD4 cell count that was defined as <350 cells/mm³ or an HIV-defining disease on presentation for LPs and >350 cells/mm³ for non-LPs. Acute and recent infections with CD4 < 350 cells/mm³
were reclassified as non-LPs to avoid overestimation of LP due to transient CD4 cell count [1].

Results: Five hundred and seven patients were enrolled of which 90% were males and 52.3% were LPs. Heterosexuals were more likely to present late at care versus MSM and IVDUs (p < 0.001). Seven out of ten immigrants presented late at care (p < 0.001). A linear relation is observed between lower education level and late presentation (p < 0.001). There is no significant difference between LPs and non-LPs for employment, and patients living with their parents were more likely to present early at care. LPs requiring hospitalization on diagnosis were 34% versus 12% of non-LPs (p < 0.001). Fifty-seven patients presented an HIV-defining disease on diagnosis representing 23.7% of LPs. Total mortality rate was 4.6% with LPs presenting a two times higher mortality rate versus non-LPs (0.06% LPs, 0.03% non-LPs) (p = 0.06). Over time, a negative correlation was found for CD4 cell count from 2009 towards 2015 (Kendall’s τ = −0.083, p = 0.22).

Conclusions: Our data suggest that heterosexuals access medical care later than MSM and IVDUs, implying a gap in current preventive approach and that HIV testing should be offered more frequently for this group. People with lower education and immigrants should be accessed and orientated towards better prevention control. Our results demonstrate that the rate of late presentation tends to increase, a conclusion that demands immediate attention and action in order to succeed an actual control of the HIV epidemic.

Reference

P042

The utility of enfuvirtide revisited

Raquel Pinho; Elsa Campoo; Dominília Faria; Carlos Santos and Luís Azevedo

Unidade de Portimão Serviço de Medicina, Centro Hospitalar do Algarve, Portimão, Portugal

Introduction: Cryptosporidiosis’ main symptom is watery diarrhoea. It is caused by a parasite called cryptosporidium. In persons with AIDS and in other immunocompromised patients, cryptosporidiosis can be serious, long lasting and sometimes fatal. If CD4+ cell count is below 200/mm³, cryptosporidiosis is more likely to cause severe symptoms and complications, including prolonged diarrhoea, dehydration and possibly death. The incidence of cryptosporidiosis in patients with HIV has decreased since the introduction of highly active antiretroviral therapy (HAART) [1]. Enfuvirtide (T20) is a fusion inhibitor indicated for use in combination with other antiretroviral agents for the treatment of HIV-1 infection in treatment-experienced patients with HIV-1 as part of a salvage regimen. Because of its subcutaneous administration, in severe cases with cryptosporidiosis where the absorption of oral therapeutic is doubtful, enfuvirtide may be a therapeutic option.

Materials and methods: We extracted details of three individuals with a laboratory confirmed IC and HIV diagnosis between January 2013 and December 2014. The diagnosis of cryptosporidiosis was made by stool sample examination.

Figure 1. CD4 count (cells/µL) at baseline, month 2, 4 and 6 of treatment with HAART and at June 2016.
TREATMENT STRATEGIES - TARGET POPULATIONS: NAIVE PATIENTS

PO43

Pre-existing HIV-1 integrase polymorphisms do not impact treatment response to elvitegravir-containing fixed-dose combination regimens in treatment-naïve patients

Michael Abram; Renee Ram; Kirsten White; Michael Miller and Christian Callebaut

Biology, Gilead Sciences, Inc., Foster City, CA, USA

Introduction: Across 14 phase 2 or 3 clinical studies, analyses of virologic suppression (HIV-1 RNA <50 copies/mL of elvitegravir (EVD)/cobicistat(C)/emtricitabine(F)/tenofovir alafenamide (E/C/F/TAF; six studies) or E/C/F/tenofovir disoproxil fumarate (E/C/F/TDF; eight studies) has been evaluated in antiretroviral treatment-naïve, HIV-infected patients at weeks 48, 96 and/or 144. Here, the prevalence of pre-existing integrase (IN) mutations was evaluated relative to subtype, integrase strand transfer inhibitor (INSTI) susceptibility and virologic suppression on EVD-containing fixed-dose combinations.

Methods: HIV-1 IN genotypes were obtained from plasma samples before initiation of therapy. IN variability (by position and amino acid change) was compared between patients harbouring B and non-B subtypes, and to the proportion of patients achieving virologic suppression on E/C/F/TAF or E/C/F/TDF. INSTI susceptibility of site-directed mutant viruses was characterized.

Results: Across 14 phase 2 or 3 clinical studies, analyses of virologic suppression (HIV-1 RNA <50 copies/mL of elvitegravir (EVD)/cobicistat(C)/emtricitabine(F)/tenofovir alafenamide (E/C/F/TAF; six studies) or E/C/F/tenofovir disoproxil fumarate (E/C/F/TDF; eight studies) has been evaluated in antiretroviral treatment-naïve, HIV-infected patients at weeks 48, 96 and/or 144. Here, the prevalence of pre-existing integrase (IN) mutations was evaluated relative to subtype, integrase strand transfer inhibitor (INSTI) susceptibility and virologic suppression on EVD-containing fixed-dose combinations.

Methods: HIV-1 IN genotypes were obtained from plasma samples before initiation of therapy. IN variability (by position and amino acid change) was compared between patients harbouring B and non-B subtypes, and to the proportion of patients achieving virologic suppression on E/C/F/TAF or E/C/F/TDF. INSTI susceptibility of site-directed mutant viruses was characterized.

Results: Two thousand one hundred and seventy-seven of 3033 treated patients across 14 studies were analyzed by population sequencing for pre-existing or transmitted drug resistance in integrase (E/C/F/TAF, n = 915; E/C/F/TDF, n = 1262). Most patients harboured subtype B (85.1%) versus non-B (14.9%). No primary EVG resistance-associated mutations (RAMs), known to confer reduced EVG susceptibility (T66I/A/K, E92Q/G, S147G, Q148R/H/K, N155H), were detected in any treatment-naïve patient. Some secondary INSTI RAMs were detected as naturally occurring IN polymorphisms, mostly at very low prevalence (0.1–1%: H51Y, L69I/V, V72A/T, L74M, Q95K, T97A, A128T, E138K, S153A, E157K, G163K/R) with some exceptions (≥1%: M50I, L74I, S119G/R/P/T, E157Q); of these, only V72A conferred low-level reduced EVG susceptibility (5-fold). Some secondary INSTI RAMs were more prevalent in subtype B (M50I, S119G/R/P/T, E157Q) and non-B (L74I/M, T97A) subtypes (p < 0.05). Overall, 112 of 288 IN amino acid positions had ≥1 variants with a prevalence of ≥1%. Most IN variants (585 of 978) had a prevalence of ≥0.1% and were detected more often in non-B subtypes. Distribution of subtypes and pre-treatment IN variants were comparable between E/C/F/TAF and E/C/F/TDF treated patients. Treatment of subtypes with or without pretreatment IN genotype data achieved and maintained high rates of virologic suppression. HIV-1 subtype and pre-existing IN polymorphisms at any IN position did not influence treatment response to E/C/F/TAF or E/C/F/TDF (p > 0.01).

Conclusions: Pre-existing genotypic INSTI resistance is extremely rare in treatment-naïve patients, confined only to a select few minor secondary INSTI RAMs that generally do not confer reduced EVG susceptibility. Natural IN variability, observed more often in non-B subtypes, does not influence virologic suppression rates to EVG-containing fixed-dose combinations. IN genotyping before consideration of EVG-based therapy is currently not warranted unless transmitted drug resistance with primary EVG RAMs is suspected.

PO44

Does ethnic origin influence timing, choice and response to first-line antiretroviral therapy in France?

Caroline Gayet1; Alexandre Brun2; Isabelle Turpault3; Pierre Seller1; Olivier Bouchaud4; Olivier Patey5; Valerie Garralt6; Vincent Jeantils7; Eric Froguel11; Olivia Son12; Sylvia Lamy13; Corinne Routier14; Olivier Bouchaud4; Olivier Patey5; Valerie Garrait6; Vincent Jeantils7; Eric Froguel11; Olivia Son12; Sylvia Lamy13; Corinne Routier14; Willy Rozenbaum16; Gwenn Hamet2; Constance Delaugerre17; Willy Rozenbaum16; Jean-Michel Molina1 and COREVIH Ile de France

1 Infectious Diseases Department, Hopital St Louis, Paris, France. 2 Hospital St Louis, COREVIH Ile de France Est, Paris, France. 3 Internal Medicine, Hopital Lariboisiere, Paris, France. 4 Infectious Diseases Department, Hopital Avicennes, Bobigny, France. 5 Infectious Diseases Department, Hopital Intercommunal de Villeneuve St Georges, Villeneuve St Georges, France. 6 Internal Medicine, Hopital Intercommunal de Creteil, Creteil, France. 7 Infectious Diseases Unit, Hopital Jean Verdier, Bondy, France. 8 Internal Medicine, Hopital Sud Francilien, Corbeil Essonne, France. 9 Infectious Diseases Department, Centre Hospitalier Marc Jacquet, Melun, France. 10 Infectious Diseases Unit, Centre Hospitalier de Meaux, Meaux, France.
Abstract P045 Efficacy and safety of tenofovir alafenamide versus tenofovir disoproxil fumarate in treatment-naive Asian adults

Shinichi Oka1; Ploenchit Chetchotisakd2; Amanda Clarke3; Khuanchai Supparatpinyo3; Sasisopin Kiertiburanakul3; Julie Ryu4; David Piontkowsky6; Susan Guo5; Thai Nguyen-Cleary6; Moupali Das8 and Scott McCallister

1Infectious Diseases, National Center for Global Health and Medicine, Tokyo, Japan. 2Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand. 3Infectious Diseases, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK. 4Infectious Diseases, Chiang Mai University, Chiang Mai, Thailand. 5Infectious Diseases, Ramathibodi Hospital Mahidol University, Bangkok, Thailand. 6Medical Affairs, Gilead Sciences, Foster City, CA, USA. 7Biometrics, Gilead Sciences, Foster City, CA, USA. 8Clinical Research, Gilead Sciences, Foster City, CA, USA

Introduction: Tenofovir alafenamide (TAF) is non-inferior in efficacy to tenofovir disoproxil fumarate (TDF) and has an improved renal and bone safety profile. In this sub-analysis, we describe the efficacy and safety of TAF compared to TDF in treatment-naive Asian adults.

Materials and methods: This analysis consisted of pooled data from two phase 3, randomized, double blind studies (GS-US-292-0104 and GS-US-292-0111) of HIV-infected, treatment-naive adults who initiated a single-tablet regimen (STR) of elvitegravir, cobicistat and emtricitabine coformulated with tenofovir alafenamide (E/C/TAF) or tenofovir disoproxil fumarate (E/C/TDF). Efficacy and safety endpoints through week 96 by self-identified Asian versus non-Asian race within and between treatment groups were examined.

Abstract P045 Table 1 Week 96 Results

<table>
<thead>
<tr>
<th>Week 96 results</th>
<th>E/C/TAF (N = 91)</th>
<th>E/C/TAF (N = 775)</th>
<th>E/C/TDF (N = 89)</th>
<th>E/C/TDF (N = 778)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion with HIV-1 RNA <50 copies/mL</td>
<td>97%</td>
<td>85%</td>
<td>93%</td>
<td>84%</td>
</tr>
<tr>
<td>Mean change from baseline in CD4 cell count, cells/μL</td>
<td>+287</td>
<td>+279</td>
<td>+250</td>
<td>+268</td>
</tr>
<tr>
<td>Discontinuations</td>
<td>1%</td>
<td>1%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Discontinuations due to renal adverse events, n</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Median change from baseline in eGFR, mL/min</td>
<td>−7</td>
<td>−1</td>
<td>−9</td>
<td>−7</td>
</tr>
<tr>
<td>Median % change from baseline in proteinuria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urine protein: creatinine ratio (UPCR)</td>
<td>0%</td>
<td>−10%</td>
<td>34%</td>
<td>15%</td>
</tr>
<tr>
<td>Urine albumin: creatinine ratio (UACR)</td>
<td><1%</td>
<td>−6%</td>
<td>18%</td>
<td>3%</td>
</tr>
<tr>
<td>Urine retinol binding protein: creatinine ratio (RBPCR)</td>
<td>12%</td>
<td>14%</td>
<td>72%</td>
<td>74%</td>
</tr>
<tr>
<td>Urine beta-2-microglobulin: creatinine ratio</td>
<td>−38%</td>
<td>−32%</td>
<td>22%</td>
<td>35%</td>
</tr>
<tr>
<td>Mean % change from baseline in spine BMD</td>
<td>−0.3%</td>
<td>−1.1%</td>
<td>−3.2%</td>
<td>−2.7%</td>
</tr>
<tr>
<td>Mean % change from baseline in hip BMD</td>
<td>−1.5%</td>
<td>−0.6%</td>
<td>−4.6%</td>
<td>−3.1%</td>
</tr>
</tbody>
</table>

p < 0.05 for differences between Asian versus non-Asian in the TAF group or TDF group; p < 0.05 for differences between TAF versus TDF in the Asian group or non-Asian group.
Results: One thousand seven hundred and thirty-three adults were randomized and treated: 10% Asians (91 TAF vs. 89 TDF); ex-US (89% vs. 83%), median age (30 vs. 31 years), female (45% vs. 36%), median BMI (22 vs. 22), HIV-1 RNA $< 100,000$ copies/mL (26% vs. 33%), CD4 count < 200 cells/μL (15% vs. 17%), median eGFR (109 vs. 105 mL/min), and proteinuria (8% vs. 8%). At week 96, 97% of Asians on TAF versus 93% on TDF achieved virologic suppression by FDA snapshot algorithm, compared to 85% of non-Asians on TAF and 84% on TDF. Increases in CD4 cell count were numerically higher for Asians on TAF compared to TDF. Both STRs were well tolerated with 1% discontinuations due to adverse events (AEs) for TAF and 2% for TDF. There were no discontinuations due to renal AEs in any Asian participants. There were similar declines in eGFR between TAF and TDF among Asians, consistent with cobicistat’s reversible inhibition of creatinine secretion. Changes in other markers of renal safety including urine RBPCR and B2MCR favoured the TAF group, suggesting less impact on renal tubular function. There were minimal decreases in spine and hip bone mineral density (BMD) for the TAF-treated group versus larger decreases in BMD for Asians treated with TDF. Efficacy and safety results for non-Asian participants are shown below (Table 1).

Conclusions: TAF and TDF STRs have high and durable efficacy in treatment-naive Asian adults, with changes in markers of renal and bone safety that consistently favoured TAF over TDF. These data support the use of a TAF-based regimen for the initial treatment of HIV in Asian adults.

P046
Combining lopinavir/ritonavir with new ARV agents in ART-naive HIV-infected patients: data from the German multicenter PROTEKT cohort
Eva Wolf1; Heribert Hillenbrand2; Axel Baumgarten3; Christoph Stephan4; Thomas Lutz5; Siegfried Koepe6 and Johannes Huelsenbeck7
1MVZ Karlsplatz, HIV Research and Clinical Care Centre, Munich, Germany. 2MVZ, PraxisCityOst, Berlin, Germany. 3Zentrum für Infektiologie Berlin, Prenzlauer Berg, Berlin, Germany. 4Medical Dept. No. 2, University Hospital Frankfurt, Goethe University, Frankfurt, Germany. 5Infektiologikum, Frankfurt-City, Frankfurt, Germany. 6Gemeinschaftspraxis, Drs S. Koepe/P. Kreckel, Berlin, Germany. 7AbbVie Germany, Medical HIV/HCV, Wiesbaden, Germany

Introduction: With the approval of new ARV agents, innovative combinations are possible in combination with protease inhibitors. PROTEKT, a non-interventional cohort study initiated in 2008, recruited HIV-1-infected patients receiving cART consisting of lopinavir/ritonavir (LPV/r) plus a “novel” agent other than RALT or darunavir (RAL), maraviroc (MVC) or etravirine (ETR), without restrictions concerning the use of additional antiretrovirals. Individual choice of cART was at the treating physician’s discretion. Ethics approval had been obtained. Observation time was 144 weeks or until discontinuation of cART.

Methods: Evaluation of 3-year outcomes in the subgroup of ART-naive patients of the PROTEKT cohort initiated on cART including LPV/r plus INI, ETR or MVC. Outcomes of interest were time on cART (persistence) using Kaplan-Meier (KM) analysis, time to discontinuation due to virologic failure (VF; censoring discontinuations not related to VF), HIV RNA $<$ 50 (400) copies/mL at week 48 using ITT (snapshot; discontinuation = failure; missing data excluded) and as-treated (AT) analyses (missings excluded), as well as CD4 cell changes.

Results: Between 2008 and 2014, 501 patients were included in PROTEKT. 90 of them initiated on first-line cART. Baseline characteristics of the ART-naive study population are shown in Table 1: 37% presented with HIV-related diseases, 7% with hepatitis C, 7% with renal disease, 68% with HIV RNA $> 100,000$ copies/mL, 32% with HIV RNA < 200 cells/μL. LPV/r was combined with either RAL (88 patients, 98%), MVC (one patient, 1%) or ETR (one patient, 1%); 63 patients (70%) received dual therapy LPV/r + RAL, 18 (20%) LPV/r + RAL + TDF, HIV RNA levels < 50 (< 400) copies/mL at week 48: ITT, 51% (71%) (N = 40/79 (56/79)); AT, 67% (93%) (N = 40/60 (56/60)). Median time to discontinuation of cART was 113 weeks; persistence at weeks 48, 96 and 144 was 73%, 54% and 42%, respectively; KM estimates regarding discontinuation due to VF were 94%, 87% and 82%. Median CD4 increases at weeks 48, 96 and 144 were 200/\muL, n (%) 29 (32.2%) and 286 (196–473), respectively. Median time to CD4 increase of ≥ 100 cells/μL was 12 weeks. Most common reasons for discontinuation of study drugs until week 144 were treatment simplification (10/90; 11%), virologic failure (10/90; 11%); 3/10 with HIV RNA > 200 copies/mL) and adverse events (9/90 patients, 10%).

Conclusion: In the German PROTEKT cohort, LPV/r + RAL as dual therapy or part of cART was used in ART-naive HIV-infected patients with advanced HIV disease. Median persistence of > 2 years in the PROTEKT cohort suggests that non-NRTI-based regimens offer an alternative approach for treatment initiation in specific situations.

P047
Outcome of antiretroviral regimens prescribed by following the regulations on combination antiretroviral therapy by Taiwan Centers for Disease Control
Mao-Song Tsai1; Chia-Jui Yang1; Jun-Yu Zhang2; Pei-Ying Wu2; Shang-Ping Yang3; Yu-Zhen Luo2; His-Yen Chang2; Kuan-Yin Lin3; Hsin-Yun Sun3 and Chien-Ching Hung4
1Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan. 2Center of Infection Control, National Taiwan University
Introduction: To curb the increasing medical cost for HIV care, Taiwan Centers for Disease Control (CDC) implemented regulations on cART according to the monthly cost for each regimen on 1 June 2012. By following the regulations, many individuals commence thymidine analogue (TA)-based regimens. Prior authorization is needed for the regimens containing protease inhibitors (PIs), integrase strand transfer inhibitors (INSTIs) or rilpivirine (RPV) plus non-TA backbones (abacavir/lamivudine; tenofovir disoproxil fumarate (TDF)/emtricitabine; or TDF plus lamivudine). We aimed to describe the outcome of the regimens prescribed by following the regulations in Taiwan.

Materials and methods: Between June 2012 and June 2016, antiretroviral-naïve HIV-positive patients who initiated cART were included. We retrospectively collected information on clinical characteristics, regimens, treatment responses, causes for switch and genotypic resistance at baseline and follow-up. We investigated the predictors of treatment modification with Cox proportional hazards model.

Results: During the 48-month study period, 1390 patients with baseline median CD4 count of 282 cells/µL and plasma HIV RNA load (PVL) 4.85 log10 copies/mL initiated cART: 31.1% TA backbones plus nevirapine, efavirenz or RPV (first category); 59.1% non-TA backbones plus nevirapine or efavirenz (second category); 6.3% TA plus PIs, INSTI or RPV (third category); and 3.7% non-TA plus boosted PI, II or RPV (fourth category). Overall, 65.6% (n = 912) had to change the initial regimens at a median interval of 41 days (range 1–1140) because of regimen simplification (33.6%), rash (20.5%), neuropsychiatric adverse effect (14.0%), genotypic resistance/virologic failure (10.8%), gastrointestinal intolerance (9.3%), anaemia (9.2%) or hepatitis (4.9%). The rates of regimens modification for drug-related adverse reactions were 61.4%, 34.1%, 53.6% and 29.4% in patients in the first, second, third and fourth category of regimens, respectively. Except for regimen simplification, 6-month modification-free survival rates were 67.6% (range 64.2–70.1%) in the patients on regimens containing non-TA backbones and 48.9% (44.4–53.1%) in the patients on regimens containing TA backbone (hazard ratio (HR) 1.82 (95% CI 1.55–2.14)) (Figure 1). In multivariate analysis, use of regimens containing TA backbone (HR 1.84; 95% CI 1.57–2.16) and higher PVL (HR, per 1-log10 copies/mL increase, 1.15; 95% CI 1.03–1.29) were independent predictors of cART switch.

Conclusions: A significant proportion of patients on cART regimens, especially the regimens containing TA backbone that were prescribed by following the regulations of Taiwan CDC, had to be changed due to toxicities, transmitted drug resistance or unsatisfactory virologic response.

P048

Prescription pattern and determinants of dolutegravir use in an antiretroviral-naïve HIV-infected population in Italy: data from the ICONA Foundation cohort study

Andrea Antinori1; Alessandro Cozzi Lepri2; Antonella Castagna3; Sergio Lo Caputo4; Cristina Mussini5; Stefano Rusconi6; Antonio Di Biagio7; Giulia Marchetti8; Silvia Nozza9; Antonella Cingolani9; Andrea De Luca10; Antonella d’Arminio Monforte8 and Study Group on behalf of Icona Foundation8

1HIV/AIDS Department, National Institute for Infectious Diseases, Rome, Italy. 2Infection and Population Health, University College London, London, UK. 3Infectious Diseases, San Raffaele Hospital, University of Milano, Milano, Italy. 4Infectious Diseases, University of Bari, Bari, Italy. 5Infectious Diseases, University of Modena, Modena, Italy. 6Infectious Diseases, Luigi Sacco Hospital, University of Milano, Milano, Italy. 7Infectious Diseases, University of Genova, Genova, Italy. 8Health Sciences, San Paolo Hospital, University of Milano, Milano, Italy. 9Infectious Diseases, Catholic University, Roma, Italy. 10Infectious Diseases, University of Siena, Siena, Italy

Introduction: Dolutegravir (DTG), an integrase strand transfer inhibitor (INSTI), is currently recommended for treatment initiation in antiretroviral-naïve by most of clinical guidelines. Data from
randomized trials demonstrated superiority of DTG over NNRTI and PI/r, supporting its clinical use especially in first-line regimens with high viral load, regardless of which NRTI pair (TDF/FTC or ABC/3TC) was initiated. Aim of this analysis was to describe DTG use in a representative unselected naïve population in Italy and identify its determinants and patterns of prescription.

Methods: All patients enrolled in ICONA Foundation cohort starting a DTG-based regimen from ART-naïve, and those concomitantly starting other third drugs (control group) after 1 January 2014 all using as NRTI pair TDF/FTC or ABC/3TC were selected. Cross-sectional analysis was performed, and characteristics at the time of starting cART compared using chi-square test and univariable and multivariable logistic regression.

Results: A total of 1944 ARV-naïve individuals starting cART were included (DTG = 195; NNRTI = 715; PI/r = 576; other INSTI = 458). The crude prevalence of DTG use was 10%. Median HIV-1 RNA was 4.7 log10/mL in DTG and 4.6 log10/mL in controls (p = 0.13); median CD4 counts were 386 cells/mm³ and 376 cells/mm³, respectively (p = 0.78). Proportion of patients with HIV-1 RNA values > 100,000 was 36.6% among DTG and 29.3% among controls (p = 0.06). Fitting a logistic regression, a significantly increased probability of starting DTG was found with more recent calendar years and higher baseline HDL cholesterol values, and a decreased probability in sites located in central Italy, with a trend towards more frequent use with a pVL > 100,000 (Table 1). NRTI pair was TDF/FTC in 65% of DTG and 90% of controls, and ABC/3TC in 35% of DTG and 10% of controls, with a significantly higher probability of starting ABC/3TC in the DTG group (Table 1). Proportion of ABC/3TC combination with DTG was 44% in pVL ≤ 100,000, but only 24% in pVL > 100,000 stratum (interaction p = 0.37).

Conclusions: During the first 2 years after its introduction in Italy, DTG prescriptions in ART-naïves showed an increase over time, although patterns were not different from those observed for control regimens, except for a trend for starting DTG at high VL. ABC/3TC was more frequently prescribed with DTG than in controls, even though TDF/FTC remains the most prescribed NRTI option combined with DTG in people with high viral load. Concerns on ABC/3TC potency, toxicity and lack of rapid HLA results might have affected clinicians’ choices.

P049 The RESINA data support the individualized therapy based on primary resistance testing

Elena Knopps; Eugen Schuelder; Nadine Luebke; Maria Neumann-Fraune; Eva Heger; Saleta Sierra-Aragon; Claudia Mueller; Mark Oette; Gerd Faetkenheuer; Martin Hower; Heribert Knechten; Niels Schuebel; Stefan Esser; Stefan Scholten; Dieter Haussinger; Rolf Kaiser and Bjoern Jensen

1Institute of Virology, University of Cologne, Cologne, Germany. 2Department for Virology, University of Duesseldorf, Duesseldorf, Germany. 3Department of Gastroenterology, Krankenhaus der Augustinerinnen, Cologne, Germany. 4Department of Internal Medicine, University of Cologne, Cologne, Germany. 5Department of Internal Medicine, City Hospital Dortmund, Dortmund, Germany. 6Department of Internal Medicine, Klinikum Osnabrueck, Osnabrueck, Germany. 7Department of Dermatology, University of Essen, Essen, Germany. 8Private Practice, Private Practice Dr. Knechten, Aachen, Germany. 9Private Practice, Private Practice Dr. Knechten, Aachen, Germany. 10Department of Gastroenterology, Hepatology and Inf, University of Duesseldorf, Duesseldorf, Germany.

Introduction: The RESINA study started in 2001 and was originally focused on the evaluation of primary resistance in patients at the time point of first therapy. Additionally, we could follow up these patients (RESINA cohort) since cART start by collecting the clinical, virologic and immunologic data.

Materials and methods: The clinical, virologic and immunologic data were collected from 38 centres since 2001. Genotypic analysis of resistance-associated mutations (RAMs) was performed from viral RNA exclusively until 2012, since then additionally from proviral DNA and/or total NA. Resistance-associated mutations were detected by
Sanger sequencing and recently by next-generation sequencing by the Illumina MiSeq technology. Additionally, we collect data from any therapy-experienced patient within the AREVIR project.

Results: Meanwhile the RESINA cohort consists of more than 3800 patients from almost 40 HIV centres in North-Rhine-Westphalia. Furthermore, we performed a total number of more than 13,000 resistance tests from therapy-naive and therapy-experienced patients (RESINA and AREVIR data). During this time, we could observe a decline in prevalence of resistance-associated mutations in treatment-experienced patients as documented in the AREVIR database. In contrast to the decline of RAMs in therapy-experienced patients, the frequency of primary resistance-associated mutations at the beginning of cART remains relatively stable. The majority of the primary RAMs were NRTI resistance mutations throughout the whole time of observation. NNRTI resistance-associated mutations did not increase over time although the use of NNRTI increased in our cohort since 2001. We did not observe an increase in primary PI resistance-associated mutations and almost no primary INI resistance mutations.

Conclusions: Despite the declining frequency of resistance-associated mutations in therapy-experienced patients the frequency of primary resistance mutations is still high and justifies routine primary resistance testing. We can further conclude from our data that the individualized therapies according to the DAIG therapy guidelines for therapy-naive patients translate in a low number of NNRTI and PI resistance-associated mutations in therapy-naive and therapy-experienced patients.

TREATMENT STRATEGIES - TARGET POPULATIONS: PRIMARY INFECTION

P050

The acute/recent HIV infection cohort from Hospital Clinic, Barcelona: epidemiological trends and evolution from 1997 to 2015

David Nicolás Ocejo1; Juan Ambrosioni1; Christian Manzardo2; Fernando Aguero1; Mar Mosquera1; Marta Parera1; Sonsoles Sanchez-Palominos2; Carmen Liger1; Emma Fernandez1; Elisa de Lazzari1; Montserrat Planas1; Jose Gatel2 and Jose Miró1

1Infectious Diseases, Hospital Clinic Barcelona, Barcelona, Spain. 2Microbiology, Hospital Clinic Barcelona, Barcelona, Spain. 3Institut d’Investigacions Biomèdiques August Pi i Sunyer, Retrovirology and Viral Immunopathology Laboratory, Barcelona, Spain

Introduction: The epidemiology and clinical management of primary/recent HIV infection (PHI) has undergone significant changes over the last 20 years. The epidemiological profile of PHI patients has probably also varied, although published evidence is scarce.

Methods: Since 1997, data have been collected from every patient with an acute/recent HIV infection (less than 180 days) visiting our hospital. The inclusion criteria were a negative antibody assay with a detectable viral load or a positive p24 antigen, a positive antibody assay with a negative, indeterminate or incomplete western blot, or a documented negative test in the preceding 6 months. Patients were stratified into four time periods (1997–2001, 2002–2006, 2007–2011, 2012–2015).

Results: In the last 19 years, 337 patients were included with a median follow-up of 81 months. The main risk factor was men having sex with men (MSM) with an increasing trend in the most recent periods (p < 0.001). Intravenous drug use (IDU) decreased from 23% in the earliest period to 1% in the last. Positive VCER serology at diagnosis was higher in the first period, while syphilis diagnosis remained stable over time. In the first period, 23% of patients were immigrants, increasing to 40% in the last period. Non-B subtypes also increased but not significantly. Nineteen percent of patients presented with a Fiebig I–III stage at diagnosis and the median time from infection to diagnosis was 40 days (IQR 28–79) with little change over time (Table 1). Seventy percent of patients presented with a symptomatic PHI, and 25% of them required hospital admission. Ninety-three percent of patients started ART. Of them, 27% started during the first 3 months, and 45% during the first 6 months as of the infection date. Median CD4 at ART initiation

Abstract P050

Table 1. Epidemiological characteristics of the PHI cohort

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Men, n (%)</td>
<td>314 (93.2%)</td>
<td>23 (76.7%)</td>
<td>49 (87.5%)</td>
<td>145 (97.3%)</td>
<td>97 (95.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (years)</td>
<td>33.7</td>
<td>33.3</td>
<td>33.2</td>
<td>34.6</td>
<td>34.4</td>
<td>0.164</td>
</tr>
<tr>
<td>Transmission, n (%) – MSM</td>
<td>291 (86.9%)</td>
<td>19 (63.3%)</td>
<td>42 (75%)</td>
<td>138 (93.9%)</td>
<td>92 (90.2%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Transmission, n (%) – IDU</td>
<td>17 (5.1%)</td>
<td>7 (23.3%)</td>
<td>5 (8.9%)</td>
<td>4 (2.7%)</td>
<td>1 (1%)</td>
<td>–</td>
</tr>
<tr>
<td>Origin – Spain</td>
<td>213 (63.4%)</td>
<td>23 (76.7%)</td>
<td>36 (65.5%)</td>
<td>93 (62.4%)</td>
<td>61 (59.8%)</td>
<td>0.391</td>
</tr>
<tr>
<td>Origin – immigrants</td>
<td>123 (36.6%)</td>
<td>7 (23.3%)</td>
<td>19 (34.5%)</td>
<td>56 (37.6%)</td>
<td>41 (40.2%)</td>
<td>–</td>
</tr>
<tr>
<td>Drugs use, n (%) – IV</td>
<td>10 (3.1%)</td>
<td>5 (17.2%)</td>
<td>2 (3.8%)</td>
<td>3 (2.1%)</td>
<td>0 (0%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Drugs use, n (%) – inhaled</td>
<td>79 (24.5%)</td>
<td>1 (3.4%)</td>
<td>13 (25%)</td>
<td>38 (27%)</td>
<td>27 (26.7%)</td>
<td>–</td>
</tr>
<tr>
<td>Drugs use, n (%) – oral</td>
<td>16 (5%)</td>
<td>0 (0%)</td>
<td>2 (3.8%)</td>
<td>6 (4.3%)</td>
<td>8 (7.9%)</td>
<td>–</td>
</tr>
<tr>
<td>Follow-up (months), median (IQR)</td>
<td>81 (54–118)</td>
<td>200 (178–217)</td>
<td>134 (120–157)</td>
<td>78 (65–91)</td>
<td>40 (27–48)</td>
<td>–</td>
</tr>
<tr>
<td>Time from infection to diagnosis (days), median (IQR)</td>
<td>40 (28–79)</td>
<td>31 (29–77)</td>
<td>42 (29–64)</td>
<td>40 (26–86)</td>
<td>39 (27–74)</td>
<td><0.001</td>
</tr>
<tr>
<td>Fiebig I–III, n (%)</td>
<td>64 (19%)</td>
<td>9 (30%)</td>
<td>14 (25%)</td>
<td>30 (20.1%)</td>
<td>11 (10.8%)</td>
<td>0.004</td>
</tr>
<tr>
<td>HCV + at diagnosis, n (%)</td>
<td>19 (4.9%)</td>
<td>7 (23.3%)</td>
<td>4 (7.1%)</td>
<td>3 (2.1%)</td>
<td>3 (2.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>VDRL + at diagnosis, n (%)</td>
<td>40 (12.8%)</td>
<td>5 (17.2%)</td>
<td>6 (10.9%)</td>
<td>16 (11.2%)</td>
<td>13 (15.3%)</td>
<td>0.684</td>
</tr>
<tr>
<td>Time from infection to ART (days), median (IQR)</td>
<td>204 (84–523)</td>
<td>99 (63–156)</td>
<td>109 (51–1140)</td>
<td>336 (155–646)</td>
<td>122 (80–239)</td>
<td><0.001</td>
</tr>
<tr>
<td>Time from diagnosis to ART (days), median (IQR)</td>
<td>133 (41–472)</td>
<td>56 (22–74)</td>
<td>62 (19–1052)</td>
<td>284 (103–622)</td>
<td>79 (36–172)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
remained steady and median time from diagnosis to treatment underwent a temporary increase during the middle periods (p < 0.001) (Figure 1). The chosen ART regimen varied among periods, with a substitution of PIs with INSTI in the last period (Figure 2).

Conclusions: Our results show significant changes in the profile of patients with acute/recent HIV infection in Barcelona with an increase of MSM in the most recent periods. The interval between diagnosis and ART start increased during the central calendar period (2002–2011), reflecting conservative guideline recommendations of that time. The INSTI-based ART regimens were the preferred starting option in the last years.

Figure 1. Median and IQR CD4 at ART start during the four study periods.

Abstract P050

Figure 2. Evolution of the ART chosen as the third drug as starting scheme among periods.

P051
Neurological involvement in patients with acute/recent HIV-1 infection
Francisca Artigues1; Juan Ambrosioni2; David Nicolás2; Judit Penafiel2; Fernando Agüero2; Christian Manzardo2; Mar Mosquera2; Sonsoles Sánchez-Palomino2; Elisa de Lazzari2; Maria Angeles Marcos2; Montserrat Plana2 and Jose Miro2
1School of Medicine, University of Barcelona, Barcelona, Spain.
2Infectious Diseases, Hospital Clinic, Barcelona, Spain

Introduction: Neurological involvement during primary HIV-1 infection (PHI) has been poorly studied. Early antiretroviral therapy (ART) has shown to improve symptoms, to promote a better immunological recovery and to reduce the size of viral reservoir [1]. Little is known, however, about ART in the context of neurological involvement during PHI [2,3]. The aim of this study was to describe the clinical characteristics and outcomes of patients presenting neurological symptoms during PHI and to compare them with a control group without neurological involvement.

Materials and methods: We described the 14 patients (3.02% of the whole PHI cohort) with neurological symptoms that were enrolled in the acute/recent hospital clinic PHI cohort (documented infection <6 months) between 1997 and 2016. A retrospective case-control study was developed, matching each case with three controls. Matching criteria included age (± 10 years), gender, year of the diagnosis (± 4 years) and same Fiebig stage. Statistical analyses were performed using R software version 3.2.3. The conditional logit model was used to compare variables between the matched cases and controls.

Results: Fever and headache with at least one other neurological symptom were the most frequent manifestations among cases: 28.5% presented as meningitis and 71.5% as meningoencephalitis.
Cerebrospinal fluid showed pleocytosis with lymphocyte predominance and increased protein levels. Adenosine deaminase was elevated in 42.8% of cases. No other pathogen was identified in any case. Case-control comparisons can be seen in Table 1. All cases required hospitalization, whereas only 19% of the controls did. CD4/CD8 ratio was significantly lower in the case group (p = 0.039) and plasma viral load was significantly higher in the case group (p = 0.028). There were no differences regarding risk factors, HIV-1 tropism, subtype distribution or prescribed ART regimens. After 6 months on ART, 92% of cases had undetectable HIV-1 viral load, similar to controls. All cases recovered rapidly with ART and were discharged without sequelae.

Conclusions: Neurological involvement during PHI is an unusual but serious condition, always requiring hospitalization. Early diagnosis might be difficult because of the wide range of neurological symptoms and similarities with other viral aetiologies. Neurological manifestations during PHI are associated with a lower CD4/CD8 ratio and with a higher viral load at diagnosis than controls. Immediate initiation of ART to rapidly decrease the viral load is required in this scenario. Dolvitegravir, together with lamivudine and abacavir, seems a reasonable regimen due to its potency in reducing viral load and its high CNS penetration.

References

P052

Single-tablet regimen with elvitegravir, cobicistat, emtricitabine and tenofovir for the treatment of early HIV infection

Ramon Teira1; Maria Galindo2; Marta Montero3; Raquel Portilla4; Ana Ferrer5 and Elisa Martinez2

1Infectious Diseases, Hospital de Sierrallana, Torrelavega, Spain. 2Infectious Diseases, Hospital La Fe, Valencia, Spain. 3Infectious Diseases, Hospital de Albacete, Internal Medicine, Albacete, Spain

Introduction: Treatment of early HIV infection (EHI) (within the 6-month period after the transmission event) has been recommended, based on pathophysiological considerations and on surrogate-marker outcomes. The rationale supporting this recommendation (the accelerated pace of pathophysiological events in this early phase of the infection) argues also for an immediate initiation of treatment. Stribild1, the single-tablet regimen (STR) including elvitegravir,
concomitant cobicistat, emtricitabine and tenofovir, seems particularly well suited for this indication, due to its not needing additional laboratory data and the convenience of the STR formulation.

Methods: We reviewed the medical records of those patients attending the participating clinics with a diagnosis of EHI who started treatment with Stribild®. We classified them as a) definite EHI if a) they had a negative serologic test within the 6 months prior to the diagnosis and any positive test at presentation or b) they had a simultaneous negative serologic test and a positive HIV RNA test or p24 antigen; or b) probable EHI if they had not a negative serologic test within the previous 6 months, but they had an epidemiologic and clinical syndrome suggestive of acute HIV infection plus an HIV RNA plasma concentration (VL) higher than 100,000 copies/mL.

Results: Stribild® has been available in Spain since January 2014. In this period, 21 patients attending the participating clinics were diagnosed with EHI and started treatment with Stribild®. Of whom 17 were definite and 4 were probable diagnoses. Nineteen (90.5%) and in two men (10.5%) who did not report sex with men. The median CD4 cell count and VL at the time of diagnosis were 450 (20–254). At 12 months, one patient had withdrawn and had a VL of 6162, while the remaining 11 were still on treatment, all of whom, except one, had VL < 50 (the other was 106 copies/mL). We recorded no major or renal adverse effects.

Conclusions: Our results support the hypothesis that Stribild® is safe and effective for the treatment of EHI. The possible benefit of immediate initiation warrants further investigation.

P053

Comparison of (TDF + FTC) associated with either darunavir/ritonavir + raltegravir or dolutegravir: virological efficacy of two different treatment strategies for primary HIV infection (PHI)

Carmela Pinnetti1; Isabella Abbate2; Patrizia Lorenzini1; Nicoletta Orchi1; Caterina Gori1; Alessandra Amendola2; Raffaella Libertone1; Gabriella Rozerà3; Maria Maddalena Plazzi1; Gabriele Fabbrì1; Maria Rosaria Capobianchi2; Andrea Antinori1 and Adriana Ammassari1

1Clinical Department, National Institute for Infectious Diseases, Rome, Italy. 2Laboratory of Virology, National Institute for Infectious Diseases, Rome, Italy. 3Epidemiology Department, National Institute for Infectious Diseases, Rome, Italy. 4Antiretroviral Drug Monitoring Unit, National Institute for Infectious Diseases, Rome, Italy

Introduction: Optimal therapy for PHI is unknown. Although INI as fourth drug has often been used, RCT failed to demonstrate virological benefit in respect to conventional cART. Aim was to compare virological efficacy of (TDF + FTC) with darunavir/ritonavir 800/100 mg + raltegravir 400 mg BID (DRV/r + RAL) BID or dolutegravir 50 mg QD (DTG) for PHI therapy.

Methods: SIREA is a monocentre, prospective, observational study. PHI patients were treated consecutively with TDF/FTC associated with DRV/r + RAL (July 2013 to May 2015) or DTG (May 2015 to April 2016). Follow-up was until first virological response (VR) defined as HIV RNA 40 copies/mL or death, last observation, whichever came first. Factors associated with HIV RNA 40 copies/mL during the first year were evaluated from fitting Cox proportional hazard regression model retaining significant variables at univariable analysis (p < 0.10).

Results: Eighty-seven patients: males 94.2%, mean age 34 years. HIV diagnosis was 6 days before (range 4–10) and acquired by MSM 78.2%, heterosexual 19.5%, IVDU 2.3%. Fiebig: II/III 28.7%, IV 32.5%, V 15.0%, VI 23.7%. Median baseline (BL): HIV RNA log 5.5 copies/mL (IQR 4.6–6.6), HIV DNA x106 PBMC log 4.1 (IQR 3.7–4.8), CD4 570/mm3 (IQR 387–739). cART contained DRV/r + RAL in 63 (72.4%) cases and DTG in 24 (27.6%). At GRT, no resistance mutations to the prescribed drugs were found. BL characteristics, particularly HIV RNA (5.8 (95% CI 5.1–6.7) log copies/mL for DRV/r + RAL vs. 5.1 (4.1–6.4) for DTG; p = 0.12) and HIV DNA (4.2 (3.7–4.8) log copies/106 PBMC for DRV/r + RAL vs. 4.1 (3.8–4.8) for DTG; p = 0.90), were not different between groups. During 296 PYFU 79 patients (90.1%) achieved VR, response rate for DRV/r + RAL 22.5 %x100 PYFU (95% CI 17.4–29.1) and for DTG 57.7 (95% CI 37.2–89.4) (p < 0.001) (Figure 1). No grade 3–4 adverse events were seen. In multivariable analysis, BL
HIV RNA (OR 0.60; 95% CI 0.48–0.75; p < 0.001) and BL CD4 350–500 versus >500/mm³ (OR 0.41; 95% CI 0.22–0.74; p = 0.003) were associated with reduced risk of VR. On the contrary, BL CD4/CD8 > 1 versus < 1 (OR 2.22; 95% CI 1.28–3.85; p = 0.004) and DTG versus DRV/r + RAL (OR 3.42; 95% CI 1.83–6.42; p < 0.001) had a higher chance for VR. Age, gender, transmission mode, Fiebig and days from diagnosis were not associated.

Conclusions: In PHI, a three-drug CART based on DTG + (TDF + FTC) seems to perform better than a four-drug therapy with DRV/r + RAL + (TDF + FTC) in time to achieve HIV RNA 40 copies/mL in the first year. Besides potency, also lower pill burden and simpler schedule may have contributed. Results have to be taken cautiously because of potential confounder by indication and prescription bias.

TREATMENT STRATEGIES - TARGET POPULATIONS: EXPERIENCED PATIENTS

P054 Safety and efficacy of dolutegravir plus rilpivirine (DTG/RPV) in treatment-experienced HIV-infected patients: preliminary results at 24 weeks of the DORIVIR study

Rosario Palacios1; Marisa Mayorga2; Carmen-Maria González-Domench3; Carmen Hidalgo-Tenorio3; Carmen Gálvez4; Leopoldo Muñoz-Medina5; Javier de la Torre5; Ana Lozano6; Manuel Castro7; Mohamed Omar8 and Jesús Santos1

1UGC Enfermedades Infecciosas, Hospital Costa del Sol, Málaga, Spain. 2UGC Enfermedades Infecciosas y Microbiología, Hospital Virgen de la Victoria, Málaga, Spain. 3UGC Enfermedades Infecciosas y Microbiología, Hospital Carlos Haya, Málaga, Spain. 4Servicio de Enfermedades Infecciosas, Complejo Hospitalario Universitario Granada, Granada, Spain. 5UGC Enfermedades Infecciosas, Hospital Torrecárdenas, Málaga, Spain. 6UGC Enfermedades Infecciosas, Hospital Costa del Sol, Málaga Spain. 7UGC Enfermedades Infecciosas, Hospital de Poniente, Jaén, Spain. 8UGC Enfermedades Infecciosas, Hospital de Jaén, Jaén, Spain

Introduction: DTG/RPV is a two-pill nucleoside reverse transcriptase inhibitor (NRTI) and protease inhibitor (PI)-sparing regimen with very good tolerance. It is currently in phase 3 trials being developed as two-drug “maintenance therapy”. The aim of this study is to analyze the efficacy and safety of this regimen in HIV-infected patients who switched from any other ART combination.

Methods: Open-label, multicentre, non-controlled study in seven hospitals from Andalusia, southern Spain. Patients who switched from any regimen to DTG/RPV from February 2015 to February 2016 were included. Epidemiological, clinical and antiretroviral data in addition to immediate reasons for switching were collected. Lipids, liver and renal tests were measured at baseline and at 24 weeks. The primary endpoint was the proportion of patients with plasma HIV RNA <50 copies/mL at 24 weeks (missing = failure), and secondary endpoints included adverse events and rate of discontinuation related with adverse events of dual therapy after switching and metabolic changes at 24 weeks.

Results: Hundred and five patients started DTG/RPV during the study period: 82 (78.1%) virologically suppressed, 22 (20.9%) non-virologically suppressed (eight failures and 14 restart of ART) and one naive, who was not included for analysis. There were 70.5% men, mean age was 51.9 years, mean time of HIV infection 214.7 (IQR 140.4–288.9) months, and mean time on the prior ART was 37.0 (IQR 7.8–68.2) months. The most frequent reasons for switching were toxicity or intolerance (41.9%), convenience (27.6%) and drugs interactions (17.1%). Prior regimens were based on PI (56.9%), integrase inhibitors (26.5%) or non-NRTI (16.7%). At this time 85 patients have completed 24 weeks and all were still taking the same regimen, 82 (96.5%) of them with undetectable viral load; the three cases with detectable HIV RNA (532, 316 and 75 copies/mL, respectively) were not considered virological failures. Mean CD4 cells count increased (622 vs. 552 cells/μL; p = 0.008), and a mean decrease in fasting triglycerides (−34.6 mg/dL; p = 0.005) and glomerular filtration (−5.2 mL/min; p = 0.004) were observed, with no changes detected in total cholesterol, HDL-c, LDL-c, creatinine and GPT. No patient stopped DTG/RPV due to adverse events.

Conclusions: DTG/RPV is effective and safe in a cohort of patients with long time of HIV infection and prior ART. Most patients changed from more complex regimens. Toxicity, intolerance, convenience and interactions were the main reasons for changing. At 24 weeks lipid profile improved with a decrease in triglycerides.

P055 Efficacy, safety and patient-reported outcomes from treatment-experienced subjects in routine clinical practice switching to EVG/COBI/FTC/TAF (Genvoya®): the German TAFNES cohort

Benjamin Schwartz1; Helko Jesser2; Michael Waizmann3; Ramona Pauli4; Ansgar Rieke5; Nils Postel6; Thomas Heuchel7; Christian Schulz8; Markus Mueller9; Arend Molf10; Christoph Stephan11; Christoph Spinnler12; Richard Haubrich13; Marion Heiniklli14; Carolin Wieszner14 and Hans-Juergen Stellbrink15

1University Hospital, Jena, Germany. 2Gemeinschaftspraxis Jessen, Berlin, Germany. 3Praxis Waizmann, Leipzig, Germany. 4Gemeinschaftspraxis Becker/Pauli, Munich, Germany. 5Gemeinschaftsklinikum Koblenz-Mayen, Kemperhof, Koblenz, Germany. 6Prinzmed, Munich, Germany. 7MEDCENTER, Medizinisches Versorgungszentrum, Chemnitz, Germany. 8Otto-von-Guericke, Universitätssklinikum, Magdeburg, Germany. 9Gemeinschaftspraxis Dres., Ulmer, Friesacht, Mueller, Roll Stuttgart, Germany. 10Praxiszentrum Kaiserdamm, Berlin Germany. 11HIV Center, Universitätssklinikum Frankfurt, Frankfurt, Germany. 12University Hospital, Klinikum der Rechts der Isar Munich, Germany. 13Gilead Sciences, Foster City, CA, USA. 14Gilead Sciences, Martinsried, Germany. 15ICH Study Center, Hamburg, Germany

Introduction: Tenofovir alafenamide (TAF), a novel prodrug of TFV with equal virologic potency of TDF and 91% lower circulating levels of plasma TFV and fewer off-target effects on renal and bone, was approved based on large controlled clinical trials of antiretroviral therapy (ART) naive and experienced subjects. As no data are available in patients in routine clinical practice, TAFNES was developed to evaluate the effectiveness and safety of TAF-based regimens, starting with Genvoya® (EVG/COBI/FTC/TAF), the first approved combination including TAF, in treatment-experienced (TE) and treatment-naive (TN) HIV-infected patients.

Methods: TAFNES is an ongoing prospective, observational cohort study, which planned to enrol approximately 150 TN and 150 TE adult subjects initiated or switched to Genvoya® (EVG/COBI/FTC/ TAF) in routine clinical practice in accordance with the summary of product characteristics (SmPC). Of clinical outcome variables, only data assessed during the usual management of patients were captured in the electronic case report form (eCRF). Self-reported health-related quality of life (HRQOL) was evaluated using the SF-36, HIV symptom index (SI) and HIV treatment satisfaction (TS)
Abstract P055: Table 1. Baseline characteristics in TE experienced patients

<table>
<thead>
<tr>
<th>Previous ART</th>
<th>EVG/COB/FTC/TDF (Stribild® STB)</th>
<th>TDF-based ART (not STB)</th>
<th>Non-TDF-based ART</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td>63 (54.8)</td>
<td>41 (35.7)</td>
<td>11 (9.6)</td>
</tr>
<tr>
<td>Male gender, n (%)</td>
<td>60 (95.2)</td>
<td>36 (87.8)</td>
<td>10 (90.9)</td>
</tr>
<tr>
<td>White race, n (%)</td>
<td>59 (93.7)</td>
<td>36 (87.8)</td>
<td>11 (100.0)</td>
</tr>
<tr>
<td>Median age, years (IQR)</td>
<td>41 (34–52)</td>
<td>46 (35–54)</td>
<td>56 (48–64)</td>
</tr>
<tr>
<td>Age <50 years, n (%)</td>
<td>44 (69.8)</td>
<td>24 (58.5)</td>
<td>3 (27.3)</td>
</tr>
<tr>
<td>Median CD4 count, cells/μL (IQR)</td>
<td>648 (480–886)</td>
<td>671 (519–892)</td>
<td>678 (609–915)</td>
</tr>
<tr>
<td>HIV RNA level <50 cp/mL, n (%)</td>
<td>57 (91.9)</td>
<td>37 (90.2)</td>
<td>10 (90.9)</td>
</tr>
<tr>
<td>Reasons for switch to E/C/F/TAF, n (%)</td>
<td>(multiple responses allowed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simplification of ART</td>
<td>13 (20.6)</td>
<td>22 (53.7)</td>
<td>4 (36.4)</td>
</tr>
<tr>
<td>Patients preference</td>
<td>25 (39.7)</td>
<td>18 (43.9)</td>
<td>2 (18.2)</td>
</tr>
<tr>
<td>Side effects of current ART</td>
<td>22 (34.9)</td>
<td>21 (51.2)</td>
<td>6 (54.5)</td>
</tr>
<tr>
<td>Other</td>
<td>8 (12.7)</td>
<td>3 (7.3)</td>
<td>2 (18.2)</td>
</tr>
<tr>
<td>Median serum creatinine, mg/dL (IQR) (range)</td>
<td>1.0 (0.9–1.1)</td>
<td>1.0 (0.9–1.2)</td>
<td>1.1 (0.8–1.2)</td>
</tr>
<tr>
<td>Median eGFR (MDRD), mL/min/1.73m2 (IQR) (range)</td>
<td>87 (76–100)</td>
<td>84 (69–92)</td>
<td>79 (66–107)</td>
</tr>
<tr>
<td>eGFR (MDRD) < 60 mL/min/1.73m2, n (%)</td>
<td>4 (6.6)</td>
<td>4 (10.0)</td>
<td>1 (9.1)</td>
</tr>
<tr>
<td>Median CrCl (Cockroft-Gault), mL/min (IQR) (range)</td>
<td>102 (84–122)</td>
<td>92 (74–114)</td>
<td>99 (62–118)</td>
</tr>
<tr>
<td>CrCl (Cockroft-Gault) < 60 mL/min, n (%)</td>
<td>4 (7.0)</td>
<td>5 (12.8)</td>
<td>1 (10.0)</td>
</tr>
<tr>
<td>Mean SF-36 score mental component (± SD)β</td>
<td>45.4 (12.0)</td>
<td>41.5 (13.9)</td>
<td>44.7 (15.2)</td>
</tr>
<tr>
<td>Mean SF-36 score – physical component (± SD)α</td>
<td>56.0 (6.9)</td>
<td>51.3 (11.9)</td>
<td>47.0 (11.8)</td>
</tr>
<tr>
<td>Mean HIV SI* (± SD)</td>
<td>14.0 (13.7)</td>
<td>18.3 (15.1)</td>
<td>18.7 (12.9)</td>
</tr>
<tr>
<td>Mean HIV TS score (± SD)</td>
<td>50.7 (10.5)</td>
<td>49.0 (9.8)</td>
<td>51.9 (5.5)</td>
</tr>
</tbody>
</table>

IQR, interquartile range; SD, standard deviation. *p < 0.05 (for 3-group comparison); †norm-based scoring, higher scores indicate higher HRQOL; ‡range 0–80, higher scores indicate more bothering symptoms; range 0–60, higher scores indicate greater satisfaction.

questionnaires. Here we present preliminary results in TE patients with 3-month follow-up at time of data analysis. Results: The analysis population consists of 115 TE patients without documented baseline resistance to any component of EVG/COB/FTC/TDF and with available follow-up data at month 3. The corresponding baseline characteristics, including reasons for treatment switch, are shown in Table 1. The majority of patients (90%) were switched from TDF-containing ART (55% from EVG/COB/FTC/TDF with 67% exposed to TDF for ≥1 year; 64%, 15% and 15% had been on INI-, NNRTI- or PI-based ART (3% NRTI-sparing, 4% other); 91% of patients (104/114) were switched from suppressed ART (HIV RNA <50 copies/mL). Estimated GFR (MDRD; mL/min/1.73 m²) and creatinine clearance (CrCl; Cockroft-Gault; mL/min) were <60 in 8.0% and 9.4%, respectively. At month 3, HIV RNA was <50 copies/mL in 90% of patients (94/104; as-treated analysis). Median changes in serum creatinine and CrCl (eGFR) were 0.0 mg/dL and −0.2 mL/min (—0.1 mL/min/1.73 m²) (p = n.s.), respectively. Overall, HIV SI significantly decreased (−2.2; mean, p = 0.046); mean changes in SF-36 mental (+1.9) and physical scores (+0.2) were non-significant. The mean post-BL TS change of +14.4 (general satisfaction/clinical subscale +7.5; lifestyle/ease subscale +6.9) reflected a significant improvement, overall, irrespective of previous ART (p < 0.001).

Conclusion: Of the treatment-experienced patients switching to Genvoya® (EVG/COB/FTC/TAF), 55% switched from Stribild® (EVG/COB/FTC/TAF) and 45% from other regimens. While eGFR and CrCl remained stable in this preliminary analysis of 3-month follow-up data, HIV symptom index and treatment satisfaction improved significantly.

P056: Frailty improves in both young and old HIV patients undergoing atazanavir-based regimens
Giovanni Guaraldi; Andrea Malagoli; Giovanni Dolci; Federica Carli; Marianna Menozzi; Antonella Santoro; Stefano Zona and Cristina Mussini
Infectious Diseases Unit, University of Modena and Reggio Emilia, Modena, Italy

Introduction: Biologic ageing is a stochastic process that can be characterized by the number of health deficits individuals accumulate. Probabilities of health transitions with age can be summarized using a transition model based on the frailty index (FI). Though health generally worsens with age, the relationship between ageing and health is dynamic, and periodic improvement and stability in
Abstract P056 - Table 1. Study population, stratified below and above 50 years of age

<table>
<thead>
<tr>
<th>Total</th>
<th><50 years</th>
<th>>50 years</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients (%)</td>
<td>406</td>
<td>262 (64.53%)</td>
<td>144 (35.47%)</td>
</tr>
<tr>
<td>Age (SD)</td>
<td>47.91 (7.8)</td>
<td>43.55 (4.58)</td>
<td>55.85 (5.96)</td>
</tr>
<tr>
<td>Females (%)</td>
<td>146 (35.96%)</td>
<td>103 (39.31%)</td>
<td>43 (29.86%)</td>
</tr>
<tr>
<td>BMI (SD)</td>
<td>23.84 (3.59)</td>
<td>23.41 (3.29)</td>
<td>24.63 (3.97)</td>
</tr>
<tr>
<td>Pack-years (IQR)</td>
<td>15.81 (0.5–26.12)</td>
<td>12.75 (0–22.44)</td>
<td>17.05 (2.88–33)</td>
</tr>
<tr>
<td>CD4 nadir (cells/µL) (IQR)</td>
<td>200 (100–300)</td>
<td>204 (104–300)</td>
<td>189.5 (80–292.25)</td>
</tr>
<tr>
<td>Current CD4 (cells/µL) (IQR)</td>
<td>596 (440–800)</td>
<td>620 (447–812.5)</td>
<td>575.5 (431.75–756.25)</td>
</tr>
<tr>
<td>CD4/CD8 (SD)</td>
<td>0.8 (0.43)</td>
<td>0.82 (0.43)</td>
<td>0.77 (0.44)</td>
</tr>
<tr>
<td>ART exposure (months) (IQR)</td>
<td>34.5 (12–60)</td>
<td>39.5 (15.25–64.75)</td>
<td>21 (9–49.5)</td>
</tr>
<tr>
<td>CVD (%)</td>
<td>19 (4.68%)</td>
<td>7 (2.67%)</td>
<td>12 (8.33%)</td>
</tr>
<tr>
<td>Hypertension (%)</td>
<td>139 (34.24%)</td>
<td>68 (25.95%)</td>
<td>71 (49.31%)</td>
</tr>
<tr>
<td>Osteoporosis (%)</td>
<td>83 (20.44%)</td>
<td>38 (14.5%)</td>
<td>45 (31.25%)</td>
</tr>
<tr>
<td>Diabetes (%)</td>
<td>48 (11.82%)</td>
<td>15 (5.73%)</td>
<td>33 (22.92%)</td>
</tr>
<tr>
<td>CKD (%)</td>
<td>42 (10.34%)</td>
<td>12 (4.58%)</td>
<td>30 (20.83%)</td>
</tr>
<tr>
<td>Cancers (%)</td>
<td>32 (7.88%)</td>
<td>13 (4.96%)</td>
<td>19 (13.19%)</td>
</tr>
<tr>
<td>Multimorbidity (%)</td>
<td>32 (7.88%)</td>
<td>4 (1.53%)</td>
<td>28 (19.44%)</td>
</tr>
<tr>
<td>Frailty index (SD)</td>
<td>0.34 (0.1)</td>
<td>0.33 (0.1)</td>
<td>0.37 (0.09)</td>
</tr>
</tbody>
</table>

Abstract P056 - Figure 1. (a) FI change in the follow-up period; (b) logistic regression model to identify predictors of a frail to fit health status transition.

Health are common. Useful models of biologic ageing allow for changes in health that include improvement, maintenance and deterioration. The objective of this analysis was to describe frailty index change in HIV patients, below and above the age of 50 years, undergoing effective atazanavir (ATV)-based regimens.

Materials and methods: Design: Secondary analysis of prospective cohort data. We analyzed baseline and 4-year follow-up data from participants in the Modena HIV Metabolic Clinic cohort study, undergoing boosted or unboosted ATV-based regimens and experiencing HIV viral load below 40 copies/mL. Patients were stratified according to the duration of HIV infection (> 20, 10–20 and < 10 years). Frailty was quantified using a 31-item frailty index. The outcome measure was probability to reduce frailty index score < 0.3 which identify the transition from a frail to a fit health status.

Results: A total of 406 patients were included: 262 (64.53%) undergoing boosted-ATV and 144 (35.47%) unboosted-ATV regimens. Table 1 describes the study population, stratified below and above 50 years of age. In Figure 1 panel A depicts the FI change in the follow up period and panel B shows the logistic regression model to identify predictors of a frail to fit health status transition.

Discussion: HIV patients on stable ATV-based regimen experience improvement in health status depicted by a reduction in FI. Longer duration of HIV infection and baseline frailty index but not age or boosted versus unboosted ATV regimens were associated with a frail to fit health status transition. This study underlines the versatility of ATV-based regimens in both younger and older HIV patients with different spectrum of health profile.

P057

High-level HIV drug resistance mutations in patients with unsuppressed viral load from Northern South Africa

Elizabeth Etta, Cecile Manhaeve, Keanen McGonigle, David Rekosh, Marie-Louise Hammarskjold, Denis Tebit and Pascal Bessong

1Microbiology/ Infectious Diseases, University of Virginia, Charlottesville, VA, USA. 2Microbiology, Bela-Bela Clinic, HIV/AIDS Prevention Group, Polokwane, South Africa. 3Microbiology/Infectious Diseases & Cancer Biology, University of Virginia, Charlottesville, VA, USA. 4Microbiology/Virology, University of Venda, Polokwane, South Africa
Introduction: Access to cART has significantly improved in the developing world, with significant reduction in morbidity and mortality. However, the sustainability of cART may be compromised by development of drug resistance as evidenced by unsuppressed viral load. The current study examined drug resistance mutations (DRMs) in individuals under first-line cART with suspected unsuppressed viral load.

Materials and methods: Sixty patients on first-line cART were recruited between March 2014 and September 2015, from two rural treatment sites in Limpopo Province, South Africa if they met either of the following criteria: 1) two consecutive viral loads measurements greater than 1000 copies/mL after a previous suppression or 2) one viral load greater than 1000 copies/mL after 180 days. Nested PCR gene products from viral RNA (plasma) and proviral DNA (peripheral blood mononuclear cells (PBMCs)) were directly sequenced to determine subtype and examined for protease and reverse transcriptase inhibitors resistance mutations according to the Standard HIV Drug Resistance Interpretation Algorithm.

Results: Sequences obtained from 57 patients were examined for subtype and DRMs. Fifty-two (91.2%) of the 57 were HIV-1 subtype C in the polymerase gene with one each (1.8%) of subtype B, K/C, C/B recombinants and unclassified. These 52 (91.2%) patients harboured at least one major DRM which were distributed as follows: NRTI (n = 13; 25.0%), NNRTI (n = 17; 32.7%) and PI (n = 3; 5.7%). The most common mutations were M184V (56%), K103N (50%), V106M (17.3%), K65R (11.5%), D67N (9.6%). Mutation scores suggest that the viruses were mostly resistant to 3TC, FTC and NVP, and most susceptible to d4T, TDF and AZT. Two subjects with viral load of 1000 copies/mL carried DRM in PBMC but not in plasma.

Conclusion: A very high prevalence of drug resistance-associated mutations was recorded in patients still on first-line cART. The differences in circulating DRM in plasma and PBMCs in some subjects suggest the presence of archived drug resistant variants. PBMC is therefore an interesting compartment for analyzing the dynamics of drug resistance in a given patient.

PO58
Real-life experience of switching to protease inhibitor-based dual antiretroviral therapy (PIDAT)
Neal Marshall1; Marie McNulty2; Colette Smith3; Leonie Swaden1; Fiona Burns1 and Chloe Orkin2

Abstract PO58 – Table 1. Switch and VL outcomes of individuals starting PI/r-based dual therapy regimens

<table>
<thead>
<tr>
<th>Second ARV</th>
<th>ARV (%)</th>
<th>On PIDAT and VL 48 weeks</th>
<th>On specific PIDAT regimen and VL 48 weeks</th>
<th>On PIDAT and VL 96 weeks</th>
<th>On specific PIDAT regimen and VL 96 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 239)</td>
<td>ITT: VL < 50 copies/mLa</td>
<td>On PIDAT and VL < 50 copies/mLb</td>
<td>On specific PIDAT regimen and VL < 50 copies/mLc</td>
<td>ITT: VL < 50 copies/mLa</td>
</tr>
<tr>
<td>CCRS inhibitor</td>
<td>81</td>
<td>0.0013</td>
<td>0.0005</td>
<td>0.02</td>
<td>0.60</td>
</tr>
<tr>
<td>INSTI</td>
<td>21</td>
<td>0.0005</td>
<td>0.005</td>
<td>0.02</td>
<td>0.60</td>
</tr>
<tr>
<td>NNRTI</td>
<td>103</td>
<td>0.0013</td>
<td>0.0005</td>
<td>0.02</td>
<td>0.60</td>
</tr>
<tr>
<td>NRTI</td>
<td>50</td>
<td>0.0013</td>
<td>0.0005</td>
<td>0.02</td>
<td>0.60</td>
</tr>
</tbody>
</table>

aAmong all with available VL measurement, ignoring ART changes; bnumerator is number with VL < 50 copies/mL who remain on PIDAT strategy, denominator is those under follow-up with available VL measurement at 48/96 weeks; cnumerator is number with VL < 50 copies/mL who remain on original specific PIDAT regimen, denominator is those under follow-up with available VL measurement at 48/96 weeks.

1Ian Charleson Centre for HIV Medicine, Royal Free London NHS Foundation Trust, London, UK. 2Department of HIV Medicine, Bart’s Health NHS Trust, London, UK. 3Infection and Population Health, University College London, London, UK

Introduction: PI-based dual antiretroviral therapy (PIDAT) strategies in suppressed patients have shown variable virological efficacy, depending partly on accompanying drug class choice. We reviewed outcomes of PIDAT switches within two metropolitan HIV centres.

Materials and methods: Retrospective evaluation of all patients switching to a boosted protease inhibitor (bPI) with a drug from another ARV class from 1 January 2009 till 1 July 2014 with subsequent follow-up until 1 June 2016. Baseline demographics and treatment history were identified, with follow-up data at 48 and 96 weeks. Primary analysis included percentage remaining on any PIDAT strategy (i.e. switch within paradigm allowed), with secondary analysis considering any change of ART in the PIDAT regimen as a switch. Data were analyzed using Fisher’s exact test.

Results: Of 255 patients identified, 239 (94%) and 226 (89%) remained under follow-up at 48 and 96 weeks, respectively. Hundred and ninety-nine (78%) were male, 171 (67%) white ethnicity, 167 (65%) MSM, with median age and time on ART of 47 and 12.1 years, respectively. Seventy-seven percent (196) had VL < 50 copies/mL at switch with median (IQR) CD4 count 632 (439–839) cells/mm³ and nadir CD4 125 (32–207). Two hundred and twenty-six of 255 (88%) switched from PI-based ART with 64 (25%) switched or intensified by development of drug resistance as evidenced by unsuppressed viral load. However, the sustainability of cART may be compromised by mortality. However, the sustainability of cART may be compromised by mortality.
Conclusions: Real-life outcomes of PI-based dual ARV therapy appear broadly favourable in clinical practice. The ongoing utility of this paradigm in the advent of TAF and PI-sparing regimens is unclear.

P059

Long-term virological outcomes of replacing zidovudine or stavudine with tenofovir in the absence of routine virological monitoring in Kumasi, Ghana

Giovanni Villa1; Richard Odame Phillips1; Colette Smith5; Alexander Stockdale1; Apostolos Beloukas1; Lambert Tetteh Appiah4; David Chadwick2; Alessandra Ruggiero1; Fred Stephen Sarfo2 and Anna Maria Geretti1

1Institute of Infection and Global Health, University of Liverpool, Liverpool, UK. 2Department of Medicine, Kwame Nkrumah University of Science and Technology and Komfo Anokye Teaching Hospital, Kumasi, Ghana. 3Infection and Population Health, University College London, London, London, UK. 4Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana. 5Centre for Clinical Infection, James Cook University Hospital, Middlesbrough, UK

Introduction: Whilst access to ART is successfully expanding in Africa, long-term outcomes remain poorly investigated. This study addressed the outcomes of introducing tenofovir (TDF) in place of zidovudine (ZDV) or stavudine (d4T) among Ghanaian adults receiving HIV care in the absence of routine virological monitoring and determined the associated clinical and psychosocial dimensions.

Methods: The Hepatitis B Infection in Kumasi (HEPIK) study has prospectively followed HIV/HBV co-infected adults since 2010. This cross-sectional analysis comprised subjects that had previously started ZDV or d4T plus lamivudine and efavirenz or nevirapine, and at the time of HBV diagnosis (T0), replaced ZDV or d4T with TDF in the absence of virological monitoring. A median of 7.9 (IQR 6.0–9.2) years after starting ART and 4.0 (3.8–4.1) years after introducing TDF (T1, November 2015), patients were invited to attend for assessment, including HIV-1 RNA load, and offered a researcher-administered questionnaire about adherence (visual analogue scale and target questions); socio-economic, social support and disclosure status; and physical and mental health. Plasma viral load at T0 was determined retrospectively using stored (−80°C) samples.

Results: A total of 101/180 (56%) invited participants (66% females) attended the T1 assessment. Of the remaining, 47 (26%) were no longer contactable (≥3 attempts), 17 (9%) declined to attend and 15 (8%) could not be located (36). At T1, mean age was 45 (± 9) years; 90% were still receiving efavirenz (n = 87) or nevirapine (n = 4); 10% were on lopinavir/ritonavir (LPV/r). CD4 counts were median 572 (383–716) cells/mm3. Suboptimal adherence was reported by 42% of participants; in unvariable analysis, it was more prevalent among men (p < 0.01), those in a relationship (p = 0.02) and those with higher socio-economic status (p = 0.04). Moderate-to-severe depression/anxiety was reported by 27%; 64% described moderate-to-severe physical distress. HIV-1 RNA was detectable (>40 copies/mL) in 21%, and >1000 copies/mL in 14%, with median levels of 4.2 (2.1–5.1) log10 copies/mL. In univariable analysis, predictors of lack of virological suppression comprised the CD4 cell count at diagnosis (p = 0.03), T0 viral load (p = 0.05), suboptimal adherence (p < 0.01), lack of partner disclosure (p < 0.01) and LPV/r use (p = 0.03). Lack of virological suppression was also associated with lower T1 CD4 cell counts (p < 0.01). There was no association with socio-economic/social support status, or physical/mental health.

Conclusion: One in five subjects receiving long-term ART showed suboptimal virological suppression with reduced CD4 cell count recovery. The findings highlight the importance of viral load testing at key management time points, coupled with targeted interventions to support adherence and facilitate partner disclosure.

P060

Non-adherence in HIV patients is caused by specific reasons: results from the German adherence cohort study

Johanna Boretzki1; Carmen Wiese2; Celia Oldenburg2; Ivanka Krznanic3; Anja Meurer3; Alexander Zink3; Christian Lersch1; Annamaria Balogh2; Eva Wolf4 and Christoph Spinnler1

1Department of Medicine II, University Hospital Klinikum rechts der Isar, Munich, Germany. 2Private Practice, MVZ Karlsplatz, Munich, Germany. 3Private Practice, Zentrum für Infektiologie Berlin, Berlin, Germany. 4Private Practice, Zentrum fuer Innere Medizin und Infektiologie, Munich, Germany. 5Department of Dermatology and Allergology, University Hospital Klinikum rechts der Isar, Munich, Germany. 6MUC Research, Munich, Germany

Introduction: Adherence to antiretroviral treatment (ART) in HIV patients plays a crucial role for treatment success. Our study aimed to identify reasons for non-adherence in a large HIV cohort, including known subjects with difficulties in ART adherence.

Methods: A cross-sectional, non-interventional, multicentre adherence study in treated HIV-infected patients from September 2014 to April 2015 in Germany was performed after ethic committee’s approval. Study physicians were asked to recruit patients from all adherence levels and perform an adherence assessment for each subject (good, unstable or poor adherence). Questionnaires based on the SMAQ-MASRI-Hybrid [1] were given to the patient and treating physician to evaluate factors associated with poor adherence. Covariables of interest were age, sex, time since HIV diagnosis, time on ART, current ART regimen, transmission route, comorbidity, HIV-1 RNA viral loads (VLs) and CD4 cell count. Furthermore, specific reasons for non-adherence were assessed. For statistical analysis, extended Fisher’s exact test and Kruskal–Wallis test were used.

Abstract P060: Table 1. Overview of questionnaire items and correlation with adherence levels

<table>
<thead>
<tr>
<th>Item</th>
<th>“Good adherence” (n = 162)</th>
<th>“Unstable adherence” (n = 36)</th>
<th>“Poor adherence” (n = 17)</th>
<th>p-value (Fisher’s exact test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ART intake reminds me of my disease</td>
<td>n = 7 (4.3%)</td>
<td>n = 4 (11%)</td>
<td>n = 5 (29%)</td>
<td><0.01</td>
</tr>
<tr>
<td>I want to go out/I think my medication does not go well with alcohol/party drugs</td>
<td>n = 3 (1.9%)</td>
<td>n = 5 (14%)</td>
<td>n = 4 (24%)</td>
<td><0.01</td>
</tr>
<tr>
<td>I’m afraid that others see me taking the ART medication</td>
<td>n = 4 (2.5%)</td>
<td>n = 4 (11%)</td>
<td>n = 2 (12%)</td>
<td>0.019</td>
</tr>
<tr>
<td>I think that the ART dose is too high</td>
<td>n = 3 (1.9%)</td>
<td>n = 4 (11%)</td>
<td>n = 1 (5.9%)</td>
<td>0.037</td>
</tr>
<tr>
<td>Sometimes the copayment fee to my ART is too much for me/other financial reasons</td>
<td>n = 2 (1.2%)</td>
<td>n = 3 (8.3%)</td>
<td>n = 1 (5.9%)</td>
<td>0.037</td>
</tr>
</tbody>
</table>
Prevalence of HIV virological failure in a multidisciplinary centre treating high-risk vulnerable populations

Arshia Alimohammadi; Tyler Raycraft; Ghazaleh Kiani; Rajvir Shahi; Arpreet Singh; Syune Hakobyan and Brian Conway

Introduction: The introduction of new ART has considerably increased the efficacy of HIV regimens and decreased mortality rates associated with the infection [1,2]. However, adherence to even the simplest and most effective regimens remains challenging in people who inject drugs (PWID) [2], and this often limits their access to care. Novel models of care will be needed to allow HIV-infected PWID to achieve the promise of “90–90–90” within the global response to the HIV pandemic.

Results: A total of 215 patients were included: 80% male, median age 47 years (IQR 37–54), median time since HIV diagnosis 9 years (IQR 4–18) and median CD4 cell count 607 /μL (IQR 410–850). HIV transmission risk was as follows: 50% men having sex with men, 14% origin of high prevalence countries (HPC), 7% intravenous drug use (IVDU), 13% other and 19% unknown. Subjects were grouped by physicians’ adherence assessment: A, “good adherence” n = 162; B, “unstable adherence” n = 36; C, “poor adherence” n = 17. Physicians’ assessment of poor adherence correlated in univariate analyses with lower median age (A: 48 years as vs. B: 42 vs. C: 46, p = 0.020), origin of HPC (A: 11% vs. B: 19% vs. C: 29%, p < 0.01), IVDU (A: 1.9% vs. B: 22% vs. C: 24%, p < 0.01), hepatitis C infection (A: 3.7% vs. B: 17% vs. C: 5.9%, p = 0.013), psychiatric disorders (A: 25% vs. B: 42% vs. C: 48%, p = 0.03), longer time since HIV diagnosis (A: 9 years vs. B: 10 vs. C: 19, p < 0.01), longer time on ART (A: 6 years vs. B: 5 vs. C: 14, p = 0.022), AIDS-defining events (A: 6.8% vs. B: 25% vs. C: 24%, p < 0.01), prescription of a protease inhibitor (A: 28% vs. B: 47% vs. C: 71%, p < 0.01), higher median VL (A: 19 copies/ml vs. B: 4824, p < 0.01) and lower median CD4 cell count (A: 680 /μL vs. B: 503 vs. C: 315, p < 0.01). Sex, comedication and pill burden were not significantly associated. Physicians’ assessment of poor adherence correlated in univariate analyses with self-reported, specific reasons (Table 1).

Conclusion: Adherence evaluation remains challenging. Frequent self-reported reasons for non-adherence were reminding of disease, concerns about interaction between ART and alcohol/party drugs and HIV stigma. A good patient–provider relationship is needed to face those topics and to remove common barriers to adherence.

Reference

TREATMENT STRATEGIES - TARGET POPULATIONS: IDUs

Methadone maintenance treatment and efficiency of ART in HIV-positive injecting drug users in Ukraine

Dmytro Zhvytsia and Vitali Kazeka

Department of Infectious Diseases, SI Zaporizhia Medical Academy of Post-Graduate Education Ministry of Health of Ukraine, Zaporizhia, Ukraine

Introduction: The current state of the HIV epidemic process in Ukraine is characterized by the prevalence of HIV among different contingents of the population, especially among people who belong to the high-risk groups and by change in the dominant routes of HIV transmission. Although the most common way of HIV transmission is the sexual one, injecting is still the most important in its impact on the epidemic. The study evaluated the impact of methadone maintenance treatment (MMT) on efficiency of ART in HIV-infected injecting drug users (IDUs).

Methods and materials: The study included 65 HIV IDUs who were divided into two groups. First group included 33 HIV IDUs who were on MMT. The average time of MMT was 23.7 months (1–60). The second group included 32 HIV IDUs who did not receive MMT. The average age of patients was 37 years (24–52). There were 16 (25%) women and 49 (75%) men. The average level of viral load in the studied groups of patients was not statistically different, and in the first group it was 4.89 (4.1–5.2) log copies/mL, in the second 5.0 (4.2–5.6) log copies/mL. After the enrollment in the study, the ART has been prescribed to all patients in accordance with the Ukraine clinical protocol.

Results: After 6 months of ART, the proportion of patients with complete suppression of HIV (HIV RNA <50 copies/mL) in the first group was higher than in the second group; however, this difference was not significant (75.8% and 61.3%, respectively, p = 0.21).

P062
When assessing efficiency of ART after 12 months of observation, the significantly higher (p < 0.01) percentage of patients in the first group who achieved a complete viral suppression compared with the second group were 93.9% and 58.1%, respectively. In the second group of patients within 6–12 months of treatment, there was a decrease in the proportion of patients with virologic efficacy of ART – from 61.3% to 58.1% of patients with the full viral suppression.

Conclusions: The study indicates that the use of MMT in HIV-infected IDUs greatly increases the efficacy of ART, which can be associated with a significant increase in adherence to the treatment in this category of patients with mental and behavioural disorders due to the use of psychoactive substances containing opioids.

P063

Community pharmacy dispensed ART alongside opiate replacement therapy in Glasgow’s HIV outbreak

Seija Erica Peters; Kathryn Brown; Amanda Laird; Robert Gillespie; David Thomson and Catriona Milosevic

1Brownlee Centre, Gartnavel General Hospital, Glasgow, UK.
2Brownlee Centre Pharmacy, Gartnavel General Hospital, Glasgow, UK.
3Addictions, Advanced Pharmacist, Possilpark Health Centre, Glasgow, UK.
4Community Pharmacy Development & Governance, NHS Greater Glasgow and Clyde, Glasgow, UK.
5Community Pharmacy Development & Governance, West Glasgow Ambulatory Care Hospital, Glasgow, UK.
6Public Health, Gartnavel Royal Infirmary, Glasgow, UK

Introduction: There is currently an outbreak of HIV in people who inject drugs (PWID) in Glasgow, UK. Improved access to care/ART is essential for individuals, and for reduction of onward transmission. Traditionally, ARV medication is prescribed and dispensed via a hospital-based service. Patients are required to attend a single hospital in the city for HIV care. Addiction services including opiate replacement therapy (ORT) are well developed in Glasgow inclusive of homelessness. We developed a method of delivering ART alongside opiates using community pharmacies. We describe the development process and will present the first 6 months of this project.

Materials and methods: One strategy to manage this outbreak was to improve access to clinical care and ART. Our hospital HIV pharmacist led a group to develop pathways for ART dispensing via community pharmacies. This was done in consultation with community and hospital pharmacies, drug companies, hospital and addiction healthcare workers. A funding model was agreed. An HIV liaison nurse from the hospital but working in the community facilitates patient engagement. An HIV nurse-led clinic has been set up in the homeless health centre to support monitoring. Prescriptions are generated from the hospital physician and the patient receives the medication from the pharmacy. There is no restriction on ART choice. ART is dispensed daily with patients receiving supervised consumption if required. Patients requiring a twice-daily regimen are provided with the second dose to take at home. The patient does not have to attend the hospital. Checks are in place to inform prescribers of poor adherence/disengagement in care.

Results: A total of 79 patients’ records have been reviewed to see if they would potentially benefit from community prescribing. Most report a history of homelessness and have links with addiction services. We will present: (1) a description of the model of care including monitoring and safety checks, (2) evaluation of the first 6 months of patient data from April 2016.

Conclusions: ART has individual and public health benefits. For PWID, traditional models of hospital-based care can be challenging. Homelessness limits engagement in care. Addiction services and involvement of the community pharmacy network with this patient group are well established in Glasgow. Adapting our ARV prescribing to fit in with existing community ORT models may improve access to ART and HIV care.

P064

HIV testing and care in prisoners: the first year results of opt-out BBV testing in Glasgow, UK

Seija Erica Peters; Brenda Bissett; Yvonne Cassells; Jennifer Paton and Celia Aitken

1Brownlee Centre, Gartnavel General Hospital, Glasgow, UK.
2Addictions, HMP Barlinnie, Glasgow, UK.
3Health Centre, HMP Low Moss, Bishopbriggs, UK.
4Regional Virus Laboratory, Glasgow Royal Infirmary, Glasgow, UK

Introduction: In Glasgow, there is an ongoing outbreak of HIV amongst people who inject drugs (PWIDs). It is well recognized that the prison population has high numbers of PWIDs. In Scotland, there is a national plan for identifying and treating prisoners with HCV [1,2]. As part of increased testing for HCV, an opt-out Blood Borne Viruses (BBV) testing service (including HIV testing) was developed. Barlinnie HMP is the largest prison in Scotland and centrally located in Glasgow. It has >1200 inmates at any one time. We have evaluated our first year figures of opt-out testing in relation to HIV.

Materials and methods: All prisoners have a medical within 24 hours of incarceration. From April 2015, a prison nurse and healthcare assistant saw prisoners at the same time as their medical to offer BBV testing to them. We record the uptake of this testing monthly. We reviewed the HIV outbreak data base to identify the number of new HIV diagnoses from the prison sector. We retrospectively reviewed the electronic case record for data on attendance and ARV prescribing.

Results: From April 2015 to March 2016, 1492 were BBV tested. Just over 100 refused (data not collected for 3 months). If prisoners had been tested within the last 6 months, a second test was not offered unless at particular risk. In total, 11 cases of HIV were identified. Of that, 10 patients with HIV were seen by the BBV consultant during their incarceration. All were HCV co-infected with only one being PCR negative. Seven were on prescribed opiates. Six were started on ART therapy within the prison. Four failed to attend any OP clinics after liberation. Only two prisoners have attended all their appointments so far.

Conclusions: BBV testing in the prison setting including HIV testing is a feasible way to identify infected PWIDs. This may be the first sign of an HIV outbreak emerging in this population. HIV-positive prisoners are usually HCV co-infected. Good links to specialist care and therapy within the prison may encourage prisoners to test. ART therapy can be started early and safely. A comprehensive approach to “through-care” for this population is required to address clinical engagement after liberation. It is hoped that ART therapy in this group may stem the current outbreak. Further review of retention in care is required.

References

P065

Correlates of HIV virological non-suppression at a tertiary clinic

Arpreet Singh; Tyler Raycraft; Arshia Alimohammadi; Ghazaleh Kiani; Rajvir Shahi and Brian Conway

Abstracts of the HIV Glasgow supplement

Journal of the International AIDS Society 2016, 19 (Suppl 7)

60
Table 1. Socio-demographic characteristics dichotomised into four separate cohorts to present our study population (n = 345)

<table>
<thead>
<tr>
<th>Socio-demographic characteristics</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnicity</td>
<td>Caucasian</td>
<td>34</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>First Nations</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>15</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Risk factors</td>
<td>Men who have sex with men</td>
<td>136</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>People who inject drugs</td>
<td>74</td>
<td>5</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>Cocaine</td>
<td>49</td>
<td>2</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Amphetamines</td>
<td>34</td>
<td>4</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Opioids</td>
<td>33</td>
<td>3</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Benzo diazepines</td>
<td>14</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Homeless</td>
<td>41</td>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Not homeless</td>
<td>42</td>
<td>3</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>Employed</td>
<td>45</td>
<td>1</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Unemployed</td>
<td>30</td>
<td>4</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Alcohol</td>
<td>67</td>
<td>3</td>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>No alcohol</td>
<td>49</td>
<td>3</td>
<td>14</td>
<td>1</td>
</tr>
</tbody>
</table>

HIV/AIDS and HCV, Vancouver Infectious Diseases Centre, Vancouver, Canada.

Introduction: We wanted to determine which variables and characteristics were associated with HIV virological non-suppression at a tertiary clinic located in Downtown Vancouver.

Materials and methods: The multidisciplinary programme developed at the Vancouver Infectious Diseases Centre (VIDC) provides ongoing, long-term access to specialty medical care and support services in order to target the clinical and social factors associated with HIV suppression and maintenance. A retrospective analysis of HIV treatment responses was conducted to study the factors associated with virological non-suppression.

Results: We divided the population into four separate cohorts. Group 1 (n = 241) included individuals who showed HIV RNA suppression and an increase/no change in CD4 count from baseline. Within this cohort, there were 222 males with a mean age of 50.9 years (range 24–74) and 21 females with a mean age of 51.7 years (range 33–63). Group 2 (n = 88) included individuals who showed HIV RNA suppression and a decrease in CD4 count from baseline. Within this cohort, there were 73 males with a mean age of 54.5 years (range 22–82) and 15 females with a mean age of 50.1 years (range 31–64). Group 3 (n = 9) included individuals who showed HIV RNA non-suppression and a decrease in CD4 count from baseline. Within this cohort, there were seven males with a mean age of 51.4 years (range 36–71) and two females with a mean age of 46 years (range 44–48). Group 4 (n = 7) included individuals who showed HIV RNA non-suppression and an increase/no change in CD4 count from baseline. Within this cohort, there were seven males with a mean age of 57.3 years (range 34–73). Relevant demographic characteristics are shown in Table 1.

Conclusions: Virological non-suppression was uncommon, but individuals in these groups showed higher rates of injection drug use, homelessness and unemployment. CD4 cell count trajectories were not associated with any clinical or demographic characteristics measured in this cohort. Acting on characteristics such as drug use and homelessness may help reduce the rate of non-response to antiretroviral therapy in our cohort.

TREATMENT STRATEGIES: ADHERENCE

P066

The effect of relationship status and housing stability on adherence to combination antiretroviral therapy among people living with HIV who use illicit drugs in British Columbia, Canada

Arpreet Singh1; Kate Salters1; Surita Parashar2; Cathy Puskas1; Lu Wang2; Julio Montaner2; Robert Hogg3 and Hasina Sanji3

1Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada. 2HIV/AIDS, British Columbia Centre for Excellence, Vancouver, Canada. 3Epidemiology, BC Centre for Disease Control, Burnaby, Canada.

Introduction: High adherence to ART is essential for long-term viral load suppression among people living with HIV (PLHIV). While a variety of socio-economic, demographic and clinical characteristics have been associated with suboptimal adherence to ART, we have focused on the previously unexplored association between relationship status and housing stability on adherence among people who use illicit drugs.

Methods: Sociodemographic survey data collected between July 2007 and January 2010 as part of the Longitudinal Investigation into Supportive and Ancillary health services (LISA) cohort and clinical data collected through the provincial Drug Treatment Program (DTP) were used in this study. Study participants were PLHIV ≥ 19 years of age who used illicit drugs (heroin, crack, cocaine and/or methamphetamine) within 3 months prior to the interview, and currently accessing ART, with pharmacy refill compliance data in the 6-month period prior to the interview. Optimal adherence (≥ 95%) was the main outcome of interest. The main explanatory variables included housing status (stable vs. unstable housing) and relationship status (single/separated/divorced/widowed (SSDW) or legally married/common law/regular partner/non-regular partner (LCRN)). Separate logistic regression confounder models were used to determine the effect of relationship status and housing stability on the association between illicit drug use and adherence to ART. The combined current crack use and relationship status variable was the main interest in the first model, while the combined current crack use and housing status variable was the main interest in the second model. Confounders were controlled for in both models.

Results: This study included 405 individuals, of whom 115 (28%) were women and 5 (1%) were transgender. A total of 261 (65%) of participants achieved optimal adherence, 317 (78%) were currently using crack, 208 (51%) were unstably housed and 122 (30%) were LCRN. The first confounder model showed relationship status (LCRN and SSDW) combined with current crack use, were significantly associated with suboptimal adherence (aOR 2.88, 95% CI 1.22–6.79; and aOR 2.42; 95% CI 1.08–5.42, respectively), as were current crack use and unstable housing in the second confounder model (aOR 2.83; 95% CI 1.332–6.025).

Conclusion: Relationship status and housing status did not predict optimal ART adherence independently; however, when combined with current crack use, they were significantly associated with suboptimal adherence to ART. Interventions, particularly those focussed on housing and addictions support services, need to be targeted towards current crack users in order to remove barriers to ART adherence.
PO67
HIV support group within a multidisciplinary healthcare delivery model as a treatment strategy for people who inject drugs
Rajvir Shahi; Ghazaleh Kiani; Arshia Alimohammadi; Tyler Raycraft; Arpreet Singh; Syune Hakobyan and Brian Conway
Clinical Research, Vancouver Infectious Diseases Centre, Vancouver, Canada

Introduction: Among the 18,000 residents living on the Downtown East Side (DTES) of Vancouver, over 20% are infected with HIV. An innovative approach is needed to engage these individuals in care to fulfill the goals of the “90–90–90” program endorsed by the World Health Organization to address the global HIV pandemic.

Materials and methods: In 2013, structured HIV support groups were designed as an innovative strategy to engage this vulnerable population in a multidisciplinary program of care. The group is held once a week for 4 hours, led by medical doctors, nurses and other community-based workers. Individuals attending the group are given a presentation on a topic related to HIV/AIDS, such as HIV transmission, therapy or substance abuse. They are also able to ask medical questions and voice their health-related concerns in an open and safe environment. Two meals are provided as well as services to address medical, psychological, social and addiction-related needs. A retrospective analysis to assess characteristics of individuals attending the group regularly (at least once per month) was performed, and commitment to HIV treatment was evaluated.

Results: A total of 74 HIV-infected patients (mean age 52 years, 12% females, 14% First Nations) regularly attended the group. Among these HIV-positive individuals attending the group, 55 (74.3%) were people who actively inject drugs (PWID), 36 (48.6%) self-identified as being homeless and 25 (33.8%) had an underlying psychiatric illness. The majority (73/74, 98.6%) were receiving antiretroviral therapy and 58/73 (79.4%) of these individuals had a suppressed HIV virus. The majority having a maximal response to antiretroviral therapy. These patients adhered to their ART, but have not yet suppressed.

Conclusions: This HIV support group model has shown to be effective at engaging and retaining HIV-infected patients in care, with the vast majority having a maximal response to antiretroviral therapy. These individuals were previously undiagnosed or not receiving care. Approaches such as the one we have developed will be essential to reaching the goal of “90–90–90” especially in more vulnerable populations.

PO68
Adherence to cART and low-level viremia in a large single-centre clinical cohort
Franco Maggiolo1; Elisa Di Filippo1; Annapaola Callegaro2; Giorgio Colombo3; Sergio Di Matteo4; Daniela Valenti1 and Marco Rizzi1
1Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy. 2Laboratory of Microbiology and Virology, ASST Papa Giovanni XXIII, Bergamo, Italy. 3Drug Sciences, University of Pavia, Pavia, Italy. 4Health Economics & Outcomes Research, Studi Analisi Valutazioni Economiche (SAVE) Studio, Milano, Italy

Introduction: To monitor the use of cART is relevant to evaluate outcomes, adherence to prescriptions and therapeutic strategies.

Materials and methods: We analyzed the cohort of a large reference hospital in Northern Italy. Data on drug use were derived from pharmacy records and were cross-linked with clinical data from the outpatient clinic database. The period from 1 October 2012 to 30 September 2014 was considered for a mean individual follow-up of 1.18 years and a total follow-up of 2676 person-years. Adherence was calculated on the basis of pharmacy refill. We defined virologic response by categories: always <3 copies/mL (K <3), sometimes <3 but always <50 copies/mL (V <3), always >3 but always <50 copies/mL (K >3) and sometimes >50 copies/mL (V >5).

Results: Over the considered 2 years, 2589 HIV+ subjects were prescribed ARV drugs. According to univariate analysis, adherence correlated with several baseline variables: hepatitis co-infection (p = 0.002), nationality, risk factor for HIV infection, third drug included into the regimen, line of therapy, time on cART and age (p < 0.0001 for all). When entered in a multivariate model, only nationality (p = 0.002), time on cART (p = 0.005), age (p < 0.0001) and the third drug into the regimen (p < 0.0001) retained statistical significance. Adherence was higher for NNRTI-based regimens (93.4%; p < 0.0001), when compared with all other regimens, similarly adherence was lower for PI-based cART (89.3%; p < 0.0001) and entry inhibitors-based cART (85.1%; p = 0.001), while there was no difference between regimen with or without INI (90.2% vs. 91.5%; p = 0.20). Adherence correlated with the virologic outcome, too. The mean adherence rate resulted of 91% in the K <3 and V < 3 groups and lowered to 88% in the K >3 and V >50 groups (p < 0.001). When insufficient (<90%) adherence was considered, a steady adherence level <90% was more frequently present in K >3 patients (26.3% of them), while sporadic drug holidays were typically observed in V >50 patients (17.9%; p < 0.0001).

Conclusions: We demonstrated a relationship between virologic outcomes and adherence even when very low residual levels of HIV RNA (LLV) are considered. This fact is in favour of an active viral replication at least in some patients with LLV. However, the virologic outcome highly depends on forgiveness of modern ARV regimes as demonstrated by virologic responses in patients with insufficient adherence. Adherence is influenced by several demographic factors, but it is significantly linked to the choice of drugs, too. Although we observed a high standard of actual adherence, adherence rates could and should be improved.

PO69
Developing a patient-reported outcome measure (PRO) for HIV care on perceived barriers to antiretroviral adherence: assessing the needs of HIV clinicians though typological analysis
Isabelle Toupin1; Kim Engler2; David Lessard3; András Lénárt3; François Raffi4; Bruno Spire5 and Bertrand Lebouche6
1Department of Family Medicine, McGill University, Montreal, Canada. 2Infectious Diseases, University Hospital, Nantes, France. 3Univrsité Aix-Marseille, SESSTIM, Marseille, France. 4Chronic Viral Illness Service, Research Institute of the McGill University Health Centre (MUHC), Montreal, Canada

Introduction: Today, while many potent antiretroviral treatments (ART) and strategies are available, their clinical efficacy depends on patients adhering to them as prescribed. However, obstacles to adherence are common, multiple, recurrent and can be inadequately dealt with in clinical care. Tools are needed to address this apparent gap in HIV care. The use of a new PRO in HIV clinical care, based on patients’ perceived barriers to ART adherence, could prove helpful. In creating this PRO (I-Score Study/CTN 283), it is essential to take the needs of clinicians into consideration from the outset, given the crucial role these stakeholders play in their successful use in practise.

Objective: To identify HIV-specialized clinicians’ needs in regards to the clinical use of a new PRO which would be based on patients’ self-identified barriers to taking their ART.

Materials and methods: Five focus groups were conducted including 32 clinicians from across France. The focus groups were transcribed verbatim, coded vertically with Atlas.ti and, as the method was...
deemed appropriate, submitted to a typological analysis producing ideal types.

Results: The typological analysis identified seven patient profiles (ideal types), each tied to different barriers to adherence and indicating distinct needs for the PRO’s content and data collection strategies. For the patient who: (1) is passive, the PRO must collect information on ART knowledge with closed questions and visual scales; (2) never forgets a dose, adherence must be verified with indirect questions; (3) tolerates the intolerable, questions must target problems experienced by patients with their ART; (4) doesn’t care, as long as they live life to the fullest, interactive questions must be integrated on lifestyle and risk taking; (5) is obsessive, quality of life and life events must be assessed and space provided for textual responses for qualifying answers; (6) must prioritize, family/domestic life should be evaluated with Likert scales; (7) lives precariously, simple questions constructed with basic vocabulary and emotions should be used to capture life circumstances and socio-economic context.

Conclusions: The clinicians’ needs for the new PRO were articulated in relation to different patient profiles, with multiple implications for the tool’s content. The challenge will be to respond to both these needs and those that will be identified by patients in another component of the I-Score Study.

P070
Patient acceptance of a web-linked smartphone app to assess treatment compliance in HIV-infected subjects: a pilot study
Ferran Sala-Piñol1; Angels Andreu-Crespo1; Josep Llibre2; Josep Coll2; Jordi Grasa2; Angels Calvet2; Bonaventura Clotet2 and Xavier Bonafont-Pujol7
1Pharmacy, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. 2Lluita contra la SIDA, HIV Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. 3Institutional Relations Department, Laboratorios Dr Esteve, Barcelona, Spain. 4Informatics, Hospital Universitari Germans Trias i Pujol, Badalona, Spain

Introduction: Lack of adherence to ART increases therapeutic failure, resistance selection and health system expenditures through more expensive regimens. It is a public health problem, since uncontrolled viremia boosts transmission of both the infection and resistance. The study aim is to evaluate acceptance of a smartphone app, linked to a web, managed by the healthcare team (Figure 1).

Materials and methods: expertSalud® is a validated free app including all Spanish registered drugs with predefined and free clinical controls and intake timetables. Patients confirm drug intakes on their smartphones. App links to a website where patients and healthcare practitioners track in real time their compliance without waiting for the next visit to detect adherence failures. The device maintains protection of confidential data. Patients were asked to report about all benefits and difficulties encountered. System usability was tested through two satisfaction surveys about combined app and web done at first and third months, using two different 18-question (scored 0–10) surveys.

Results: It is the first trial of a web-linked app used in real time by patients and their clinical team. From August 2015 to January 2016, hospital pharmacists recruited 81 smartphone users among subjects who started or changed ART, asking them to download and evaluate the app. A total of 50 (62%) patients downloaded expertSalud®. Poor mobile phone coverage and troublesome registration hindered downloading. Before leaving the study, some patients noticed app dysfunctions. In total, 40 subjects answered at least one of the surveys and 21 both of them. The mean satisfaction score with the app in the first survey was 8.05/10, and 7.7/10 in the second one.

For the web, the mean scores were 7.37 and 5.73, respectively (Figure 2). In both surveys, the app received the highest scores for allowing to include all their treatments (8.45–8.68) and selecting pill image and colour avoiding treatment confusion (8.30–8.33). Patients appreciated record easiness (8.06–7.89) and checking visualization (7.77–8.06), and they considered the app could be useful to improve their adherence (NA–7.90).

Conclusions: In this pilot study, patient’s acceptance of an app to monitor ART intakes and adherence by the healthcare team was high. However, only half of the app users completed all the evaluation forms. App-linked web could be useful in detecting early treatment non-compliance and driving the implementation of targeted strategies. Suggestions received will improve system friendliness in the app development in new fully powered studies.

P071
The moderating role of treatment engagement on the relationship between neurocognitive impairment and antiretroviral treatment (ART) adherence
Roman Shrestha1; Pramila Karki1; Tania Huedo-Medina2 and Michael Copenhaver2

Figure 1. App screenshot.
Introduction: Prior research has recognized neurocognitive impairment (NCI) and treatment engagement as important predictors of ART adherence [1-4]. No studies to date, however, have explored the possible ways and the extent to which a similar outcome can occur when these factors operate together, particularly among people who use drugs (PWUDs). This study sought to answer whether treatment engagement moderates the relationship between NCI (predictor) and ART adherence (outcome).

Methods: A total of 116 HIV-positive opioid-dependent individuals enrolled in a methadone maintenance treatment (MMT) and reporting drug- and/or sex-related HIV risk behaviours were recruited from MMT clinic in New Haven, Connecticut. Participants completed an audio-computer-assisted self-interview (ACASI) that measured NCI (Brief Inventory of Neurocognitive Impairment), ART adherence (Visual Analogue Scale) and treatment engagement. An ordinary least squares regression-based path analytic framework was used to test whether treatment engagement (moderator) moderates the relationship between NCI (predictor) and ART adherence (outcome).

Results: Results showed that NCI (B = -0.745, p = 0.004) was negatively associated with ART adherence. The interactive effect between NCI and treatment engagement was significantly associated with ART adherence (B = 0.086, p = 0.023), which supports the moderation effect. Post hoc analyses revealed that at low levels of treatment engagement, NCI was significantly negatively associated with ART adherence, while at high levels of treatment engagement, the relationship was non-significant.

Conclusions: The findings make an important contribution to our understanding of the applicability of a moderated model, such that NCI had an increased negative influence on ART adherence for individuals with lower treatment engagement. This highlights the need for future interventions to accommodate individuals' NCI and improve treatment engagement in order to improve adherence to ART and thus health-related quality of life among opioid-dependent individuals living with HIV.

References
Abstract P072 Table 1. Index regimens

Single-tablet regimens (STRs)	n = 4156	61.3%	1
elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate	EVG/COB/FTC/TDF	31.9%	2
rilpivirine/emtricitabine/tenofovir disoproxil fumarate	RPV/FTC/TDF	23.0%	3
abacavir/lamivudine/dolutegravir	ABC/3TC/DTG	6.4%	4
Multi-tablet regimens (MTRs)	n = 2622	38.7%	5
emtricitabine/tenofovir disoproxil fumarate + dolutegravir	FTC/TDF + DTG	3.8%	6
emtricitabine/tenofovir disoproxil fumarate + darunavir/ritonavir	FTC/TDF + DRV/r	16.8%	7
abacavir/lamivudine + dolutegravir	FTC/TDF + ATV/r	12.0%	8
abacavir/lamivudine + darunavir/ritonavir	ABC/3TC + DTG	1.9%	9
abacavir/lamivudine + atazanavir/ritonavir	ABC/3TC + DRV/r	1.4%	10
abacavir/lamivudine	ABC/3TC + ATV/r	2.8%	11

1Department of Medicine, University of Kansas, Wichita, KS, USA. 2Medical Affairs – Health Economics and Outcomes Re, Gilead Sciences, Foster City, CA, USA. 3Tufts Center for the Study of Drug Development, Tufts University, Boston, MA, USA

Introduction: Advances in ART for HIV treatment have reduced patient morbidity and mortality [1]. Once-daily single-tablet regimens (STRs) may improve adherence and persistence by reducing pill burden compared to multi-tablet regimens (MTRs) [1, 2]. Persistence and adherence have been correlated with improved patient outcomes [3]. This retrospective study evaluated real-world persistence among HIV-1 infected patients comparing STRs versus MTRs using the Truven MarketScan® database.

Materials and methods: Adults (≥18 years), diagnosed with HIV-1, with ≥1 prescription for ART during the index period (1 January 2011 through 31 December 2015) were identified. Patients were required to have continuous enrollment for 6-month baseline and follow-up periods until the end of enrollment or end of the study period, whichever came first. Primary outcome was index regimen persistence, defined as time from index regimen start date to end of first 90-day gap between fills for any ART in the index regimen, or to the start date of an ART not in index regimen. Kaplan–Meier and Cox proportional hazard models evaluated persistence and risk of discontinuation or switch across treatments controlling for age, gender, health-plan type, US region, Charlson comorbidity index (CCI) and baseline comorbidities.

Results: Index regimens are listed in Table 1. STRs were the index regimen for two-thirds of patients. A majority of patients were male (83%). Patients prescribed MTRs were older (mean age: 43.2 vs. 39.8 years, p < 0.0001). MTR patients had higher rates of diabetes (7.0% vs. 5.7%, p = 0.03), chronic kidney disease (2.4% vs. 1.1%, p < 0.0001) and cardiovascular disease (25.6% vs. 22.2%, p = 0.001). STRs demonstrated significantly greater persistence compared to MTRs. Controlling for baseline differences, MTRs were at twice the risk of discontinuation/switch (hazard ratio (HR) 1.95) compared to STRS. Median time to discontinuation/switch was 37.5 months for STRS, compared to 21.4 months among MTRs (p < 0.0001). Among STRS, EVG/COB/FTC/TDF had a greater propensity for persistence compared to RPV/FTC/TDF (HR 1.14) and ABC/3TC/DTG (HR 1.24). Median time to switch for FTC/TDF + DTG was 22.1 months (p < 0.0001). FTC/TDF + DTG had a significantly increased risk for discontinuation/switch compared to EVG/COB/FTC/TDF (HR 1.54), but a comparable risk compared to ABC/3TC/DTG (HR 0.98).

Conclusions: STRS improve persistence and reduce switching among HIV patients. EVG/COB/FTC/TDF had the highest persistence among STRS. STRS are likely to result in better patient outcomes compared to MTRs due to improved outcomes associated with persistence.

References

P073
Factors influencing clinicians’ choices of ARVs in the US
Rebecca Hahn1; Bridgett Goodwin2; Susan Hogue3; Miranda Murray4 and Kimberly Davis5
1Healthcare Marketing and Outcomes Research, Nielsen, Rochester, NY, USA. 2Health Outcomes Research, GlaxoSmithKline, Research Triangle Park, NC, USA. 3Health Economics Outcomes Research, RTI Health Solutions, Research Triangle Park, NC, USA. 4Global Health Outcomes, ViiV Healthcare, Brentford, UK

Introduction: While the majority of the published literature has focussed on the role of patients’ attitude regarding adherence, the healthcare provider (HCP) has a significant role in patient adherence with ART. This is a great concern to HCPs as a great level of adherence is needed for most patients to achieve full and sustained viral suppression. This study was designed to better understand the factors that impact clinicians’ prescribing patterns for ART that will optimize patient adherence to HIV therapy in the US.

Methods: In mid-2014, two cross-sectional internet-based surveys were conducted in the US with 400 patients prescribed with an ARV and with 200 physicians who treat HIV. The 30-minute online surveys were pretested with a small group of respondents (n = 5 patients and n = 5 physicians). The patient survey included HIV treatment experience, medication side effects, adherence behaviours, treatment satisfaction and interaction with HCPs. The physician survey addressed similar topics to allow for direct comparisons between HIV patients and physicians.

Results: The patient sample were primarily males (79.3%) with an average age of 41.1 (SD 13.2) years with 61% homosexual, 28.1% heterosexual and 11.1% bisexual. A total of 59% of patients were diagnosed with comorbidities, the most common being depression, hypertension and hyperlipidemia. The physician sample included 119 primary care physicians (PCPs) and 81 infectious disease (ID) specialists. The factors most important for ID’s and PCPs in ARV prescribing, were virologic control, followed by adherence and...
side effects. PCPs were more concerned with affordability/insurance coverage than IDs. Moreover, there were significant differences between the choices of ARV for patients with comorbidities, for IDs compared to PCPs. These included kidney and liver diseases; hyperlipidemia and diabetes most affected HCPs’ treatment decisions (Figure 1).

Conclusion: Adherence challenges persist for both IDs and PCPs in prescribing ARVs. Understanding the optimal prescribing patterns for ARVs and ensuring that HCPs consider both the polypharmacy related to both HIV as well as comorbid conditions is important, especially as HIV is being treated as a chronic disease.

P075
MATH study: migrants adherence to therapy at an HIV outpatient clinic
Catarina Rodrigues; Yohana Martins; Umbelina Caixas; Fatima Lampreia and Isabel Germano
Serviço Medicina 1.4, Hospital São José, Lisbon, Portugal

Introduction: Strict adherence to ART is essential for HIV suppression to reduce the risk of treatment resistance, improve health and quality of life of those infected, reduce mortality and minimize risk of transmission. By contrast, poor adherence to therapy is a major cause of treatment failure. It is essential to identify factors for poor adherence in order to a customized action. The aim of this study is to determine adherence differences to HIV therapy between the migrant and the Portuguese population on follow-up in our HIV outpatient clinic.

Material and methods: Cross-sectional, descriptive study including 719 patients followed in a Portuguese HIV outpatient clinic since the year 2000. Of these, 651 patients met the inclusion criteria (over 18 years old, on follow-up since 2000, with one or more appointments in 2015); 428 Portuguese patients and 223 migrants (143 from Africa (mostly Angola, Cap Verde and Guinea), 58 from South America (almost all from Brazil), 13 from Europe and 2 from Asia).

Adherence was defined by undetectable viral load in the last two evaluations. Results between the two groups were compared using Chi-squared test.

Results: Total of 651 patients, mean age of 44.8 years (Portuguese 45.6 vs. migrants 43.2), 450 males and 201 females (Portuguese 315 males/113 females vs. migrants 135 males/88 females). Non-adherence in the Portuguese group was present in 28 patients (6.5%; n = 428) and in the migrants group in 13 patients (5.8%; n = 223). The reasons for non-adherence in the Portuguese group were mostly alcohol and drug abuse or depression and other mental disorders; while in the migrant group were low level of health education and low social support. We saw that usually the regime prescribed did not influence adherence – number of doses/tablets, adverse effects or relation with/without meal.

Conclusions: Even though the adherence in the Portuguese group was lower in percentage than in the migrant group, the reasons for this suboptimal adherence might improve with interventions in our outpatient clinic, such as better social support and reinforcement of health education with enhanced risk perception and better knowledge of this disease.

P076
Predictors of retention to care among HIV-infected patients in Northern Greece
Olga Tsachouridou1; Eirini Christaki1; Lemonia Skoura2; Aadia Rana3; Pantelis Zempekakis1 and Symeon Metallidis1
11st Internal Medicine Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece. 2Microbiology Department, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece. 3Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA

Introduction: Retention to care is vital in order to improve HIV outcomes. Data regarding retention to care of HIV-positive individuals in Greece are scarce. The objective of this study was to assess retention to care and identify factors associated with incomplete retention in a longitudinal cohort of HIV-infected patients in Northern Greece.

Materials and methods: We conducted a retrospective cohort study in Thessaloniki, Northern Greece of 1450 newly diagnosed HIV patients > 18 years old who entered care from 1990 to 2015 and followed until present. Retention to care was defined as having at least one visit each year of care throughout the entire follow-up period. Also, we studied predictors of gaps in care and the analysis was divided into three distinct time periods. A secondary analysis was done to determine the relationship between demographic and clinical variables and the number of years out of care.
Results: Of the 1450 patients included, 38.41% had at least one gap in care during the study period. Patients with complete retention to care were older (37.10 ± 10.71 vs. 35.85 ± 11.00), fully insured (71.8% vs. 53.1%, p < 0.005), more likely to be registered to care between 2010 and 2015 (48.5% vs. 23.5%, p < 0.005), to have higher educational level (30.5% vs. 25.1%, p = 0.029) and were more likely to receive HAART (81.9% vs. 71.8%, p < 0.005) and have viral suppression (91% vs. 80%, p < 0.005), than those displaying gaps in care. In the adjusted analysis, older age, Greek origin, full insurance, HAART intake and viral suppression were all associated with increased likelihood of retention. Clinical registration between 1990 and 2000 (p = 0.044) and 2000 and 2010 (p < 0.005) were also predicting factors of retention to care. Ten-year survival between non-retained (63%) and retained patients (92%) was statistically significant (p < 0.005). Retention was associated with decreased likelihood of death (aHR 0.37, 95% CI 0.26–0.52; p < 0.005). Patients with high education level and Greek origin presented less years out of care (p = 0.002 and p < 0.005, respectively). Patients with one or more hospital admissions had more years out care compared with those without hospital admission (p < 0.05).

Conclusions: Foreign origin, lack of insurance and type of transmission other than MSM are predictors of incomplete retention to care. Retention to care is associated with better HIV infection outcomes and survival. Our results suggest that one-third of newly diagnosed HIV-infected patients will experience at least one gap in care. Interventions should focus on prevention of gaps and maintenance of continuous follow-up of HIV patients.

TREATMENT STRATEGIES: CURE

P077

Treatment of HIV and acute myeloid leukaemia by allogeneic CCR5-d32 blood stem cell transplantation

Elena Knops1; Guido Kobbe2; Rolf Kaiser3; Nadine Luebke3; Gabor Dunay4; Monique Nijhuis5; Johannes Fischer7; Falk Huettig8; Rainer Haas2; Gabor Dunay4; Annemarie Wensing5; Javier Martinez-Picado6; Hartmut Ehrlich1

1Institute of Virology, University of Cologne, Cologne, Germany. 2Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Duesseldorf, Germany. 3Institute of Virology, University of Duesseldorf, Duesseldorf, Germany. 4Leibniz Institute for Experimental Virology, Heinrich Pette Institute, Hamburg, Germany. 5University Medical Center, University of Utrecht, Utrecht, Netherlands. 6AIDS Research Institute IrisCaixa, Hospital Germans Trias i Pujol, Barcelona, Spain. 7Institute of Transplantation Diagnostics and Cell, University of Duesseldorf, Duesseldorf, Germany. 8Department of Gastroenterology, Hepatology and Infectious Diseases, University of Duesseldorf, Duesseldorf, Germany.

The Berlin patient is presumed to be the only person cured from HIV infection by hematopoietic stem cell transplantation (H SCT) from a homozygous CCR5-d32 donor. Attempts to reproduce cure by HSCT have failed because of either viral rebound or death due to the underlying malignancy. We here report a patient alive, well and negative for proviral DNA 900 days after HSCT. A 41-year-old HIV-infected male patient was diagnosed acute myeloid leukaemia (AML, inv16, CBF-MYH11) in January 2011. Since the diagnosis of HIV infection in October 2010, he had been treated with TDF/FTC + DRV (January 2011 VL 44 copies/mL; CD4+ 474 cells/µL). To avoid interactions with chemotherapy DRV was switched to RAL in March 2011. He achieved CR of the AML after one induction course (ICE) and received a second induction and three consolidation courses according to AML-SG 07/04. In September 2012, AML relapsed and he was treated with A-HAM and a second cycle high-dose cytarabine. While in second CR, he received unmodified peripheral blood stem cells from a female 10/10 CCR5-d32 DKMS donor after conditioning with fludarabine/tesourafin in February 2013. Before transplant, HIV resistance analysis was performed and viral tropism was determined. There were no significant resistance mutations, and the coreceptor usage was predicted as R5-tropic (Sanger sequencing: FPR 44.5%; NGS: 0.14% X4 at 3.5% FPR, geno2pheno). The proviral DNA load was 1.45 log10 copies/106 PBMCs, and in the western blot, all anticipated bands could be detected. During transplant and until today, the patient remained on ART (since June 2014 ABC/3TC/DTG), and the viral load remained undetectable in plasma and liquor. He had a second relapse of AML in June 2013 but re-entered molecular remission after a total of eight courses of 5-azacytidine and four donor lymphocyte infusions. Concerning HIV, all collected samples were negative for proviral DNA by conventional and digital droplet PCR in two different labs, namely PBMCs (2014–2016), rectal biopsy (April 2015) and bone marrow (August 2015). Western blots from 2014, 2015 and 2016 showed incomplete patterns with fading bands. Viral outgrowth assays are in progress. Like in the Berlin patient, all tests from the Duesseldorf patient so far suggest that HIV may have been eradicated and that he may be the second individual cured from HIV by allogeneic CCR5-d32 HSCT. Further investigations will be performed before considering the discontinuation of ART.

P078

Differential efficacy of ABX464 and its primary metabolite ABX464-NGlc on HIV replication in human PBMCs and macrophages: implications for treatment strategies to eliminate virus reservoirs

Didier Scherrer1; Jean-Marc Steens1; Paul Gineste1; Noelle Camps1; Aude Garcel1; Erika Schlaefper2; Roberto Speck2; Jamal Tazi3 and Hartmut Ehrlich1

1ABIVAX, Paris, France. 2Division of Infectious Diseases, University Hospital of Zurich, Zurich, Switzerland. 3Institute of Molecular Genetics of Montpellier, Centre National de la Recherche Scientifique, Montpellier, France.

Introduction: We developed a first-in-class small molecule (ABX464) with a novel mechanism of anti-HIV involving modulation of viral RNA splicing [1]. ABX464 was demonstrated to be effective in inhibiting HIV replication in vitro, in vivo and in HIV patients [2]. Studies in humanized mice infected with HIV demonstrated that ABX464 monotherapy had an antiviral effect, which was sustained after treatment interruption. Therefore, ABX464 may have an effect on virus reservoirs. In humans, ABX464 is metabolized to one main metabolite, ABX464-NGlc. We investigated the differential effects of parent compound and metabolite on virus replication in vitro in both stimulated PBMCs and macrophages to investigate potential antiviral effects in macrophages, the cell population considered to be the key virus reservoir.

Materials and methods: Human PBMCs and monocytes were isolated from healthy donors. Cultured cells were treated with ABX464 or ABX464-NGlc and then infected with virus. Following 6–12 days of incubation, HIV p24 titration was performed on supernatants by ELISA with Ingen Innotest kit.

Results: Dose-dependent inhibition of HIV-1 replication by ABX464 was demonstrated in stimulated PBMCs with an IC50 ranging between 0.1 and 0.5 µM, while the metabolite did not show any efficacy in inhibiting virus replication in human PBMC in vitro. By contrast, although the metabolite demonstrated no antiviral effect...
on PBMCs, it blocked virus replication in primary macrophages reaching inhibition levels of up to 90% at 0.1 μM.

Conclusions: These findings have substantial implications for targeting the HIV reservoir with ABX464. Studies in healthy subjects demonstrated ABX464-NGlc’s Cmax was about 160-fold higher than those of ABX464 and had a much longer t1/2 (90–110 hours) than the parent compound [2–3 hours], resulting in a >1000-fold difference in AUC between the two compounds [3]. The markedly higher plasma concentrations of ABX464-NGlc, and its ability to inhibit viral replication in infected macrophage cultures with the same IC50 as the parent drug, may allow effective targeting of the reservoir in patients whose viral load is fully controlled by existing ARTs. In this case, the primary aim of the therapeutic intervention with ABX464 is to delay/prevent the viral rebound typically originating from the reservoir. This concept is being explored in an ongoing clinical trial, in which patients receive ABX464 for 4 weeks in combination with standard ART, with subsequent cessation of all treatments and intense viral load monitoring until viral rebound.

References
(median week 6 evolution: -9 mL/min/1.73 m2) but remained stable over the 48-week follow-up (-7).

Conclusions: These results suggest that, in this population of heavily treatment-experienced patients without or with history of M184I/V mutation, dolutegravir plus lamivudine dual therapy is an attractive strategy of maintenance.

References

P081

Efficacy of antiretroviral drugs during intermittent maintenance treatment with a 4-days-a-week regimen despite low plasma concentrations (ANRS 162-4D trial)

Jean Claude Alvarez; Pierre De Truchis; Emuri Abe; Lambert Assoumou; Roland Landman; Dominique Mathez; Karine Amat; Christine Katlama; Pierre Marie Girard; Damien Le Du; Martin Durancinsky; Dominique Costagliola; Jonathan Bellet and Christian Perronne

Introduction: In the absence of virologic eradication despite combination of antiretroviral therapy, patients infected by HIV have to take the treatment throughout their life. Intermittent regimen could be an alternative for those as evoked in previous studies (FOTO, BREATHER).

Material and methods: An open-label, multicentre, single-arm prospective study had been conducted to evaluate the capacity of a weekly strategy of 4 consecutive days treatment ("period on") followed by 3 days without treatment ("period off"), in HIV-1 patients with undetectable viral load for at least 12 months. Patients had no treatment modification in the past 6 months, and were on two nucleosides analogues and either boosted protease inhibitor (PI)/r or a NNRTI. Plasma antiretroviral residual concentrations on "period on" collected at day 0, week 6, week 15 and on "period off" collected at week 4, week 8, week 12, week 32 and week 48 were measured using a validated turbulent flow chromatography method coupled to triple quadrupole mass spectrometry detection with electrospray ionization interface. The laps between the last medication intake and the sample collecting time over 48 hours were considered as off period samples.

Results: Among the 100 patients included, 12 drug combinations were used: TDF + FTC (n = 89), ABC + 3TC (10), ABC + TDF (1) combined with a PI/r for 29 (DRV/r; n = 15; ATV/r; n = 13; LPV/r; n = 1) or a NNRTI for 71 (EFV: 40; RPV: 26; ETV: 5). After 48 weeks, 96% (95% CI 90-98, Kaplan-Meier estimate) were still intermittent 4/7 days regimen without failure. In total, 877 samples were analyzed (292 "on" and 585 "off"). A total of 94.4% of plasma samples are consistent with the timing. Significant differences had been observed between "on" concentrations and "off" concentrations for DRV (2587 ± 1393 ng/mL vs. 17 ± 18 ng/mL, p < 0.0001), ATV (1087 ± 644 ng/mL vs. 52 ± 146 ng/mL, p = 0.0005), LPV (39 ± 22 ng/mL vs. < 20 ng/mL), EFV (2218 ± 1046 ng/mL vs. 692 ± 391 ng/mL, p < 0.0001) and RPV (106 ± 51 ng/mL vs. 3920 ng/mL, p < 0.0001). Many PI were undetectable on "off" period. For ETV (447 ± 360 ng/mL vs. 269 ± 266 ng/mL, p = 0.0625) only a tendency was observed, probably because of low number of patients in this group. All "on" concentrations were in accordance with French guidelines.

Conclusion: A total of 96% of patients maintained viral load undetectable despite low or undetectable plasma concentrations after 3 days of treatment interruption on a 4-days-a-week regimen. PI plasma samples were almost always undetectable since NNRTI ones were decreased but above the limit of quantification according to their longer half-lives.

P082

Dual therapy with non-boosted atazanavir plus lamivudine is an effective simplification strategy for virologically stable patients with HIV

Juan Pasqua; Samantha Elizabeth de Jesús; Coral García-Vallencios and Carmen Hidalgo-Tenorio

Infectious Diseases, Hospital Universitario Virgen de las Nieves – Complejo Hospitalario de Granada, Granada, Spain

Introduction: The main objective of this simplification therapy is the reduction of potential toxicity of long-term antiretroviral treatment. In this regard, the withdrawal of ritonavir has demonstrated advantages in terms of tolerance and metabolic toxicity. There are previous studies that establish that non-boosted ATV400 has similar efficacy and a better toxicity profile than ritonavir-boosted ATV (ATV/r). But we have scarce information on the efficacy and safety of the dual regimen with lamivudine (3TC) + ATV400.

Methods: This is a retrospective, single-centre, observational study in which we analyzed the evolution of our virologically stable patients who received a triple therapy or a dual therapy with 3TC + ATV/r and switched to a dual therapy with 3TC + ATV400 as a simplification strategy.

Results: A total of 46 patients received the non-boosted ATV400 plus 3TC combination. They had previously taken antiretroviral treatment for an average of 12.1 years and four previous treatment combinations, a mean CD4 nadir of 229 cells/mm3 and a baseline viral load of 95,004 copies/mL. A total of 17.4% of patients were co-infected with HCV. In all patients, the viral load had been suppressed for over 6 months and they had tolerated their previous treatment well, which in 35/46 cases was a dual therapy with ritonavir. After an observation period of 44.6 patient-years, only one patient discontinued the study due to virologic failure. During the study, there were no adverse events and 157 viral loads were determined. Of these, 94.9% were < 50 copies/mL and 86.6% were < 20 copies/mL (61.3% were completely undetectable). A total of 67.4% of patients maintained a viral load < 20 copies/mL during the whole study, and 84.8% achieved a completely undetectable viral load at some point during the study. There were eight viral loads > 50 copies/mL and five of them were blips. Only one patient had virologic failure (2.2%), with two consecutive detectable viral loads (1132 and 3558 copies/mL), associated with resistance to ATV (protease mutations: 10F, 20T and 50L). This virologic failure was associated with confirmed poor treatment adherence.

Conclusions: Our data, and those of other studies, suggest that the 3TC + ATV400 dual combination, as a simplification strategy in stable patients, suppresses HIV replication and is non-inferior to triple therapy. We believe this attractive strategy can be explored safely and should be confirmed with further studies.
PO83
Lamivudine + dolutegravir as simplification strategy in patients with suppressed HIV RNA
Franco Maggiolo1; Roberto Gulminetti2; Cristina Mussini3; Layla Pagnucco2; Margherita Digaetano2; Simone Benatti2; Daniela Valenti1 and Diego Ripamonti1
1Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy. 2Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. 3Infectious Diseases, University of Modena, Modena, Italy

Introduction: CART is generally based on a backbone consisting of two NRTIs and on a third agent of a different class. The availability of new potent drugs raises the opportunity to change the classical NRTI-backbone paradigm and to explore less-drug regimens able to overcome adverse events due to commonly used NRTIs.

Materials and methods: This is a prospective, multi-centre, proof-of-concept, cohort study in patients on stable CART, with a confirmed (>6 months) viremia <50 copies/mL, absence of M184V mutation or HBSAg and with intolerance/contra-indications to current cART.

Results: A total of 94 patients, mostly males (76.5%) and with a mean age of 53 years (SD 11) were enrolled. The most common risk factors for HIV infection were heterosexual (54.3%) and homosexual (22.3%) relationships. At switch, patients were on ARV drugs for a mean of 11.3 years (SD 6.8). They had been on the ongoing therapy for a mean of 50.2 months (SD 40.1) and virologically suppressed for a mean of 88.8 (SD 74.4) months. They had experienced a mean of 4.1 lines of therapy (range 1–10) and were currently treated with a variety of drugs: 91.5% were assuming a NRTI (TDF 51.1% and ABC 37.2%); 55.3% were on a NNRTI-based regimen, 30.1% were assuming PI and 17.0% an integrase inhibitor. At switch, all of them presented an HIV RNA <50 copies/mL and a CD4 mean count of 742 cells/μL (SD 353), but 91.5% of them presented comorbidities mainly involving the cardiovascular system (35.1%), the bone (33.0%), the liver (23.4%), the nervous system (21.3%), the kidney (9.6%), the metabolic status (17.0%) or the glucose homeostasis (6.4%). During the 6 months of FU, no patient stopped therapy nor we observed any virologic failure. CD4 mean increment was of 61 cells/μL (p = 0.018) without significant changes of CD8 cells or CD4/CD8 ratio. Total (<5 mg/dL) HDL and LDL cholesterol were stable, while triglycerides slightly decreased (−18 mg/dL, p = 0.025). Blood creatinine increased from 0.92 to 1.00 mg/dL (p = 0.0001). Finally, the dual switch therapy reduced the mean daily cost of therapy of 7.00 Euros.

Conclusion: A dual 3TC + DTG regimen is a feasible alternative in virologically controlled patients that may overcome the limits of a classical NRTI backbone. This alternative regimen is cost-effective. Our results indicate the opportunity of a larger controlled trial.

PO84
In monotherapy, darunavir/cobicistat demonstrates equivalence to darunavir/ritonavir, and in selected patients is as effective as bitherapies or triple therapies
Juan Pasquau; Coral García-Vallecillos; María Teresa Cruces-Moreno; Samantha Elizabeth de Jesús; Georgette Fatoul del Pino; Carmen Hidalgo-Tenorio; David Vinuesa-García; Miguel Angel López-Ruz and José Hernández-Quero
Infectious Diseases, Complejo Hospitalario Universitario de Granada, Granada, Spain

Introduction: Various studies have demonstrated the bioequivalence of darunavir/ritonavir (DRV/r) and darunavir/cobicistat (DRV/c). However, there are doubts about how the lower plasma trough concentrations achieved with DRV/c may affect therapeutic efficacy. Triple therapy is not a good model to test the equivalence of only one component of the treatment, but monotherapy is. It is for this reason that the objective for this study was to analyze the virologic efficacy achieved with DRV/c when used in monotherapy.

Materials and methods: This is an observational, retrospective, single-centre analysis of all patients in our hospital who received DRV/c in monotherapy. We analyzed the evolution of HIV viremia, and we have compared these results with those achieved previously with DRV/r and lopinavir/ritonavir (LPV/r) in our historic controls. In addition, we compared these results to those obtained in a recent three-way comparison (monotherapy vs. bitherapy vs. triple therapy) of contemporary patients in our centre.

Results: Since July 2015 to May 2016, 181 patients have received DRV/c in monotherapy (94.5% from monotherapy with DRV/r (93.6%) or LPV/r (6.4%).) Only four patients discontinued DRV/c: one due to virologic failure and three due to mild intolerance. The global exposition time for this cohort was 58.9 patient-years. During this time, 196 plasma viral loads (VL) have been determined: 91.9% (180/196) were <50 copies/mL (62.8% [123/196] were undetectable, 20.4% [40/196] were detectable but below the level of detection (<20 copies/mL) and 8.7% (17/196) were between 20 and 50 copies/mL). 6.1% (12/196) were between 50 and 200 and 2% (4/196) were >200 copies/mL. In a previous analysis of our patients (n = 185) who were receiving monotherapy with DRV/r or LPV/r (2005–2013), 1003 VL have been determined: 84.1% were <50 copies/mL, 10.7% between 50 and 200, and 5.2% >200 copies/mL. Moreover, in another comparative study of parallel viral loads recorded during the same period of time (from March 2014 to April 2015) between the different strategies (monotherapy vs. bitherapy vs. triple therapy, for >6 months), our patients on monotherapy...
Abstract P086 – Table 1. Population characteristics

<table>
<thead>
<tr>
<th></th>
<th>Overall population (N = 1461)</th>
<th>EFV/FTC/TDF (N = 998)</th>
<th>RPV/FTC/TDF (N = 463)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>1083 (74)</td>
<td>762 (77)</td>
<td>321 (69)</td>
<td>0.003</td>
</tr>
<tr>
<td>Risk factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterosexual</td>
<td>513 (35)</td>
<td>347 (35)</td>
<td>166 (36)</td>
<td><0.001</td>
</tr>
<tr>
<td>Homosexual/bisexual</td>
<td>443 (30)</td>
<td>310 (31)</td>
<td>133 (29)</td>
<td></td>
</tr>
<tr>
<td>IDU</td>
<td>167 (11)</td>
<td>97 (8)</td>
<td>70 (15)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>232 (16)</td>
<td>186 (19)</td>
<td>46 (10)</td>
<td></td>
</tr>
<tr>
<td>HCV +</td>
<td>215 (15)</td>
<td>127 (15)</td>
<td>88 (26)</td>
<td><0.001</td>
</tr>
<tr>
<td>Prior AIDS events</td>
<td>336 (23)</td>
<td>239 (26)</td>
<td>97 (22)</td>
<td>0.144</td>
</tr>
<tr>
<td>Age (years), median (IQR)</td>
<td>44 (37–50)</td>
<td>44 (37–49)</td>
<td>46 (38–52)</td>
<td>0.014</td>
</tr>
<tr>
<td>Time from HIV diagnosis (years), median (IQR)</td>
<td>6.9 (2.6–12.9)</td>
<td>6.0 (2.4–11.4)</td>
<td>8.9 (3.8–16.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Time of ARV (years), median (IQR)</td>
<td>4.6 (1.2–9.9)</td>
<td>3.9 (1–8.9)</td>
<td>6.0 (2.2–13.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Baseline CD4+ (cells/µL), median (IQR)</td>
<td>573 (424–773)</td>
<td>546 (400–717)</td>
<td>662 (480–905)</td>
<td><0.001</td>
</tr>
<tr>
<td>Nadir CD4+ (cells/µL), median (IQR)</td>
<td>224 (102–328)</td>
<td>213 (98–315)</td>
<td>248 (119–391)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
We retrospectively analyzed HIV+ patients with HIV RNA <50 copies/mL on a ≥3 drugs non-STR therapy switching to STR in five Italian centres. Patients were followed from baseline (time of switch) until STR discontinuation or a 3-year maximum follow-up. Time to treatment discontinuation (TD) and virologic failure (VF: HIV RNA >50 copies/mL in two consecutive determinations or >1000 copies/mL in one) and their predictors were investigated.

Results: A total of 1461 patients were enrolled of which 998 (68%) switching to EFV/FTC/TDF and 463 (32%) to RPV/FTC/TDF (characteristics in Table 1). TD occurred in 223 (22%) patients with an incidence of 8.7 per 100 PYFU in EFV/FTC/TDF and in 50 (11%) patients with an incidence of 5.3 per 100 PYFU in RPV/FTC/TDF. VF occurred in 34 (3.4%) patients with an incidence of 1.3 per 100 PYFU in EFV/FTC/TDF and in 24 (5.2%) patients with an incidence of 2.6 per 100 PYFU in RPV/FTC/TDF. At survival analysis, the estimated 3-year probability of remaining without TD was 72% in EFV/FTC/TDF and 94% in RPV/FTC/TDF. At multivariate analysis, time on cART demonstrated a significantly different mean change of total cholesterol and HDL at 3 years and of creatinine at 2 years was observed between the two groups (Figure 1); these data were substantially confirmed until 2 years after switch in sub-population 1 and in those switching from a PI-based regimen.

Conclusion: Both regimens showed good safety and efficacy, although switch to RPV/FTC/TDF seemed to be better tolerated and with a better lipid profile while EFV/FTC/TDF seemed to have a lower probability of VF.

Value expressed as N (%).

P087

Efficacy and safety of switch from DRV/r to DRV/COBI in HIV monotherapy

Angela Gutierrez Liarte; Ana Gómez Berrocal; Rosa De Miguel Buckley and Jesús Sanz Sanz

Infectious Diseases, Hospital La Princesa, Madrid, Spain

Introduction: DRV/r monotherapy is an effective maintenance strategy endorsed by clinical practise guidelines for selected patients. Cobicistat (COBI) is a booster that is an alternative to ritonavir. DRV/COBI has got equivalent efficacy and safety profile as DRV/r. Coformulated DRV/COBI 800/150 mg has been recently approved for commercialization, which can simplify treatment regimens. Primary endpoint of this study was a combined efficacy endpoint of coformulated DRV/COBI 800/150 mg monotherapy as a simplification strategy in patients receiving DRV/r. Efficacy was defined as RNA HIV <50 copies/mL and the absence of treatment switch or discontinuation. Secondary endpoints were to analyze the drug safety profile and the development of resistance mutations in case of virologic failure.

Materials and methods: Observational, longitudinal, retrospective cohort study of 59 patients on previous monotherapy with DRV/r that were switched to coformulated DRV/COBI 800/150 mg at the Infectious Diseases Department at La Princesa Hospital (Madrid, Spain). Efficacy and safety data from baseline and control point were collected. Failure was defined as RNA HIV >50 copies/mL and the absence of treatment switch or discontinuation. For safety evaluation, clinical events and laboratory data were reviewed. Adverse events were graded according to the Division of AIDS classification system. Statistical analysis was performed with IBM SPSS Statistics V22.0.

Results: After 9.85 weeks of median follow-up, the combined efficacy was 96.6%. There were two cases of virologic failure. Both patients presented a CD4 nadir count below 200 × 10^6 cells/L, no previous history of virologic failure or resistance mutations, and RNA HIV <50 copies/mL at baseline. One of them (1.7%) acquired the E138A mutation in the reverse transcriptase, without the appearance of resistance mutations for protease inhibitors. Adverse events were described in 10.2% of the patients, all of which were grade 2. There were no treatment switches or discontinuations. Reduction of 5.38 ml/min/m^2 in the GFR was observed. Total cholesterol levels increased 6.8 mg/dL.

Conclusion: DRV/COBI 800/150 mg is an effective and safe regimen that allows to simplify boosted DRV monotherapy for the treatment of HIV.
PO88

Efficacy and safety of dual therapy with Rilpivirine and boosted Darunavir in treatment-experienced HIV patients

Juan Pasqua1; Samantha de Jesus1; Carmen Hidalgo-Tenorio1; Piedad Arazo2; Maria Jose Crussells2; Maria Jose Rio2; Fernando Lozano3; Javier de la Torre4; Carlos Tornero5; Coral Garcia-Vallecillos6; Guillermo Verdejo6; Zaira Palacios4; Gloria Samperiz2; Jose Alberto Terron2 and Miguel Garcia-Deltoro10

1 Infectious Diseases, Hospital Virgen de las Nieves, Granada, Spain. 2 Infectious Diseases, Hospital Miguel de Servet, Zaragoza, Spain. 3 Infectious Diseases, Hospital Lozano Blesa, Zaragoza, Spain. 4 Infectious Diseases, Hospital Virgen Macarena, Sevilla, Spain. 5 Infectious Diseases, Hospital de Valme, Sevilla, Spain. 6 Infectious Diseases Hospital Costa del Sol, Marbella, Spain. 7 Infectious Diseases, Hospital Francesc Borja, Gandia, Spain. 8 Infectious Diseases, Hospital Clinico de Valencia, Valencia, Spain. 9 Infectious Diseases, Hospital de Jerez, Jerez de la Frontera, Spain. 10 Hospital General de Valencia, Infectious Diseases, Valencia, Spain

Introduction: Long-term care and prevention of cumulative toxicity related to antiretroviral therapy (ART) have become main objectives of HIV patient management. Nuke-sparing regimens offer an alternative to conventional therapy, with similar efficacy and less potential toxicity. Dual therapy with rilpivirine and boosted darunavir (RPV+DRVb) is an attractive combination, currently used in clinical practice but with little data from clinical trials. For this reason, we have retrospectively analyzed why this combination is being used as well as its efficacy and safety in real-life patients.

Methods: Here we present preliminary data of an observational, multi-centre, retrospective study in HIV patients that have received RPV+DRVb for at least 24 weeks to optimize and/or simplify their previous ART.

Results: Data from 140 patients of 15 hospitals were collected with a median (m) age of 47 years, 25.7% had previous AIDS stage and CD4 nadir lymphocyte nadir of 163 cells/μL (m) (IQR 61–283). They had been diagnosed with HIV for 239 months (m) and had received 124 months (m) of ART, with five previous treatment combinations (m). The reason for switch was simplification/optimization (47.9%), toxicity or intolerance (20%), and insufficient efficacy (with VL <1000 copies/mL of previous ART (7.9%). A total of 23.6% of patients presented a baseline VL between 50 and 1000 copies/mL. In 82.9%, the combination was boosted with ritonavir and 43.6% of these patients switched to coicistat during the study. In the “intention-to-treat” analysis at 24 weeks, 92.6% of 122 patients continue on study treatment without virological failure (VF) criteria. Only 4.1% had VF and of the remaining 3.3%, 0.8% abandoned treatment and 2.5% presented toxicity or intolerance. Data from 18/140 patients still have to be collected. In the analysis of virological efficacy of “observed data,” the last observed viral load of the 140 patients who received the combination was <50 copies/mL in 87.1% of cases.

Conclusions: We have observed that dual therapy with RPV+DRVb is being used in clinical practice, and it has proven to be effective in a group of patients with a different profile from that of those required to test monotherapy or other dual therapies with lamivudine (advanced HIV infection, long exposure to ART, low CD4+ nadir and low level viremia).

PO89

Simplification to dual protease inhibitor (PI), integrase strand transfer inhibitor (INSTI)- and non-nucleoside reverse-transcriptase inhibitor (NNRTI)-based less drugs regimens in treatment-experienced HIV-1-infected patients

Antonio Mastroianni1; Elisabetta Briganti1; Francesco Allegrini2; Carmela Grosso2; Sandra Brighi3; Gianfranco Ravaglia3; Fabio Pieraccini2 and Claudio Cancellieri1

1 UO Malattie Infettive, Ospedale G.B. Morgagni – L. Pierantoni, Forlì, Italy. 2 UO Farmacia, Ospedale G.B. Morgagni – L. Pierantoni, Forlì, Italy

Introduction: A retrospective analysis was undertaken to assess viro-immunological and clinical outcomes of ritonavir (RT)-boosted protease inhibitor (PI)-based and integrase strand transfer inhibitor (INSTI)-based regimens versus NRTI-NNRTI-based less drugs regimens (LDR) in adult patients with a previous history of continuous three-drugs PI- or NNRTI-based ART, who started dual ART, once both plasma viral load (PVL) <40 copies/mL and CD4+ cell count >200 cells/μL were achieved for at least 48 months.

Materials and methods: This was a monocentric, retrospective study in a large tertiary care centre in Italy. HIV-infected patients receiving RT-boosted PI- and INSTI-based dual therapy (ATV/Rt-LMV, ATV/Rt-LMV, LPV/Rt-LMV, RAL+NVP, 3TC+RAL) versus NRTI-NNRTI-based (3TC+NVP, 3TC+EFV) LDRs were systematically identified. The primary outcome was the proportion of patients who maintained virological suppression at week 12, 24 and 48. Other primary outcomes included immunological response, treatment failure and development of drug resistance. The secondary endpoint was safety (serious adverse effects, AIDS-related events and death). Follow-up consisted of clinical assessments and routine laboratory monitoring, and neurocognitive status at baseline and regularly at weeks 4, 8, 12 and every 12 weeks.

Results: Using our electronic medical database (Log80 software), we exhaustively identified 130 patients that met our inclusion criteria out of 790 HIV+ patients followed at the Infectious Diseases Unit of Forlì and Cesena Hospitals, searching up to 30 June 2016. Patient median age was 54 years; 56% were men. All of the patients were treatment experienced. Median baseline CD4+ cell count was 803,665/μL and viral load was <40 copies/mL in all patients, respectively. At 12–18 months, an estimated 100% of patients maintained undetectable viral load, there were no changes in CD4+ cell count from baseline, there were no adverse events or communication of new pathology and/or adherence problems. Dual ART selection, according to the tolerability profile, the presence of comorbidities and HIV-1 drug susceptibility testing, included: DRV+Rt-LMV (41 patients), ATV/Rt-LMV (30 patients), 3TC+NVP (25 patients), LPV/Rt-LMV (11 patients), RAL+NVP (6 patients), 3TC+EFV (3 patients) and 3TC+RAL (3 patients). The most common reason for modifying ART was the development of dyslipidaemia and bone mineral density changes, and less frequently renal toxicity and hepatotoxicity.

Conclusions: In our experience, both PI-, INSTI- and NNRTI-based less drugs regimens provided a high proportion of durable virological suppression and the average CD4+ count has remained above 350.

PO90

Dolutegravir and unboosted atazanavir: a dual NRTI- and booster-free antiretroviral regimen simplification in HIV-1 infected patients with viral suppression

Agostino Riva1; Andrea Poli1; Stefano Rusconi1; Stefano Bonora1; Anna Maria Cattelan1; Eugenia Quirós Roldán1; Micol Ferrara2; Vincenzo Spagnuolo2; Layla Pagnucco7; Silvia Cavinato5; Dario Cattaneo8; Roberto Gulminetti7 and Antonella Castagna2

1 III Division of Infectious Diseases, ASST FBF-Sacco, Milan, Italy. 2 Infectious Diseases Unit, San Raffaele Scientific Institute, Milan, Italy. 3 Department of Biomedical & Clinical Sciences, University of Milan, Milan, Italy. 4 Infectious Diseases Unit, University of Turin,
Introduction: There are increasing concerns about long-term toxicity of antiretroviral treatment. NRTIs have the potential for long-term toxicities and ritonavir has negative metabolic consequences and drug-drug interactions. The combination of dolutegravir (DTG) with unboosted atazanavir (uATV) is an intriguing new NRTI- and booster-free regimen. We report a real-life experience of the simplification of different antiretroviral regimens to DTG + uATV.

Methods: A total of 61 patients were enrolled in our observational study; 58 subjects with at least one follow-up visit. We evaluated several laboratory parameters including CD4 T cell, HIV RNA and metabolic values. We measured ATV and DTG trough concentrations after a minimal 2-week interval from the start of the new regimen.

Results: Patients enrolled in the study were predominantly males (63%), CDC stage C was 22%, HCV-Ab positivity was 28% and the previous regimen included more frequently ≥3 drugs, mainly PIs (90%). Patients had a median time since first HIV-positive test of 16.1 years (20.2–23.6) and a median time of ART exposure of 14.3 years (9.0–19.0). The reasons for switching to uATV + DTG were several: mainly toxicities, comorbidities and simplification (Table 1). As far as uATV: 55 patients were administered 400 mg QD, two patients 300 mg QD and one patient 200 mg BID; DTG was dosed 50 mg QD, but one patient received 50 mg BID. Patients had a median follow-up of 4.9 months (IQR 2.3–7.8). At last visit, all patients on treatment had undetectable HIV RNA. Two patients presented a viral blip during follow-up (91 and 98 copies/mL), subsequently HIV RNA returned negative without treatment modification. There were three treatment discontinuations: one severe hyperbilirubinemia (grade 3), one G-i intolerance and one patient was lost to follow-up. No differences were found in laboratory parameters between baseline and the last follow-up including immuno-virologic variables, except for a significant decrease in tryglicerides (Table 2). ATV and DTG mean concentrations were 310 ng/mL (95% CI 243–699) and 3216 ng/mL (95% CI 2436–3996) respectively. ATV concentration was below 150 ng/mL in 11 out of 28 patients.

Conclusions: ART switch towards this dual-drug regimen NRTI and booster-sparing, although in a short follow-up, appears to be well tolerated and safe. Virologic suppression was maintained in all patients despite long-lasting HIV infection and ART treatment. DTG concentrations are high in the majority of the patients as expected from previous pharmacokinetics study. Despite low ATV concentrations in several patients, no virologic failures were observed. This NRTI- and RTV-sparing regimen appears an attractive new strategy in patients with metabolic disorders and NRTI-related toxicities.

<table>
<thead>
<tr>
<th>Table 1. Baseline characteristics of the studied population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td>(n = 61)</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Years since first HIV-positive test</td>
</tr>
<tr>
<td>Years of ARV exposure</td>
</tr>
<tr>
<td>CDC stage</td>
</tr>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
</tr>
<tr>
<td>A3</td>
</tr>
<tr>
<td>B2</td>
</tr>
<tr>
<td>B3</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>Unknown</td>
</tr>
<tr>
<td>Male gender</td>
</tr>
<tr>
<td>Risk factor</td>
</tr>
<tr>
<td>Man who has sex with man</td>
</tr>
<tr>
<td>Heterosexual</td>
</tr>
<tr>
<td>Intravenous drug user</td>
</tr>
<tr>
<td>Other/unknown</td>
</tr>
<tr>
<td>White race</td>
</tr>
<tr>
<td>European origin</td>
</tr>
<tr>
<td>HCV-Ab positivity</td>
</tr>
<tr>
<td>Genotype 1a</td>
</tr>
<tr>
<td>Genotype 1b</td>
</tr>
<tr>
<td>Genotype 3</td>
</tr>
<tr>
<td>Genotype 4</td>
</tr>
<tr>
<td>Unknown genotype</td>
</tr>
<tr>
<td>Type of ART regimen</td>
</tr>
<tr>
<td>PI/r monotherapy</td>
</tr>
<tr>
<td>Dual therapy</td>
</tr>
<tr>
<td>Three or more drugs</td>
</tr>
<tr>
<td>Type of ART regimen according to the drug class</td>
</tr>
<tr>
<td>PI-based</td>
</tr>
<tr>
<td>INSTI-based</td>
</tr>
<tr>
<td>NNRTI-based</td>
</tr>
<tr>
<td>Reasons for switch to ATV + DTG regimen</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Concern of cardiovascular disease</td>
</tr>
<tr>
<td>Dyslipidemia</td>
</tr>
<tr>
<td>Comorbidity</td>
</tr>
<tr>
<td>Immunologic failure – CD4 drop</td>
</tr>
<tr>
<td>Non-compliance</td>
</tr>
<tr>
<td>Simplified treatment available</td>
</tr>
<tr>
<td>Toxicity – Gl tract/abdomen</td>
</tr>
<tr>
<td>Toxicity – liver</td>
</tr>
<tr>
<td>Toxicity – kidney</td>
</tr>
<tr>
<td>Toxicity – not specified</td>
</tr>
<tr>
<td>Treatment failure</td>
</tr>
<tr>
<td>Side effects</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>

P091

Treatment of HIV-positive patients with lamivudine plus boosted protease inhibitor in a real-world setting

Chien-Yu Cheng1; Shu-Hsing Cheng1; Shu-Yin Chang2; Mei-Hui Lin1; Shin-Yen Ku1; Hui-Ting Shieh1 and Na-Lee Sun2

1Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City, Taiwan. 2AIDS Care Center, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City, Taiwan

Introduction: Some adverse effects of nucleoside reverse transcriptase inhibitors including renal injury, myocardial injury and osteoporosis
could limit the prescription of antiretroviral therapy in HIV-positive patients, especially the aging patients with non-communicable diseases. The GARDEL and OLE study of lamivudine plus lopinavir/ritonavir demonstrated effectiveness and safety of dual therapy [1]. However, the information of dual therapy in real world remains limited, so we launch an observational study to monitor effectiveness and safety of dual therapy of lamivudine plus boosted protease inhibitors.

Materials and methods: This prospective study was launched to evaluate the effectiveness of virologic response and safety of dual therapy of lamivudine (300 mg) plus lopinavir/ritonavir and darunavir/ritonavir, and naïve and treatment-experienced HIV-positive patients were enrolled since May 2015. Patients with positive hepatitis B antigen were excluded. In weeks 12, 24 and 48, CD4 lymphocyte cell counts and plasma HIV RNA were measured, and these data are

Abstract P090 – Table 2. Laboratory parameters at baseline and at last visit

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Baseline (n = 61)</th>
<th>Last visit (n = 58)</th>
<th>Change from baseline</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4+ (cells/µL)</td>
<td>733 (578–946)</td>
<td>690 (513–872)</td>
<td>−6 (−150; +83)</td>
<td>0.395</td>
</tr>
<tr>
<td>CD8+ (cells/µL)</td>
<td>850 (583–1159)</td>
<td>840 (560–1169)</td>
<td>−10 (−165; +117)</td>
<td>0.977</td>
</tr>
<tr>
<td>CD4+ and CD8+ ratio</td>
<td>0.90 (0.62–1.23)</td>
<td>0.90 (0.63–1.20)</td>
<td>+0.07 (−0.10; +0.15)</td>
<td>0.988</td>
</tr>
<tr>
<td>White blood cells (10⁹/L)</td>
<td>6.7 (5.5–8.4)</td>
<td>6.2 (5.5–7.4)</td>
<td>−0.2 (−0.8; +0.6)</td>
<td>0.290</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>26 (20–42)</td>
<td>29 (21–37)</td>
<td>+1 (−5; +7)</td>
<td>0.829</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>26 (22–35)</td>
<td>25 (20–32)</td>
<td>0 (−4; +4)</td>
<td>0.535</td>
</tr>
<tr>
<td>Gamma GT (U/L)</td>
<td>27 (18–49)</td>
<td>21 (17–39)</td>
<td>−1 (−7; +3)</td>
<td>0.262</td>
</tr>
<tr>
<td>Total bilirubin (mg/dL)</td>
<td>2.03 (1.08–3.00)</td>
<td>1.58 (0.99–2.28)</td>
<td>−0.45 (−1.58; −0.01)</td>
<td>0.168</td>
</tr>
<tr>
<td>Direct bilirubin (mg/dL)</td>
<td>0.72 (0.40–0.97)</td>
<td>0.57 (0.36–0.72)</td>
<td>−0.15 (−0.19; +0.08)</td>
<td>0.136</td>
</tr>
<tr>
<td>Indirect bilirubin (mg/dL)</td>
<td>1.21 (0.64–2.00)</td>
<td>0.81 (0.50–1.58)</td>
<td>−0.39 (−1.16; −0.42)</td>
<td>0.544</td>
</tr>
<tr>
<td>FIB-4</td>
<td>1.18 (0.91–1.61)</td>
<td>1.23 (0.87–1.68)</td>
<td>−0.04 (−0.13; +0.10)</td>
<td>0.866</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>0.90 (0.80–1.04)</td>
<td>0.96 (0.81–1.16)</td>
<td>0.06 (0; +0.15)</td>
<td>0.240</td>
</tr>
<tr>
<td>EGFR (mL/min/1.73 m²)</td>
<td>89 (76–100)</td>
<td>83 (66–96)</td>
<td>−5 (−13; 0)</td>
<td>0.300</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>194 (156–219)</td>
<td>184 (165–216)</td>
<td>2 (−21; +15)</td>
<td>0.790</td>
</tr>
<tr>
<td>LDL cholesterol (mg/dL)</td>
<td>119 (90–149)</td>
<td>108 (85–131)</td>
<td>+3 (−7; +13)</td>
<td>0.363</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>46 (39–57)</td>
<td>50 (42–65)</td>
<td>+4 (−4; +12)</td>
<td>0.091</td>
</tr>
<tr>
<td>Total and HDL cholesterol ratio</td>
<td>3.93 (3.08–5.29)</td>
<td>3.58 (2.88–4.44)</td>
<td>−0.35 (−0.85; +0.29)</td>
<td>0.116</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>139 (86–193)</td>
<td>108 (84–145)</td>
<td>−3 (−7; +18)</td>
<td>0.049</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>92 (84–98)</td>
<td>91 (84–106)</td>
<td>0 (−9; +5)</td>
<td>0.814</td>
</tr>
<tr>
<td>Haemoglobin (10⁹/L)</td>
<td>14.8 (13.9–15.9)</td>
<td>14.7 (13.9–15.7)</td>
<td>−0.2 (−0.6; +0.4)</td>
<td>0.616</td>
</tr>
<tr>
<td>Platelets (10⁹/L)</td>
<td>223 (174–272)</td>
<td>230 (180–276)</td>
<td>0 (−19; +12)</td>
<td>0.828</td>
</tr>
</tbody>
</table>

Mann–Whitney tests were used to evaluate differences between BL and follow-up; results are reported as median (IQR) or frequencies (%).

Abstract P091 – Figure 1. Virologic failure (VF) and treatment failure (TF) of dual therapy in 116 naïve patients, 39 treatment-experienced patients without suppressed plasma HIV RNA and 86 patients with suppressed plasma HIV RNA.
compared with those at baseline before enrolment. All adverse effects are documented during the study.

Results: Since May 2015 to May 2016, 116 naïve patients (group 1), 39 (group 2) treatment-experienced patients without suppressed HIV RNA (>50 copies/mL) and 82 (group 3) treatment-experienced patients with suppressed HIV RNA (<50 copies/mL) were enrolled in the study. The median age was 34 ± 9 and 38 ± 8 years in group 1 & 2 and group 3 (p < 0.001), and 94.2% and 79.3% (p < 0.001) were male patients, respectively. Positive HCV Ab was 36.1% versus 37.3% (p = 0.79). Median baseline CD4 cell counts before enrolment were 338 (5–908) and 490 (86–1071) cells/L (p < 0.001). However, rate of virologic failure (plasma HIV RNA >200 copies/mL) was 10.3% (10/97) and 1.3% (1/76) (p = 0.016, ORs 8.62, 95% CI 1.08–68.91) for group 1 & 2 and group 3 in week 24. Treatment failure was 20% versus 7.3% (p = 0.01, ORs 3.23, 95% CI 1.10–9.49), respectively. Thirty-seven patients discontinued dual therapy, 20% patients (29/145) taking lopinavir/ritonavir had severe GI tract upset or diarrhoea and 7.3% patients (8/110) taking darunavir/ritonavir had grade 3 urticaria or diarrhoea (p = 0.004, ORs 3.19, 95% CI 1.40–7.29) (Figure 1).

Conclusions: Lamivudine plus lopinavir/ritonavir or darunavir/ritonavir demonstrated comparable effectiveness for patients with suppressed HIV RNA in our cohort. However, adverse effects of GI tract upset and diarrhoea could impede application of dual therapy for naïve patients in real world.

Reference

P092

Effectiveness and convenience of ATV/r + 3TC dual therapy regimen in a real-life cohort of HIV-infected patients: 48-week follow-up

Sergio Maria Ferrara1; Alessandra Tartaglia2; Salvatore Sica3 and Teresa Antonia Santantonio1

1Infectious Disease Unit, Ospedali Riuniti Foggia, Foggia, Italy. 2Infectious Disease Unit, Azienda Sanitaria Locale della Provincia di Foggia, Foggia, Italy

Introduction: Simplification to a dual therapy improves adherence by reducing pill burden, short- and long-term toxicities and lowers additional costs for clinical management. ATV/r + 3TC dual therapy has recently been approved by Italian and European guidelines as switching strategies from standard cART in virologically suppressed patients. The aim of this 48-month observational study in a real-life setting was to evaluate the efficacy, safety and impact on cardiovascular event of ATV/r + 3TC dual therapy.

Methods: We enrolled 55 HIV-positive patients on stable HIV VL suppression in the last 6 months, without resistance to PI and in absence of chronic HBV co-infection. Cardiovascular risk was evaluated using the Framingham risk score (FRS). Carotid intima-media thickness (c-IMT) was assessed by colour Doppler ultrasonography and a c-IMT >0.9 mm was considered to be pathological.

Results: Thirty-five patients were males (64.2%), and median age was 49 years (range 28–74 years) (Table 1). Thirteen subjects (24.5%) had AIDS and 15 (27.3%) were HCV co-infected. A total of 32 patients (58.2%) were smokers. Length of HIV diagnosis was 12.5 years (1–33 years). Cumulative exposure to HAART was 9 years (1–20 years).

Median baseline CD4 count was 674 cells/mm³. In previous regimen, ARV backbone was TDF/FTC (81.8%) and ABC/3TC (18.2%). Reasons for switching were: 43 simplification (78.2%); 12 TDF-related toxicities (21.8%) distributed as follows: seven (58.3%) renal toxicity and two (16.7%) gastrointestinal. Length of HIV diagnosis, years, median (range) 12.5 (1–20), and 7.3% patients (8/110) taking darunavir/ritonavir had severe GI tract upset or diarrhoea could impede application of dual therapy for naïve patients in real world.

Reference

Table 1. Characteristics of patients (total patients = 55)

<table>
<thead>
<tr>
<th>Total N of patients = 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n (%)</td>
</tr>
<tr>
<td>Females</td>
</tr>
<tr>
<td>Males</td>
</tr>
<tr>
<td>Age, years, median (range)</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Males</td>
</tr>
<tr>
<td>Females</td>
</tr>
<tr>
<td>Risk factor, n (%)</td>
</tr>
<tr>
<td>Heterosexual</td>
</tr>
<tr>
<td>MSM</td>
</tr>
<tr>
<td>TD</td>
</tr>
<tr>
<td>CDC stage, n (%)</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>HAART exposure, years, median (range)</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Smoking</td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Dyslipidaemia</td>
</tr>
</tbody>
</table>

Table 2. Characteristics of patients (total patients = 55)

<table>
<thead>
<tr>
<th>Total N of patients = 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n (%)</td>
</tr>
<tr>
<td>Females</td>
</tr>
<tr>
<td>Males</td>
</tr>
<tr>
<td>Age, years, median (range)</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Males</td>
</tr>
<tr>
<td>Females</td>
</tr>
<tr>
<td>Risk factor, n (%)</td>
</tr>
<tr>
<td>Heterosexual</td>
</tr>
<tr>
<td>MSM</td>
</tr>
<tr>
<td>TD</td>
</tr>
<tr>
<td>CDC stage, n (%)</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>HAART exposure, years, median (range)</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Smoking</td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Dyslipidaemia</td>
</tr>
</tbody>
</table>

Table 2. Characteristics of patients (total patients = 55)

Table 2. Characteristics of patients (total patients = 55)

<table>
<thead>
<tr>
<th>Total N of patients = 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex, n (%)</td>
</tr>
<tr>
<td>Females</td>
</tr>
<tr>
<td>Males</td>
</tr>
<tr>
<td>Age, years, median (range)</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Males</td>
</tr>
<tr>
<td>Females</td>
</tr>
<tr>
<td>Risk factor, n (%)</td>
</tr>
<tr>
<td>Heterosexual</td>
</tr>
<tr>
<td>MSM</td>
</tr>
<tr>
<td>TD</td>
</tr>
<tr>
<td>CDC stage, n (%)</td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>HAART exposure, years, median (range)</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Smoking</td>
</tr>
<tr>
<td>Diabetes</td>
</tr>
<tr>
<td>Hypertension</td>
</tr>
<tr>
<td>Dyslipidaemia</td>
</tr>
</tbody>
</table>
Abstract P092 – Table 2. Costs and saving of dual therapy compared to conventional treatment in our cohort (Foggia, Italy)

<table>
<thead>
<tr>
<th>cART regimens</th>
<th>Monthly costs (Ospedali Riuniti Foggia, Italy)</th>
<th>Monthly saving per patient (compared with dual ATV/r + 3TC therapy)</th>
<th>Monthly saving (compared with dual ATV/r + 3TC therapy)</th>
<th>Saving per year (compared with dual ATV/r + 3TC therapy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATV/r + TDF/FTC</td>
<td>€724.5 n = 45 patients: €16848.0</td>
<td>n = 45 patients: €16,848.0</td>
<td>n = 45 patients: €202,176.0</td>
<td></td>
</tr>
<tr>
<td>ATV/r + ABC/TDF</td>
<td>€687.6</td>
<td>€337.5</td>
<td>€202,176.0</td>
<td></td>
</tr>
<tr>
<td>ATV/r + 3TC</td>
<td>€350.1</td>
<td>–</td>
<td>–</td>
<td>€242,676.0</td>
</tr>
</tbody>
</table>

Conclusions: Dual ATV/r + 3TC therapy may optimize cART and helps clinicians to avoid drawbacks and toxicities due to NRTI backbone, while maintaining the efficacy and the convenience of a robust cART.

TREATMENT STRATEGIES: SWITCH STUDIES

P093

Efficacy and safety of emtricitabine/tenofovir alafenamide (FTC/TAF) versus emtricitabine/tenofovir disoproxil fumarate (FTC/TDF) as a backbone for treatment of HIV-1 infection in virologically suppressed adults: subgroup analysis by third agent

Frank Post*, Yazdan Yazdanpanah1; Gabriel Schembri1; Adriano Lazzarin1; Jacques Reynes1; Franco Maggiolo2; Mingjin Yan3; Michael Abram3; Cecilia Tran-Muchowski3; Andrew Cheng4 and Martin Rhee5

1King’s College Hospital NHS Foundation Trust, London, UK. 2Service des Maladies Infectieuses et Tropicales, Hopital Bichat-Claude Bernard, Paris, France. 3Manchester Centre for Sexual Health, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK. 4Divisione di Malattie Infettive, IRCCS Ospedale San Raffaele, Milano, Italy. 5Maladies Infectieuses et Tropicales, Centre Hospitalier Regional Universitaire de Montpellier, Montpellier, France.
6Infectious Diseases, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy. 7Biostatistics - HIV, Gilead Sciences, Inc, Foster City, CA, USA. 8Clinical Virology, Gilead Sciences, Inc., Foster City, CA, USA. 9Clinical Operations - HIV, Gilead Sciences, Inc., Foster City, CA, USA. 10Clinical Research - HIV, Gilead Sciences, Inc., Foster City, CA, USA.

Introduction: The efficacy and safety of TAF has been mostly evaluated in the context of the coformulation of elvitegravir (E), cobicistat (C), FTC (F) and TAF (E/C/F/TAF). Multiple clinical trials of E/C/F/TAF have consistently demonstrated the advantages of TAF over TDF for markers of renal and bone safety. However, it has not been shown whether these safety advantages of TAF are seen when combined with other third agents.

Materials and methods: We conducted a subgroup analysis by the class of co-administered third agent (boosted protease inhibitors (PIs) vs. unboosted third agent) for efficacy (prespecified) and safety

Abstract P093 – Table 1. Changes in measures of renal and bone safety by third agent

<table>
<thead>
<tr>
<th></th>
<th>Boosted PI FTC/TAF (n = 155)</th>
<th>Boosted PI FTC/TDF (n = 151)</th>
<th>Unboosted third agent FTC/TAF (n = 178)</th>
<th>Unboosted third agent FTC/TDF (n = 179)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median baseline (mL/min)</td>
<td>102.2</td>
<td>104.5</td>
<td>98.3</td>
<td>97.2</td>
</tr>
<tr>
<td>Median changes at week 48* (mL/min)</td>
<td>+7.7</td>
<td>+3.3</td>
<td>+9.3</td>
<td>+2.8</td>
</tr>
<tr>
<td>Urine protein: creatinine ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median baseline value (mg/g)</td>
<td>57.8</td>
<td>66.7</td>
<td>60.6</td>
<td>59.6</td>
</tr>
<tr>
<td>Median % changes at week 48*</td>
<td>-11.1</td>
<td>+12.8</td>
<td>-16.9</td>
<td>+2.1</td>
</tr>
<tr>
<td>Urine albumin: creatinine ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median baseline value (mg/g)</td>
<td>6.3</td>
<td>6.4</td>
<td>5.8</td>
<td>6.1</td>
</tr>
<tr>
<td>Median changes at week 48*</td>
<td>-1.8</td>
<td>+21.2</td>
<td>-11.6</td>
<td>+4.4</td>
</tr>
<tr>
<td>Urine beta-2-microglobulin: creatinine ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median baseline value (µg/g)</td>
<td>140.3</td>
<td>186.5</td>
<td>131.9</td>
<td>134.2</td>
</tr>
<tr>
<td>Median % changes at week 48*</td>
<td>-39.3</td>
<td>+36.4</td>
<td>-40.2</td>
<td>+14.0</td>
</tr>
<tr>
<td>Urine retinol binding protein: creatinine ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median baseline value (µg/g)</td>
<td>112.4</td>
<td>117.5</td>
<td>100.9</td>
<td>106.8</td>
</tr>
<tr>
<td>Median % changes at week 48*</td>
<td>-13.5</td>
<td>+24.8</td>
<td>-17.3</td>
<td>+11.8</td>
</tr>
<tr>
<td>Spine BMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean baseline value (g/m²)</td>
<td>1.08</td>
<td>1.07</td>
<td>1.09</td>
<td>1.08</td>
</tr>
<tr>
<td>Mean % changes at week 48*</td>
<td>+1.48</td>
<td>-0.40</td>
<td>+1.45</td>
<td>-0.13</td>
</tr>
<tr>
<td>Hip BMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean baseline value (g/m²)</td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Mean % changes at week 48*</td>
<td>+1.10</td>
<td>-0.08</td>
<td>+1.00</td>
<td>-0.22</td>
</tr>
</tbody>
</table>

*p-values for all between-group differences (FTC/TAF vs. FTC/TDF) were < 0.05.
(ad hoc) from a 48-week randomized, double-blind, active-controlled study in virologically suppressed, HIV-positive participants who switched to FTC/TAF from FTC/TDF versus continuing FTC/TDF while remaining on their original third agent. The prespecified non-inferiority margin for the overall study was 10%.

Results: Among 663 treated (FTC/TAF n = 333, FTC/TDF n = 330), 47% and 46%, respectively, received boosted Pts. Median age (49 years), median CD4 count (646 cells/mL), renal laboratory parameters and bone mineral density (BMD) were similar between the subgroups. Overall, median duration of FTC/TDF use prior to dosing was 5.1 years. At week 48, significant differences in changes of renal biomarkers and BMD were observed favouring FTC/TAF over FTC/TDF (p < 0.05 for all), with similar improvements within the FTC/TAF arm in those who received boosted Pts versus unboosted third agents (Table 1). Few participants discontinued study drug due to adverse events in either subgroup (boosted Pt: FTC/TAF 4%, FTC/TDF 1%; unboosted third agent: FTC/TAF 1%, FTC/TDF 1%). No cases of Fanconi syndrome or proximal renal tubulopathy were reported. Switching to an FTC/TAF-containing regimen was non-inferior to staying on a baseline FTC/TDF-containing regimen in maintaining HIV-1 RNA less than 50 copies/mL for participants receiving either a boosted PI (92% vs. 93%; difference: −1.1%; 95% CI −7.1−4.9%) or an unboosted third agent (97% vs. 93%; difference: 3.3%; 95% CI −1.2−7.9%).

Conclusions: Regardless of third agent (boosted PI or unboosted third agent), FTC/TAF was non-inferior to FTC/TDF in maintaining virologic suppression at week 48 and renal and bone parameters significantly improved in those who switched from TDF to TAF. Overall safety was similar for FTC/TAF administered with a boosted PI or an unboosted third agent. FTC/TAF can be an important NRTI backbone option that can be used in combination with a variety of third agents.

P094

Population pharmacokinetics (PK) of dolutegravir (DTG) alone and following treatment switch

Laura Dickinson1; Margherita Bracchi2; Emilie Elliot2; Laura Else1; Saye Khoji1; David Back1; Mark Nelson1 and Marta Boffito2

1Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK. 2St Stephen’s Centre, Chelsea & Westminster Foundation Trust, London, UK

Introduction: The integrase inhibitor DTG is a preferred antiretroviral in many treatment guidelines. Efavirenz (EFV) induces DTG UGT1A1 and CYP3A4-dependent metabolism but dose adjustments are not recommended following treatment switch with steady-state DTG reached week 4 post-switch [1,2]. Population PK analysis was performed to describe DTG PK and investigate changes in DTG after switching from an EFV-based regimen.

Materials and methods: Model development (NONMEM version 7.3) combined DTG concentration-time data (50 mg once daily) from two studies. Study 1 was in healthy volunteers administered DTG for 10 days with serial blood sampling performed for 216 hours following the final dose [3]. Study 2 was in HIV-infected, virologically suppressed patients switched from EFV to DTG with random single samples drawn at week 1, 2, 3 and 4 post-switch (samples between 1 and 25.75 hours post-dose). The impact of residual EFV on DTG apparent oral clearance (CL/F) after switching compared with DTG alone was determined. Covariates including weight, age, BMI, sex, ethnicity, HIV status and food consumption within 3 hours of drug intake were also assessed and the model evaluated by simulation and visual predictive check.

Results: Fifty-six individuals were included (n = 14 female, n = 35 Caucasian; n = 17 healthy, n = 39 HIV). DTG up to 216 hours was described by a two-compartment model parameterized by CL/F (estimate (RSE%): 0.85 L/h (5%)), central volume of distribution (Vc/F: 17 L (7%)), intercompartmental clearance (Q/F: 0.0082 L/h (20%)) and peripheral volume of distribution (Vp/F: 0.73 L (8%)) with absorption rate constant fixed to 2.24 hours^{-1} [4]. Interindividual variability was 17% (41%) and 16% (39%) for CL/F and Vp/F, respectively. Following multivariate analysis weight was the only significant covariate to remain in the model. DTG CL/F was increased by 34%, 60%, 13% and 11% at week 1, 2, 3 and 4 following switch, respectively compared with DTG alone. Based on 100 simulations DTG C_{24}, C_{max} and trough (C_{24}) at week 1, 2, 3, 4 post-switch were significantly lower than DTG alone (Table 1); however, all simulated C_{24} were above the protein-adjusted IC_{50} of 0.06 mg/L post-switch (median (range) 0.81 mg/L (0.25−1.75)).

Conclusions: Population PK parameters were comparable with previous reports [4] with between-study differences attributable to EFV. Simulated DTG PK parameters were reduced following switch even at week 3/week 4 (<20% for C_{24}), potentially highlighting important PK differences between healthy and HIV-infected individuals. However, consistent with recent data [1] concentrations remained above the protein-adjusted IC_{50} post-switch, supporting findings that dose adjustments may not be required in the described patient population.

References

2. Generaux G, Song J, Bowers G, Piscitelli S. A mechanistic SimCYP simulation evaluating dolutegravir and efavirenz pharmacokinetics following a switch from once-daily efavirenz to once-daily dolutegravir. 15th International Workshop on Clinical Pharmacology of HIV & Hepatitis Therapy. May 19−21; Washington, DC, USA, [Abstract P_36].
Abstract P095 – Table 1. Patients’ characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>GSS = 1 or 1.5 (n = 27)</th>
<th>GSS = 2 (n = 61)</th>
<th>GSS = 3 (n = 121)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male sex, n (%)</td>
<td>21 (78)</td>
<td>35 (57)</td>
<td>86 (71)</td>
</tr>
<tr>
<td>Age, median years (IQR)</td>
<td>51 (46–55)</td>
<td>53 (42–59)</td>
<td>51 (41–58)</td>
</tr>
<tr>
<td>Time since HIV diagnosis, median years (IQR)</td>
<td>21 (16–24)</td>
<td>20 (18–21)</td>
<td>13 (6–21)</td>
</tr>
<tr>
<td>Duration of prior ART, median years (IQR)</td>
<td>17 (10–20)</td>
<td>18 (5–25)</td>
<td>11 (5–20)</td>
</tr>
<tr>
<td>Number of previous ART lines, median (IQR)</td>
<td>8 (5–10)</td>
<td>6 (2–7)</td>
<td>4 (2–7)</td>
</tr>
<tr>
<td>Duration of HIV-1 RNA < 50 copies/mL before switch, median years (IQR)</td>
<td>3 (2–7)</td>
<td>4 (2–5)</td>
<td>3 (1–5)</td>
</tr>
<tr>
<td>Baseline CD4 cell count, median cells/mm² (IQR)</td>
<td>670 (435–863)</td>
<td>645 (535–865)</td>
<td>570 (400–750)</td>
</tr>
<tr>
<td>Nadir CD4 cell count, median cells/mm² (IQR)</td>
<td>183 (63–209)</td>
<td>236 (204–386)</td>
<td>221 (85–325)</td>
</tr>
<tr>
<td>Associated antiretroviral drugs, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC/3TC</td>
<td>19 (70)</td>
<td>4 (7)</td>
<td>75 (62)</td>
</tr>
<tr>
<td>TDF/FTC</td>
<td>1 (4)</td>
<td>4 (7)</td>
<td>29 (24)</td>
</tr>
<tr>
<td>3TC</td>
<td>0 (0)</td>
<td>7 (11)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>RPV</td>
<td>3 (11)</td>
<td>26 (43)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>DRV/r</td>
<td>0 (0)</td>
<td>5 (8)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>ATV/r</td>
<td>1 (4)</td>
<td>6 (10)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>RPV + NRTI</td>
<td>0 (0)</td>
<td>3 (5)</td>
<td>10 (8)</td>
</tr>
<tr>
<td>Other ARV drugs</td>
<td>3 (11)</td>
<td>6 (10)</td>
<td>7 (6)</td>
</tr>
<tr>
<td>Number of NRTI drug resistance mutations, median (IQR)</td>
<td>2 (1–5)</td>
<td>2 (0–3)</td>
<td>0 (0–0)</td>
</tr>
<tr>
<td>Number of M184V, n (%)</td>
<td>27 (100)</td>
<td>32 (52)</td>
<td>10 (8)</td>
</tr>
<tr>
<td>Number of NNRTI drug resistance mutations, median (IQR)</td>
<td>1 (0–2)</td>
<td>0 (0–2)</td>
<td>0 (0–1)</td>
</tr>
<tr>
<td>Number of major PI drug resistance mutations, median (IQR)</td>
<td>0 (0–2)</td>
<td>0 (0–0)</td>
<td>0 (0–0)</td>
</tr>
<tr>
<td>Time since last genotypic resistance test, median years (IQR)</td>
<td>9 (4–12)</td>
<td>9 (5–14)</td>
<td>5 (3–12)</td>
</tr>
</tbody>
</table>

At week 24, seven patients (3.3%) discontinued DTG-based regimen: neuro-psychological side effects (n = 1), cutaneous side effects (n = 1), pregnancy (n = 1), renal toxicity (n = 1), headaches (n = 1) and patients’ decision (n = 2). At week 12, 95%, 96% and 95% of the patients had pVL <50 copies/mL in the 1 or 1.5, 2 and 3 GSS strata, respectively. At week 24, 100%, 96% and 96% of the patients had pVL <50 copies/mL, in the 1 or 1.5, 2 and 3 GSS strata, respectively. Among the 12 patients (11.9%) displaying a pVL >50 copies/mL (median 102 copies/mL, IQR 61–417), nine experienced a viral blip, one a virologic failure (VF) and in the two remaining patients no further control sample was available. The only one patient (1%) experiencing VF was highly pre-treated including a previous VF under a RAL-based regimen with no selection of integrase resistance mutations and with a GSS = 3.

Conclusions: In this observational cohort, patients’ characteristics at time of switching to a DTG-based regimen were different depending on the GSS strata. However, short-term follow-up showed a high level of the maintenance of virologic suppression, regardless of the baseline GSS. These data suggest that DTG remains potentially able to maintain viral suppression when combined with fully or incompletely active drugs in these long-term virologically suppressed patients.

P096

Evaluation of virologic efficacy and economic savings in a Portuguese hospital after splitting the single-tablet regimen EFV/FTC/TDF (Atripla®) to an equivalent double-tablet regimen (efavirenz+Truvada®)

Mafalda Guimarães; Inês Vaz Pinto; Catarina Santos and Sara Alves Cascais Hospital, HIV Unit, Cascais, Portugal

Introduction: Single-tablet regimens (STR) of ART are now widely available. The combination of fixed-dose antiretrovirals in just one capsule makes it more convenient for patients and the pill burden is reduced. However, when switching from a single-tablet regimen to fixed-dose antiretrovirals, potential savings in terms of drug acquisition costs will depend on local drug prices and on the proportion of patients subsequently achieving virological suppression. In this study, we evaluate the virologic efficacy and economic savings of splitting the single-tablet ARV regimen (EFV/FTC/TDF) to an equivalent double-tablet regimen (EFV/FTC/TDF). This study was conducted at the HIV Outpatient Center of Hospital de Cascais, Portugal, an urban hospital with a catchment area of approximately 250,000 patients. We report the results of a single-arm pre-post study comparing the virologic response rates, drug acquisition costs and adherence rates of patients who switched from the single-tablet ARV regimen (EFV/FTC/TDF) to an equivalent double-tablet regimen (EFV/FTC/TDF) after 12 weeks of treatment.

Methods: All patients (n = 120) who switched from the single-tablet ARV regimen (EFV/FTC/TDF) to an equivalent double-tablet regimen (EFV/FTC/TDF) after 12 weeks of treatment were included. The virologic response was defined as a decrease of more than 1 log10 copies/mL in the viral load. Adherence was defined as the proportion of pills taken as prescribed, considering that each pill contains 1 tablet of each drug.

Results: At week 24, seven patients (3.3%) discontinued DTG-based regimen: neuro-psychological side effects (n = 1), cutaneous side effects (n = 1), pregnancy (n = 1), renal toxicity (n = 1), headaches (n = 1) and patients’ decision (n = 2). At week 12, 95%, 96% and 95% of the patients had pVL <50 copies/mL in the 1 or 1.5, 2 and 3 GSS strata, respectively. At week 24, 100%, 96% and 96% of the patients had pVL <50 copies/mL, in the 1 or 1.5, 2 and 3 GSS strata, respectively. Among the 12 patients (11.9%) displaying a pVL >50 copies/mL (median 102 copies/mL, IQR 61–417), nine experienced a viral blip, one a virologic failure (VF) and in the two remaining patients no further control sample was available. The only one patient (1%) experiencing VF was highly pre-treated including a previous VF under a RAL-based regimen with no selection of integrase resistance mutations and with a GSS = 3.

Conclusions: In this observational cohort, patients’ characteristics at time of switching to a DTG-based regimen were different depending on the GSS strata. However, short-term follow-up showed a high level of the maintenance of virologic suppression, regardless of the baseline GSS. These data suggest that DTG remains potentially able to maintain viral suppression when combined with fully or incompletely active drugs in these long-term virologically suppressed patients.
tablet has been shown to improve long-term adherence and patients' satisfaction. Also, STR eliminates the possibility of selective non-adherence. Due to the global economic crisis since 2009 and subsequent financial restraints observed in health systems worldwide, the board of Cascais Hospital decided in April 2014 to split the STR Atripla® for its two constituents, FTC/TDF (Truvada®) and efavirenz. The switch from STR to a dual-tablet regimen (DTR) was done by each patient's doctor, after full explanation and patient consent. The purpose of our study was to retrospectively evaluate the impact of splitting a STR into its two separate components on virologic effectiveness at 24 weeks. We also looked at the direct economic benefits obtained with this global switch.

Material and methods: The switch from STR to DTR was made between April 1 and June 30, 2014, at the time of clinic appointment or pharmacy refill, where patients were referred to the clinic. We reviewed clinical files and present data on demographic characterization by age, sex and route of HIV transmission. Data were reviewed clinical files and present data on demographic characterization by age, sex and route of HIV transmission. Data were collected on CD4 count and HIV viral load (VL) at the time of switch and at 24 weeks thereafter.

Results: On 31 March 2014 a total of 1036 patients at our clinic were on ART; 230 patients were on Atripla® (22.2%). A total of eight patients did not do the split (three lost to follow-up, three had virologic failure, one for lactose intolerance and one for lack of consent). A total of 222 patients were switched from STR to a DTR. At week 24, 31 (13.9%) patients were no longer taking the efavirenz+Truvada® regimen, mainly due to perceived adverse effects of either of the two components of the regimen. Of the 190 patients still taking efavirenz+Truvada® 24 weeks after the split of Atripla®, 179 (94%) had VL < 20 copies/mL at week 24. Two patients were lost to follow-up, eight had virologic blips (VL > 20 but < 500 copies/mL) and one had virologic failure. The direct economic savings obtained by splitting a STR was $291,000 in a 9-month period.

Conclusions: Our centre's experience with switching all patients on a STR to an equivalent DTR proved to be effective and resulted in significant economic savings that continue to the future.

P097

Dolutegravir plus ritonavir-boosted darunavir in highly cART-experienced subjects: an observational cohort

Amedeo Ferdinando Capetti1; Gaetana Starrantino2; Maria Vittoria Cossu3; Giovanni Cenderello3; Stefano Rusconi4; Serena Cima5; Giovanni Cossu1; Giovanni Cenderello3; Stefano Rusconi4; Serena Cima5; Genova, Italy. 4Infectious Diseases Clinic, Luigi Sacco University Hospital, Milan, Italy. 3Division of Infectious Diseases, Ospedali Galliera, Genoa, Italy. 5Infectious Diseases Clinic, San Martino Hospital, Genova, Italy. 11st Division of Infectious Diseases, Azienda Ospedaliero-Universitaria di Padova, Padova, Italy. 9Infectious Diseases Clinic, Azienda Ospedaliero-Università di Perugia, Perugia, Italy. 101st Division of Infectious Diseases, Amedeo di Savoia Hospital, Torino, Italy. 11Infectious Diseases Unit, University of Catania, ARNAS Garibaldi, Catania, Italy. 12Division of Infectious Diseases, Santa Maria della Misericordia Hospital, Rovigo, Italy

Introduction: In patients switching from complex salvage regimens for simplification or failure, the association of dolutegravir and darunavir provides high genetic barrier to HIV-1 resistance.

Methods: All HIV-1 infected subjects treated with dolutegravir plus boosted darunavir between March 2014 and September 2015 were included in an observational cohort. After ethics committees' approval, no further enrolment was allowed. Only clinical events, demographic data, CD4 cell counts, HIV-1 RNA, serum creatinine and urinary proteins were deemed relevant for this study.

Results: Hundred and fourteen subjects were enrolled. The mean age was 51, females were 26.5% and non-Caucasians 9.7%. The main risk factor was being male homosexual (46%), followed by drug abuse (28.3%) and heterosexual intercourse (23.9%). The main reason for switching was simplification (46%), followed by viral failure (27.4%), toxicity (14.9%), persistent low-level viremia (5.3%), lack of adherence (3.5%) and immunologic failure/disease progression (2.6%). RT mutations were present in 83.2%, 80.5% had protease mutations and 10.5% had INSTI mutations. Between week 24 and 48 one subject was lost to follow-up, one died of drug abuse and one of cancer-related sepsis, one dropped out for elevation of liver enzymes, one for dyslipidaemia and one stopped all drugs for personal decision. The proportion of viremic subjects at baseline declined steadily by week 4 from 40.7% to 14.1%, with a > 1 log10 decay in all but one, that had stopped the therapy for 3 weeks, and further by week 24 to 6.2% (range 53–805 copies/mL). Measurable viremia < 50 copies/mL declined from 20.4% to 5.3%. Subjects at zero viremia increased from 38.9% to 59.3% by week 4 and to 73.5% by week 24. Of the 84 subjects who have a 48-week follow-up, five still have > 50 copies HIV-1 RNA/mL (range 51–99), 16 have viral load < 50 copies and in 63 zero viremia. Eighteen subjects had reduced sensitivity to darunavir (Stanford median score 15, range 15–40), but none failed. Also, none of the subjects who had baseline INSTI mutations failed and there was no accumulation of mutations. The median variation in serum creatinine was < 0.01 (range +0.2 to –0.21), and only one subject had a new onset of mild proteinuria.

Conclusions: This dual regimen yielded excellent results in a complex population, providing the simplest and safest salvage regimen ever.

P098

A retrospective analysis to evaluate and compare the efficacy of switching to Stribild fixed-dose combination in virologically suppressed HIV-1 infected adults with or without the archived NRTI resistance mutation M184V/I

Vanessa Silebi

Infectious Diseases, Mercy Hospital, Miami, FL, USA

Introduction: The prevalence of an isolated NRTI M184V/I resistance mutation in reverse transcriptase (RT) region in HIV-1 infected patients is as high as 60% [1–4] with limited switch options in patients harbouring this mutation, and it is recommended that these patients be switched to protease inhibitor-containing regimens. The aim of this retrospective pilot study is to validate the ability of elvitegravir/ cobicistat/ emtricitabine/ tenofovir disoproxil fumarate
Dolutegravir plus ritonavir in CART-experienced subjects: an observational cohort

Amedeo Ferdinando Capetti1; Gaetana Strerrantino2; Maria Vittoria Cosso2; Giuseppe Vittorio De Socio2; Simona Di Gamb Benedetto5; Benedetto Maurizio Celesia6; Barbara Argenteri2; Antonio Di Biagio5; GianCarlo Orofino5; Giorgio Barbarini5 and Giuliano Rizzardini1

Introduction: Little is known on the safety of the dual combination of dolutegravir and ritonavir in non-naive HIV-1-infected patients. The purpose of this study is to describe an experience with ritonavir-boosted dolutegravir in clinical practice.

Methods: All HIV-1 infected subjects treated with dolutegravir plus ritonavir were part of a clinical trial (NCT01148670) that evaluated the ability of Stribild to maintain virological suppression in patients harbouring M184V and/or M184I mutations to NRTIs over a one-year period. A subset of patients were also included in the Monitor group of the same trial.

Results: Ninety-six patients were treated with Stribild for up to 48 weeks. The primary endpoint was the proportion of subjects in each arm with HIV-1 RNA <50 copies/mL at week 48. Results: The Resistant arm saw 90%, 96% and 88% VL suppression (defined as ≤50 copies/mL) over the 12, 24 and 48 week time points, respectively (Table 1). Of note, three patients in the M184V/1 cohort (10%) rebounded at week 12, all self-reported non-compliant; two of the three patients re-suppressed at week 24. For secondary endpoints, data trended with both cohorts benefitting while on Stribild.

Conclusions: Data indicate Stribild may be a reasonable option in virologically suppressed (HIV-1 RNA <50 copies/mL) HIV-1 infected adults harbouring an archived isolated M184V and/or M184I mutation. Future analysis of virological progression with previous regimens and included mutations prior to switch will be analyzed. A prospective, multi-centre study to determine the variables that affect switch therapy is currently being planned.

References

P099 Dolutegravir plus ritonavir in CART-experienced subjects: an observational cohort

Amedeo Ferdinando Capetti1; Gaetana Strerrantino2; Maria Vittoria Cosso2; Giuseppe Vittorio De Socio2; Simona Di Gamb Benedetto5; Benedetto Maurizio Celesia6; Barbara Argenteri2; Antonio Di Biagio5; GianCarlo Orofino5; Giorgio Barbarini5 and Giuliano Rizzardini1

Introduction: Little is known on the safety of the dual combination of dolutegravir and ritonavir in non-naive HIV-1-infected patients. The purpose of this study is to describe an experience with ritonavir-boosted dolutegravir in clinical practice.

Methods: All HIV-1 infected subjects treated with dolutegravir plus ritonavir were part of a clinical trial (NCT01148670) that evaluated the ability of Stribild to maintain virological suppression in patients harbouring M184V and/or M184I mutations to NRTIs over a one-year period. A subset of patients were also included in the Monitor group of the same trial.

Results: Ninety-six patients were treated with Stribild for up to 48 weeks. The primary endpoint was the proportion of subjects in each arm with HIV-1 RNA <50 copies/mL at week 48. Results: The Resistant arm saw 90%, 96% and 88% VL suppression (defined as ≤50 copies/mL) over the 12, 24 and 48 week time points, respectively (Table 1). Of note, three patients in the M184V/1 cohort (10%) rebounded at week 12, all self-reported non-compliant; two of the three patients re-suppressed at week 24. For secondary endpoints, data trended with both cohorts benefitting while on Stribild.

Conclusions: Data indicate Stribild may be a reasonable option in virologically suppressed (HIV-1 RNA <50 copies/mL) HIV-1 infected adults harbouring an archived isolated M184V and/or M184I mutation. Future analysis of virological progression with previous regimens and included mutations prior to switch will be analyzed. A prospective, multi-centre study to determine the variables that affect switch therapy is currently being planned.

References

P100 Switching to elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate single-tablet regimen (Stribild®): effects on T-cell compartment and HIV reservoirs

<table>
<thead>
<tr>
<th>T-cell activation</th>
<th>Week 0</th>
<th>Week 12</th>
<th>Week 24</th>
<th>p</th>
<th>T-cell proliferation</th>
<th>Week 0</th>
<th>Week 12</th>
<th>Week 24</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLA-DR + CD38 + CD4 +, % (IQR)</td>
<td>2.28 (1.44–3.78)</td>
<td>1.46 (1–3.18)</td>
<td>1.26 (0.8–2.63)</td>
<td>0.016</td>
<td>Ki67 + CD4 +, % (IQR)</td>
<td>2.12 (1.59–3.74)</td>
<td>2.44 (1.84–4.65)</td>
<td>3.34 (0.87–5.21)</td>
<td>0.846</td>
</tr>
<tr>
<td>HLA-DR + CD38 + CD8 +, % (IQR)</td>
<td>5.32 (3.23–11.36)</td>
<td>4.54 (2.35–6.63)</td>
<td>4.64 (2.98–8.65)</td>
<td>0.048</td>
<td>Ki67 + CD8 +, % (IQR)</td>
<td>1.83 (1.22–2.22)</td>
<td>1.91 (1.17–2.98)</td>
<td>1.81 (0.77–4.65)</td>
<td>0.747</td>
</tr>
<tr>
<td>HLA-DR + CD4 +, % (IQR)</td>
<td>9.4 (7.47–17.22)</td>
<td>9 (6.22–14.62)</td>
<td>8.15 (5.3–11.9)</td>
<td>0.006</td>
<td>SEB stimulation responses</td>
<td>0.18 (0–1.46)</td>
<td>0.34 (0–0.87)</td>
<td>0.46 (0.07–0.86)</td>
<td>0.497</td>
</tr>
<tr>
<td>T-cell exhaustion</td>
<td>24.02 (15.3–34.05)</td>
<td>16.73 (11.7–31.2)</td>
<td>14.9 (11.2–22.8)</td>
<td>0.018</td>
<td>CD4 + IFNg +, % (IQR)</td>
<td>0.21 (0.02–0.64)</td>
<td>0.14 (0.01–0.79)</td>
<td>0.03 (0–0.07)</td>
<td>0.024</td>
</tr>
<tr>
<td>PD-1 + CD4 +, % (IQR)</td>
<td>3.84 (2.25–5.35)</td>
<td>2.84 (1.47–6.01)</td>
<td>2.79 (2.04–3.68)</td>
<td>0.289</td>
<td>CD4 + IL-2 +, % (IQR)</td>
<td>1.55 (0.50–3.22)</td>
<td>0.26 (0–2.03)</td>
<td>0.2 (0–0.47)</td>
<td>0.0001</td>
</tr>
<tr>
<td>PD-1 + CD8 +, % (IQR)</td>
<td>4.15 (1.48–6.36)</td>
<td>3.16 (1.6–5.76)</td>
<td>3.29 (1.62–3.64)</td>
<td>0.339</td>
<td>CD8 + IFNg +, % (IQR)</td>
<td>2.01 (0.48–4.39)</td>
<td>2.79 (0.95–3.98)</td>
<td>1.15 (0–3.45)</td>
<td>0.024</td>
</tr>
<tr>
<td>T-cell homeostasis</td>
<td>26.2 (20.5–35.9)</td>
<td>21.4 (10.2–33.1)</td>
<td>28.6 (21.0–34.5)</td>
<td>0.129</td>
<td>HIV stimulation responses</td>
<td>0 (0–0.06)</td>
<td>0 (0–0.06)</td>
<td>0.03 (0–0.09)</td>
<td>0.001</td>
</tr>
<tr>
<td>CD127 + CD4 +, % (IQR)</td>
<td>18.6 (15.6–25.3)</td>
<td>21.8 (11.3–27.1)</td>
<td>23.3 (17.9–27.9)</td>
<td>0.072</td>
<td>HIV reservoir</td>
<td>0 (0–0.39)</td>
<td>0 (0–0.26)</td>
<td>0 (0–0.04)</td>
<td>0.828</td>
</tr>
<tr>
<td>NAIVE + CD4 +, % (IQR)</td>
<td>5.43 (2.3–7.28)</td>
<td>4.52 (1.49–6.49)</td>
<td>1.72 (0.53–6.92)</td>
<td>0.256</td>
<td>CM + CD4 +, % (IQR)</td>
<td>3.26 (2.25–6.40)</td>
<td>3.21 (2.09–5.08)</td>
<td>2.09 (0.32–6.65)</td>
<td>0.030</td>
</tr>
<tr>
<td>CM + CD4 +, % (IQR)</td>
<td>3.26 (2.25–6.40)</td>
<td>3.21 (2.09–5.08)</td>
<td>2.09 (0.32–6.65)</td>
<td>0.030</td>
<td>CM + CD4 +, % (IQR)</td>
<td>3.26 (2.25–6.40)</td>
<td>3.21 (2.09–5.08)</td>
<td>2.09 (0.32–6.65)</td>
<td>0.030</td>
</tr>
<tr>
<td>NAIVE + CD5 +, % (IQR)</td>
<td>32.2 (15.4–40)</td>
<td>34.75 (24.4–44.4)</td>
<td>39.6 (24.3–49.2)</td>
<td>0.405</td>
<td>TD + CD4 +, % (IQR)</td>
<td>32.2 (15.4–40)</td>
<td>34.75 (24.4–44.4)</td>
<td>39.6 (24.3–49.2)</td>
<td>0.405</td>
</tr>
<tr>
<td>EM + CD4 +, % (IQR)</td>
<td>53.5 (44.2–67.7)</td>
<td>53.5 (41–63)</td>
<td>54.7 (45.2–61.1)</td>
<td>0.482</td>
<td>EM + CD4 +, % (IQR)</td>
<td>53.5 (44.2–67.7)</td>
<td>53.5 (41–63)</td>
<td>54.7 (45.2–61.1)</td>
<td>0.482</td>
</tr>
<tr>
<td>NAIVE + CD8 +, % (IQR)</td>
<td>32.2 (15.4–40)</td>
<td>34.75 (24.4–44.4)</td>
<td>39.6 (24.3–49.2)</td>
<td>0.405</td>
<td>NAIVE + CD8 +, % (IQR)</td>
<td>32.2 (15.4–40)</td>
<td>34.75 (24.4–44.4)</td>
<td>39.6 (24.3–49.2)</td>
<td>0.405</td>
</tr>
<tr>
<td>CM + CD8 +, % (IQR)</td>
<td>0.84 (0.31–3.01)</td>
<td>2.01 (0.64–4.41)</td>
<td>1.47 (0.54–2.64)</td>
<td>0.482</td>
<td>TD + CD8 +, % (IQR)</td>
<td>52.6 (34.7–60.3)</td>
<td>46.2 (29.4–61.0)</td>
<td>47.4 (35.3–58.6)</td>
<td>0.962</td>
</tr>
<tr>
<td>TD + CD8 +, % (IQR)</td>
<td>33.2 (22.3–43.8)</td>
<td>33.4 (25.6–47.2)</td>
<td>37.1 (27.5–43.5)</td>
<td>0.857</td>
<td>TD + CD8 +, % (IQR)</td>
<td>33.2 (22.3–43.8)</td>
<td>33.4 (25.6–47.2)</td>
<td>37.1 (27.5–43.5)</td>
<td>0.857</td>
</tr>
<tr>
<td>TD + CD8 +, % (IQR)</td>
<td>52.6 (34.7–60.3)</td>
<td>46.2 (29.4–61.0)</td>
<td>47.4 (35.3–58.6)</td>
<td>0.962</td>
<td>TD + CD8 +, % (IQR)</td>
<td>52.6 (34.7–60.3)</td>
<td>46.2 (29.4–61.0)</td>
<td>47.4 (35.3–58.6)</td>
<td>0.962</td>
</tr>
</tbody>
</table>

CM, central memory CCR7 + CD45RA-; EM, effector memory CCR7-CD45RA-; IQR, interquartile range; SEB, Staphylococcal enterotoxin B; TD, terminally differentiated CCR7-CD45RA+.

Note: Data are presented as median (IQR). Statistical analyses: Friedman test with Dunn’s multiple comparison test.
P101 Reducing pill burden is more durable than reducing drug burden as strategy of HIV treatment simplification

Mauro Zaccarelli\(^1\); Patrizia Lorenzini\(^1\); Nicola Gianotti\(^2\);
Stefano Rusconi\(^3\); Pierluigi Viele\(^4\); Antonio Chiariello\(^5\);
Laura Sighinolfi\(^6\); Giustino Parruti\(^7\); Antonella D’Arminio Monforte\(^8\);
Stefano Rusconi\(^3\); Pierluigi Viele\(^4\); Antonio Chiariello\(^5\);
Laura Sighinolfi\(^6\); Giustino Parruti\(^7\); Antonella D’Arminio Monforte\(^8\);
Carlos Folguera\(^2\); Carmen De Mendoza Fernandez\(^1\) and
Alfonso Angel-Moreno Maroto\(^1\)

\(^1\)Clinical Department, National Institute for Infectious Diseases
P lazaro Spallanzani, Rome, Italy.
\(^2\)Department of Infectious Diseases, San Raaffaele Scientific Institute, Universita Vita-Salute San Raffaele, Milan, Italy.
\(^3\)Department of Medical and Surgical Sciences, Sant’Orsola Hospital, University of Bologna, Bologna, Italy.
\(^4\)3rd Department of Infectious Diseases, D. Cotugno Hospital-ADN dei Colli, Naples, Italy.
\(^5\)Department of Infectious Diseases, S. Anna Hospital, Ferrara, Italy.
\(^6\)Infectious Diseases Unit, Pescara General Hospital, Pescara, Italy.
\(^7\)Clinic of Infectious Diseases, Department of Health Sciences, ASST Sant’Paolo e Carlo, University of Milan, Milan, Italy.

Introduction: Reducing antiretroviral toxicity and improving adherence involves different switching strategies as reducing pill burden by single-tablet regimen (STR) or drug burden by regimens with two or one drug (less drug regimen, LDR). We aimed to compare the two approaches in patients who switched with suppressed viremia.

Materials and methods: From the Italian ICONA cohort, patients with undetectable HIV RNA switching to STR or LDR from any triple regimen were selected. Drug discontinuation by any cause (DAC) was the end-point of the analysis assessed by incidence rates and Poisson regression.

Results: Overall, 842 patients (525 STR, 317 LDR) were analyzed. STR included TDF/FTC/EFV (36.8%), TDF/RPV (48.4%) and ETV/COBI/ FTC/TDF (14.9%). LDR included dual regimens: LPV/r, ATV/r, DRV/r plus 3TC (29.7%) or any MVC, RAL, ETV (15.7%) and PI/r mono-
therapy (54.6%). Patients switching to STR were more frequently receiving NRTI, changed from first line of therapy and from NNRTI or INSTI, changed without failure or toxicity, had higher haemoglobin and transaminase. In contrast, patients switching to LDR were more often on PI/r, changed for toxicity, were older, had longer history of HIV infection and regimens, higher triglycerides and creatinine (Table 2). Overall, 240 patients (107/525 STR, 133/317 LDR) discontinued therapy in 1525 patient-years of follow-up (PYFU).

The crude IR of DAC was 15.7/100 PYFU (95% CI 13.9–17.9); 10.8/ 100 PYFU (95% CI 8.9–13.0) in STR and 24.9 (95% CI 21.0–29.6) in LDR (p < 0.001). Among causes of discontinuation, toxicity was significantly higher in STR patients (57.0% vs. 28.6%, p < 0.001), while in LDR discontinuation was associated with different situations: physician decision, switch to other regimen and intensification. No difference was found for discontinuation by viral failure (STR 4.7% vs. LDR 3.0%). By multivariable Poisson regression (Table 2), HCV co-infection, higher creatinine and switching from PI/r were associated with higher risk of DAC; longer duration of HIV, MSM, being at second switch versus first and change without failure or toxicity were associated with lower risk. Switching to STR was associated with significant 50% reduction of DAC (IRR 0.53; 95% CI 0.39–0.71) as compared with switching to LDR. Risk of DAC did not differ among the three STR, while, among LDR, probability of DAC was higher in mono than dual regimens (IRR 1.89; 95% CI 1.33–2.69). Excluding monotherapy, rates of DAC remained significantly lower in STR.

Conclusions: Switching to STR was associated with greater stability of the regimen and consequently lower treatment discontinuation. LDR can be useful in limited settings in order to reduce NRTI toxicity.

P102 Efficacy and safety of switch to DRV/cobicistat in patients who are virologically suppressed with treatment regimens containing DRV/r

Sara de la Fuente Moral\(^1\); Alberto Diaz de Santiago\(^1\);
Carlos Folguera\(^2\); Carmen De Mendoza Fernandez\(^3\) and
Alfonso Angel-Moreno Maroto\(^1\)

\(^1\)Internal Medicine, Hospital Puerta de Hierro Majadahonda-Madrid, Madrid, Spain.
\(^2\)Pharmacy Service, Hospital Puerta de Hierro Majadahonda-Madrid, Madrid, Spain.

Introduction: DRV boosted with ritonavir (r) is part of preferred antiretroviral therapies. Boosting DRV with cobicistat (cobi), a new selective inhibitor of cytochrome P450, allows coformulation in a single tablet, recently approved based on favourable bioequivalence data [1]. Cobicistat inhibits the tubular secretion of creatinine, leading to mild increase of serum creatinine levels, with no effect on actual glomerular filtration rate [2]. However, safety and efficacy data about DRV/r in clinical practice are still scarce. The aim of this study was to evaluate the efficacy, safety and tolerability of switching to DRV/cobi in HIV-infected patients who are virologically suppressed on a stable regimen containing ritonavir-boosted DRV.
Materials and methods: Retrospective study of patients following the switch from DRV/r to DRV/cobi. Other components of the regimen remained unchanged. Eligibility criteria included HIV-1 RNA below 100 copies/mL at time of treatment switch. Patients with detectable viraemia on ART, naïve patients and patients who started treatment with DRV/cobi from treatment schemes not containing DRV/r were excluded. The primary endpoint was to determine percentage of patients who remained virologically suppressed after switch. Secondary outcomes included changes in renal function and lipid profile. Clinical data were collected from patients’ medical records.

Results: We analyzed 150 virologically suppressed patients switching from DRV/r to DRV/cobi from July 2015 to May 2016. Baseline features are shown in Table 1. Out of 150 patients, 15 (10%) did not continue on care, so data from 135 patients were analyzed. Mean time to control analysis was 4.16 months (0.2–6.5). Most patients remained suppressed after changing treatment. There were four (3%) patients with virological failure; three of them due to poor treatment compliance, and one in the setting of chemotherapy treatment for lymphoma. Creatinine levels were slightly higher after switching to DRV/cobi, with no statistically significant differences neither in patients with or without concomitant treatment with tenofovir (Table 2 and Figure 1). Total cholesterol, LDL and HDL cholesterol remained unchanged, while a statistically significant decrease of 14 mg/dL was observed in the triglyceride level (Figure 2).
Conclusions: In HIV-1-infected patients, who are virologically suppressed, switching from RTV to cobicistat, cobi-boosting DRV was effective maintaining virological suppression and well tolerated. Mild and non-progressive increase in serum creatinine was confirmed. Cobicistat does not have clinically relevant effect on lipid profile.

Reference
P103
Confirmed efficacy and safety of dual therapy based in lamivudine plus a ritonavir-boosted protease inhibitor in the clinical setting
Maria Fonteche-Ortega1; Vanessa Muñoz-Mendoza2; Cristina Gómez3; Matilde Sánchez-Conde3; Miguel Angel Rodríguez3; Maria Jesús Vivancos3 and Jose Luis Casado3
1Internal Medicine, Hospital de Getafe, Getafe, Spain. 2Internal Medicine, Hospital Obispo Polanco, Teruel, Spain. 3Infectious Diseases, Hospital Ramon y Cajal, Madrid, Spain
Introduction: The aim of this study was to evaluate the efficacy, safety and additional benefits of a dual regimen with lamivudine (3TC) + protease inhibitor (PI) boosted with ritonavir in the clinical setting.
Materials and methods: Prospective study of 99 HIV-infected patients, HBV negative, without resistance to lamivudine or PI, who switched to this dual therapy because toxicity or intolerance. Routine laboratory tests, including estimated glomerular filtration rate (eGFR CKD-EPI equation), lipid parameters, immunovirological evaluation and a complete urinary determination were performed at inclusion and during follow-up.
Results: The mean age was 49.8 years (35–74), and 66% were male. The median time of HIV infection was 20.6 years (13.8–24.4), nadir CD4+ count was 193 cells/mm3 (IQR 90–306) and 42% had a previous AIDS diagnosis. Overall, patients were pre-treated with a mean of 6 regimens (1–10) for a median of 40.5 months. At the time of switch, 92% had an HIV RNA level <50 copies/L and the median CD4+ count was 555 cells/microl (IQR 394–799). Causes of switch were toxicity/intolerance in 71%, simplification in 24% and lack of adherence leading to detectable HIV load in 4%. Renal toxicity was observed in 50% of cases, followed by lipodystrophy in 10%. The main combination used was 3TC+ darunavir/r (n=70) and 3TC+ lopinavir/r in 21 cases. At 48 weeks, the efficacy by intention to treat was 97% (96/99), with three virological failures attributed to non-adherence. The median increase in CD4+ count was +35 and +80 cells/ml at 6 and 12 months. After switching, a significant increase in total cholesterol (TC), LDL cholesterol and triglycerides was observed during the first 6 months (p = 0.001, p = 0.05 and p = 0.07, respectively), with partial recovery at 12 months, and it was more marked in 64 patients previously receiving tenofovir disoproxil fumarate (TDF). On the contrary, there was a significant improvement in the eGFR at 6 and 12 months (p = 0.03 and p = 0.01), and urinary parameters improved significantly.
Conclusions: In this study, in the clinical setting, we demonstrate the efficacy and safety of dual therapy with 3TC associated with a boosted PI, with 97% remaining free of virological failure after 48 weeks and improvement in renal involvement. By contrast, it is expected a significant increase in total cholesterol and LDL cholesterol initially, with partial recovery at 48 weeks.

P104
Preferred regimens and reasons for switches in HIV-positive individuals in the German HIV-HEART cohort study over 30 years of antiretroviral treatment evolution
Volker Holzendorf1; Stefan Esser2 and on behalf of the HIVHEART Study Group2
1Clinical Trial Centre Leipzig – KKS, University of Leipzig, Leipzig, Germany. 2Clinic of Dermatology and Venerology, University Hospital Essen, Essen, Germany
Introduction: ART changes over the time and yields benefits in terms of virological suppression, tolerability and regimen simplification also in the contexts of ageing and polypharmacy. Compared with other countries all ART regimens are assumed by German health insurance coverage because German guidelines recommend personalized ART. We analyze the non-restrictive treatment choices and reasons for switches of the German clinicians in the HIV-HEART cohort.
Methods: The HIV-HEART study is an ongoing, prospective and observational cohort study in the German Ruhr area to assess the frequency and clinical course of cardiac disorders in 1538 HIV-positive individuals (HIV+). From the first diagnosis of HIV infection until 31 December 2015 ART, medical history and reasons for switches of ART were collected based on the health records, medication plans and the anamnesis. ART history was divided into five chronologic 5-year time periods (1995–1996, 2000–2001, 2005–2006, 2010–2011, 2015), which were compared with each other
Results: One thousand five hundred and thirty-eight HIV+ (mean age: 49.9 ± 11.0 years; male: 84.4%; Caucasian: 88.3%; MSM: 52.2%) were included at their last study visit. Sixteen thousand eight hundred and eighty patient-years since the first HIV diagnosis of the HIV+ were reviewed. According to the CDC classification of the HIV infection, HIV+ were distributed over the clinical categories (A: 32.3%; B: 29.2%; C: 30.5%; n.k.: 6.2%) while almost the half had an advanced immunodeficiency (I: 7.8%; II: 39.2%; III: 46.6%; n.k.: 6.2%). HIV+ were treated with ART on average for 10.2 ± 5.8 years with mean 3.8 ± 3.2 different regimens over the time. 90.9% of the living HIV+ had an HIV RNA below the level of detection at their last visit. Since the beginning of the HAART era the number of switches including the initiation of the ART in naïve HIV+ per 5-year time period decreased from 2.7 to 1.4. The caught main reasons (n>20) for ART switch changed: 1996 to 2001: adverse events 44.1%, virological failure 24.9% and compliance 21.1%; 2011 to 2015: adverse events 55.6%, patients request 19.3%, virological failure 9.1% and drug interactions 7.6%. In 1995, 87% of HIV+ were treated only with NRTIs; in 2001, 53% with a PI-containing regimen; in 2010, 36% with an NNRTI regimen; and in 2015, 36% take an INSTI-containing regimen.
Conclusions: Using new treatment options clinicians try to optimize the ART regimens over the time. More than 90% of the HIV+ achieved a viral load below the level of detection. Tolerability was still the most important reason for ART switches. Currently INSTI-containing regimens were preferred.

P105
Drug concentrations, adherence, patient-reported symptoms and health-related quality of life in HIV-infected, virologically controlled patients switching to maraviroc + darunavir/ritonavir or continuing the previous triple therapy: sub-studies from the randomized GUSTA trial
Barbara Rossetti1; Roberta Gagliardini2; Lucia Lis3; Melissa Masini3; Silvia Lamonica4; Francesca Vignale5; Gaetana Serrantinos6; Giancarlo Orofino7; Manuela Colafagl8; Alessandra Latini9; Andrea Tosti10; Stefano Rusconi11; Michele Trezzi12; Alessandro D’Avino13; Pierfrancesco Grima14; Ivan Mezzaroma15; Antonio Di Biagio16; Pierluigi Navarra1, Simona Di Giambenedetto17 and Andrea De Luca1
1Infectious Diseases Clinic, Azienda Ospedaliera Universitaria Senese, Siena, Italy. 2Infectious Diseases Clinic, Catholic University of Sacred Heart, Rome, Italy. 3Pharmacology, Catholic University of Sacred Heart, Rome, Italy. 4Infectious Diseases Clinic, University G. D’Annunzio, Chieti, Italy. 5Tropical and Infectious Diseases Clinic, IFO San Gallicano, Rome, Italy. 6Infectious Diseases Clinic, DIBIC Luigi Sacco, University of Milan, Milan, Italy. 7Infectious Diseases Clinic, San Giovanni in Valle Hospital, Rome, Italy. 8Infectious Diseases Clinic, San Giovanni in Valle Hospital, Rome, Italy. 9Infectious Diseases Clinic, San Giovanni in Valle Hospital, Rome, Italy. 10Infectious Diseases Clinic, Santa Caterina Hospital, Galatina, Italy. 11Infectious Diseases Clinic, Sapienza University, Rome, Italy.
Abstract P105

Table 1. Adherence, health-related QoL and patient-reported symptoms at different time points, based on randomization arm

<table>
<thead>
<tr>
<th>Arm</th>
<th>Baseline (n=34)</th>
<th>Week 4 (n=34)</th>
<th>Week 48 (n=34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm S (MVC + DRV)</td>
<td>87.35% (16.57)</td>
<td>1.00</td>
<td>22</td>
</tr>
<tr>
<td>Arm C (continuation of previous three-drug ART)</td>
<td>83.33% (15.51)</td>
<td>1.00</td>
<td>23</td>
</tr>
<tr>
<td>Arm S (MVC + DRV)</td>
<td>87.35% (16.57)</td>
<td>1.00</td>
<td>22</td>
</tr>
<tr>
<td>Arm C (continuation of previous three-drug ART)</td>
<td>83.33% (15.51)</td>
<td>1.00</td>
<td>23</td>
</tr>
</tbody>
</table>

Methods and materials: Plasma drug concentrations were measured between week 4 and 96 by a validated UPLC-MS/MS and Ctrough was calculated. In both arms, self-reported adherence (VAS 0–100% weeks 0, 4, 24 and 48), patient-reported symptoms and physical/mental QoL scores (VAS 0–100% weeks 0 and 48) were collected using validated questionnaires.

Results: Hundred and fourteen patients were analyzed (62 S, 52 C): 23% females, 40% heterosexuals, median age 49 years, baseline CD4 711 cells/μL, on ART since 10 years. Median Ctrough for DRV (n = 292 samples) was 1333 ng/mL (IQR 777–1686), MVC (n = 257) 55 ng/mL (41–106), RTV (n = 285) 37 ng/mL (21–56). In nine patients with VF DRV Ctrough at VF were significantly lower as compared with those during treatment success: DRV 1251 ng/mL (0–1864) versus 1328 ng/mL (787–1678), p = 0.004; MVC 39 ng/mL (5–207) versus 55 ng/mL (45–104), p = 0.001, and RTV 4 ng/mL (0–143) versus 42 ng/mL (21–56), p < 0.001. By linear regression, DRV Ctrough associated negatively with anti-HCV+ status (mean −586 ng/mL p = 0.041) and eGFR (+10 mL/min: −8 ng/mL; p = 0.011), and positively with age (+10 years: +249 ng/mL; p = 0.003). Adherence, patient-reported symptoms, physical health or mental health-related QoL scores did not differ between arms (Table 1). Physical health declined significantly from baseline at 48 weeks in arm C but not in S (Table 1). Adherence was significantly lower in patients with VF (arm S) and treatment failure (arm C) (Table 1). At time points with self-reported adherence ≤80% 6/51 (11.8%) in arm S versus 0/35 (0%) in arm C showed VF (p = 0.07). Values indicate means (standard deviations). The symptoms score reports the sum of the values of the intensity of the symptom (between 1 (absent) and 5 (very much)) divided by the number of evaluable symptoms per patient (max 30 total symptoms; ISS QoL adapted). p-value of between-arm comparisons (week 48 vs. baseline; success vs. failure); in arm S all failures were virologic; in arm C all failures were due to treatment discontinuation.

Conclusions: Switch to MVC + DRV/RTV OAD as compared with continuing a previous triple ART does not determine modifications in adherence, patient-reported symptoms and QoL. The excess of VF with this regimen seems associated with a lower forgiveness, not allowing to maintain virologic suppression during periods of suboptimal adherence with reduced drug exposure. Candidates to this regimen need to be carefully selected and instructed.

P106

A comparison between tenofovir/emtricitabine/elvitegravir/cobicistat and dolutegravir-based three-drug regimens as switch strategies for virologically controlled, HIV-infected patients

Gianbaldo Baladoni1; Alberto Borghetti2; Amedeo Capetti2; Gaetana Serrantino3; Stefano Rusconi4; Alessandra Latini5; Andrea Giacometti6; Maria Vittoria Cossu7; Manuela Colafag8; Mariangela Micale2; Sara Veloci7; Francesca Lombardi8; Ramona De Marco9; Arianna Emiliozzi10; Andrea De Luca11; Simona Di Giambenedetto12 and Giordano Madeddu9

Introduction: The randomized GUSTA trial, comparing switch to maraviroc (MVC) 300 mg + darunavir/ritonavir (DRV/RTV) 800/100 mg OAD (switch arm, S) versus continuation of the previous three-drug, virologically suppressive regimen (continuation arm, C) in patients carrying R5 virus was prematurely discontinued due to an excess of virologic failures (VF) in arm S. Aims of the sub-studies were to analyze drug levels in arm S, compare adherence, patient-reported symptoms and health-related quality of life (QoL) between arms and analyze the correlation between these parameters and treatment outcome.

Materials and methods: Plasma drug concentrations were measured between week 4 and 96 by a validated UPLC-MS/MS and Ctrough was calculated. In both arms, self-reported adherence (VAS 0–100% weeks 0, 4, 24 and 48), patient-reported symptoms and physical/mental QoL scores (VAS 0–100% weeks 0 and 48) were collected using validated questionnaires.

Results: Hundred and fourteen patients were analyzed (62 S, 52 C): 23% females, 40% heterosexuals, median age 49 years, baseline CD4 711 cells/μL, on ART since 10 years. Median Ctrough for DRV (n = 292 samples) was 1333 ng/mL (IQR 777–1686), MVC (n = 257) 55 ng/mL (41–106), RTV (n = 285) 37 ng/mL (21–56). In nine patients with VF DRV Ctrough at VF were significantly lower as compared with those during treatment success: DRV 1251 ng/mL (0–1864) versus 1328 ng/mL (787–1678), p = 0.004; MVC 39 ng/mL (5–207) versus 55 ng/mL (45–104), p = 0.001, and RTV 4 ng/mL (0–143) versus 42 ng/mL (21–56), p < 0.001. By linear regression, DRV Ctrough associated negatively with anti-HCV+ status (mean −586 ng/mL p = 0.041) and eGFR (+10 mL/min: −8 ng/mL; p = 0.011), and positively with age (+10 years: +249 ng/mL; p = 0.003). Adherence, patient-reported symptoms, physical health or mental health-related QoL scores did not differ between arms (Table 1). Physical health declined significantly from baseline at 48 weeks in arm C but not in S (Table 1). Adherence was significantly lower in patients with VF (arm S) and treatment failure (arm C) (Table 1). At time points with self-reported adherence ≤80% 6/51 (11.8%) in arm S versus 0/35 (0%) in arm C showed VF (p = 0.07). Values indicate means (standard deviations). The symptoms score reports the sum of the values of the intensity of the symptom (between 1 (absent) and 5 (very much)) divided by the number of evaluable symptoms per patient (max 30 total symptoms; ISS QoL adapted). p-value of between-arm comparisons (week 48 vs. baseline; success vs. failure); in arm S all failures were virologic; in arm C all failures were due to treatment discontinuation.

Conclusions: Switch to MVC + DRV/RTV OAD as compared with continuing a previous triple ART does not determine modifications in adherence, patient-reported symptoms and QoL. The excess of VF with this regimen seems associated with a lower forgiveness, not allowing to maintain virologic suppression during periods of suboptimal adherence with reduced drug exposure. Candidates to this regimen need to be carefully selected and instructed.
Variables	Overall n = 240	Elvitegravir n = 67	Dolutegravir n = 173	p
Age | 51 (4–56) | 50 (40–54) | 51 (46–57) | 0.082
Male sex | 178 (74.2) | 54 (80.6) | 124 (71.7) | 0.157
Risk factor for HIV
Heterosexual | 98 (40.8) | 26 (38.8) | 72 (41.6) | 0.074
MSM | 67 (27.9) | 25 (37.3) | 42 (24.3) | 0.074
IDU | 59 (24.6) | 15 (22.4) | 44 (25.4) | 0.074
Other/unknown | 16 (6.7) | 1 (1.5) | 15 (8.7) | 0.074
Italian nationality | 227 (94.6) | 65 (97.0) | 162 (93.6) | 0.582
CDC stage C | 69 (28.7) | 12 (17.9) | 57 (32.9) | 0.021
Anti-HCV | 61 (25.4) | 18 (26.9) | 43 (24.9) | 0.748
HBsAg | 18 (7.5) | 6 (9.0) | 12 (6.9) | 0.594
Time from HIV diagnosis* | 14 (5–23) | 12 (4–21) | 15 (6–23) | 0.273
Time on ARV therapy* | 10 (4–18) | 12 (3–17) | 10 (4–18) | 0.293
Nadir CD4 count* | 213 (68–326) | 308 (202–413) | 175 (43–286) | 0.001
Zenith HIV RNA* (log10 copies/mL) | 5.06 (4.66–5.45) | 5.06 (4.52–5.26) | 5.06 (4.71–5.50) | 0.322
Baseline CD4 count* | 586 (445–869) | 662 (494–908) | 568 (421–817) | 0.082
Previous virologic failure | 104 (43.7) | 30 (46.2) | 74 (42.8) | 0.640
Years of virologic suppression* | 4 (1–8) | 1 (0–5) | 5 (1–9) | <0.001
Therapies before switch
2 NRTI+INI | 57 (23.8) | 14 (20.9) | 43 (24.9) | 0.518
2 NRTI+NNRTI | 56 (23.3) | 18 (26.9) | 38 (22.0) | 0.421
2 NRTI+PI | 92 (38.3) | 27 (40.3) | 65 (37.6) | 0.697
Mono/dual therapy | 24 (10.0) | 3 (4.5) | 21 (12.1) | 0.076
Other | 12 (5.0) | 6 (9.0) | 6 (3.5) | 0.075
Reasons for previous treatment discontinuation
Toxicity | 54 (22.5) | 8 (11.9) | 46 (26.6) | <0.001
Simplification | 90 (37.5) | 45 (67.2) | 45 (26.0) | <0.001
DDI | 54 (22.5) | 0 | 54 (21.2) | <0.001
Other | 42 (17.5) | 14 (20.9) | 28 (16.2) | <0.001

DDI, drug-drug interactions; IDU, intravenous drug users; INI, integrase inhibitor; MSM, men who have sex with men; (N)NRTI, (non-) nucleoside reverse transcriptase inhibitor; PI, protease inhibitor. *Values within brackets are expressed in percentage except for median values (interquartile range).
adjusting for cART (aHR dolutegravir vs. elvitegravir 4.37, 95% CI 0.97–19.66; p = 0.055), male sex (aHR vs. female 0.40, 0.16–1.01; p = 0.052) and years of antiretroviral therapy (p = ns). A change in total cholesterol levels (−22 mg/dL; p = 0.023) was evident in the dolutegravir but not in the elvitegravir arm (+19 mg/dL; p = 0.069) at week 48. Triglycerides decreased significantly in both study arms at week 48. As expected, a decrease in eGFR was seen with tenofovir/emtricitabine/elvitegravir/cobicistat (−15 mL/min; p < 0.001).

Conclusions: High virologic efficacy of elvitegravir and dolutegravir-based cART was confirmed in our cohort. Despite a better metabolic profile, more TFs were detected with dolutegravir than with elvitegravir, which prompts the need for further investigation.

P107
Durability, metabolic impact and efficacy of switching from a PI/r- to an INI-containing regimen in a monocentric cohort of drug-experienced HIV-positive subjects
Stefano Rusconi; Letizia Oreni; Tiziana Formenti; Andrea Giacomelli; Valentina Di Cristo; Angelica Lupo; Elisa Colella; Marco Franzetti; Anna Lisa Ridolfo and Massimo Galli
Infectious Diseases Unit, DIBIC Luigi Sacco, Universita’ degli Studi di Milano, Milan, Italy

Introduction: Boosted protease inhibitors (PI/r) have been the cornerstone of antiretroviral therapy for many years. Patients and physicians are increasingly worried about long-term safety of anti-HIV drugs. With this aim, we analyzed our cohort of drug-experienced patients previously treated with a PI/r who were switched to an integrase inhibitor (INI).

Methods: Hundred and thirty-one patients were studied over time. We evaluated several parameters involved in the persistence of treatment, such as CD4+ lymphocytes, HIV RNA, previous PI/r exposure glucose, creatinine, AST, ALT, amylase, triglycerides, total lipids as far as triglycerides and total cholesterol was seen. Of note, a steady-state immunologic profile. Moreover, a favourable effect on durability, together with virologic efficacy and maintenance of steady-state immunologic profile. Moreover, a favourable effect on lipids as far as triglycerides and total cholesterol was seen. Of note, a longer duration of the INI-containing regimen was observed after being treated with ATV/r and LPV/r in the previous drug combination.

Results: Reasons for interrupting PI/r were: drug interactions 8.4%, immuno-virological failure 13.7%, side effects 26.7% and simplification 51.1%. The median observation time of the cohort was 17.8 months (IQR 5.2–40.1). Among the 131 patients, 26 interrupted the INI-containing regimen and 105 continued at the last observation. The probability of maintaining an INI-containing regimen was 0.91 (95% CI 0.86–0.96) at 6 months, 0.86 (0.80–0.93) at 12 months and 0.82 (0.74–0.89) at 18 months. The treatment survival differed at the last observation according to the PI/r included in the previous regimen, with a significant difference among atazanavir (ATV)/r, lopinavir (LPV)/r, fosamprenavir (FPV)/r and darunavir (DRV)/r (p < 0.0001) (Figure 1). PI/r included in the previous regimen was confirmed to be independently associated to the INI-containing regimen durability by multivariable analysis. No change in treatment survival was observed after stratifying for the three INI used in clinical practice, although there was a significant difference (p = 0.014) in the switch to RAL various PI/r (FPV/r > LPV/r > ATV/r > DRV/r)

Conclusions: Regimen switch to INI demonstrated an optimal durability, together with virologic efficacy and maintenance of INI-containing regimen durability by multivariable analysis. No change in treatment survival was observed after stratifying for the three INI used in clinical practice, although there was a significant difference (p = 0.014) in the switch to RAL various PI/r (FPV/r > LPV/r > ATV/r > DRV/r).

P108
Switch to dolutegravir in HIV patients responding to a first-line antiretroviral treatment: 48 weeks results
Luba Tau1; Tomer Ziv-Baran2; Ronit Cohen-Poradosu3; Ari Leshno3; Danny Alon4; David Shasha5; Steven Rapaport5; Asaf Wasserman5; Talya Finn1; Eugene Katchman5; David Hassin5; Israel Yust5; Tamar Brofman5; Boaz Avidor5 and Dan Turner4
1Cruized Kobler AIDS Center Tel Aviv, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. 2School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Abstract P107 - Figure 1. Treatment survival at the last observation according to the PI/r included in the previous regimen [atazanavir (ATV)/r, lopinavir (LPV)/r, fosamprenavir (FPV)/r and darunavir (DRV)/r(s)].
Objective: Dolutegravir (DTG) has shown a potent antiviral effect and favourable safety profile. This study compares retrospectively efficacy and safety between patients who had responded to an ARV regimen which was continued and prospectively those who were switched to DTG. Results at 48 weeks are presented.

Methods: This cohort study was performed on all patients followed in Tel Aviv who had responded to a non-DTG first-line ARV regimen (HIV-1 viral load <200 copies/mL) for at least 6 months. The prospective study group (group A) was switched to a DTG-containing regimen while the retrospective group (group B) continued their non-DTG ARV regimen. Laboratory parameters analyzed within 48 weeks include HIV viral load (VL), CD4 cell count, CD4/CD8 ratio, plasma fasting glucose, total cholesterol, HDL cholesterol, LDL cholesterol, ALT, creatinine level, WBC, haemoglobin and platelet count. Adverse clinical events were recorded after reviewing the medical records.

Results: Analysis included 157 patients (73 in group A; 84 in group B). Before switching to DTG 24 patients in group A were treated with raltegravir, 36 with PI and 13 with NNRTI. Amongst group B, 31 patients were treated with raltegravir, 39 with PI and 14 with NNRTI. At 48 weeks, 70 patients (96%) in group A and 76 (90.5%) in group B had VL <40 copies/mL (p = 0.183), VL >200 copies/mL was detected in one patient from group B. Median CD4 cell count in group A at baseline was 660 and 661 in group B (p = 0.338). At 48 weeks, median CD4 count in group A was 707 and 734 in group B (p = 0.275). Changes from baseline creatinine were higher in group B (p = 0.015) but this difference was not clinically relevant. Glucose, total cholesterol, LDL and HDL cholesterol, and ALT levels were similar in both groups. Also, there was no difference in complete blood count parameters (WBC, HGB, PLT) or CD4/CD8 ratio between the groups. In group A adverse clinical events were noted in 19% of patients. DTG was stopped in two patients (2.7%) due to adverse effects. In group B adverse effects were noted in 31% of patients. Fifty percent of patients on NNRTI treatment experienced side effects, 38% of patients in PI group and 6% in the raltegravir group.

Conclusions: Switching treatment-responding patients to DTG was effective and safe at 48 weeks.

P109 Antiretroviral treatment received by patients in the Spanish VACH cohort: change over time
Bernardino Roca
Infectious Diseases and Medicine, VACH Cohort of Spanish Hospitals, Castellon, Spain

Introduction: Antiretroviral treatment has had a dramatic impact on HIV infection control, but continued changes in recommended treatments have occurred throughout the history of the disease. In this study, we aim to achieve knowledge on changes that have taken place over the last 20 years on antiretroviral therapy prescription.

Materials and methods: This study is based on the Spanish VACH cohort of HIV-infected patients. The cohort was established in 2000, and is participated by 23 hospitals, belonging to most regions of the country. Data from all patients are included in a common software, Advanced HIV, specifically developed for the follow-up of HIV-infected patients. For this study we obtain from that application a cohort of HIV-infected patients. The cohort was established in 2000, and is participated by 23 hospitals, belonging to most regions of the country. Data from all patients are included in a common software, Advanced HIV, specifically developed for the follow-up of HIV-infected patients. For this study we obtain from that application a common software, Advanced HIV, specifically developed for the follow-up of HIV-infected patients.

Results: On 31 January 2016 the VACH cohort was formed by a total of 33,729 patients; 25,986 (77.04%) are men. According to data from the last registered visit, mean and standard deviation of age of all patients is 45.29 ±12.53 years; 80.10% of patients are receiving antiretroviral treatment; mean and standard deviation of CD4 lymphocyte count is 348 cells/mm³ and 75% have HIV RNA below 200 copies/mL.

Table 1. Main results of the study

<table>
<thead>
<tr>
<th>Type of treatment</th>
<th>2NA + II</th>
<th>2NA + PI</th>
<th>2NA + NN</th>
<th>Other treatment</th>
<th>No treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996–2005</td>
<td>0</td>
<td>1623</td>
<td>1511</td>
<td>1214</td>
<td>2858</td>
</tr>
<tr>
<td>2006–2010</td>
<td>81</td>
<td>2240</td>
<td>3394</td>
<td>1033</td>
<td>1043</td>
</tr>
<tr>
<td>2011–2013</td>
<td>325</td>
<td>1552</td>
<td>2921</td>
<td>1324</td>
<td>466</td>
</tr>
<tr>
<td>2014–2015</td>
<td>3018</td>
<td>1575</td>
<td>2470</td>
<td>1965</td>
<td>230</td>
</tr>
</tbody>
</table>

Conclusions: There is a strong association between taking treatment and survival in all four time periods (p < 0.0001).

The RAL-AGE study: benefits of switching to raltegravir-containing regimens in the older population
Paolo Pavone1; Noemi Giustini1; Gabriella d’Ettorre1; Sara Serafino1; Ivan Schietroma1; Giuseppe Corano Scheri1; Ivano Mezzaroma2; Mauro Andreotti3; Andrea Mastrangelo1; Claudio Maria Mastroianni3 and Vincenzo Vullo1
1Public Health and Infectious Diseases, Sapienza University, Rome, Italy. 2Public Health and Infectious Diseases, Policlinico Umberto I, Rome, Italy. 3Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanita, Rome, Italy

Introduction: Raltegravir (RAL) is considered one of the better-tolerated antiretroviral medications, due to limited side effects and few long-term safety concerns. Furthermore RAL displays minimal drug–drug interactions, making it a good option for ageing patients.
on multiple medications but the use of bid regimens in the elderly is sometimes avoided due to poor adherence concerns.

Materials and methods: We retrospectively evaluated 20 HIV+ patients, over 60-years-old, experienced patients, who had switched from any antiretroviral drug to raltegravir-based nuc-sparing/protease inhibitors (PI)-containing regimens (n = 10) or standard nucleoside-backbone regimens (n = 10) because of toxicity, convenience or other reasons. Data were collected from medical records. The time horizon for patient follow-up was at least 12 months. The following information was extracted from the database of the department: age, sex, race, smoking, risk factors, AIDS history, hepatitis, comorbidities, BMI, blood count, HIV RNA, CD4+, CD8−, previous ART regimens, creatinine, cholesterol and triglycerides, and cholesterols index. SPSS software was used.

Results: The median age of the patients was 64.5 years (15 males, 5 females) with a median of HIV diagnosis years of 13. HIV RNA at baseline was undetectable in most of the patients except two. Median CD4+ count was 450.5 cells/mm3 (IQR 353–717). Twelve patients had AIDS history. Reasons to switch were renal insufficiency, dyslipidaemia, HIV drug resistance and drug–drug interactions. No adverse effect related to the use of raltegravir was reported. Only one patient presented virologic failure, whereas viremic blips were observed in four patients. After switching to RAL-containing regimens triglycerides values showed a statistically significant reduction from a median value of 165 mg/dL to 111.5 mg/dL (p < 0.016). Comparing patients who switched to a standard nucleoside-backbone containing regimen (NRTI-R) versus those who switched to PI-based nuc-sparing regimens (PI-R) we found that only NRTI-R patients presented a statistically significant reduction of triglycerides (155 mg/dL at T0 vs. 95 mg/dL at T2, median values, p = 0.047). Furthermore, the NRTI-R patients compared with PI-R patients presented reduced values of creatinine (0.9 mg/dL vs. 1.1 mg/dL, p = 0.043), reduced values of alkaline phosphatase (47 U/L vs. 85 U/L, p = 0.046) and higher levels of CD4+ count (635 cells/mm3 vs. 453 cells/mm3, p = 0.035).

Conclusions: RAL-containing regimens are safe and highly effective in the older population. Reduction of triglyceride levels is more pronounced when RAL is used with nucleoside-backbone than in PI-containing regimens. When using RAL, switching to a standard nucleoside-backbone regimen appears to be less toxic than nucleosparing/PI-containing regimens in older patients.

P111
Characteristics and satisfaction survey in patients switching to darunavir/cobicistat (DRV/c)
Maria Vivancos-Gallego; Ana Moreno; Carmen Quereda; Jose Luis Casado; Cristina Gomez Ayerbe; Matilde Sanchez-Conde; Santos Del Campo; Santiago Moreno and Maria Perez Elias Infectious Diseases, Instituto Ramon y Cajal de Investigación Sanitaria, Madrid, Spain

Introduction: Coformulated ARV in a single pill, as DRV/c could improve adherence and satisfaction to ARVs. No studies had explored this outcome with new boosted PI, DRV/c [1,2]. A satisfaction questionnaire was conducted to know how patients feel with the new treatment.

Methods: From July 2015 to January 2016, we retrospectively reviewed all patients switching to a DRV/c regimen. After switching to DRV/c a short satisfaction questionnaire was filled out by participants. All questions referred to the changes with respect to the prior regimen. Overall satisfaction and convenience were categorized as: better, equal or worse. All symptoms were evaluated and could be categorized as getting better or worse and scored 1–10.

Results: Hundred and sixty-nine patients started a DRV/c regimen: 76.9% men, with a median age of 52.3 years, 59.5% IDU as route of HIV transmission, AIDS stage 50.6%, HCV co-infection 56.6%, baseline CD4 count 694 and a median exposure to ART of 17 (1–27) years. Main reasons for switching were simplification 80% and toxicity 9%. Previous treatment was PI monotherapy (31%), PI + 2 NRTIs and PI + 3TC (15.6%). Mean reduction in the number of tablets was significant (3 to 1.8; p < 0.001). After switching, boosted PI distribution was: DRV/c 34%, DRV/c + 3TC 18% and DRV/c + DTG 15%. Fifty-four out of 169 patients were surveyed. Majority, 92.5% answered that they felt better than before or equal, while 7.5% felt worse. Convergence was scored, 81.1% better, 15.1% equal or 3.8% worse. Asking about specific symptoms, 26.4% referred some symptom that improved (with a score 2.13 vs. 1.47; p = 0.002), while 28.3% referred at least one worsening symptom (1.13 vs. 1.94; p < 0.001). There was a statistically significant improvement in frequency of stools (1.69 vs. 1.19; p = 0.002). A higher improvement was found when patients came from DRV/r compared with those who came from non-DRV/R (97.6% vs. 72.7%; p = 0.005). Patients with prior non-DRV/r compared with DRV/r regimens had a higher frequency of stools score before changing to DRV/c (2.64 vs. 1.45; p = 0.043), while turned to similar frequency of stools score after switching (1.14 vs. 1.36; p = 0.56).

Conclusions: DRV/c was prescribed mostly in HIV-infected patients with longer time of exposure to ART, previous AIDS and HIV/HCV co-infection. Simplification was the main reason for switching to DRV/c. Patients switching to DRV/c valued the new treatment as better or equal and more convenient. Patients taking DRV/r before the switch referred more satisfaction comparing with those who were taking non-DRV/r.

References

P112
Short-term safety and tolerability of switch of backbone antiretroviral agents to coformulated tenofovir disoproxil fumarate/emtricitabine in HIV-positive Taiwanese patients
Hsi-Yen Chang; Pei-Ying Wu; Jun-Yu Zhang; Shang-Ping Yang; Yu-Zhen Luo; Wen-Chun Liu; Hsin-Yun Sun; Chien-Ching Hung and Shan-Chwen Chang
1Center of Infectious Control, National Taiwan University Hospital, Taipei, Taiwan. 2Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan

Introduction: Coformulated tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) has become the recommended backbone antiretrovirals in combination with other non-nucleoside reverse transcriptase inhibitors (non-NRTIs), protease inhibitors or integrase strand transfer inhibitors. Access to this coformulation is limited, however, in many countries in Asia-Pacific regions. We aimed to assess the safety and tolerability of switch of two NRTIs backbone to TDF/FTC in treatment of HIV infection in Taiwan, where access to TDF/FTC was not available until May 2015.

Materials and methods: All HIV-positive patients with a mean age of 40.5 years and 88.5% being homosexual males whose backbone
antiretrovirals were switched to TDF/FTC between May 2015 and May 2016 were included in this analysis. We collected information on the demographic and clinical characteristics before switch and CD4, plasma HIV RNA load (PVL), lipids, serum creatinine, glycosuria, proteinuria and beta-2 microglobulin at baseline and during follow-up. Adverse effects and causes of discontuination were also recorded.

Results: During the 12-month observation period, 1164 patients switched from TDF and lamivudine (n = 818), coformulated abacavir/lamivudine (n = 229) and coformulated zidovudine/lamivudine (n = 117) to TDF/FTC, without changes made to the third agents, after a mean exposure duration of 60 (SD, 47), 91 (SD, 32) and 40 (SD, 40) weeks, respectively. CD4 and PVL before switch were 613 cells/mm³ (SD, 284) and 1.5 log10 copies/mL (SD, 0.70). After an interval of 240 days (SD, 68), the mean CD4 and PVL remained stable (610 cells/mm³ and 1.38 log10 copies/mL, respectively), so was mean serum creatinine for TDF and lamivudine group (0.93 vs. 0.92 mg/dL) and zidovudine/lamivudine group (0.94 vs. 0.96 mg/dL), but it increased from 0.94 to 1.12 mg/dL for abacavir/lamivudine group. Mean total cholesterol, triglyceride and low-density lipoprotein-cholesterol decreased from 178.0 to 167.2, 178.1 to 134.9, and 105.0 to 99.4 mg/dL for abacavir/lamivudine group, respectively. Mean BMI decreased from 26.6 to 26.2, 27.5 to 26.0 and 26.4 to 25.9 kg/m² in the TDF and lamivudine, abacavir/lamivudine and zidovudine/lamivudine group, respectively. Switches and, subsequently, reduction in mortality and morbidity improved on POC VL machines are suitably deployed, health system will be strengthened, there will be reduction in wrong switches and, subsequently, reduction in mortality and morbidity among PLHIVs.

Introduction

PLHIVs on antiretroviral (ARV) regimen with plasma viral load above 1000 copies/mL based on two consecutive viral load measurements after 3 months, with adherence support, are said to be in virology failure. Virology failure leads to easy HIV transmission, evitable morbidity and mortality especially if antiretroviral therapy (ART) drugs are switched without initial VL testing. Unfortunately, VL testing is so costly. The few available PCR laboratories and point-of-care (POC) VL machines that are used for the testing are not evenly distributed in the country. Currently over 70% of PLHIVs have not done any VL test in the last one year since enrolled into care. In 2014, MSH ProACT, a USAID-funded programme in Nigeria, launched a PCR laboratory in Usman Danfodiyo University Teaching Hospital Sokoto to provide free VL testing. This is in alignment with PEPFAR and UNAID 90:90:90 strategies. This study was to find out the impact of the PCR laboratory on PLHIVs' quality of care.

Methods

Retrospective study was done one year after the PCR launch. Clinical audit of the VL register and chart review of 268 folders of clients with detectable VL results > 20 VL copies were conducted. Analysis of client retention data was also done. Update training was conducted for clinicians and other healthcare workers (HCWs) working in the ART clinic to optimize VL testing.

Results: The analysis of the VL register showed that 268 out of 583 recorded results (46%) had detectable VL of which 141 (53%) are > 1000 copies/mL. Chart review of the 268 folders revealed that 162 were not switched and 106 were switched: 22 (21%) were rightly switched and 84 (79%) were wrongly switched (considering the retrogressive outcome documented). 66 (78%) of these wrong ART switches had > 1000 copies of which 28 (42%) were in World Health Organization stages 3 and 4. These wrong switches were made prior to the launch of the PCR laboratory.

Discussion: After the launch, seven (100%) of the subsequent switches were done well. Currently most clients do better without requiring switching post VL testing and adherence counselling. Within a year, client retention improved to 77% as compared with 59% in the previous year. Quality of care and clients' adherence improved.

Conclusions: VL testing improves quality of care for all PLHIVs. If PCR laboratories or POC VL machines are suitably deployed, health system will be strengthened, there will be reduction in wrong switches and, subsequently, reduction in mortality and morbidity among PLHIVs.

TREATMENT STRATEGIES: OTHER

P114

Knowing the epidemic is the best way to define diagnosis and treatment strategies to reach the 90–90–90 goals: the experience of Portugal in using the ECDC HIV modelling tool

Author: Antonio Diniz; Jose Loff and Helena Cortes-Martins

Affiliation:
1Immunodeficiency Unit, Directorate General of Health and CHLN, Lisboa, Portugal.
2Department of Epidemiology and Surveillance, Directorate General of Health, Lisboa, Portugal.
3Infectious Diseases, National Health Institute, Lisboa, Portugal.

Introduction: In Portugal, data from the continuous of care show that in 2014 approximately 34,000 persons living with HIV (PLHIV) were in care, 82.8% of which on antiretroviral treatment and 78.4% virologically suppressed. However, updated estimates for HIV prevalence, incidence and PLHIV diagnosed are still missing, making difficult defining appropriate diagnosis and treatment strategies to reach the 90–90–90 goals.

Material and methods: Annual estimates (1983–2014) for the number of PLHIV, undiagnosed fraction, new infections and time to diagnosis were produced using the new software application “ECDC HIV modelling tool,” and the data from the national HIV surveillance system. The model was constructed based on the “Incidence Method” [1]. Several cut points were considered to fit the model to the Portuguese HIV epidemic.

Results: Estimates were produced for total HIV-infected population and for main transmission categories: heterosexual, men who have sex with men (MSM), intravenous drug users (IVDU) (Table 1). At the end of 2014, an estimated number of 44,176 individuals were living with HIV in Portugal (prevalence: 0.43%). Of those, 4298 (9.7%) were not aware of their infection.

Conclusions: Current estimates indicate a lower prevalence than previous assessments. Estimated undiagnosed fraction and time to diagnosis vary for different transmission modes reflecting past interventions and current trends of the epidemic. Portugal has now updated data that will allow building the “treatment cascade.” According to these results, Portugal has reached the cascade first
Abstract P114 – Table 1. Estimates of PLHIV, PLHIV diagnosed and undiagnosed, undiagnosed fraction, new infections and time to diagnosis, global and by transmission categories (2014)

<table>
<thead>
<tr>
<th></th>
<th>Global</th>
<th>Heterosexual</th>
<th>MSM</th>
<th>IVDU</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLHIV</td>
<td>44,176</td>
<td>22,109</td>
<td>7930</td>
<td>13,353</td>
</tr>
<tr>
<td>PLHIV diagnosed</td>
<td>39,877</td>
<td>19,239</td>
<td>7071</td>
<td>13,193</td>
</tr>
<tr>
<td>(39,476–40,295)</td>
<td>(18,987–19,574)</td>
<td>(6896–7288)</td>
<td>(13,008–13,513)</td>
<td></td>
</tr>
<tr>
<td>PLHIV undiagnosed</td>
<td>4298</td>
<td>2870</td>
<td>859</td>
<td>161</td>
</tr>
<tr>
<td>(3508–5274)</td>
<td>(2200–3783)</td>
<td>(570–1292)</td>
<td>(95–665)</td>
<td></td>
</tr>
<tr>
<td>Undiagnosed fraction (%)</td>
<td>9.7</td>
<td>10.8</td>
<td>10.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Total</td>
<td>5.1</td>
<td>10.5</td>
<td>10.5</td>
<td>5.1</td>
</tr>
<tr>
<td>Time to diagnosis (years)</td>
<td>4.1 (3.7–4.4)</td>
<td>4.5 (4.0–5.1)</td>
<td>5.2 (2.8–3.4)</td>
<td>3.4 (1.7–5.8)</td>
</tr>
</tbody>
</table>

Goal (90% of the PLHIV already diagnosed) with time to diagnosis becoming progressively shorter. In order to reach all 90–90–90 goals, we must now address our efforts to define and apply new and stronger strategies related to linkage/retention in care and to treatment.

Reference

P115
Drug retention time: a real-life Swedish nationwide cohort study on InfCareHIV 2009-2014
Amanda Hägglom1; Stefan Lindbäck2; Magnus Gisslén3; Leo Flamholc4; Bo Hejdeman5; Andreas Palmborg6; Amy Leval2; Eva Herweijer6; Sverrir Valgardsson7 and Veronica Svedhem8
1Department of Infectious Diseases, County Council of Gävleborg, Gävle, Sweden. 2Janssen Medical Affairs, Stockholm, Sweden. 3Department of Infectious Diseases, Sahlgrenska Academy, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden. 4Department of Infectious Diseases, Malmö University Hospital, Malmö, Sweden. 5Department of Infectious Diseases, Venhålsan-Södersjukhuset, Stockholm, Sweden. 6Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. 7Janssen Medical Affairs, Oslo, Norway. 8Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden

Introduction: As HIV infection requires lifelong treatment, studying drug retention times and factors influencing treatment durability is essential. The Swedish database InfCareHIV includes high-quality data from more than 99% of all patients diagnosed with HIV infection in Sweden and provides a unique opportunity to examine outcomes in a nationwide real-world cohort.

Methods: Adult patients who started a new therapy defined as a new third agent (all ARVs that are not NRTIs) 2009 to 2014 with more than 100 observations in treatment-naive or treatment-experienced patients were included. Dolutegravir was excluded due to short follow-up period. Multivariate Cox proportional hazards models were used to estimate hazard ratios for treatment discontinuation.

Results: Two thousand five hundred and forty-one treatment-naive patients started 2583 episodes of treatments with a third agent. Efavirenz was most commonly used (n = 806), efavirenz (n = 694), raltegravir (n = 622), rilpivirine (n = 592), lopinavir (n = 291) and etravirine (n = 262). Compared to darunavir all other drugs except for rilpivirine had higher risk for discontinuation in the multivariate adjusted analyses: rilpivirine (HR 1.71; 95% CI 1.48–1.97, p < 0.001), efavirenz (HR 1.86; 95% CI 1.59–2.17, p < 0.001), raltegravir (HR 1.35; 95% CI 1.15–1.58, p < 0.001), lopinavir (HR 3.58; 95% CI 3.02–4.25, p < 0.001) and etravirine (HR 1.61; 95% CI 1.31–1.98, p < 0.001).

P116
Discontinuation of dolutegravir (DTG)-based regimens in clinical practice
Maria J Vivancos-Gallego; Ana Moreno; Maria J Perez-Elias; Cristina Gomez Ayerbe; Jose Luis Casado; Carmen Quereda; Matilde Sanchez-Conde; Sergio Serrano Villar; Fernando Dronda; Enrique Navas; Miguel Angel Rodriguez and Santiago Moreno Infectious Diseases, Instituto Ramon y Cajal de Investigación Sanitaria, Hospital Ramon y Cajal, Madrid, Spain

Introduction: Real-life data have shown a higher rate of side effects with dolutegravir (DTG)-based regimens than previously described in clinical trials. In order to confirm these observations, we have reviewed our experience in patients who discontinued DTG for any reason.

Materials and methods: Retrospective analysis of all patients who discontinued DTG in our hospital cohort. Pre-treated and treatment-naive patients were included. Baseline characteristics at the time of DTG initiation and antiretroviral therapy before and after DTG were recorded. We describe any reason for dolutegravir discontinuation.

Results: Among 2470 HIV-infected patients, 827 (33.5%) patients received DTG (69.4% STR of ABC/3TC/DTG) from September 2014 to May 2016 for a median period of 156.8 days (4–1199). A total of 104 (12.6%) patients discontinued DTG for any reason and were switched to other ARV regimens. Of these 104 patients (60.6% STR of ABC/3TC/DTG), mean age was 49.6 ± 10.5 years, 74 (71.2%) were men, baseline CD4 count was 574 ± 324 cells/mm³, viral load was detectable before starting DTG in 17 (16.3%) and 30 (29%) had previous AIDS. Only seven (6.7%) patients were naive. There were 41
patients (39.4%) who were lost to follow-up. Main reasons for stopping DTG-based regimen were toxicity in 36 patients (4.3% of all patients who initiated DTG, 33.9% of all discontinuations), and physician’s decision in 11 patients (1.3% and 10.6%, respectively). Most frequent toxicities leading to drug interruption included headache (nine patients), high cholesterol (eight patients), insomnia (seven patients) and dizziness (six patients). One patient developed serious mood disorders with early recovery after discontinuation.

Conclusions: In our real-life cohort, we did find a high proportion of DTG discontinuation attributable not only to toxicity. CNS adverse events are the most frequent cause of discontinuation. Ongoing pharmacovigilance is important to identify events that might be associated with the drug.

P117

Dolutegravir (DTG) monotherapy treatment de-escalation in virologically controlled, pre-treated HIV patients: results from the DoluMono cohort study

Celia Oldenbüttel; Eva Wolf; Ayla Ritter; Sebastian Noe; Silke Heldwein; Rita Pascucci; Carmen Wiese; Ariane von Kroisig; Eva Jägel-Guedes; Hans Jäger; Annamaria Balogh; Christine Kögl and Christoph Spinner

Introduction: Long-term antiretroviral treatment (ART) with potential toxicity in HIV-infected patients requires ongoing investigation of novel strategies. Besides “nucleo-free” concepts and protease inhibitor monotherapy, integrase inhibitor (INSTI) monotherapy may offer a favourable safety profile. The high resistance barrier of dolutegravir (DTG) might be crucial for successful maintenance of virological control, but published data are sparse.

Methods: Retrospective, mono-centric cohort study. Patients on suppressive ART switched to DTG monotherapy in clinical routine practice fulfilling inclusion criteria (HIV RNA level <50 copies/mL for ≥6 months at time of switch [one accepted blip <200 copies/mL with re-suppression], no known INSTI resistance or prior INSTI failure, no replicative HBV infection and no history of AIDS) were enrolled.

Results: We identified 31 patients with week 24 follow-up data. Median time on previous ART was 26 months (24–28) including an NNRTI in 32%, a boosted PI in 6% and an INSTI in 61% of cases. At week 24, HIV RNA remained <50 copies/mL in 94% of all patients. One patient discontinued DTG monotherapy on his own wish (3%), and in another patient confirmed virological failure (3%) with HIV RNA 538 copies/mL and evolution of INSTI mutations Q148H/G140S was documented. Changes in immune, renal and metabolic status/function showed no statistically significant changes, except a significant decrease of gGT (Table 1).

Conclusion: Switching to DTG monotherapy in selected patients might be safe and effective. However, in one case evolution of INSTI resistance was observed. Further studies should assess risk factors for DTG monotherapy failure. Meanwhile, caution should be warranted.

P118

Outcomes of cabotegravir (CAB) treatment in HIV-1 ART-naive patients with chronic or acute hepatitis C virus (HCV) co-infection: data from the phase Ib programme

Shanker Thigajarah; David Dorey; Jenny Huang; Gilly Roberts; Britt Stancil and David Margolis

Introduction: HCV co-infection is prevalent in the HIV-1 population, and acute HCV infection has been reported. CAB is a long-acting (LA) intramuscular integrase inhibitor (INI) in clinical development for the treatment of HIV in combination with LA rilpivirine. Acute reversible transaminitis has been reported with INI treatment. This report describes the safety and efficacy outcomes of CAB treatment for HIV-1 infected ART-naive subjects with acute and chronic HCV co-infection during two ongoing phase Ib studies (LATTE and LATTE-2).

Materials and methods: Subjects with HCV co-infection were identified using HCV antibody results at baseline. Subjects with acute HCV infection were identified using polymerase chain reaction assay, once subjects had met prespecified criteria for liver aminotransferase elevations (ATE). The following were assessed: protocol defined HIV virological failure (PDVF), withdrawals, emergent grade 2 or higher ATE on CAB, meeting predefined liver stopping criteria (LSC).

Results: In the intent-to-treat-exposed (ITT-E) population receiving CAB treatment, 22 of 490 (4.5%) subjects were HCV antibody reactive at baseline (Table 1). Of these 22 co-infected subjects, one subject developed PDVF through week 144 (LATTE, n=1), and no subject developed PDVF through week 48 (LATTE-2, n=13). Two co-infected subjects were withdrawn due to drug-related adverse events: suspected drug-induced liver injury (DILI) meeting LSC (n=1) and nausea (n=1). Three co-infected subjects had emergent grade 2 or higher ATE, two of which were withdrawn: DILI (n=1), withdrawal of consent/supect-homeless with difficulty travelling (n=1). Ten of 490 (2%) subjects on LATTE and LATTE-2 developed acute HCV infections

Abstract P117 – Table 1. Overview of selected study parameters at baseline and week 24 with delta and p-value

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Week 0 (n = 31)</th>
<th>Week 24 (n = 30)</th>
<th>Delta (week 24-0)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV RNA <50 copies/mL (patients), ITT snapshot</td>
<td>31 (100%)</td>
<td>29 (94%)</td>
<td>2 (6%)</td>
<td>0.500</td>
</tr>
<tr>
<td>CD4 absolute (µL)</td>
<td>752 (581–970)</td>
<td>747 (573–913)</td>
<td>21.5 (–98–85)</td>
<td>0.959</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>33 (26–44)</td>
<td>32 (26–42)</td>
<td>1.5 (–9–13)</td>
<td>0.758</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>21 (19–26)</td>
<td>23 (19–29)</td>
<td>0.5 (–5–5)</td>
<td>0.910</td>
</tr>
<tr>
<td>gGT (U/L)</td>
<td>36 (28–64)</td>
<td>30 (23–51)</td>
<td>−4.5 (–22–1)</td>
<td>0.014</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>56 (45–68)</td>
<td>51.5 (43–62)</td>
<td>−2.5 (–8–3)</td>
<td>0.174</td>
</tr>
<tr>
<td>LDL cholesterol (mg/dL)</td>
<td>115 (92–142)</td>
<td>122 (95–138)</td>
<td>0.5 (–9–26)</td>
<td>0.300</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>182 (160–214)</td>
<td>194 (178–221)</td>
<td>4 (–28–33)</td>
<td>0.524</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>146 (96–187)</td>
<td>130 (98–196)</td>
<td>3 (–38–45)</td>
<td>0.681</td>
</tr>
<tr>
<td>Serum creatinine (mg/dL)</td>
<td>1.1 (1–1.4)</td>
<td>1.15 (1.03–1.43)</td>
<td>0.02 (–0.06–0.15)</td>
<td>0.225</td>
</tr>
<tr>
<td>eGFR (ml/min)</td>
<td>95 (81–114)</td>
<td>109.05 (83–120)</td>
<td>6 (–4–14)</td>
<td>0.077</td>
</tr>
</tbody>
</table>
while on CAB, characterized by ATE. Five subjects were withdrawn after meeting LSC and transitioned to alternative ART. Five remaining subjects on LATTE-2 who met LSC had transaminase decline indicating stable disease or spontaneous clearance of HCV and were permitted per protocol to continue on CAB LA. All five acute HCV subjects continuing on CAB LA maintained HIV-1 viral suppression (<50 copies/mL at week 48). One (1/5) remaining acute HCV subject later discontinued CAB LA due to rebound ATE considered related to the underlying evolving HCV infection. Triumeq was started with continued HIV-1 viral suppression (<50 copies/mL at week 48).

Conclusions: Data from the phase IIb studies, albeit in small numbers of subjects, support the conclusion that chronic HCV co-infection does not adversely impact treatment outcomes in most subjects and uncomplicated acute HCV infection may not be a barrier to CAB LA as a treatment option.

Table 1. Summary of PDVF and safety results by HCV infection status for LATTE and LATTE-2 subjects* exposed to cabotegravir

<table>
<thead>
<tr>
<th>Hepatitis C infection status, ITT-E (N = 490)</th>
<th>Number of subjects with protocol defined virological failure, n (%)</th>
<th>Number of subjects with grade 2 or higher transaminitis, maximum post baseline emergent ALT or AST, n (%)</th>
<th>Number of subjects with drug-related adverse events leading to withdrawal, n (%)</th>
<th>Number of subjects who met protocol defined liver stopping criteria, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV co-infection (N = 22)</td>
<td>1/22 (4.5%)</td>
<td>3/22 (14%)</td>
<td>2/22 (9%)</td>
<td>1/22 (4.5%)</td>
</tr>
<tr>
<td>Acute HCV infection (N = 10)</td>
<td>0/10</td>
<td>10/10 (100%)</td>
<td>0/10</td>
<td>10/10 (100%)‡</td>
</tr>
<tr>
<td>Non-infected (N = 458)</td>
<td>12/458 (2.6%)†</td>
<td>45/458 (9.8%)‡</td>
<td>11/458 (2.4%)§</td>
<td>3/458 (< 1%)§</td>
</tr>
</tbody>
</table>

*LATTE (N = 181) used week 144 data cut and LATTE-2 (N = 309) used week 48 data cut; †Nine subjects were ineligible to enter the maintenance period (HIV-1 RNA = 50 copies/mL just prior) and did not meet the confirmed PDVF criteria at time of withdrawal; ‡Five subjects with acute HCV infection met protocol defined liver stopping criteria but were permitted by protocol to continue on CAB LA; §One additional subject who met liver stopping criteria based on local laboratory tests is not counted in the numerator.

Abstract P118

Antiretroviral treatment patterns in the US: an analysis of real-world data

Abstract P119

The proportion of patients who initiated different third agents.

Figure 1. The proportion of patients who initiated different third agents.
Introduction: Recommended initial treatment regimens for HIV-infected individuals include a “backbone” of two nucleoside reverse transcriptase inhibitors (NRTIs) in combination with a “third agent” from another class such as an integrase strand transfer inhibitor (INSTI), protease inhibitor (PI) or non-nucleoside reverse transcriptase inhibitor (NNRTI). Recent treatment guidelines have moved from recommending PI- and NNRTI-based regimens to more INSTI-based regimens. In treatment-experienced patients who fail therapy, it is recommended that the new regimen should include at least two fully active agents. This study describes the changes in third agents in the real-world setting over time.

Methods: This is descriptive analysis using a US insurance claims database. Patients with HIV and newly initiating a different third agent class (INSTI, PI or NNRTI) were identified from 1 July 2011 to 30 September 2015. Patients were excluded if they were not continuously enrolled in the health plan for a year.

Results: In total, 9525 patients with HIV started a new third agent regimen. A majority of patients were new initiators of third agents (77.0%) with the remainder of patients adding on or switching to a new third agent. Most were male (82.3%), had commercial type insurance (89.3%) and had a mean age of 45.2 (SD ± 11.9). In patients who newly initiated a third agent, 31.9% started on an INSTI, 24.8% on a PI and 43.3% on a NNRTI. However, the proportion of patients starting INSTI increased from 19.3% in 2012 to 50.3% in 2015, while the proportions of patients starting other third agents decreased over time (Figure 1). In third-agent-experienced patients, 10.8% were on an INSTI, 59.3% on a PI and 37.5% on a NNRTI at baseline. Less than 2% of patients were on a fusion inhibitor or entry inhibitor, and 7.5% of patients were on multiple third agents at baseline. Among patients already on a third agent, 66.3% of patients added or switched to an INSTI, 10.6% to a PI and 23.1% to a NNRTI. The proportion of patients who added or switched to an INSTI increased from 49.4% in 2012 to 80.6% in 2015, while proportions of patients starting other third agents decreased over time.

Conclusion: There is an increase in new initiators and treatment-experienced patients starting INSTI compared to other third agents. Future studies are needed to examine the tolerability and outcomes related to these changes in third agents.

P120
Selected antiretroviral treatment option is associated with virological success: multicentre data from Poland
Milosz Parczewski1; Magdalena Leszczyszyn-Pynka2; Adam Witor2; Karolina Muller2; Aleksandra Szymczak2; Jacek Gasiorowski3; Monika Bociaga-Jasik4; Pawel Skwara5; Anna Grzeszczuk5; Elzbieta Jablonowska6; Kamila Wójcik-Chyży6; Juliusz Kamery5; Dariusz Bieler7; Justyna Stempkowska7; Aleksandra Kocbach6 and Wieslawa Bluzdin7
1Department of Infectious Diseases, Tropical Diseases and Immune Deficiency, Pomeranian Medical University, Szczecin, Poland. 2Outpatients Clinic for Immune Deficiency, Regional Hospital, Chorzów, Poland. 3Department of Infectious Diseases and Hepatology, Wroclaw Medical University, Wroclaw, Poland. 4Department of Infectious Diseases, Jagiellonian University Medical College, Kraków, Poland. 5Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland. 6Department of Infectious Diseases and Hepatology, Medical University of Lublin, Lublin, Poland. 7Department of Infectious Diseases, Medical University in Ostroda, Ostroda, Poland. 8Department of Infectious Diseases, Regional Hospital, Opole, Poland.

Introduction: Modern antiretroviral therapies allow to effectively suppress HIV-1 viral load in majority of treated cases; however, due to differences in clinical practice, virological success rates may vary significantly across the treatment centres. The aim of this study was to analyze treatment efficacy in real-life Polish cohorts and identify variables associated with undetectable HIV-1 viral load.

Materials and methods: Cross-sectional data on the antiretroviral treatment efficacy were collected for the 2249 (25.3% of total countrywide treated cases) patients followed up in 9/17 Polish HIV treatment centres. Data of patients on stable cART treated >6 months with at least one follow-up visit and HIV RNA measurement in 2016 were analyzed. Treatment options included nucleos(t)ide backbone (NRTI) plus protease inhibitor (PI) in 942 cases (37.7%), NRTI plus non-nucleoside reverse transcriptase inhibitor (NNRTI) in 768 (30.73%), NRTI plus integrase inhibitor (INI) in 632 (25.29%), NRTI-sparing regimen of PI plus INI in 68 (2.72%) and other combinations in 89 (3.56%) individuals. Virological success was defined as HIV RNA <50 copies/mL in the last measurement taken in 2016. For statistics chi-squared test, Mann-Whitney U test and multivariate logistic regression models adjusted for gender, AIDS history, HIV viral load at baseline, lymphocyte CD4 nadir < 200 cells/µL, transmission route and age were used.

Results: Undetectable viral load (<50 copies/mL) was observed in 2256 (90.28%) individuals. Virological success rate differed considerably across the regimens [835/942 [88.64%] for NRTI+PI, 732/768 [95.31%] for NRTI+NNRTI, 563/632 [89.08%] for NRTI+INI and 54/68 [79.41%] for PI+INI, p < 0.0001]. NRTI+NNRTI regimens were associated with higher adjusted odds ratio (aOR) of virological success compared to NRTI+PI [aOR 2.68 (95% CI 1.41 – 5.13), p = 0.003]. NRTI+INI regimens were associated with higher adjusted odds ratio (aOR) of virological success compared to NRTI+PI [aOR 7.92 (95% CI 2.73 – 22.99), p < 0.0001] (Figure 1). It should be noted, however, that patients receiving NRTI+NNRTI presented with lower baseline HIV viral load [median 4.64 (IQR 4.16 – 5.07) log copies/mL] and higher CD4 nadir [median 283 (IQR 175 – 403) cells/µL] compared to NRTI+PI-treated [median 4.9
(IQR 4.34–5.41) log copies/mL, \(p < 0.001 \) and \(190 \) (IQR 76–311) cells/\(\mu L \), \(p < 0.0001 \), respectively. NRTI + INI-treated [median 4.9 (IQR 4.41–5.44) log copies/mL, \(p < 0.001 \) and 228 (IQR 90–393) cells/\(\mu L \), \(p < 0.0001 \), respectively] or PI + INI-treated cases [median 5.42 (IQR 4.79–5.94) log copies/mL, \(p < 0.0001 \) and 155 (IQR 59–246) cells/\(\mu L \), \(p < 0.0001 \), respectively]. Additionally, patients on NRTI-sparing PI + INI regimen were notably older at diagnosis [median 38 (IQR 29–48) years] and treatment initiation [median 37 (IQR 31–46) years] compared to the remaining treated groups [median 31 (IQR 25–38) years, \(p < 0.0001 \) and 33 (IQR 28–40) years, \(p < 0.0001 \), respectively].

Conclusions: While NNRTI-based therapy is associated with higher virological efficacy, it may be explained by the preselection of patients with more favourable virological and immunological characteristics. Challenging-to-treat and older populations often receive PI + INI-based, NRTI-sparing regimens despite poorer efficacy in the clinical setting.

P121

Much less treatment modification with recently approved drugs: the Austrian HIV Cohort Study

Michaela Rappold; Armin Rieger; Brigitte Schmied; Mario Sarcletti; Maria Geit; Bernhard Haas; Ninon Taylor; Manfred Kanatschnig; Gisela Leierer; Bruno Ledergerber and Robert Zangerle

1Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria. 2Dermatology and Venereology, Medical University Vienna, Vienna, Austria. 3Pulmonary Medicine, Otto Wagner Hospital Vienna, Vienna, Austria. 4Dermatology and Venereology, Allgemeines Krankenhaus Linz, Linz, Austria. 5Internal Medicine III, Landeskrankenhaus Graz West, Graz, Austria. 6Internal Medicine, Landeskrankenhaus Klagenfurt, Klagenfurt, Austria. 7Infectious Diseases, University Hospital Zurich, Zurich, Switzerland

Introduction: Adverse effects and to a lesser degree viral failure of combination ART commonly result in treatment modification.

Patients and methods: Patients were analyzed for factors associated with treatment modification, defined as stop or as change of drugs. Dolutegravir (DGV), elvitegravir (EVG), raltegravir (RAL), darunavir (DRV) and rilpivirine (RPV) were separately analyzed. RPV and EVG were included only when taken as single-tablet regimen, and DRV only as 800 mg daily dose. All patients were limited to standard regimen, and the pre-treated patients were only included if they received the particular drug for the first time (first-use regimens).

Observation period lasted from 1 July 2013 to 1 January 2016. Cox regression models were performed to identify predictors of modification and Kaplan-Meier estimates were used to calculate probabilities of modification.

Results: We analyzed 787 naïve patients and 1790 first-use regimens among 1590 pre-treated patients. Overall, ART was modified among 181 (23.0%) naïve patients and 330 (18.4%) individuals with first-use regimens.

Abstract P121 – Table 1. Factors associated with treatment modification: multivariable Cox regression

<table>
<thead>
<tr>
<th>Drug-naïve patients</th>
<th>Multivariable Cox regression</th>
<th>First use of drug in pre-treated patients</th>
<th>Multivariable Cox regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients with modification/all</td>
<td>HR [95% CI]</td>
<td>Number of patients with modification/all</td>
<td>HR [95% CI]</td>
</tr>
<tr>
<td>Drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolutegravir</td>
<td>14/235</td>
<td>0.98 [0.43–2.23]</td>
<td>90/928</td>
</tr>
<tr>
<td>Elvitegravir</td>
<td>8/89</td>
<td>0.89 [0.35–2.26]</td>
<td>38/191</td>
</tr>
<tr>
<td>Raltegravir</td>
<td>36/83</td>
<td>5.71 [2.79–11.71]</td>
<td>63/154</td>
</tr>
<tr>
<td>Darunavir</td>
<td>60/152</td>
<td>4.50 [2.29–8.86]</td>
<td>77/224</td>
</tr>
<tr>
<td>Other</td>
<td>53/124</td>
<td>5.29 [2.68–10.44]</td>
<td>62/293</td>
</tr>
<tr>
<td>Rilpivirine</td>
<td>10/104</td>
<td>1.00 [1.00–1.00]</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Time to treatment modification by drugs.

Figure 2. Time to treatment modification by drugs.

Observation period lasted from 1 July 2013 to 1 January 2016. Cox regression models were performed to identify predictors of modification and Kaplan-Meier estimates were used to calculate probabilities of modification.

Results: We analyzed 787 naïve patients and 1790 first-use regimens among 1590 pre-treated patients. Overall, ART was modified among 181 (23.0%) naïve patients and 330 (18.4%) individuals with first-use regimens.
regimens, most of them in the first year. The overall probability of modification among the naïve patients rose from 20.0% at 1 and 30.8% at 2 years and from 17.8 to 30.2% among the pre-treated patients, respectively. Modifications of individual drugs are given in Figure 1 and Figure 2. Among the naïve patients taking RAL, DRV or other drugs showed a higher risk for modification compared to RPV, whereas in pre-treated patients, DGV showed a lower risk of modification (Table 1). Demographic and HIV-related factors were not associated with treatment modification with the exception of drug users, who had a higher risk of modification among pre-treated patients. Availability of more convenient treatment (37.0%) was the main reason for discontinuation within the naïve patients and, patients wish (19.4%) was the most cited reason for the pre-treated ones.

Conclusion: Much less treatment modification in individuals initiating ART with recently approved drugs which support a better tolerability and a more convenient profile also in a non-trial setting. However, there seems to be a difference between recently approved drugs in pre-treated patients, since we observed the lowest rate of modification in patients who received DGV. The low rate found for RPV may be attributed to strict selection of patients according to guidelines in regard to viral load.

P122

Integrate strand transfer inhibitors in the treatment of HIV-2 infection: report of 39 patients

Filipa Sequeira1; Sara Grazina2; João Alves3; Susana Peres2; Fernando Borges2; Ana Claudia Miranda2; Isabel Aldyr1 and Kamal Mansinho2
1E.P.E., Internal Medicine, Centro Hospitalar do Tâmega e Sousa, Penafiel, Portugal. 2Infectious Diseases and Tropical Medicine, Centro Hospitalar de Lisboa Central – Hospital Egas Moniz, Lisboa, Portugal

Introduction: Few data are available on integrate strand transfer inhibitors (ISTI)-based regimens response among HIV-2 infected patients.

Materials and methods: Retrospective longitudinal study. Data on patients’ demographic characteristics and ISTI response (clinical, immunological or virological) among HIV-2 infected patients were collected.

Results: Thirty-nine patients with HIV-2 infection were on ISTI-based regimens. Sixty-two percent were female. Seventeen patients were from Portugal, 15 from Guinea-Bissau, five from Cape Verde, one from Sao Tome and one from Spain. The median age at diagnosis was 46.5 years. The time between diagnosis of HIV-2 infection and ART initiation ranged from 1 week to 23 years (median of 5 years). The median CD4 count at diagnosis was 362.8 cells/mm3 (22.1%), and at ISTI initiation was 335.9 cells/mm3 (21.9%). The median follow-up after ISTI initiation was 2.7 years (min: 12 weeks, max: 8 years). Fourteen patients were naïve and 28 patients switched to ISTI. The reasons for switch were immune failure (n = 13), cardiovascular risk (n = 6), osteoporosis (n = 2), nephropathy (n = 4), intolerance (n = 2) and HIV-1/2 infection (n = 1). Thirty-one patients received RAL, and eight received DTG. Optimized background ARV regimens included DRV/r (n = 10), LPV/r (n = 8), SQV/r (n = 5) and ATV/r (n = 2) associated with two nucleoside reverse transcriptase inhibitors (NRTI).

At week 12, 24 and 36 plasma HIV-2 RNA was undetectable in 92.3%, 97.2% and 94.8%, respectively, and median CD4 cell count was 362/mm3 (77–733), 506/mm3 (132–992) and 516/mm3 (25–989). One patient had to stop ISTI at week 36 because of immune failure due to ISTI resistance and died after 3 years.

Conclusions: Our series confirm the clinical effectiveness of ISTI in treatment-experienced and - naïve patients with HIV-2 infection when given with other ARVs to which the virus is susceptible. ISTI appears to perform well in treatment of HIV-2 patients as first regimen or after switch as therapy for a large proportion of patients when the first-line regimens may not have been sufficiently potent.

P123

Effect of probiotics on inflammation in the gut in HIV-infected individuals evaluated using PET/MR

Caroline Arnberg1; Karin Pedersen1; Sofie Jespersen1; Barbara Fischer2; Helle Johannesen1; Eva Fallentin1; Adam Hansen1; Andreas Kjær3; Marius Traesid2 and Susanne Dam Nielsen1
1Department of Infectious Diseases, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark. 2Department of Clinical Physiology, Nuclear Medicine, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark. 3Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway

Introduction: Microbial translocation in HIV-infected individuals has been associated with increased risk of non-AIDS comorbidity including cardiovascular complications. Initiation of cART often results in immune reconstruction in peripheral blood but does not lead to normalization of the gut-associated lymphoid tissue (GALT). The aim of this study was to investigate the effect of the probiotic strain Lactobacillus rhamnosus GG on microbial translocation both on local inflammation in the gut and on systemic inflammation.

Methods: The study was a prospective, clinical intervention trial and included 15 cART-naive, and 30 cART-treated HIV-infected participants. All participants ingested probiotics (Dicoferol60®, Pharmaforce ApS, Denmark) in dose of 6 × 109 colony-forming units twice a day for a period of 8 weeks. Local inflammation was measured using fluorodeoxyglucose positron emission tomography/magnetic resonance (FDG PET/MR) scans. Local inflammation in the bowel was assessed in five regions: terminal ileum, ascending, transverse, descending and sigmoid colon and rectum. Furthermore, fasting blood samples were obtained both at baseline and after 8 weeks of probiotics. Lipopolysaccharide (LPS), soluble inflammation markers of inflammation IL-6, IL-2, TNF-alfa and hsCRP as well as the CD4+ T-cell count were determined.

Results: Forty-five participants completed the study, 15 cART-naive and 30 cART-treated participants, of which 15 participants were scanned using PET/MR before and after probiotics. On PET/MR, two out of five cART-naive participants and 4 out of 10 cART-treated participants had evidence of decreasing inflammation on a global score. In terminal ileum, 4 out of 5 cART-naive and 4 out of 10 cART-treated participants had decreasing inflammation (p=0.07). Among the cART-treated participants, concentration of LPS was found to increase (0.35−0.49 EU/mL, p=0.033). In contrast, no effect of LGG on markers of systemic inflammation in either cART-treated or cART-naive HIV-infected participants was found. Finally, an increase in CD4+ T-cell count was found in the cART-treated group (659−697 cells/mL, p=0.029).

Conclusion: Using PET/MR to evaluate gut inflammation is feasible. The probiotic strain Lactobacillus rhamnosus GG did not have any beneficial effect on microbial translocation or systemic inflammation in HIV-infected individuals. However, PET/MR scans indicated a possible reduction of local inflammation. Future studies evaluating PET/MR scans as a method to assess the gut inflammation in HIV-infected individuals are warranted.

P124

Starting antiretroviral therapy for HIV at the first visit and early after inclusion into care: an observational study

Josip Begovac1; Šime Zekan1; Snjezana Zidovec Lepej2 and Davorka Lukas1
1Department of Infectious Diseases, University of Zagreb School of Medicine, Zagreb, Croatia. 2Department of Molecular Diagnostics, University Hospital for Infectious Diseases, Zagreb, Croatia
Introduction: Croatia has a centralized system of care and all HIV-infected persons are treated at the University Hospital of Infectious Diseases (UHID) in Zagreb. All patients collect antiretroviral drugs from the hospital pharmacy at UHID. The centre at UHID is also the only centre in Croatia that provides psychosocial and adherence support to people living with HIV. Data on ART initiation at first clinic visit are limited [1,2]. We describe the characteristics of patients who start ART immediately and early after inclusion into care at UHID, and examine whether starting ART on the first visit (same-day starters) is equally successful as starting ART within the next 30 days (early starters).

Materials and methods: We included ART-naive individuals aged 18 years or older, who entered care between January 2005 and December 2014 and started ART within 30 days of inclusion into care. Excluded were pregnant women and persons who were in HIV care elsewhere before entering care at UHID. We abstracted data from the electronic database. When ART was prescribed at the physician-patient visit the exact date of when ART was taken was recorded on the first follow-up visit. The primary outcome of the study was time to HIV1 RNA viral load < 50 copies/mL, which was assessed by survival analysis. We also examined factors related to first visit ART initiation by logistic regression analysis.

Results: We studied 378 patients who met the eligibility criteria of whom 123 (32.5%) received ART at the first visit at UHID (Table 1). The median time of initiation of ART in the group of early starters was 5 (Q1/Q3, 2/14) days. By 12 months, the probability of achieving an HIV1 RNA viral load < 50 copies/mL was 87.7% (95% CI 81.0–92.9%) and 89.3% (95% CI, 85.0–92.8%) in the same-day starters versus early starters, respectively (Figure 1). On multivariable analysis, the following factors were related to starting ART at the first visit: not having clinical AIDS (OR 2.96; 95% CI 1.77–4.94), a CD4 cell count ≤ 350/mm3 (OR 4.28; 95% CI 1.88–9.70).
9.72), being MSM (OR 2.65; 95% CI 1.51–4.67), receiving 2NRT/C27 PI (OR 1.92; 95% CI 1.17–3.14) and being integrated into care after 30 days (OR 2.63; 95% CI 1.37–5.08).

Conclusions: In this HIV-infected patient population with predominantly advanced immunosuppression at entry into care, same-day ART was as successful as therapy given within 1 month after the first physician-patient visit.

References

P125

Psychometric evaluation of a new individualised condition-specific quality of life questionnaire for HIV (HIVDQoL)

Jacquelyn Romaine 1; Miranda Murray 2 and Clare Bradley 1

1 Health Psychology Research Unit, Royal Holloway, University of London, London, UK. 2 Global Health Outcomes, ViiV Healthcare Ltd, London, UK

Introduction: Given recent developments in HIV treatment it is important that, in addition to health status and symptoms, a more holistic view of the impact of HIV on quality of life (QoL) is obtained. The HIV Dependent Quality of Life (HIVDQoL) questionnaire is an individualized condition-specific QoL questionnaire based on a template developed by CB for the ADDQoL [1] (Audit of Diabetes-Dependent QoL) and DQoL measures for other conditions [2]. Qualitative work to design the item content of the HIVDQoL is reported elsewhere [3]. This abstract reports the psychometric evaluation of the HIVDQoL.

Methods: The study employed a survey design with participants (N = 255) recruited from the UK (N = 128) and the US (N = 127), via the internet, by Opinion Health. Mean age of participants was 49 years (SD 10.64), mean time since diagnosis was 15 years (SD 9.43), 203 participants were male and 49 were female. Participants chose to complete and return the questionnaire individually (via post) or with a researcher (via phone). The HIVDQoL included two overview items which measure generic “present QoL” and “HIV-specific QoL” and 26 items that measure the impact of having HIV on specific aspects of life (e.g. family, physical appearance) and measures the importance of these aspects of life for QoL. “Not applicable” options are provided for items that do not apply to everyone (e.g. work). Exploratory factor analysis (EFA) was used to examine scale structure and reliability using Cronbach’s alpha coefficient of internal consistency.

Results: EFA was conducted in two stages. Principal components analysis, eigenvalues >1, scree plot and parallel analysis guided the number of factors to extract, and principal axis factoring was used to determine the underlying structure. The analysis revealed a one-factor structure which included 24 of the 26 items. Two items were dropped (religious/spiritual life; having children) due to low communality and low loadings. The 24 items explained 40% of the variance. The factor matrix revealed the lowest loading item loaded at 0.442 and included seven excellent items (loading >0.71), five very good items (>0.63), six good items (>0.55) and five fair items (>0.45). Reliability was strong: alpha = 0.939 for the 24 items.

Conclusions: The HIVDQoL is here shown to have sound psychometric properties including excellent reliability. It is suitable for use in clinical trials, other research and in routine clinical practice to evaluate the impact of HIV and its treatment on QoL with a view to identifying treatments that optimize QoL.
Individualized NRTI-sparing antiretroviral regimens in a real-world clinical setting maintaining virologic efficacy with significant cost reduction

Sari Arponen¹; Alejandra Gimeno-García²; Carmen Montero-Hernández²⁵; Laura Esteva²⁴; Marta Blasco²⁵; Elsa Gaspar-García³ and M José García-Navarro²⁵
¹Servicio de Medicina Interna, Hospital Universitario de Torrejón, Torrejón de Ardoz, Spain. ²Servicio de Farmacia, Hospital Universitario de Torrejón, Torrejón de Ardoz, Spain

Introduction: NRTI-sparing regimens have been proposed as a strategy to avoid toxicities associated with these drugs. These therapies may have an additional financial benefit. Some clinical trials have explored these NRTI-sparing mono- and dual therapies, and there is growing evidence from real-world practice in this issue.

Materials and methods: We retrospectively reviewed the medical records of the HIV+ patients treated with a mono- or dual therapy in our hospital. Treatment changes and simplifications were made by the responsible clinician according to patients' clinical characteristics, antiretroviral therapy (ART) history and toxicities. Clinical, virologic and immunologic data were collected, as well as lipid profile and renal function. Additionally the cost of each regimen and the saving associated with the new therapy were calculated.

Results: Twenty-nine patients (51.7% women) were analyzed (14% of all patients with ART in our hospital). The median age was 48 years (IQR 27–72). The median duration of infection was 17 years (IQR 5–25.5), with a median duration from the start of the first ART of 9 years (IQR 3.7–16.6). The median of time of undetectability was 8.2 years (IQR 3.4–16.2). All patients were undetectable at the time of initial analysis. 27.6% had clinical category C. Initially 19 (65.5%) patients were receiving as NRTI backbone TDF + FTC, 6 (20.7%) ABC + 3TC, 1 patient TDF and 4 patients had a previous NRTI-sparing regimen. The therapy was changed in 25 patients: eight (27.2%) received ritonavir- or cobicistat-boosted DRV with 3TC, 10 (34.4%) patients received ATV/r with 3TC and four patients were treated with a DRV/r monotherapy. Other therapies were Dlg +3TC (one), ETR + DRV (three), RAL + DRV (one) and RAL + ETR (two). At 6 months of follow-up, there were no virologic failures. The reason for the change was renal toxicity in 12 patients (41.4%), bone disease in 6 (20.7%) and unknown in 5 cases (17.2%). There were no significant changes in the number of CD4, total cholesterol, HDL, LDL, TG and renal function. There was a significant improvement in CD4% (z = 2 at 6 months, 95% CI 0.02–1.83). An average monthly saving of €620 (29%) per patient was achieved.

Conclusions: In a real-world clinical setting, individualized NRTI-sparing antiretroviral regimens, even in patients with a long evolution of HIV infection, maintained virologic efficacy. Additionally, these strategies reduced the cost of treatment.

Reference

P127

A retrospective analysis of time to non-detectable HIV viral load in fixed-dose combination anti-retroviral therapy in HIV-1 patients enrolled in the Mater Misericordiae University Hospital Infectious Diseases (MMUH-ID) cohort

Marc Grant-Freemantle¹; Patrick Mallon⁵; Geoff McCombe⁵; Alan Macken⁵; Willard Tinagso¹; Gordana Avramovic¹; Jane O’Halloran⁵; Aoife Cotter⁵; Gerald Sheehan⁵ and John Lambert²
¹School of Medicine, University College Dublin, Dublin, Ireland. ²HIV Molecular Research Group, School of Medicine, University College Dublin, HIV Molecular Research Group, Dublin, Ireland.

Introduction: Fixed Dose Combinations (FDCs) are popular HIV treatment options due to simpler dosing regimens and improved patient adherence leading to better health outcomes. Emerging evidence suggests integrase inhibitors (INSTI) such as dolutegravir (DTG) and elvitegravir (EVI) may be able to achieve non-detectable (ND) viral loads (VL) more rapidly than established treatments, and benefit certain patient groups such as pregnant women. The study investigated if Triumeq and Striibl, two FDCs containing DTG and EVG respectively, induce viral suppression more rapidly than other FDCs not containing integrase inhibitors.

Materials and methods: The MMUH-ID cohort collects retrospective and prospective follow up information on demographics, diagnostics, HIV acquisition risks, clinical assessments and medications (history, regimens, drug class, dose, frequency, start and stop dates). HIV RNA results are obtained weekly from the National Virus Reference Laboratory (NVRL) and are manually captured into the cohort database. Patients commenced on FDC ART of either Atripla (efavirenz/tenofovir/emtricitabine), Eviplera (emtricitabine/rilpivirine/tenofovir), Striibl (cobicistat/EVG/emtricitabine/tenofovir) or Triumeq (DTG/abacavir/lamivudine) from July 2008 to April 2016 were reviewed to determine when they reached the primary end-point of ND VL - two consecutive VL <50 copies/mL. Time to ND VL was measured from initiation of an FDC. Kaplan-Meier curves and the log-rank test were used to compare time to ND VL between FDC groups.

Results: A total of 124 patients were included in the analysis (84.7% male, median age 38 years). Seventy-three patients (58.9%) were commenced on Atripla, with 56 reaching ND VL with a median time to ND VL of 5.7 (4.3–8.0) months after treatment initiation. 33 patients (26.6%) were commenced on Eviplera with 29 reaching ND VL with a median time of 7.34 (6.0–16.1) months. Thirteen patients (10.5%) were commenced on Striibl with eight reaching ND VL with a median time of 3.14 (1.8–4.6) months. Five were commenced on Triumeq (4%) with four reaching ND VL with a median time of 3.67 (2.5–2.3) months. Attaining ND VL was significantly different between the FDC ART groups (log-rank = 11.2, p = 0.003), with lesser time to ND VL attainment in subjects initiated on Striibl and Triumeq.

Conclusions: FDCs containing INSTIs offer a promising approach to rapidly reducing VL in HIV-1 infected patients. INSTIs are becoming the standard of care in many clinical settings and should especially be prioritized in situations in which there is a clinical need for rapid viral suppression.
Department of Infectious Diseases, Hospital Universitario Basurto, Bilbao, Spain

Introduction: Since the advent of new direct-acting antivirals (DAAs) for the treatment of hepatitis C virus (HCV), this has become a priority for many of our patients. The disadvantages are the numerous interactions between DAAs and antiretrovirals used by our co-infected patients that force clinicians to make changes in the ART.

Material and methods: The Basque Health System (Osakidetza) has adopted guidelines to treat HCV that prioritize the use of Abbvie drugs (ombitasvir–paritaprevir–ritonavir with or without dasabuvir). Since then, we have performed 219 treatments in co-infected patients. We have analyzed changes in ART in patients during treatment with DAAs.

Results: Two hundred and nineteen treatments with DAAs have been started in co-infected patients (123 completed, 96 still ongoing). Seventy-nine of the 219 patients who started HCV treatment have not changed their ART, while 140 required changes to avoid interactions. The most frequent changes according to antiretroviral family have been efavirenz (EFV) to raltegravir (RAL) (37) and rilpivirine (RPV) (20) and lopinavir (LPV) to darunavir (DRV) (17) and RAL (9). Changes between NRTI have been rare (five). After analyzing the 123 episodes that have completed treatment, we have observed that 45 (36.5%) have returned to prior ART, 35 (28.4%) have continued with the modified ART (of which 17 were based on EFV and 15 LPVr), in 10 (8.1%) adjustments have been made to avoid toxicities (seven) or simplify the ART (three) and in 33 cases (26.8%) there has been no need to make any changes. Regarding patients in PI-monotherapy (24) during treatment with DAAs, 17 have been changed (11 to triple therapy and six to other PI). Nineteen patients in PI-monotherapy (14 LPVr and five DRVr) have finished HCV treatment and 17 have returned to their previous regimen.

Conclusions: Treatment of co-infected patients with DAAs involves in many cases, changes in ART regime to avoid interactions (in our case 64%). Most changes occur to new antiretrovirals with better tolerance profile and less interactions (RAL and RPV). Once treatment with DAAs is completed, most of the patients return to their initial ART although a significant percentage (near 30% in our series) prefers the modified ART, and in some patients adjustments in ART are made to improve the profile toxicity or simplify the regimen (8%). Virtually, all patients in PI-monotherapy return to it although many require changes during treatment with DAAs.

P129
The use of protease inhibitors in patients with blips is associated with virologic failure
Eduardo Sanchez-Brown and Luis Enrique Soto-Ramirez
Infectious Diseases, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico

Introduction: There is conflicting evidence whether blips are associated with virologic failure or rebound, and it has not been determined if some demographic, virologic and treatment factors in patients with blips are associated with these adverse outcomes. The main objective of this study was to determine which factors are associated with virologic failure in patients with blips.

Methods and materials: Retrospective, observational cohort study of patients enrolled in the HIV clinic of a hospital in Mexico City who presented with at least one blip episode between 2000 and 2012. Blip was defined as a single detectable viral load above the limit of quantitation but below 1000 copies/mL. Patients with blips were classified in two groups: failure group and suppressed group. We excluded all cases who failed to a treatment regime different from the one used at the time of the blip in the failure group. Relative risks for predictors of virologic failure were calculated; survival curves were generated to compare the rates of virologic failure according to drug history and differences were tested for statistical significance using the generalized Wilcoxon test.

Results: Of a total 1876 patients, 414 (22.06%) presented with at least one blip episode. Three hundred and nineteen were randomly selected for this study. Sixty-nine (21.6%) of the 319 met the definition of virologic failure (two consecutive viral loads >50 copies/mL at least 30 days apart). For statistical analysis, we used 51 cases with virologic failure and 229 with no failure (21 excluded due to a follow-up shorter than the mean time to failure in the Failure Group). The three factors associated with virologic failure were being under 20 years of age at the time of HIV diagnosis (RR 2.31 [1.22–4.38], p = 0.01), overall use of protease inhibitors (RR 5.84 [2.17–15.72], p < 0.0001) and use of protease inhibitor, at the moment of blip/failure (RR 2.95 [1.72–5.08], p < 0.0001). Those who were on PI-based regimes at the moment of failure were more likely to achieve virologic failure earlier on than those who were not taking a PI-based regime (p = 0.027).

Conclusions: Use of protease inhibitors and being under 20 years of age at the time of diagnosis were associated with virologic failure in patients with blips. The presence of blips may be used as a predictor of virologic rebound in those cases. While adherence can be an important determinant of failure, the forgiveness of the PI would be against that.

P130
Baseline characteristics of the TRIUMPH and DOL-ART cohorts: use of Triumeq® (DTG/ABC/3TC) or other DTG-based ART in routine clinical care in Germany
Thomas Heuchel1; Nils Postel2; Markus Bickel3; Jürgen Brust4; Stefan Scholten5; Christian Schulz6; Christoph Stephan7; Ulrich Bohr8; Heribert Hillenbrand9; Tobias Glansinger10; Albrecht Stoehr11; Bernd Westermayer12; Alexandra Wigger13; Daniel Lüftenegger14; and Ravi Kumar Waill15
1Medcenter, Chemnitz, Germany. 2Prinzmed, Munich, Germany. 3Infektiologikum, Frankfurt, Germany. 4Mannheimer Onkologie Praxis, Mannheim, Germany. 5Praxis Hohenstaufenring, Cologne, Germany. 6Universitätsklinikum, Magdeburg, Germany. 7HIV-Center, Universitätsklinikum, Frankfurt am Main, Germany. 8Praxiszentrum Kaiserdamm, Berlin, Germany. 9Praxis City Ost, Berlin, Germany. 10Praxis Prenzlauer Berg, Berlin, Germany. 11IFI-Institute, Hamburg, Germany. 12GiaxoSmithKline, Munich, Germany. 13ViH Healthcare, Munich, Germany

Introduction: TRIUMPH and DOL-ART are two consecutive, prospective and observational German cohort studies in HIV-1 infected patients initiated on integrase inhibitor-based ART with dolutegravir. DOL-ART included patients already receiving Triumeq® (DTG) in combination ART. Recruitment of TRIUMPH started after DOL-ART recruitment was completed and included patients receiving Triumeq®, a one-pill regimen consisting of DTG/ABC/3TC.

Methods: In both cohorts, patients are followed in routine clinical care for 3 years with respect to monitoring measures, efficacy and safety parameters. Here, we compare the baseline characteristics of the cohorts in terms of demographics, HIV-related variables, comorbidities and comedication.

Results: TRIUMPH included 398 patients (32 centres), DOL-ART included 411 patients (37 centres). Characteristics of the two study populations are shown in Table 1. Patients of the TRIUMPH cohort were less frequently and less intensively pre-treated than patients in DOL-ART. In pre-treated patients, the reasons for switch (multiple
Abstract P130 Table 1. Patient characteristics before introduction of DTG-containing ART

<table>
<thead>
<tr>
<th></th>
<th>TRIUMPH (N = 398)</th>
<th>DOL-ART (N = 411)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ART naive (N = 163)</td>
<td>Pre-treated (N = 235)</td>
</tr>
<tr>
<td>Sex, male, N (%)</td>
<td>155 (95.1)</td>
<td>203 (86.4)</td>
</tr>
<tr>
<td>Age, years, median (range)</td>
<td>39 (29–48)</td>
<td>45 (35–52)</td>
</tr>
<tr>
<td>CDC stage C, N (%)</td>
<td>9 (5.5)</td>
<td>54 (23.0)</td>
</tr>
<tr>
<td>BL HIV RNA, log copies/mL, median (IQR)</td>
<td>4.4 (3.9–4.9)</td>
<td>1.7 (1.7–1.7)</td>
</tr>
<tr>
<td>BL HIV-1 RNA ≥100,000 copies/mL, N (%)</td>
<td>30 (18.4)</td>
<td>–</td>
</tr>
<tr>
<td>BL HIV-1 RNA ≥500,000 copies/mL, N (%)</td>
<td>6 (3.7)</td>
<td>8 (8.1)</td>
</tr>
<tr>
<td>BL HIV RNA ≤50 copies/mL, N (%)</td>
<td>–</td>
<td>198 (84.3)</td>
</tr>
<tr>
<td>BL CD4 cell count, cells/µL, median (IQR)</td>
<td>450 (282–597)</td>
<td>602 (434–834)</td>
</tr>
<tr>
<td>BL CD4 cell count, 200/µL, N (%)</td>
<td>22 (13.5)</td>
<td>8 (3.4)</td>
</tr>
<tr>
<td>>2 previous regimens, N (%)</td>
<td>–</td>
<td>48 (20.4)</td>
</tr>
<tr>
<td>Comorbidities, N (%)</td>
<td>49 (30.1)</td>
<td>123 (52.3)</td>
</tr>
<tr>
<td>Depression, N (%)</td>
<td>24 (14.7)</td>
<td>55 (23.4)</td>
</tr>
<tr>
<td>Hypertension, N (%)</td>
<td>12 (7.4)</td>
<td>27 (11.5)</td>
</tr>
<tr>
<td>Cardiovascular diseases, N (%)</td>
<td>2 (1.2)</td>
<td>15 (6.4)</td>
</tr>
<tr>
<td>Chronic HCV infection, N (%)</td>
<td>6 (3.7)</td>
<td>20 (8.5)</td>
</tr>
<tr>
<td>Pulmonary disease, N (%)</td>
<td>4 (2.5)</td>
<td>17 (7.2)</td>
</tr>
<tr>
<td>Dyslipidaemia (requiring treatment), N (%)</td>
<td>0 (0.0)</td>
<td>10 (4.3)</td>
</tr>
<tr>
<td>Diabetes mellitus, N (%)</td>
<td>4 (2.5)</td>
<td>13 (5.5)</td>
</tr>
<tr>
<td>Concomitant medication, N (%)</td>
<td>30 (18.4)</td>
<td>81 (34.5)</td>
</tr>
<tr>
<td>Antihypertensives, N (%)</td>
<td>13 (8.0)</td>
<td>35 (14.9)</td>
</tr>
<tr>
<td>Antidepressants, N (%)</td>
<td>6 (3.7)</td>
<td>26 (11.1)</td>
</tr>
<tr>
<td>Ca²⁺/Fe²⁺-containing supplements/multivitamin, N (%)</td>
<td>2 (1.2)</td>
<td>12 (5.1)</td>
</tr>
<tr>
<td>Prophylaxis/treatment of opportunistic infection, N (%)</td>
<td>6 (3.7)</td>
<td>7 (3.0)</td>
</tr>
<tr>
<td>Metformin, N (%)</td>
<td>0 (0.0)</td>
<td>4 (1.7)</td>
</tr>
</tbody>
</table>

responses permitted) to DTG-based ART were as follows (TRIUMPH vs DOL-ART): treatment simplification (57.0% vs. 30.1%), side effects on previous ART (24.3% vs. 31.7%), patient wish (30.6% vs. 24.7%), comorbidities or concomitant medication (11.1% vs. 12.2%) or virologic failure (1.3% vs. 9.6%). In DOL-ART, the majority of patients (84.9%) received standard triple therapy including either Kivexa® or Truvada®. The prevalence of comorbidities was lower in TRIUMPH than in DOL-ART (≥2 comorbidities 3.5% vs. 10.5%) with differences seen in both ART-naive and pre-treated patients. In ART-naive patients, most common comorbidity (≥10%) was depression (14.7% vs. 16.2%). In pre-treated patients, most common comorbidities (≥10%) were depression (23.4% vs. 33.3%), hypertension (11.5% vs. 18.6%) and cardiovascular diseases (6.4% vs. 11.2%). In TRIUMPH (DOL-ART), 18.4% (24.2%) of ART-naive patients and 34.5% (36.2%) of pre-treated patients received concomitant medication other than ART. In ART-naive patients, most common concomitant medication (≥10%) included prophylaxis/treatment of opportunistic infections 3.7% (10.1%). In pre-treated patients, most common concomitant medication included antihypertensives 14.9% (19.2%) and antidepressants 11.1% (11.9%).

Conclusion: The TRIUMPH and DOL-ART cohorts showed that standard triple therapy consisting of DTG plus two NRTI as single- or as multiple-tablet regimen are used for both ART-naive and pre-treated patients. “Simplification of ART” and “side effects on previous ART” were the main reasons for switch to Triumeq® or DTG+X, respectively. Based on CDC classification and comorbidities, the burden of disease was somewhat lower in TRIUMPH than in DOL-ART. The majority of patients were switched from suppressive ART demonstrating an obvious need for treatment optimization in clinical practice.

P131
Long-term use of darunavir/r QD containing regimens in daily practice in Belgium: retrospective observational cohort data of 1701 HIV patients

Stéphane De Wit1; Eric Florence2; Linos Vandekerckhove3; Bernard Vandercam4; Jean-Christophe Goffard3; Eric Van Wijngaerden5; Michel Moutschen1; Remy Demeester6; Hilde Piryns9 and Pushpike Thilakarathne10

1Infectious Diseases, Saint-Pierre University Hospital, Brussels, Belgium. 2Infectious Diseases, Institute of Tropical Medicine, Antwerp, Belgium. 3Infectious Diseases, Ghent University Hospital, Ghent, Belgium. 4Infectious Diseases, Saint-Luc University Hospital, Brussels, Belgium. 5Infectious Diseases, University Hospital Erasme, Brussels, Belgium. 6Infectious Diseases, University Hospital Leuven, Leuven, Belgium. 7Infectious Diseases, Liège University Hospital, Liège, Belgium. 8Infectious Diseases, University Hospital Charleroi, Charleroi, Belgium. 9Janssen-Cilag NV, Medical Affairs, Beerse, Belgium. 10Department of Statistics, Janssen, Beerse, Belgium

Objectives: To describe the use of darunavir/ritonavir (DRV/r) QD in daily practice in Belgium.
Methods: Design: Observational, non-interventional, non-comparative, retrospective, multicentre cohort study. Data were collected from existing databases from eight AIDS reference centres in Belgium.

Inclusion: HIV-1 infected adults (treatment-naïve or experienced patients), who received at least one dose of DRV/r 800 mg/100 mg QD in various combinations from 1 January 2010 on, with a minimum follow-up of 6 months. Primary endpoints: time to treatment discontinuation (using Kaplan-Meier estimates), rate and reasons for discontinuation of DRV/r QD containing regimen. Secondary endpoints: virologic suppression, change from baseline in CD4 count, effect of DRV/r on kidney function.

Results: Data from 1701 HIV-infected patients were collected and analyzed. Baseline characteristics: overall, 66.5% were male, mean age of 42.9 years (± 11.1), mean CD4 count 441.8 cells/mm³ (± 287.1) and mean CD4 nadir 248.9 cells/mm³ (± 177.3); 33.1% of patients were treatment naïve (44.2% with baseline viral load (BL VL) ≥ 100,000 copies/mL) and 66.9% were ART-experienced patients (48.5% with BL VL < 50 copies/mL). Tenofovir-emtricitabine was used as backbone in 72.6% of naïve patients and 52.2% of experienced patients. Overall, median follow-up period (Q1/C1 Q3) was 2.45 (1.50 – 3.34) years. The probability to remain on treatment (95% CI) was 87.0% (85.2/88.5%) for the first year and 78.9% (76.7/80.9%) for the second year and 69.1% (66.3/71.7%) for the third year (Figure 1).

Four hundred and fifty-nine patients (27.0%) discontinued treatment with DRV/r QD. The main reasons were simplification (6.7%), adverse events (6.9%, of which 4.0% for GI problems), patient’s or physician’s decision, drug-drug interactions or inclusion in a clinical trial. Reason for discontinuation was missing in 3.1%. Discontinuation for lack of efficacy was noted in only 0.8%. CD4 count remained stable throughout the period. At the end of the follow-up period 81% of patients had HIV RNA < 50 copies/mL.

Conclusion: This retrospective cohort analysis of patients on darunavir/r QD in Belgium confirms the long-term efficacy and good tolerability of DRV/r QD in real-life setting. The rate of discontinuation of DRV/r QD in daily practice is low and rarely due to lack of efficacy. No unexpected adverse events were reported.
P133
The DOL-ART cohort: providing evidence from real-world data – use of dolutegravir-based regimens in routine clinical care in Germany
Nils Postel1; Markus Mueller2; Christoph Wyen3; Juergen Brust4; Michael Rausch5; Bernd Westermayer6; Martina Herrmann7; Ravi Kumar Walli8; Michaela Fickel9; and Vale´rie Martel-Laferrie`re1; Michel Paˆquet2 and Danielle Rouleau1
1Microbiologie Me´dicale et Infectiologie, Centre Hospitalier de l’Universite´ de Montre´al, Montre´al, Canada. 2Groupe de Recherche en Transplantation, Universite´ de Montr´eal, Montre´al, Canada. 3Praxis am Ebertplatz, Cologne, Germany. 4Mannheimer Onkologische Praxis, Mannheim, Germany. 5IIIF-Institut, Hamburg, Germany. 6Praxis Prenzlauer Berg, Berlin, Germany. 7Praxis Hohenstaufenring, Cologne, Germany. 8Arztezentrum Nollendorfplatz, Berlin, Germany. 9GlaxoSmithKline, Munich, Germany. 10VIV Healthcare, Munich, Germany

Introduction: DOL-ART is a prospective, 3-year, German non-interventional study (NIS) initiated 2 months after EMA approval of dolutegravir (DTG, Tivicay®) to understand how the real-world experience with the drug compares with that from clinical trials.

Methods: HIV-infected patients enrolled into the study had to be on stable ART for at least 3 months and no untreatable opportunistic infections (OIs). Use of dolutegravir-based ART: frequency and type of monitoring measures (including laboratory tests and referrals to specialists), virologic effectiveness and the incidence of adverse drug reactions (ADRs).

Results: N = 411 patients were included in DOL-ART between March and May 2014: 87% males, median age 45 years (IQR 36–52), 23% with history of AIDS; 76% pre-treated. Of ART-naïve patients, 18% had <200 CD4/µL, 29% >100,000 HIV RNA copies/mL; of pre-treated patients, 72% had <50 HIV RNA copies/mL; 85% of the study population received triple therapy consisting of DTG plus either TDF/FTC (45%) or ABC/3TC (40%); relevant comorbidities and concomitant medication were documented in 55% and 33% of patients, respectively. Median observation time until data cut was 15.8 months (IQR 15.2–16.8), with 86.4% of patients remaining under follow-up. Serum chemistry, blood count and HIV RNA/CD4 cell controls represented the overall majority of the measures (75.9%). Median number of monitoring measures per patient-year was 13.7 (IQR 10.5–17.4), in particular 14.9 (10.6–18.5) in ART-naïves and 13.6 (10.3–17.2) in pre-treated, 13.6 (10.7–17.4) in patients aged ≤50 years and 13.8 (10.2–17.2) in patients >50 years of age. Urine and microbiology tests accounted for 10.2% and 6.9% of the other measures, respectively; referrals to specialists (7.0%) were documented in 57.2% of patients (53.5% of ART-naïves, 58.3% of pre-treated). Reasons for study discontinuation (multiple responses permitted) were stopping of DTG (7.8%, incl. one virologic failure), patient wish (3.2%), loss to follow-up (2.2%), death (0.2%) and other (2.4%). During the first year, 10.7% of patients experienced ADRs; 4.4% discontinued DTG for this, including 1.2% for depression and 1% for gastrointestinal symptoms.

Conclusion: During a median observation time of 15.8 months, monitoring measures were mainly related to routine quarterly controls of HIV disease, consistent with recommendations of national guidelines. Discontinuation rates due to ADRs and virologic failure were 4.4% and 0.2%, respectively. These preliminary NIS data in a real-world cohort replicate the good effectiveness and tolerability of DTG shown in registration studies.

P134
First Canadian HIV+/HIV– kidney transplantation and first results of the prospective cohort of solid organ transplantation for HIV individuals of Centre Hospitalier de l’Universite´ de Montréal
Georges Ambaraghassi1; Héléïsè Cardinal2; Daniel Corsilli3; Claude Fortin4; Marie-Chantal Fortin5; Jacques Malaise6; Valerie Martel-Laferriere7; Michel Päquet8 and Danielle Rouleau1
1Microbiologie Médicale et Infectiologie, Centre Hospitalier de l’Université de Montréal, Montréal, Canada. 2Néphrologie, Centre Hospitalier de l’Université de Montréal, Montréal, Canada. 3Soins Intensifs, Centre Hospitalier de l’Université de Montréal, Montréal, Canada. 4Transplantation Chirurgicale, Centre Hospitalier de l’Université de Montréal, Montréal, Canada.

Introduction: Due to careful selection of potential candidates, patients and grafts survival among HIV-infected patients is similar to non-infected patients with solid organ transplantation (SOT). Management of drug interactions is a challenge in HIV-infected patients. Protease inhibitors (PI) interact with tacrolimus, making dosage adjustments more difficult to handle, thus increasing the risk of rejection. Prospective cohorts of HIV-infected kidney and liver recipients are mostly from Europe and the USA. The aim of this study is to describe a Canadian single-centre experience with SOT of HIV-infected patients, including the first Canadian HIV+/HIV– kidney transplantation.

Materials and methods: This is a prospective cohort study conducted at the Centre Hospitalier de l’Université de Montréal (CHUM). The study consists of a chart review of HIV-infected patients evaluated, listed or who received a SOT. Eligibility criteria include CD4 T-cell count above 200 cells/µL, undetectable HIV viral load, stable ART for at least 3 months and no untreatable opportunistic infections (OIs). Data were collected from clinical charts and include demographic characteristics, medical history including detailed HIV, hepatic and renal disease status and both pre- and post-transplant assessment laboratory. Study endpoints are HIV virologic escape post-transplantation, OIs, rejection and mortality during the solid organ transplant process.

Results: A total of 11 HIV-infected patients were recruited and five among them received a kidney transplantation and one a liver transplantation (Table 1). Median follow-up is 6 months (range 2–49).

Abstracts of the HIV Glasgow supplement
Journal of the International AIDS Society 2016, 19 (Suppl 7)
Abstract P134 – Table 1. Clinical characteristics of solid organ recipient and post-transplant follow-up

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
<th>Patient 4</th>
<th>Patient 5</th>
<th>Patient 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-transplant assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>57</td>
<td>52</td>
<td>40</td>
<td>50</td>
<td>56</td>
<td>45</td>
</tr>
<tr>
<td>Gender</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>F</td>
<td>M</td>
</tr>
<tr>
<td>Organ</td>
<td>Kidney</td>
<td>Kidney</td>
<td>Kidney</td>
<td>Liver</td>
<td>Kidney</td>
<td>Kidney</td>
</tr>
<tr>
<td>Time on dialysis (months)</td>
<td>40</td>
<td>132</td>
<td>83</td>
<td>N/A</td>
<td>70</td>
<td>54</td>
</tr>
<tr>
<td>CD4 T-cell count (cells/µl)</td>
<td>500</td>
<td>390</td>
<td>620</td>
<td>300</td>
<td>200</td>
<td>410</td>
</tr>
<tr>
<td>Post-transplant follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ART</td>
<td>ABC, 3TC, DTG</td>
<td>ABC, 3TC, RAL</td>
<td>TAC, MMF, prednisone</td>
<td>TAC, LEF, prednisone</td>
<td>TAC, AZA, prednisone</td>
<td>ABC, 3TC, MMF, prednisone</td>
</tr>
<tr>
<td>CD4 T-cell count (cells/µl)</td>
<td>330</td>
<td>410</td>
<td>510</td>
<td>350</td>
<td>270</td>
<td>540</td>
</tr>
<tr>
<td>HIV viral load (copies/ml)</td>
<td><40</td>
<td><40</td>
<td><40</td>
<td><40</td>
<td><40</td>
<td><40</td>
</tr>
<tr>
<td>eGFR (mL/min/1.73m²)</td>
<td>53</td>
<td>28</td>
<td>39</td>
<td>54</td>
<td>98</td>
<td>61</td>
</tr>
<tr>
<td>Rejection (n)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Follow-up (months)</td>
<td>6</td>
<td>49</td>
<td>19</td>
<td>5</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

All patients received basiliximab induction, and immunosuppressive agents consisted of tacrolimus (n = 6), prednisone (n = 6), mycophenolate mofetil (n = 2), azathioprine (n = 1) and leflunomide (n = 1). Most patients were on an integrase inhibitor (II)-based regimen (n = 4) while some were on a PI-based regimen (n = 2). HIV viral load remained steadily undetectable post-transplantation in all patients and no HIV-associated OI was reported. One kidney recipient on darunavir/ritonavir/etravirine/raltegravir developed post-transplantation chronic rejection. All kidney recipients remain dialysis-free at this time with a post-transplant mean eGFR of 55.5 mL/min/1.73 m². One patient received a kidney graft from an HIV-infected donor. Both the donor and the recipient were on a similar II-based regimen before, during and after the transplantation.

Conclusions: Our preliminary results demonstrate that SOT is a viable option for HIV-infected patients with terminal organ failure. ART free of drug interaction should be promoted when possible to prevent rejection. With careful selection, HIV+ / HIV− kidney transplantation can be performed without loss of virologic control.

P135
Why do HIV/AIDS patients fail? Incidence, causes, demographic, immunologic and clinical characteristics of HIV patients who fail to achieve complete virologic suppression
Daniel Elbirt; Yanina Inberg; Keren Mahlab-Guri; Ilan Asher; Shira Bezalel-Rosenberg; Michael Burke and Zev Sthoeger
Kaplan Medical Center, Neve Or AIDS Center, Rehovot, Israel

Introduction: Patients treated with HAART are expected to reach complete viral suppression. Still, in “real life” about 20% of patients do not achieve this goal. The “failing” patients demand a significant part of the HIV clinic efforts and resources. We believe that characterization of these failing patients could help targeting them in a more effective way.

Methods: We conducted a retrospective “snap shot” analysis, seeking for failing patients. Data were obtained from charts of HIV patients in a major Israeli HIV/AIDS centre during 2015. We included adults on HIV treatment for at least 1 year. All patients had at least two viral load tests during the year prior to enrolment. Virologically suppressed patients were defined as having two consecutive undetectable viral loads (<20 copies/mL).

Results: Seven hundred and sixty-six patients were included. Fifty-four percent were men, mean age 47.06 ± 11.48 years (37%, > 50 years old), the mean follow-up was 11.8 ± 6.4 years. Risk groups: 65% of patients were from endemic area (Ethiopia), 13% were men who have sex with men (MSM) and 7% intravenous drug users (IVDU). In our analysis, 85 (11%) of the patients did not achieve complete viral suppression. African patients were more prone to fail compared to other risk groups (77% of the failing patients vs. 6% [MSM] and 12% [IVDU]; p < 0.05). Age, sex, follow-up, marital status, working status and AIDS at diagnosis were not associated with failing, while a serodiscordant spouse was associated with a lower rate of virologic failure (7% vs. 14%; p = 0.03). The failing patients had more complications (48% vs 32%; p = 0.005). Patients treated with protease inhibitor (PI)-based regimen did not have higher failing rates, NNRTI-based regimen predicted a lower chance of virologic failure (31% vs. 7%; p < 0.05), and an integrase-based regimen predicted higher rates of failing (40% vs 33%; p < 0.05).

Conclusions: We found that a target of 90% (89% in our cohort) viral suppression is achieved in “real life.” HIV patients originating from Africa were more prone to fail treatment. We found no correlation between other demographic and socioeconomic factors and the chances to fail therapy. Interestingly, living with a serodiscordant couple was associated with lower rates of virologic failure. We also found a correlation between HAART regimens and virologic failure rates. While PI-based regimen had no influence, NNRTI-based treatment was associated with lower chance to fail and integrase-based treatment was associated with higher rate of failing.

P136
Hepatic safety during treatment with darunavir-based regimens in an Italian observational study
Andrea Antinori1; Andrea Gori2; Roberto Cauda3; Giancarlo Orofino4; Fiorella Di Sora5; Paolo Grossi6; Maurizio Mineo7; Giuseppe Airola8; Daniela Mancusi9 and Roberta Termini9
1Clinical Department, National Institute for Infectious Diseases Lazzaro Spallanzani, Rome, Italy. 2Clinic of Infectious Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy. 3Institute of Infectious Diseases, Catholic University of the Sacred Heart, Rome, Italy.

All patients received darunavir induction, and immunosuppressive agents consisted of tacrolimus (n = 6), prednisone (n = 6), mycophenolate mofetil (n = 2), azathioprine (n = 1) and leflunomide (n = 1). Most patients were on an integrase inhibitor (II)-based regimen (n = 4) while some were on a PI-based regimen (n = 2). HIV viral load remained steadily undetectable post-transplantation in all patients and no HIV-associated OI was reported. One kidney recipient on darunavir/ritonavir/etravirine/raltegravir developed post-transplantation chronic rejection. All kidney recipients remain dialysis-free at this time with a post-transplant mean eGFR of 55.5 mL/min/1.73 m². One patient received a kidney graft from an HIV-infected donor. Both the donor and the recipient were on a similar II-based regimen before, during and after the transplantation.

Conclusions: Our preliminary results demonstrate that SOT is a viable option for HIV-infected patients with terminal organ failure. ART free of drug interaction should be promoted when possible to prevent rejection. With careful selection, HIV+ / HIV− kidney transplantation can be performed without loss of virologic control.

P136
Hepatic safety during treatment with darunavir-based regimens in an Italian observational study
Andrea Antinori1; Andrea Gori2; Roberto Cauda3; Giancarlo Orofino4; Fiorella Di Sora5; Paolo Grossi6; Maurizio Mineo7; Giuseppe Airola8; Daniela Mancusi9 and Roberta Termini9
1Clinical Department, National Institute for Infectious Diseases Lazzaro Spallanzani, Rome, Italy. 2Clinic of Infectious Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy. 3Institute of Infectious Diseases, Catholic University of the Sacred Heart, Rome, Italy.

All patients received darunavir induction, and immunosuppressive agents consisted of tacrolimus (n = 6), prednisone (n = 6), mycophenolate mofetil (n = 2), azathioprine (n = 1) and leflunomide (n = 1). Most patients were on an integrase inhibitor (II)-based regimen (n = 4) while some were on a PI-based regimen (n = 2). HIV viral load remained steadily undetectable post-transplantation in all patients and no HIV-associated OI was reported. One kidney recipient on darunavir/ritonavir/etravirine/raltegravir developed post-transplantation chronic rejection. All kidney recipients remain dialysis-free at this time with a post-transplant mean eGFR of 55.5 mL/min/1.73 m². One patient received a kidney graft from an HIV-infected donor. Both the donor and the recipient were on a similar II-based regimen before, during and after the transplantation.

Conclusions: Our preliminary results demonstrate that SOT is a viable option for HIV-infected patients with terminal organ failure. ART free of drug interaction should be promoted when possible to prevent rejection. With careful selection, HIV+ / HIV− kidney transplantation can be performed without loss of virologic control.

P136
Hepatic safety during treatment with darunavir-based regimens in an Italian observational study
Andrea Antinori1; Andrea Gori2; Roberto Cauda3; Giancarlo Orofino4; Fiorella Di Sora5; Paolo Grossi6; Maurizio Mineo7; Giuseppe Airola8; Daniela Mancusi9 and Roberta Termini9
1Clinical Department, National Institute for Infectious Diseases Lazzaro Spallanzani, Rome, Italy. 2Clinic of Infectious Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy. 3Institute of Infectious Diseases, Catholic University of the Sacred Heart, Rome, Italy.
Introduction: TMC114-HIV4042 is a non-interventional study evaluating virologic response and safety of darunavir/ritonavir (DRV/r) administered with other ARV agents in clinical practice. Here, we show the effects on liver function and safety in all HIV1-infected DRV-naive patients.

Methods: Two hundred and thirty-three DRV-naive patients, 117 ARV naive and 116 ARV experienced, received a DRV/r-based regimen in routine practice, together with other active ARVs, and were observed for 12-40 months up to end 2012 or earlier discontinuation. Serum biochemistry including aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl-transferase (GGT) and bilirubin was obtained before entry and at about 3-month intervals. Reported hepato-biliary adverse events (AEs) were examined. Time trends were analyzed using repeated-measures mixed models, with values imputed after study end for hepatic AEs.

Results: Fifty-two patients (22.3%) had viral hepatitis (26 HCV, 16 HBV, nine both, one unspecified) active at entry (Table 1). Background ARV therapy at entry included a fixed tenofovir-emtricitabine combination in 107 (91.5%) ARV-naive patients and 66 (56.9%) ARV-experienced patients. Hepatic AEs (non-serious except one fatal) were reported in seven patients (3.0%), four ARV naive and three ARV experienced: 5/52 (9.6%) in patients co-infected (three HCV, two HBV), 1/23 (4.3%) with past HBV/HCV infection not active, 1/158 (0.6%) not co-infected with HBV/HCV. An HCV co-infected ARV-experienced patient died of liver failure assessed as unrelated with ARVs, one HCV co-infected ARV-naive withdrew for hypertransaminasemia probably DRV-related, and one HBV co-infected ARV-naive withdrew for increased GGT possibly DRV-related. In four patients, hepatic AEs unrelated with DRV (raised AST and ALT in two patients; raised ALT, ALT and GGT in one patient; cholestasis with raised GGT in one patient) withdrew without changing the DRV-based regimen.

Table 1. Demographic characteristics, CDC clinical stage and concomitant liver diseases at entry

<table>
<thead>
<tr>
<th></th>
<th>ARV-naive (N = 117)</th>
<th>ARV-experienced (N = 116)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>42.0 ± 11.0</td>
<td>44.3 ± 9.5</td>
</tr>
<tr>
<td>Gender at birth, N (%)</td>
<td>99 (84.6)</td>
<td>91 (78.4)</td>
</tr>
<tr>
<td>Male</td>
<td>5 (4.3)</td>
<td>3 (2.6)</td>
</tr>
<tr>
<td>Caucasian/other</td>
<td>112 (95.7)</td>
<td>113 (97.4)</td>
</tr>
<tr>
<td>CDC clinical stage C, N (%)</td>
<td>38 (32.5)</td>
<td>41 (35.3)</td>
</tr>
<tr>
<td>History of HBV-HCV hepatitis, N (%)</td>
<td>88 (75.2)</td>
<td>70 (60.3)</td>
</tr>
<tr>
<td>No</td>
<td>9 (7.7)</td>
<td>14 (12.1)</td>
</tr>
<tr>
<td>HCV</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>HBV</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>HBV/HCV</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Unspecified</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Active (a)</td>
<td>20 (17.1)</td>
<td>32 (27.6)</td>
</tr>
<tr>
<td>HBV</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>HCV</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>HBV/HCV</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Unspecified</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

HCV RNA quantitation within 6 months before entry, or positive HBV and HCV serology within 6 months before entry, or reported as an active concomitant disease at entry.

HBV RNA quantitation more than 6 months before entry, or positive HBV and HCV serology more than 6 months before entry, or reported as a previous (not active) disease at entry.

CDC, Center for Disease Control and Prevention; HBV, hepatitis B virus; HCV, hepatitis C virus; SD: standard deviation.
ARV therapy. Mean AST and ALT levels decreased by about 10 U/L until 6–8 months remaining constant thereafter in ARV-naïve patients and were stable throughout in ARV-experienced patients (Figure 1). Mean GGT levels in both groups decreased until 6–10 months and changed slightly thereafter. Total bilirubin levels quickly reverted to normal in 14 patients with baseline hyperbilirubinemia who switched from atazanavir at entry; mean values in the other patients, although slightly increasing, were always <0.6 mg/dL (Figure 2).

Conclusions: In HIV-infected patients given a DRV/r-based regimen for a mean duration >20 months, liver AEs were few and mostly related to the underlying viral hepatitis, and mean serum liver enzymes and total bilirubin levels did not worsen.

Abstract P136 - Figure 2. Time trend of total bilirubinemia (geometric mean) during the study.

P137
Long-term use of darunavir/r QD monotherapy in daily practice: retrospective observational cohort data of 111 HIV patients in Belgium

Stéphane De Wit1; Eric Florence2; Linos Vandekerckhove3; Bernard Vandercam4; Jean-Christophe Goffard5; Eric Van Wijngaerden6; Michel Moutschen7; Remy Demeester8; Hilde Piryns9 and Pushpike Thilakarathne10

1Infectious Diseases, Saint-Pierre University Hospital, Brussels, Belgium. 2Infectious Diseases, Institute of Tropical Medicine, Antwerp, Belgium. 3Infectious Diseases, Ghent University Hospital,
interest in using daily symptom diaries, which may capture the patient experience more accurately. The goal of this project was to identify the HIV symptoms experienced by patients as a result of both their disease and treatment and, using that information, develop a web-based symptom diary for patients with HIV to capture the presence and impact of symptoms on a daily basis.

Materials and methods: A narrative review of the literature was conducted to identify PRO symptom measures in HIV and evaluate their validity in the current environment of HIV treatment. A web-based survey regarding important HIV symptoms was completed by 20 US clinicians specializing in HIV/infectious disease. Results from the literature review and clinician survey were used as the basis for diary development. Patients were recruited from four geographically diverse treatment centres in the US (CA, NM, DC, MA). Concept elicitation interviews and cognitive debriefing on the initial diary were completed with 26 patients who guided diary refinement. Next, 48 patients (inclusive of the 26) used the web-based diary daily for 1 week and completed a cognitive debriefing interview to finalize the content/format of the diary. The diary asks patients to report on symptoms (using checklists/pictures) and symptom impact.

Results: Participants (77% male) were White (62%) or Black/African American (34%) and Hispanic (15%). Mean participant age was 52 (range 27–69). Educational level of at least some college was 69%; 63% were employed. HIV transmission mode was primarily MSM (70%); patients reported a variety of HIV treatment regimens. The diary took 5–10 minutes to complete each day, and the majority of the feedback on the diary was positive. Patients accessed the diary by computer (42%), smartphone (33%), tablet (10%) and combination (14%). The diary enabled comprehensive and organized capture of symptoms that patients viewed as relevant, with impact measured at the individual symptom level.

Conclusions: This daily HIV symptom diary is brief, easy to complete and well received by patients. It provides patients of diverse background, education and treatments, and the opportunity to voice their symptom experience. Validity studies are ongoing.

P138 Development of a contemporary symptom diary for patients with HIV
Jessica Markowitz1; Naomi Knoble2; Benoit Arnould2 and Albert Wu3
1Patient-Centered Outcomes, Mapi, Boston, MA, USA. 2Patient-Centered Outcomes, Mapi, Lyon, France. 3Health Policy and Management, Johns Hopkins School of Public Health, Baltimore, MD, USA

Introduction: The widespread adoption of modern ART has changed the landscape of HIV treatment. The most widely used patient reported outcomes (PRO) questionnaires were developed over a decade ago and may not adequately capture the experience of HIV patients today. In addition, best practices in patient symptom measurement have changed substantially, and there is growing interest in using daily symptom diaries, which may capture the patient experience more accurately. The goal of this project was to identify the HIV symptoms experienced by patients as a result of both their disease and treatment and, using that information, develop a web-based symptom diary for patients with HIV to capture the presence and impact of symptoms on a daily basis.

Materials and methods: A narrative review of the literature was conducted to identify PRO symptom measures in HIV and evaluate their validity in the current environment of HIV treatment. A web-based survey regarding important HIV symptoms was completed by 20 US clinicians specializing in HIV/infectious disease. Results from the literature review and clinician survey were used as the basis for diary development. Patients were recruited from four geographically diverse treatment centres in the US (CA, NM, DC, MA). Concept elicitation interviews and cognitive debriefing on the initial diary were completed with 26 patients who guided diary refinement. Next, 48 patients (inclusive of the 26) used the web-based diary daily for 1 week and completed a cognitive debriefing interview to finalize the content/format of the diary. The diary asks patients to report on symptoms (using checklists/pictures) and symptom impact.

Results: Participants (77% male) were White (62%) or Black/African American (34%) and Hispanic (15%). Mean participant age was 52 (range 27–69). Educational level of at least some college was 69%; 63% were employed. HIV transmission mode was primarily MSM (70%); patients reported a variety of HIV treatment regimens. The diary took 5–10 minutes to complete each day, and the majority of the feedback on the diary was positive. Patients accessed the diary by computer (42%), smartphone (33%), tablet (10%) and combination (14%). The diary enabled comprehensive and organized capture of symptoms that patients viewed as relevant, with impact measured at the individual symptom level.

Conclusions: This daily HIV symptom diary is brief, easy to complete and well received by patients. It provides patients of diverse background, education and treatments, and the opportunity to voice their symptom experience. Validity studies are ongoing.
Results: Results showed that the effect of HIV-related stigma on HRQoL was mediated via depression (a1: \(\beta = 0.1463, p < 0.001 \); b: \(\beta = -0.8392, p < 0.001 \), as demonstrated by the two-tailed significance test (Sobel \(z = -3.8762, p < 0.001 \)). Furthermore, the association between social support and HRQoL was positive (\(\beta = 0.4352, p = 0.0433 \)), whereas the interaction between HIV-related stigma and depression was negatively associated with HRQoL (\(\beta = -0.0317, p = 0.133 \)). This indicated that the predicted influence of HIV-related stigma on HRQoL via depression had negative effect on HRQoL for individuals with low social support.

Conclusions: Findings provide evidence of the moderated effect of social support on the translation of HIV-related stigma into HRQoL via depression. The results suggest that social support can buffer the negative impact of depression on HRQoL and highlights the need for future interventions to target these psychosocial factors in order to improve HRQoL among incarcerated PLHIV.

References

P141
Metabolic safety during treatment with darunavir-based regimens in an Italian observational study
Andrea Antinori1; Giovanni Di Perrī; Paola Meraviglia1; Goffredo Angioni2; Antonio Chiòanni3; Gaetana Sterrantino3; Tiiziana Quirino7; Giuseppe Airoldi8; Daniela Mancusi9 and Roberta Termini9
1Clinical Department, National Institute for Infectious Diseases Lazzaro Spallanzani, Rome, Italy. 2Unit of Infectious Diseases, Department of Medical Sciences Amedeo di Savoia Hospital, University of Turin, Turin, Italy. 3Department of Infectious Disease, L. Sacco University Hospital, Milan, Italy. 4Department of Infectious Diseases, P. O. Santissima Trinità, Cagliari, Italy. 5Infectious Diseases, D. Cotugno Hospital, Naples, Italy. 6Infectious Diseases, Careggi University Hospital, Florence, Italy. 7Infectious Diseases, Busto Arsizio Hospital, Busto Arsizio, Italy. 8Statistics, Studio Associato Airoldi, Cigona, Ghirri, Milan, Italy. 9Janssen-Cilag SpA, Medical Affairs, Cologno Monzese, Italy

Introduction: TMC114-HIV4042 is a non-interventional study evaluating the virologic response and safety of darunavir/ritonavir (DRV/r) administered with other ARV agents in clinical practice. Here, we show the effects on lipid and glucose metabolism in all HIV1-infected DRV-naïve patients.

Methods: Two hundred and thirty-three DRV-naïve patients, 117 ARV naïve and 116 ARV experienced, received a DRV/r-based regimen in routine practice, together with other active ARVs, and were observed for 12–40 months up to end 2012 or earlier discontinuation. Serum biochemistry including lipids and glucose was obtained before entry and at about 3-month intervals, or longer when allowed by stable patient conditions. Reported adverse events (AEs) related to lipid and glucose metabolism were examined.

Results: Patients were mostly men (99 ARV naïve and 91 ARV experienced); 38 and 41, respectively, were in Centers for Disease Control and Prevention clinical stage C at entry; mean age was 42 and 44 years, respectively. At baseline, eight patients (seven ARV experienced) were reportedly hyperlipidaemic and five (four ARV experienced) diabetic. Background ARV therapy at entry included a fixed tenofovir-emtricitabine combination in 107 (91.5%) ARV-naïve patients and 66 (56.9%) ARV-experienced patients. During the study, hyperlipidaemia was reported as AE in 14 patients (6.0%), eight ARV

Material and methods: Patients were prospectively included at 13 hospital-based HIV clinics of the Paris (France) region. During any one of their semestrial follow-up visits, clinical data were recorded, a self-administered sociodemographic and behavioural questionnaire was filled in and patients were screened for syphilis antibodies and PCR for Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) (pharynx, anus and first-void urine). Statistical correlation between recorded items and the presence of STI was measured by the chi-square law.
Abstract P141- Table 1. Metabolic AEs reported during the study, N (%) of patients

<table>
<thead>
<tr>
<th>Type of metabolic AE – WHO-ART preferred term</th>
<th>ARV naive (N = 117)</th>
<th>ARV naive (N = 117)</th>
<th>ARV experienced (N = 116)</th>
<th>ARV experienced (N = 116)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AEs</td>
<td>ADRs</td>
<td>AEs</td>
<td>ADRs</td>
</tr>
<tr>
<td>Hyperlipaenias</td>
<td>8 (6.8%)</td>
<td>5 (4.3%)</td>
<td>6 (5.2%)</td>
<td>4 (3.4%)</td>
</tr>
<tr>
<td>- Hypercholesterolemia</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Hypercholesterolemia</td>
<td>0</td>
<td>0</td>
<td>1 (e)</td>
<td>1</td>
</tr>
<tr>
<td>- Hypertriglyceridemia</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>- Hyperlipaemia (l)</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>- Hyperlipaemia (l)</td>
<td>1 (a)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other metabolic AEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Diabetes mellitus reactivated</td>
<td>1 (a)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>- Weight increase</td>
<td>1 (a)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>- Weight decrease</td>
<td>1 (s)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>- Lipodystrophy</td>
<td>1 (e)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(l) hypercholesterolemia + hypertriglyceridemia; (a) AEs occurring in the same patient; (s) serious AE (caused hospitalization); (e) study discontinued because of AE. ADR, adverse drug reaction (AE possibly or probably related to DRV according to the clinician); WHO-ART, World Health Organization adverse reactions terminology.

naive and six ARV experienced, none serious; nine (3.9%) were assessed by the clinician as at least possibly related to DRV; one caused study discontinuation. Two patients had diabetes reactivation (one with weight increase and hyperlipaemia), one lipodystrophy causing withdrawal and one weight decrease requiring hospitalization (Table 1). Over the first 4 months, levels of triglycerides, total, low-density lipoprotein and high-density lipoprotein cholesterol increased in ARV-naive patients then they were approximately constant; median baseline and final values were 117–147, 147–183, 91–118 and 35–40 mg/dL, respectively. In ARV-experienced patients lipid parameters remained stable; median baseline and final values were 137–134, 176–193, 114–121 and 42–42 mg/dL, respectively. Median serum-glucose levels remained stable in both groups.

Conclusions: In HIV-infected patients given a DRV/r-based regimen for a mean duration of >20 months, serum-glucose levels did not change. In ARV-naive patients, lipid parameters increased during the first months of the study although remaining in the normal range except for triglycerides (>20 mg/dL). Study discontinuations due to lipid dysmetabolism were rare.

OPPORTUNISTIC INFECTIONS: TUBERCULOSIS

P142
Low rifampicin and isoniazid concentrations are associated with delayed sputum conversion in HIV-positive patients co-infected with tuberculosis in Uganda
Christine Sekaggya1; Bruno Ledergerber2; Amrei von Braun1; Mohammed Lamorde1; Allan Buzebye1; Nadia Eberhard3; Alexandra Scherrer2; Rithal Nakiboga2; Daniel Müller2; Lars Henning2; Ursula Gutteck2; Natasia Corts2; Joseph Musaazi3; Moses Kamya2; Barbara Castelnuovo3; Andrew Kambugu1 and Jan Fehr2
1Research, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda. 2Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland. 3Department of Clinical Pharmacology and Toxicology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland. 4Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda

Introduction: HIV-positive patients co-infected with tuberculosis (TB) have anti-TB drug concentrations lower than reference ranges; however, the relationship between concentrations of anti-TB drugs and treatment response remains controversial. We sought to evaluate if there is an association between low concentrations of first-line anti-TB drugs and delayed sputum conversion in a cohort of HIV/TB co-infected Ugandan adults.

Materials and methods: We enrolled HIV-infected Ugandan adults diagnosed with a first episode of pulmonary TB. Patients underwent pharmacokinetic sampling 1, 2 and 4 hours after drug intake to estimate the maximum drug concentrations (eCmax) at 2, 8 and 24 weeks of TB treatment using high-performance liquid chromatography. Low concentrations were defined as an eCmax below the previously described cut-offs for rifampicin <8 mg/L and isoniazid <3 mg/L. Sputum conversion was defined as conversion of sputum culture or smear from positive to persistently negative results during follow-up. Cox regression and Kaplan-Meier curves were used to determine the association between sputum conversion dynamics and anti-TB drug concentrations.

Results: From April 2013 to May 2015, we included 226 HIV-infected patients with positive sputum cultures or smears at baseline. The median age was 34 years (interquartile range [IQR] 29–40), 58% (133) were male, the median CD4 cell count was 191 cells/mm3 (IQR 70–333), and the median BMI was 19.1 kg/m2 (IQR 17.6–21.6). The majority (177, 78%) of all patients was ART naive at time of TB diagnosis. Patients with low isoniazid and rifampicin concentrations were less likely to undergo sputum conversion before the end of follow-up compared to those with normal concentrations (HR 0.51; 95% CI 0.35–0.72; p < 0.001 and HR 0.61; 95% CI 0.44–0.84; p = 0.003 respectively). In addition, patients with >1 drugs below the cut-off had a higher probability of remaining culture/smear positive over time compared to those with no drug below the cut-off (Figure 1). These associations remained unchanged in models adjusted for age, sex and BMI.
Conclusions: Low isoniazid or rifampicin concentrations in HIV/TB co-infected patients resulted in delayed sputum conversion. This has potential implications on TB transmission.

P143
Isoniazid preventive therapy is highly cost-effective among TB/HIV co-infected patients in Uganda
Christine Sekaggya Wiltshire1; Andreas Kuznik2 and Mohammed Lamorde1
1Research, Infectious Diseases Institute, Kampala, Uganda.
2Pharmaceuticals, Regeneron Pharmaceuticals, New York, NY, USA

Introduction: Isoniazid preventive therapy (IPT) for at least 6 months is recommended by the WHO for the treatment of latent tuberculosis (TB) in patients infected with HIV. This study aimed to determine the cost-effectiveness of IPT versus no treatment for latent TB among HIV-infected patients in an urban outpatient clinic in Kampala, Uganda.

Methods: The analysis was conducted from the perspective of the national health system. Using decision analysis, we modelled the impact of IPT versus no IPT on costs and patient outcomes, using a probability of developing TB of 2.5% in the IPT arm and 7.5% in the no-IPT arm, based on published sources [1]. We estimated the median daily price of isoniazid at $0.048 over the course of 6 months, based on international drug price lists. We also included the cost of first- and second-line TB treatment at $12.90 and $110.7, respectively [2]. The TB associated mortality rate (10.5%) and failure/relapse rate (12.4%) associated with TB treatment was obtained from a systematic review of first-line treatment of TB in HIV-infected patients [3]. We used a life expectancy of 35.1 years estimate from a study on patients on combined antiretroviral therapy in Uganda [4]. Study results were expressed in cost per disability-adjusted life years (DALY) averted and compared against WHO cost-effectiveness thresholds.

Results: The full course of IPT is associated with a cost of $8.64, but approximately $1.33 of which are offset due to reduced need for first- and second-line TB therapy, yielding a net cost of $7.31. IPT is also associated with a reduction in DALYs by 0.118, yielding a cost/DALY averted of $62, which is well below Ugandan per capita GDP.

Conclusion: Use of IPT is highly cost-effective in TB/HIV co-infected patients. National programmes should consider IPT a priority in Uganda and health providers should be encouraged to increase compliance with WHO guidelines on treatment of latent TB.

References

P144
Predicting the in-hospital mortality in tuberculous meningitis
Raluca Jipa1; Eliza Manea1; Ioana Olaru2; Simona Merisor1; Cristian Niculae1 and Adriana Hristea3
1Clinical – Adults IV, National Institute of Infectious Diseases “Prof. Dr. Matei Bals” Bucharest, Romania. 2Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany

Introduction: Mortality in tuberculous meningitis (TBM) varies from around 20% in HIV-negative patients to more than 50% in HIV-positive patients. A prediction score for unfavourable outcome including altered consciousness, neurologic deficit, hydrocephalus, vasculitis, immunosuppression and diabetes mellitus has been recently published. The aim of our study was to assess if this score is better associated with mortality than neurologic staging in HIV-infected versus HIV-non-infected patients.

Materials and methods: We retrospectively analyzed patients admitted to a tertiary care facility between 2005 and 2015 with TBM. Patients were diagnosed as definite, probable and possible TBM according to a consensus definition [1]. Neurologic stages were classified according to the Medical Research Council (MRC) definitions [2]. Hamsi scoring [3] was calculated for all patients for further distribution of mortality.

Results: We identified 115 patients of which 55 (48%) had definite, 33 (29%) probable and 27 (23%) possible TBM. Thirty-two (28%) patients...
were in MRC stage 1, 58 (50%) were in stage 2 and 25 (22%) in stage 3. Fifty-two (45%) patients were immunosuppressed, of which 41 (36%) patients were HIV infected. Fifteen (37%) HIV-infected patients versus six (8%) non-HIV patients died during hospitalization (p < 0.001, OR 6.5, 95% CI 2.2–18.6). In the non-HIV patients who were immunosuppressed the mortality was 25%. The median CD4 cell count in HIV-infected patients who died versus those who survived was 67 (IQR 19–145) versus 86 (IQR 45–192), respectively. Mortality rates were 9.4% in patients diagnosed in MRC stage 1, 10.3% for patients in stage 2 and 48% for those in stage 3. Mortality rates in HIV-infected patients were one (2%) for MRC stage 1, four (10%) for stage 2 and 10 (24%) for stage 3 (p = 0.007). In non-HIV patients mortality was 3% in all three stages. The distribution of mortality for the Hamsi scores 1 to 6 was 0%, 5%, 14.8%, 25.9%, 33% and 40%, respectively. The median Hamsi score was 4, both in patients who survived (IQR 2–5) and in those who died (IQR 4–5) in the HIV-positive group. In the HIV-negative group, the median Hamsi score was 3 (IQR 2–4) in patients who died versus 3 (IQR 3–5) in those who survived. Area under ROC curve for Hamsi score versus clinical staging was 0.775 versus 0.721, respectively (Figure 1).

Conclusions: Immunosuppression, particularly HIV infection, is associated with higher mortality in TBM. Higher Hamsi score was associated with higher mortality. Hamsi score was similar with clinical staging in predicting in-hospital mortality. In advanced HIV disease the mortality was not associated with CD4 cell count.

References

P145

Tuberculosis infection in HIV patients in a Portuguese population

António Maio; Daniel Coutinho; Sofia Nunes; Jorge Velez; Filomena Freitas and Célia Oliveira

Infectious Diseases Department, Centro Hospitalar do Baixo Vouga, Aveiro, Portugal

Introduction: Tuberculosis (TB) is the most common opportunistic infection affecting HIV patients and remains the most common cause of death in patients with AIDS. HIV increases the risk of disease from TB and leads to more frequent extrapulmonary involvement, atypical manifestations and paucibacillary disease, which can delay diagnosis.

Material and methods: Retrospective analysis of files pertaining inpatients with TB and concurrent HIV infection admitted between January 2005 and December 2014. Data were analyzed using x2 or Fisher’s exact test (p < 0.005 – statistically significant) and odds ratio was calculated.

Results: From 222 patients diagnosed with TB during the study, 48 had concurrent HIV infection. Of these 15 had a pulmonary form of TB (PTB) and 36 an extrapulmonary form (ETB) (p = 0.052). There was an increased risk of ETB in HIV patients (OR 5.156). In both groups men were the most common gender (PTB 80.0%; ETB 80.6%) with a median age of 39.5 years (PTB 34 years (31.5–43); ETB 43 years (32–50)). CD4 count and viral load was obtained in 40 patients, with a median CD4 count of 74.50 cells/μL (13–136) and viral load of 211,006 copies/mL (1430–4,430,000). In HIV patients, most TB diagnosis were done in the context of new HIV diagnosis (n = 34, 70.8%). The others were diagnosed in non-adherence patients. The most common forms of TB were pulmonary (n = 15), disseminated (n = 11), ganglionar (n = 10), meningeal and pleural (n = 8). The HIV infection was associated with the presence of disseminated (p = 0.000, OR 12.64), pleural (p = 0.000, OR 8.5), meningeal (p = 0.000, OR 2.96) and ganglionar forms of TB (p = 0.000, OR 2.38). Its absence is associated with pulmonary (p = 0.000, OR 4.08) and osteoarticular forms (p = 0.000, OR 5.4231). TB case was confirmed by culture or PCR test plus smear in 17 cases, was probable (PCR or smear or histology) in 16 cases and possible (only clinical) in 15 cases. Six patients died because of TB infection (12.5%, PTB n = 2 vs. ETB n = 5) with no prevalence of any particular form of TB.

Conclusion: Risk of ETB in HIV patients seems to be higher than PTB. We found an association of HIV infection with disseminated, pleural, meningeal and ganglionar forms. Definitive diagnosis is very difficult in these patients because of paucibacillary disease, requiring sometimes the use of clinical criteria and empiric therapy. Diagnosis in time and appropriate treatments can change the prognosis of these patients.

Abstract P144 - Figure 1. ROC curve.
P147
Use of dolutegravir in combination with rifampicin-based TB therapy in HIV/TB co-infected patients: real-world experience from Leeds, UK
Muge Cevik1, Rachel Vincent2 and Hugh McGann2
1Infectious Diseases, Leeds Teaching Hospitals NHS Trust, Leeds, UK. 2Infectious Diseases, Western General Hospital, Edinburgh, UK.

Introduction: Co-administration of TB and HIV treatment is now the standard of care. Rifampicin-based therapy is the first-line TB treatment; however, there are significant drug interactions as rifampicin is a potent inducer of cytochrome P450 and UGT. Dolutegravir is a substrate of UGT1A1 and CYP34 both are induced by rifampicin therefore co-administration of rifampicin decreases dolutegravir plasma concentrations. It is recommended to use dolutegravir 50 mg twice daily when given together with rifampicin. Our HIV MDT has approved the use of dolutegravir in TB/HIV co-infected patients who had adverse reactions with efavirenz or where efavirenz was contraindicated. We aim to present real-world experience of our HIV/TB co-infected patients who were on rifampicin-based TB therapy in combination with dolutegravir-based regimen.

Methods: All HIV/TB co-infected patients who were on dolutegravir-based ART and were receiving rifampicin-based TB therapy were identified. Data were retrospectively collated through electronic patient records and case note review. Descriptive statistics were performed to examine demographics, baseline characteristics, CD4 count and HIV viral load. In this cohort, dolutegravir was used 50 mg BID in combination with rifampicin 600 mg OD in all patients.

Results: We identified seven patients (one male) who were on dolutegravir-based regimen in combination with rifampicin. Median age was 41 years (27–48), and all were black African in origin. Five patients were naive to ART whereas two were ART experienced. There was no baseline integrase resistance mutations identified. At baseline median CD4 count was 90 cells/mL (3–365), five patients had CD4 <100 cells/mL and only one patient had undetectable viral load. At 6 months after HIV treatment median CD4 count improved to 230 cells/mL (104–625) and all except one patient had undetectable HIV viral load. This patient was not suppressed due to 230 cells/mL (104–625) and all except one patient had undetectable viral load. In this cohort, dolutegravir was used 50 mg BID in combination with rifampicin 600 mg OD in all patients.

Conclusion: In this small cohort of HIV/TB co-infected patients co-administration of twice-daily dolutegravir in combination with rifampicin was well tolerated with good virological outcome both in naive and treatment-experienced patients.

P148
The practice and value of interferon gamma release assay testing for latent tuberculosis infection in people living with HIV: a retrospective review of patients at Leeds Teaching Hospitals Trust
Amy Baggott1, Muge Cevik2 and Hugh McGann1
1Infectious Diseases and Travel Medicine, St James’s University Hospital, Leeds, UK. 2Infectious Diseases, Western General Hospital, Edinburgh, UK.

Introduction: Both NICE and BHIVA guidelines recommend interferon gamma release assay (IGRA) testing for diagnosing latent tuberculosis (TB) infection in people living with HIV with exposure risk for TB [1,2]. However, “indeterminate” IGRA results are more common in HIV-infected subjects and the possibility of false negative results in those patients with very advanced immunocompromise is a concern [3,4].

Methods: As such, a retrospective review was conducted of all patients diagnosed with both TB and HIV in the Leeds Teaching Hospitals Trust during the past 5 years. Records were checked to see if those patients with risk factors for TB exposure had been correctly screened for latent TB with an IGRA test at the time of HIV diagnosis and, if so, how the result had influenced treatment. Demographic data were collected about the patients and their laboratory results, treatment histories and outcomes were analyzed.

Results: Of 31 patients, only two had ever had IGRA testing. One had been tested 7 years after being diagnosed with HIV and just 2 weeks before being diagnosed with active TB, with a positive result. The other was tested within 2 weeks of being diagnosed with very advanced HIV and had a false negative result. He was started on treatment for active TB 2 months later and died during treatment. Nine patients were diagnosed with HIV at the same time as TB, but 22 patients were diagnosed with HIV more than a month before being diagnosed with HIV, with an average interval of 4.7 years between diagnoses. Twenty of these 22 patients had exposure risk for TB and should have been screened for latent TB. Two of the patients had MDR TB which would not have been effectively prevented by chemoprophylaxis, even if they had been screened for latent infection. Two deaths occurred, but neither would have been prevented by IGRA testing. Over half of the cohort may have potentially benefited from IGRA testing to screen for latent TB as part of their routine HIV care. However, as the one case who did have an IGRA test at the time of HIV diagnosis demonstrates, IGRA testing can be unreliable in those who present with advanced HIV.

Conclusion: From these data, there are missed opportunities to diagnose and treat latent TB, but it is difficult to know how useful IGRA testing would truly have been, if the results had been indeterminate or falsely negative in those who presented with very low CD4 counts.

References

P149
Abstract Withdrawn
OPPORTUNISTIC INFECTIONS: OTHERS

P150
Incidence and survival in HIV-infected patients with central nervous system opportunistic infections in the cART era: a 10-year Romanian single-centre experience
Cristiana Oprea 1; Irina Ianache 2; Ionut Popa 2; Luminita Ene 5; Roxana Radoi 1; Gratiaela Tardei 1; Eugenia Ungureanu 1; Simona Erscoiu 1; Emanoil Ceausu 2 and Petre Calistru 1
1Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. 2Infectious Diseases, Victor Babes Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania. 3Laboratory of Virology and Immunology, Victor Babes Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania

Introduction: Despite the global decline in the cART era, HIV-associated neurologic opportunistic infections (CNS-OIs) remain an important cause of morbidity and mortality especially in resource-limited settings. The aim of our study was to evaluate the incidence of CNS-OIs (including brain tumors) and the factors related to survival in HIV-infected patients admitted in a tertiary health care facility.

Methods: Retrospective study on HIV-infected patients diagnosed with CNS-OIs at Victor Babes Hospital Bucharest between January 2006 and December 2015. We evaluated demographic, immunologic, virologic variables and treatment characteristics in patients with CNS-OIs. Survival distribution was estimated using Kaplan-Meier methods.

Results: A total of 215 patients, 56.2% males, were diagnosed with 220 CNS-OIs (incidence 12.9/1000 PY). The median age at CNS-OIs diagnosis was 29 years (IQR 23–40). The main routes of HIV acquisition were: heterosexual contact (HSX) 52.7%, parenteral in early childhood (PI) 38.5% and injecting drug use (IDU) in 6.8%. The median CD4 cell count and HIV viral load (VL) at CNS-OIs diagnosis were 35/mm³ (IQR 13–103) and 5.24 log10 copies/mL (IQR 4.1–5.7), respectively. The most common CNS-OIs were: cerebral toxoplasmosis 64 (29.0%), progressive multifocal leukoencephalopathy (PML) 62 (28.1%), tuberculous meningitis (TBM) 41 (18.6%), cryptococcal meningitis (CM) 37 (16.8%), primary cerebral lymphoma (PCNSL) 10 (4.5%) and CMV encephalitis 6.

<table>
<thead>
<tr>
<th>CNS-OI</th>
<th>n</th>
<th>Median (IQR)</th>
<th>CD4 cell count/mm³,</th>
<th>Nadir CD4 cell count/mm³,</th>
<th>HIV RNA log10 copies/mL,</th>
<th>Survival in months,</th>
<th>Mortality, n (%)</th>
<th>Early mortality, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PML</td>
<td>62</td>
<td>39 (16–103)</td>
<td>33 (12–77)</td>
<td>4.76 (2.85–5.39)</td>
<td>22.1 (3.15–5.12)</td>
<td>(37.0)</td>
<td>16 (25.8)</td>
<td></td>
</tr>
<tr>
<td>TBM</td>
<td>41</td>
<td>65 (23–122)</td>
<td>37 (19–65)</td>
<td>5.32 (4.46–5.84)</td>
<td>14.9 (4.0–27.6)</td>
<td>(31.9)</td>
<td>8 (19.5)</td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>37</td>
<td>21 (11–56)</td>
<td>13 (8–28)</td>
<td>5.37 (4.61–5.76)</td>
<td>16.2 (2.3–44.3)</td>
<td>(37.0)</td>
<td>12 (32.4)</td>
<td></td>
</tr>
<tr>
<td>PCNSL</td>
<td>10</td>
<td>40 (16–78)</td>
<td>32 (11–41)</td>
<td>5.71 (5.14–5.87)</td>
<td>2.3 (1.2–4.1)</td>
<td>(70.0)</td>
<td>7 (18.6)</td>
<td></td>
</tr>
<tr>
<td>CMVE</td>
<td>6</td>
<td>23 (11–48)</td>
<td>13 (8–21)</td>
<td>5.89 (5.58–5.92)</td>
<td>38 (11.8–78.9)</td>
<td>(70.0)</td>
<td>2 (33.3)</td>
<td></td>
</tr>
<tr>
<td>Toxo</td>
<td>64</td>
<td>29 (11–63)</td>
<td>23 (11–54)</td>
<td>5.33 (4.97–5.80)</td>
<td>17.8 (2.7–43.1)</td>
<td>(37.0)</td>
<td>24 (37.5)</td>
<td></td>
</tr>
</tbody>
</table>

Abstract P150 – Table 1. Immuno-virologic characteristics, mortality and survival in HIV-infected patients with CNS-OIs
P151
In spite of international guidelines, vaccine coverage of HIV-infected patients remains low
Amandine Gagneux-Brunon; Anne Frébard; Maelle Detoc; Elena Charrière; Véronique Ronat; Frédéric Lucht and Elisabeth Botelho-Nevers
Infectious and Tropical Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France

Introduction: HIV-infected patients are at risk of vaccine-preventable diseases. HIV care is an opportunity to improve vaccine coverage. EACS [1], BHIVA [2] and French [3] guidelines recommend immunization as in general population (tetanus (T), diphtheria (D), poliomyelitis (P), pertussis, and measles, mumps and rubella (MMR)) associated with specific vaccinations (influenza, pneumococcal infections, viral hepatitis B (HBV) and A, human papilloma virus). The aim of our study was to assess the status of immunization of HIV-infected patients for specific and non-specific vaccinations.

Materials and methods: Single-centre study, status of immunization was collected in patients’ charts and vaccination booklets. All patients were includable in the study.

Results: Five hundred and sixty-nine patients were included, mean age was 49.4 ± 11.5 years, sex ratio was 2.67, 527 (92.6%) patients had an undetectable viral load, median CD4 positive cells count was 660/mm³ (53-2146), 217 (38.1%) patients had at least one significant comorbidity (liver disease in 21.2%, diabetes in 12.9%, chronic obstructive pulmonary disease in 7.3%, renal insufficiency in 5.1%, chronic cardiopathy in 4.6%, neoplasm in 1.4%). Two hundred and sixty-six patients were of 425 (61.4%) were correctly immunized against D, T and P; 96/356 (27%) against pertussis, 26/279 (9.3%) against MMR. Only 17 patients of 279 with available information were correctly immunized against D, T, P, pertussis and MMR. Of 474 patients with available information about immunization against HBV, 282 (59.5%) were correctly immunized (after immunization or with natural immunity). Concerning immunization against Staphylococcus pneumoniae, 107 patients (26.5%) (of 403 with available data) received a conjugate vaccine before the non-conjugate polysaccharide vaccine. Two hundred and twenty-nine (52.5%) of the patients with data were immunized against influenza during last winter. Patients with comorbidities were more often correctly immunized against Streptococcus pneumoniae and influenza than patients without a comorbidity (51/127 vs. 56/256, p = 0.005, and 89/151 vs. 140/284, p = 0.036, respectively).

Conclusion: Our data suggest that vaccine coverage in HIV-infected patients remains low (and comparable to previously published studies, and lower than in the general population), patients with a comorbidity were more likely correctly immunized against Streptococcus pneumoniae and influenza than patients without comorbidity. With the improvement of the condition of HIV-infected patients, physicians involved in HIV care may pay more attention to prevention.

References

P152
Does syphilis impact on HIV infection when both diagnoses are concomitant?
Rosario Palacios; Carmen María González-Domenech; Isabel Antequer; Josefa Ruiz-Morales; Enrique Nuño; Encarnación Clavijo; Manuel Márquez and Jesús Santos
UGC Enfermedades Infecciosas, Hospital Virgen de la Victoria, Málaga, Spain

Introduction: Syphilis causes viral load blips in virologically suppressed patients on antiretroviral therapy, as well as a reduction in the CD4 lymphocyte count [1,2]. The importance of this interaction is that co-infection increases the risk of HIV transmission [3]. The aim of this study was to examine whether syphilis impacts on HIV infection when both infections are diagnosed at the same time in men who have sex with men (MSM).

Materials and methods: All cases of HIV-MSM diagnosed at our centre in 2009 to 2015 were reviewed. Patients were excluded from this study if they had a prior diagnosis of syphilis in order to avoid confounding factors in the serological tests. We examined epidemiological, clinical, immunological and virological variables among the patients with and without syphilis at the time of diagnosis of HIV infection. Diagnostic criteria for syphilis are: treponemal and rapid plasma reagin (RPR) both positive, except for patients with primary syphilis, who only require a positive RPR.

Results: During the study period, 566 patients were diagnosed with HIV infection (446 MSM); 37 patients were excluded, so the final sample included 409 MSM. Of these, 72 (17.6%) were diagnosed with syphilis at the same time as their diagnosis of HIV infection. Syphilis was asymptomatic in 34 (47.2%) cases. The epidemiological and clinical characteristics were similar in patients with or without syphilis, and no differences were found in basal viral load (4.67 vs. 4.66 log copies/mL; p = 0.3) or CD4 cell count (431 vs. 428 cell/µL; p = 0.7). Nor were there differences between the patients with symptomatic syphilis and the patients without syphilis.

Conclusions: Syphilis does not impact on the clinical presentation nor on the immunovirological parameters when the diagnoses of both syphilis and HIV are coincident. The specific weight that Treponema pallidum infection may have on HIV-infected patients not on antiretroviral therapy is minimum.

References

CO-MORBIDITIES AND COMPLICATIONS OF DISEASE AND/OR TREATMENT: AGEING

P153
Health-related costs in chronic HIV infection: a case-control study versus general population using a claims-based approach in Germany
Eva Wolf1 and Stefan Christensen2
1Clinical Research, MUC Research, Munich, Germany. 2Infectious Diseases, Center for Interdisciplinary Medicine (CIM), Munich, Germany

Introduction: Due to very effective ART available for HIV treatment, people living with HIV (PLHIV) are now older but also suffering from age-related comorbidities, transforming HIV management into chronic care. However, data on excess comorbidity burden in PLHIV are limited. This study characterizes the cost to the health system, of managing comorbidities of HIV patients, compared with a matched, HIV-negative control cohort in Germany.

Materials and methods: This is a retrospective health insurance claims database analysis, comparing the healthcare costs of an HIV cohort (HIV+) to a matched cohort from the general population (non-HIV). Inclusion criteria for HIV+ cohort were ≥1 HIV ICD-10-GM code in 2014, age >21 years at index date, and continuous documentation for the previous 3 years. Index date was the last available HIV diagnosis code. A control cohort was selected from general, non-HIV population, and paired (2:1 control-to-case ratio) based on age, gender, residence district, health insurance status and educational level, at index date. Level of significance was α < 0.05.

Results: One thousand nine hundred and sixty-nine HIV+ patients were included and paired with 3938 non-HIV individuals. Mean age was 48 years and 83.5% were males. Cardiovascular disease, chronic renal disease, osteoporotic bone fractures and HBV and HCV co-infection were more prevalent in HIV+ patients. The total average per patient per year (PPPY) costs ($SD, standard deviation) excluding costs exclusively related with HIV (ART) were significantly higher (p < 0.05) in HIV+ compared with non-HIV ($8039±42,586€ vs. $3664±20,961€, respectively). When looking at individual categories in Figure 1, the main driver of this significant difference is the PPPY pharmaceutical cost excluding ART ($3942€), which accounts for nearly 49% of total costs for HIV+, but only 32% for non-HIV ($1201€). Outpatient costs and inpatient costs were also statistically higher for HIV+ compared with non-HIV. There was no difference for sick leave payments, and devices costs for HIV+ compared with non-HIV cohort.

Conclusions: Higher inpatient, outpatient and drug-related costs not associated with ART were observed in a German HIV+ cohort compared with a matched non-HIV cohort using health insurance claims data. With effective ART, PLHIV are ageing and developing chronic comorbidities, potentially requiring a holistic, long-term, multidisciplinary approach, including not only careful consideration of ART choice, but also screening, monitoring and treatment of comorbidities and aspects of lifestyle, potentially leading to improved outcomes.

P154
Ageing and the evolution of comorbidities among HIV patients in the EuroSIDA cohort
Sara Lopes1; Ole Kirk2; Jens Lundgren2; Kamilla Laur2; Simon Edwards2; Claudine Duvivier3; Christoph Stephan4; Helen Sambatakou5; Katarzyna Maciejewska5; Filipa Araújo6; and Amanda Mocroft1
1Health Economics and Outcomes Research, Gilead Sciences, London, UK. 2Department of Infectious Diseases, Centre for Health and Infectious Disease Research, Copenhagen, Denmark. 3Academic Department of Genitourinary Medicine, Mortimer Market Centre, University Paris Descartes, Paris, France. 4Zentrum der Inneren Medizin II, JW Goethe University Hospital, HIV Haus 68, Frankfurt am Main, Germany. 2nd Department of Internal Medicine, Hippokration General Hospital, Athens, Greece. 5Clinic of Infectious, Tropical Diseases and Immune Deficiencies, Pomeranian Medical University, Szczecin, Poland. 6HIV Epidemiology and Biostatistics Unit, Department of Infection and Population Health, University College London, London, UK

Introduction: The prevalence of age-related comorbidities is likely to increase as HIV+ patients prolong survival due to availability of effective ART. We aimed to characterize the common comorbidities’ prevalence and their risk and factors, such as renal impairment, bone fractures and cardiovascular (CV) events over time after standardization for age.

Abstract P153 - Figure 1. Mean per person per year (PPPY) individual categories cost per cohort.
Materials and methods: Two cross-sectional analyses (2006 and 2014) were conducted in patients within EuroSIDA cohort. Adult patients were selected if they had ≥1 clinical visit in the year of analysis. Analyzed outcomes included prevalence of comorbidities: CV events, renal impairment (chronic kidney disease (CKD); defined as a confirmed (>3 months apart) eGFR < 60, nadir eGFR < 60 mL/min using CKD-EPI formula) and bone fractures. Risk factors considered included diagnosis of hypertension (systolic blood pressure (BP) ≥ 140 mm Hg and/or diastolic BP ≥ 90 mmHg and/or on hypertensive drugs), dyslipidaemia (total cholesterol ≥ 6.2 mmol/L, HDL ≤ 0.9 mmol/L, or triglycerides ≥ 2.3 mmol/L) and diabetes (clinical diagnosis and/or antidiabetics/insulin use); and the risk score for CV and CKD development using Data Collection on Adverse Events of Anti-HIV Drugs (DAD) CKD risk score, DAD CVD 5-year risk score and Framingham 10-year CVD risk score.

Results: Nine thousand five hundred and fifty-four patients were under follow-up in 2006 and 11,504 in 2014. 73.6% and 71.9% of patients were male in 2006 and 2014, respectively. Figure 1 summarizes the prevalence of comorbidities and risk factors for all, and patients ≥ 50 years in 2006 and 2014, who represent 44.0% of the 2014 cohort. Overall, the prevalence of CKD increased over time (2.0% vs. 5.1%), as did for any bone fractures (2.0% vs. 5.3%), hypertension (25.8% vs. 40.6%), diabetes (5.9% vs. 6.8%) and dyslipidaemia (69.4% vs. 72.3%). Similarly, the proportion of patients in DAD CKD high-risk group (score ≥ 5) increased from 50.5% to 55.6%, in Framingham high-risk group (score > 20%) increased from 18.3% to 24.9% and in DAD CVD high- and very high-risk groups (scores 5–10% and > 10%, respectively) increased from 9.5% to 15.3%, respectively. The increase in the prevalence of CKD, hypertension and fractures over time was notable amongst those ≥ 50 years.

Conclusions: As persons with HIV age, there is an increasing prevalence of common underlying comorbidities. Careful consideration of modifiable factors, including lifestyle and antiretroviral therapy as well as a multidisciplinary approach to managing HIV+ patients with different comorbidities, may help improve patient outcomes.

P155

Future challenges for clinical care of an ageing population infected with HIV: a “geriatric HIV” modelling study

Davide De Francesco1; Andrea Malagoli2; Olga Theou3; Stefano Zona4; Federica Carli2; Giovanni Dolci2; Cristina Mussini5; Susan Kirkland6; Chiara Mussini2; Matteo Cesarì5; Kenneth Rockwood3 and Giovanni Guaraldi2

1Department of Infection & Population Health, University College London, London, UK. 2Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy. 3Geriatric Medicine Research, Dalhousie University, Halifax, Canada. 4Department of Community Health & Epidemiology, Dalhousie University, Halifax, Canada. 5Geriatrics Division, University of Modena and Reggio Emilia, Modena, Italy. 6Centre Hospitalier Universitaire de Toulouse, Gérontopôle, Toulouse, France

Introduction: According to a modelling study, in 15 years’ time multimorbidity in HIV patients will be the norm [1]. In this context frailty, geriatric syndromes and disability will be relevant clinical outcomes. We aimed at quantifying the scale of change in frailty and its implications for HIV care in Italy in the year 2030.

Materials and methods: An individual-based model of the ageing population of the Modena HIV Metabolic Clinic (MHMC) was constructed using data collected between 2009 and 2015 from 3086 patients. The model follows patients enrolled to the clinic up to 2015 and generates new entries on a yearly basis up to 2030. Number, age and gender of new entries were modelled using trends observed in the period 2009 to 2015. Patients were followed as they age and accumulate deficits, resulting in the Frailty Index (FI, quantified as the proportion of deficits present out of a total of 37). FI at enrolment was generated from a gamma distribution with age- and gender-specific parameters estimated using the MHMC 2009 to 2015 data. Patients were classified as non-frail (FI 0–0.3), frail (0.3–0.4) and most-frail (FI > 0.4). Changes in the FI over a 1-year period and death rates were modelled following a validated mathematical model developed in a large Canadian ageing population [2], with parameters adjusted to best represent the changes observed in the MHMC 2009 to 2015 population. Geriatric syndrome was defined as of one or more self-reported falls in the past 12 months. Disability was assessed in eight categories of activities of daily function and defined as impairment in ≥1 categories. The relationship between age, gender, geriatric syndrome and disability, observed in 2014 to 2015 at MHMC, was postulated to constant over time.

Results: Our model suggests that the median age of HIV-positive patients on combination antiretroviral therapy will increase from 49 years in 2015 to 59 in 2030, with the proportion of HIV-positive patients aged ≥50 years increasing from 42% in 2015 to 95% in 2030 (Figure 1). In the same period, the proportion of frail and most-frail patients will increase from 26% to 28% and from 24% to 48%, respectively. In 2030, we predict that 30% of HIV-positive patients will have geriatric syndrome and 34% will be disabled (Figure 2).
Conclusion: The increasing numbers of older patients with frailty, geriatric syndromes and disability depict a “geriatric HIV” scenario. This model suggests evidence-based screening and monitoring protocols to ensure high-quality care.

References

P156
Quantifying the future clinical burden of an ageing HIV-positive population in Italy: a mathematical modelling study
Mikaela Smit1; Rachel Cassidy1; Alessandro Cozzi-Lepri1; Enrico Girardi1; Alessia Mammone2; Andrea Antinori3; Gioacchino Magnani3; Antonella D’Arminio Monforte4 and Timothy Hallett3
1Department of Infectious Disease Epidemiology, Imperial College London, London, UK. 2Department of Infection and Population Health, Division of Population Health, University College London, London, UK. 3Department of Epidemiology, National Institute for Infectious Diseases “Lazzaro Spallanzani”, Rome, Italy. 4Clinical Department, National Institute for Infectious Diseases “Lazzaro Spallanzani”, Rome, Italy. 5Clinic of Infectious Diseases, University of Bari, Bari, Italy. 6Department of Health Sciences, Clinic of Infectious and Tropical Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy. 7Dipartimento di Scienze Biomediche e Cliniche ‘Luigi Sacco’, Division of Infectious and Tropical Diseases, University of Milan, Milan, Italy. 8Department of Infectious Diseases, Azienda Ospedaliera S.Maria Nuova, Reggio Emilia, Italy

Introduction: Effective HIV treatment is extending life expectancy of HIV-positive people, putting them at risk of suffering from age-related non-communicable diseases (NCDs). Health systems must prepare for the changes and forecasts are needed. As HIV epidemics across countries vary in terms of at-risk populations and lifestyle factors, it is important to develop country-specific estimates of future morbidity and disease burden. We developed a model of an ageing HIV-positive population for Italy, to provide the first ever national forecasts.

Materials and methods: An individual-based model of the ageing HIV-positive population was adapted to the Italian setting. The model follows patients on HIV treatment as they age, and develop NCDs, including cardiovascular disease (CVD; hypertension, hypercholesterolaemia, strokes and myocardial infarctions), diabetes mellitus, chronic kidney disease and non-AIDS malignancies. The model also simulates how certain NCDs can increase the risk of developing other NCDs (e.g. how hypertension can increase the risk of CVD). The model was parameterized using data from 2774 HIV-positive patients seen for HIV care between 1997 and 2010 from the ICONA Foundation study, a large cohort encompassing 42 infectious disease centres across Italy. Extensive model validation was carried out on this dataset. National level forecasts were developed by scaling the results to national HIV surveillance and programme data. The model was used to make demographic and epidemiological forecasts from 2015 to 2030.

Results: The model estimates that the mean age for HIV-positive patients on treatment in Italy will increase from 45.8 years in 2015 to

Conclusion: The increasing numbers of older patients with frailty, geriatric syndromes and disability depict a “geriatric HIV” scenario. This model suggests evidence-based screening and monitoring protocols to ensure high-quality care.

References

P156
Quantifying the future clinical burden of an ageing HIV-positive population in Italy: a mathematical modelling study
Mikaela Smit1; Rachel Cassidy1; Alessandro Cozzi-Lepri1; Enrico Girardi1; Alessia Mammone2; Andrea Antinori3; Gioacchino Magnani3; Antonella D’Arminio Monforte4 and Timothy Hallett3
1Department of Infectious Disease Epidemiology, Imperial College London, London, UK. 2Department of Infection and Population Health, Division of Population Health, University College London, London, UK. 3Department of Epidemiology, National Institute for Infectious Diseases “Lazzaro Spallanzani”, Rome, Italy. 4Clinical Department, National Institute for Infectious Diseases “Lazzaro Spallanzani”, Rome, Italy. 5Clinic of Infectious Diseases, University of Bari, Bari, Italy. 6Department of Health Sciences, Clinic of Infectious and Tropical Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy. 7Dipartimento di Scienze Biomediche e Cliniche ‘Luigi Sacco’, Division of Infectious and Tropical Diseases, University of Milan, Milan, Italy. 8Department of Infectious Diseases, Azienda Ospedaliera S.Maria Nuova, Reggio Emilia, Italy

Introduction: Effective HIV treatment is extending life expectancy of HIV-positive people, putting them at risk of suffering from age-related non-communicable diseases (NCDs). Health systems must prepare for the changes and forecasts are needed. As HIV epidemics across countries vary in terms of at-risk populations and lifestyle factors, it is important to develop country-specific estimates of future morbidity and disease burden. We developed a model of an ageing HIV-positive population for Italy, to provide the first ever national forecasts.

Materials and methods: An individual-based model of the ageing HIV-positive population was adapted to the Italian setting. The model follows patients on HIV treatment as they age, and develop NCDs, including cardiovascular disease (CVD; hypertension, hypercholesterolaemia, strokes and myocardial infarctions), diabetes mellitus, chronic kidney disease and non-AIDS malignancies. The model also simulates how certain NCDs can increase the risk of developing other NCDs (e.g. how hypertension can increase the risk of CVD). The model was parameterized using data from 2774 HIV-positive patients seen for HIV care between 1997 and 2010 from the ICONA Foundation study, a large cohort encompassing 42 infectious disease centres across Italy. Extensive model validation was carried out on this dataset. National level forecasts were developed by scaling the results to national HIV surveillance and programme data. The model was used to make demographic and epidemiological forecasts from 2015 to 2030.

Results: The model estimates that the mean age for HIV-positive patients on treatment in Italy will increase from 45.8 years in 2015 to
48.8 years in 2020 and 54.5 by 2030, with the proportion of HIV-positive patients aged ≥50 increasing from 35% to 41% to 62%, respectively. The model predicts that, by 2030, 47% of HIV-positive patients will suffer from ≥3 NCDs (compared with 27% in 2020 and 16% in 2015) and 92% from ≥1 NCDs. This will be driven by a steep increase in the burden of CVD (Figure 1). The demographic predictions suggest faster ageing and higher predicted NCD burden for 2030 than the Netherlands.

Conclusions: The age of HIV-positive patients on treatment in Italy is rising and will be accompanied by a rapid increase in NCD-related multimorbidity, assuming current demographic and epidemiological trends remain constant. These changes will have important and far-reaching consequences for HIV-positive patient care, requiring future HIV care to be able to respond to rising complexity of individualized patient needs.

P156
Quantifying the future clinical burden of an ageing HIV-positive population in the USA: a mathematical modelling study
Mikaela Smit; Rachel Cassidy and Timothy Hallett
Department of Infectious Disease Epidemiology, Imperial College London, London, UK

Introduction: Effective HIV treatment is extending life expectancy of HIV-positive people, putting them at risk of suffering from age-related non-communicable diseases (NCDs). Health systems must prepare for the changes and forecasts are needed. As HIV epidemics across countries vary in terms of at-risk populations and lifestyle factors, it is important to develop country-specific estimates of future morbidity and disease burden. We developed a model of an ageing HIV-positive population for the United States, to provide the first ever national forecasts.

Materials and methods: An individual-based model of the ageing HIV-positive population was adapted to the US setting. The model follows patients on HIV treatment as they age, and develop NCDs, including cardiovascular disease (CVD; hypertension, hypercholesterolaemia, strokes and myocardial infarctions), diabetes mellitus, chronic kidney disease, and non-AIDS malignancies. The model also simulates how certain NCDs can increase the risk of developing other NCDs (e.g. how hypertension can increase the risk of CVD). The model was parameterized using data from 3087 HIV-positive patients between 2005 and 2010 from a retrospective analysis of a cohort of commercially insured HIV-positive patients in the United States drawn from a geographically representative national sample. Extensive model validation was carried out on this dataset. National level forecasts were developed by scaling the results to national HIV surveillance and programme data. The model was used to make demographic and epidemiological forecasts from 2015 to 2030.

Results: The model estimates that the mean age for HIV-positive patients on treatment in the United States will increase from 49.0 years in 2015 to 51.6 years in 2020 and 56.3 by 2030, with the proportion of HIV-positive patients aged ≥50 increasing from 42% to 52% to 71%, respectively. The model predicts that, by 2030, 41% of HIV-positive patients will suffer from ≥3 NCDs (compared with 23% in 2020 and 12% in 2015) and 89% from ≥1 NCDs. This will be driven by a steep increase in the burden of CVD (Figure 1). The demographic predictions suggest faster ageing and higher predicted NCD burden for 2030 than the Netherlands.

Conclusions: The age of HIV-positive patients on treatment in the United States is rising and will be accompanied by a rapid increase in NCD-related multimorbidity, assuming current demographic and epidemiological trends remain constant. These changes will have important and far-reaching consequences for HIV-positive patient care, requiring future HIV care to be able to respond to rising complexity of individualized patient needs.
Silver champions from the GEPO cohort: a case-control study of people between 65 and 75 years old and above 75 years of age addressing comorbidities, multimorbidity and polypharmacy

Giovanni Guaraldi 1; Andrea Malagoli 1; Giovanni Dolci 1; Andrea Calcagno 2; Chiara Mussi 3; Benedetto Maurizio Celesia 4; Federica Carli 1; Stefania Piconi 5; Giuseppe De Socio 6; Anna Maria Cattelan 7; Giancarlo Orofino 8; Agostino Riva 9; Valentina Morena 9; Emanuele Foca` 10; Silvia Nozza 11; Elva Bugliosi 12 and Giovanni Di Perri 13

1Infectious Diseases Unit, University of Modena and Reggio Emilia, Modena, Italy. 2Infectious Diseases Unit, University of Torino, Torino, Italy. 3Centro di Valutazione e Ricerca Gerontologica, University of Modena and Reggio Emilia, Modena, Italy. 4Department of Clinical and Molecular Biomedicine, University of Catania, Catania, Italy. 55th Division of Infectious Diseases, Ospedale Luigi Sacco, University of Milano, Milano, Italy. 6Department of Infectious Diseases, Azienda Ospedaliero-Universitaria di Perugia, Perugia, Italy. 7Unit of Infectious Diseases, Azienda Ospedaliero-Universitaria di Padova, Padova, Italy. 8Ospedale Amedeo di Savoia, Unit of Infectious Diseases, Divisione A, Torino, Italy. 93rd Division of Infectious Diseases, Ospedale Luigi Sacco, University of Milano, Milano, Italy. 10Department of Infectious Diseases, University of Turin, Turin, Italy. 11Department of Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy. 12HIV, ViiV Healthcare, Verona, Italy. 13Unit of Infectious Diseases, University of Turin, Torino, Italy

Introduction: GEPO is a new Italian HIV geriatric cohort which aims to describe health transition over time in HIV-positive patients above 65 years as compared with HIV-negative subjects. The objective of this analysis was to describe multimorbidity, polypharmacy and antiretrovirals’ use in the subset of people between 65 and 75 and above 75 years of age.

Materials and methods: Cross-sectional study comparing HIV-positive patients and HIV- individuals referred to a cardiovascular screening clinic in a geriatric centre. They were matched for age (±4 years) and sex. Multimorbidity (MM) was classified as the presence of three or more of non-infectious comorbidities, polypharmacy (PP) as the use of five or more medications (excluding ART). Patients were stratified according to the duration of HIV infection (≥20, 10–20 and <10 years).

Results: A total of 1652 patients were included (1276 HIV+ and 376 HIV–). Table 1 describes the study population between 65 and 75 years of age, whereas Table 2 describes the study population above 75 years of age.

Logistic regression analyses were performed to identify predictors of MM and PP comparing HIV patients versus controls (Figure 1).

Discussion: This study takes advantage of the survival bias unavoidable in any ageing cohort to describe the clinical and HIV characteristic of HIV ageing champions. In this extreme age group HIV duration >20 years is a major driver for polypharmacy.

Comorbidity in chronic HIV infection: a case-control study in Germany using health insurance claims data

Stefan Christensen 1 and Eva Wolf 2

1Infectious Diseases, Center for Interdisciplinary Medicine (CIM), Munich, Germany. 2Clinical Research, MUC Research, Munich, Germany

Introduction: ART has increased life expectancy of people living with HIV (PLHIV), transforming HIV management into chronic care. In ageing PLHIV the prevalence of comorbidities is increasing. However, data on excess comorbidity burden in PLHIV are inconclusive. This study characterizes the prevalence of comorbidities in an HIV population, compared with a matched, non-HIV control cohort from the general population in Germany.
Table 1. Baseline characteristics of the study population between 65 and 75 years of age

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (n = 1111)</th>
<th>HIV − (n = 153)</th>
<th>HIV + (n = 958)</th>
<th>HIV − vs. HIV +</th>
<th>HIV + < 10 years (n = 211)</th>
<th>HIV + 10–20 years (n = 436)</th>
<th>HIV + > 20 years (n = 311)</th>
<th>HIV + vs. HIV − duration</th>
<th>p</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>69.11 (2.62)</td>
<td>68.95 (2.73)</td>
<td>69.12 (2.6)</td>
<td>0.47</td>
<td>69.32 (2.56)</td>
<td>69.88 (2.67)</td>
<td>0.26</td>
<td>0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>177 (15.71%)</td>
<td>24 (15.69%)</td>
<td>150 (15.66%)</td>
<td>1</td>
<td>34 (16.11%)</td>
<td>67 (15.37%)</td>
<td>49 (15.76%)</td>
<td>0.97</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>26.52 (9.83)</td>
<td>28.72 (3.92)</td>
<td>26.07 (10.63)</td>
<td><0.01</td>
<td>28.06 (21.1)</td>
<td>25.83 (4.25)</td>
<td>25.06 (4.18)</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Current smokers</td>
<td>261 (27.19%)</td>
<td>28 (19.18%)</td>
<td>230 (28.5%)</td>
<td>0.02</td>
<td>45 (25.71%)</td>
<td>96 (26.37%)</td>
<td>89 (33.21%)</td>
<td>0.11</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>502 (61.9%)</td>
<td>102 (66.67%)</td>
<td>399 (61.2%)</td>
<td>0.24</td>
<td>84 (54.9%)</td>
<td>192 (60.19%)</td>
<td>123 (68.33%)</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>T2DM</td>
<td>216 (27.07%)</td>
<td>37 (24.18%)</td>
<td>178 (27.86%)</td>
<td>0.41</td>
<td>32 (21.19%)</td>
<td>80 (25.72%)</td>
<td>66 (37.29%)</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>CVD</td>
<td>143 (18.17%)</td>
<td>33 (21.57%)</td>
<td>110 (17.52%)</td>
<td>0.29</td>
<td>17 (11.56%)</td>
<td>50 (16.34%)</td>
<td>43 (24.57%)</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>CKD</td>
<td>121 (16.24%)</td>
<td>5 (7.94%)</td>
<td>115 (17.01%)</td>
<td>0.09</td>
<td>25 (15.15%)</td>
<td>52 (15.76%)</td>
<td>38 (20.99%)</td>
<td>0.24</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>59 (7.63%)</td>
<td>17 (11.41%)</td>
<td>41 (6.63%)</td>
<td>0.07</td>
<td>11 (7.59%)</td>
<td>13 (4.38%)</td>
<td>17 (9.66%)</td>
<td>0.07</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Dyslipidaemia</td>
<td>502 (68.67%)</td>
<td>37 (56.92%)</td>
<td>463 (70.15%)</td>
<td>0.04</td>
<td>98 (61.64%)</td>
<td>230 (71.43%)</td>
<td>135 (75.42%)</td>
<td>0.02</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Multimorbidity</td>
<td>412 (61.31%)</td>
<td>40 (63.49%)</td>
<td>370 (61.36%)</td>
<td>0.84</td>
<td>72 (51.06%)</td>
<td>174 (59.79%)</td>
<td>124 (72.51%)</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Polypharmacy</td>
<td>194 (30.27%)</td>
<td>23 (15.03%)</td>
<td>170 (34.98%)</td>
<td><0.01</td>
<td>28 (29.47%)</td>
<td>80 (34.48%)</td>
<td>62 (38.99%)</td>
<td>0.3</td>
<td><0.01</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Baseline characteristics of the study population above 75 years of age

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total (n = 1111)</th>
<th>HIV − (n = 153)</th>
<th>HIV + (n = 958)</th>
<th>HIV − vs. HIV +</th>
<th>HIV + < 10 years (n = 211)</th>
<th>HIV + 10–20 years (n = 436)</th>
<th>HIV + > 20 years (n = 311)</th>
<th>HIV + vs. HIV − duration</th>
<th>p</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>78.66 (3.43)</td>
<td>78.97 (3.49)</td>
<td>78.44 (3.37)</td>
<td>0.06</td>
<td>78.25 (3)</td>
<td>78.65 (3.7)</td>
<td>78.25 (3.06)</td>
<td>0.99</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Females</td>
<td>124 (22.7%)</td>
<td>61 (27.34%)</td>
<td>61 (19.18%)</td>
<td>0.03</td>
<td>11 (15.9%)</td>
<td>31 (19.8%)</td>
<td>19 (20.43%)</td>
<td>0.74</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>26.22 (4.68)</td>
<td>27.39 (5.12)</td>
<td>25.24 (4.01)</td>
<td><0.01</td>
<td>26.25 (4.18)</td>
<td>24.97 (4.03)</td>
<td>24.93 (3.78)</td>
<td>0.11</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Current smokers</td>
<td>57 (12.18%)</td>
<td>18 (9%)</td>
<td>39 (14.72%)</td>
<td>0.08</td>
<td>5 (9.09%)</td>
<td>23 (17.97%)</td>
<td>11 (13.41)</td>
<td>0.27</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>328 (70.54%)</td>
<td>153 (69.23%)</td>
<td>173 (71.78%)</td>
<td>0.61</td>
<td>41 (70.69%)</td>
<td>88 (73.95%)</td>
<td>44 (68.75%)</td>
<td>0.74</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>T2DM</td>
<td>122 (26.87%)</td>
<td>49 (22.7%)</td>
<td>70 (30.3%)</td>
<td>0.07</td>
<td>10 (17.86%)</td>
<td>37 (33.04%)</td>
<td>23 (36.51%)</td>
<td>0.06</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>CVD</td>
<td>130 (29.28%)</td>
<td>68 (30.91%)</td>
<td>61 (27.48%)</td>
<td>0.49</td>
<td>17 (31.48%)</td>
<td>25 (23.58%)</td>
<td>19 (30.65%)</td>
<td>0.46</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>CKD</td>
<td>83 (23.92%)</td>
<td>11 (10.28%)</td>
<td>72 (30.38%)</td>
<td><0.01</td>
<td>15 (25.42%)</td>
<td>34 (29.57%)</td>
<td>23 (36.51%)</td>
<td>0.40</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>66 (15%)</td>
<td>45 (20.55%)</td>
<td>20 (9.13%)</td>
<td><0.01</td>
<td>7 (6.97%)</td>
<td>9 (8.49%)</td>
<td>7 (11.48%)</td>
<td>0.75</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Dyslipidaemia</td>
<td>223 (65.01%)</td>
<td>50 (46.73%)</td>
<td>172 (73.5%)</td>
<td><0.01</td>
<td>28 (49.12%)</td>
<td>97 (84.35%)</td>
<td>47 (75.81%)</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Multimorbidity</td>
<td>228 (71.03%)</td>
<td>70 (65.42%)</td>
<td>156 (73.58%)</td>
<td>0.17</td>
<td>32 (62.75%)</td>
<td>77 (75.49%)</td>
<td>47 (79.66%)</td>
<td>0.11</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Polypharmacy</td>
<td>168 (41.18%)</td>
<td>84 (37.67%)</td>
<td>84 (45.65%)</td>
<td>0.13</td>
<td>23 (54.76%)</td>
<td>33 (36.26%)</td>
<td>28 (54.9%)</td>
<td>0.04</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>
Materials and methods: This is a retrospective health insurance claims database analysis, comparing the prevalence of comorbidities in an HIV cohort (HIV+/C27) to a matched cohort from the general population (non-HIV). Inclusion criteria for HIV+/C27 cohort were: HIV ICD-10-GM code in 2014, age ≥21 years at index date and continuous documentation for the previous 3 years. Index date was the last available HIV diagnosis code. A control cohort was selected from a general, non-HIV population, and paired (using a 2:1 control-to-case ratio) based on age, gender, residence district, health insurance status and educational level, at index date.

Results: One thousand nine hundred and sixty-nine patients were included in the HIV+/C27 cohort and paired with 3938 individuals of the non-HIV cohort. Mean age was 48 years (SD 9.12.2) and 83.5% were males. Approximately 21.6% were retired and 49.5% had an educational level equivalent to technician or master craftsman certificate. When looking at specific comorbidities over the previous 12 months, there was a statistically significantly higher prevalence in the HIV+/C27 cohort compared with the non-HIV cohort (12.8% vs. 10.4% respectively; p < 0.0056) of cardiovascular disease (CVD), chronic renal disease (CKD; 4.3% vs. 2.4%; p < 0.001) and osteoporotic bone fractures (OBF; 6.4% vs. 2.1%; p < 0.0001). HBV and HCV co-infection were significantly more prevalent in the HIV+/C27 cohort (p < 0.0001). No significant differences were found regarding the prevalence of type II diabetes, dyslipidaemia or alcohol abuse. Hypertension was significantly more prevalent in the non-HIV cohort (29.3% for HIV+/C27 vs. 32.6% non-HIV; p = 0.0095). Major depressive disorders were doubled in the HIV+/C27 cohort (recurrent single episodes) 25.0% (8.4%) versus 12.7% (4.5%).

Conclusions: As PLHIV age, and are treated for longer periods, more age-related comorbidities develop, some of which have been associated with ART. This requires a shift in HIV management including regular monitoring and screening for comorbidities, and optimal selection of ART. We show this is of particular relevance as CVD, CKD and OBF are more prevalent in PLHIV versus non-HIV population. Understanding the nature of these differences may optimize treatment and improve patient outcomes.

P160
Burden and determinants of frailty in a cohort of asymptomatic HIV ART-suppressed subjects without known comorbidities

Serena Vita1; Miriam Lichtner2; Raffaella Rossi3; Irene Pozzetto3; Cecilia Tosato1; Raffaella Marocco2; Paola Zuccala’1; Gabriella d’Ettorre1; Ombretta Turrianni1; Francesca Falasca1; Camilla Ajas1; Claudio Maria Mastroianni2 and Vullo Vincenzo2

1Public Health and Infectious Diseases, Sapienza University, Rome, Italy. 2Public Health and Infectious Diseases, Sapienza University, Polo Pontino, Latina, Italy

Introduction: HIV-infected persons are living longer. Survival gains have been accompanied by an incipient burden of key geriatric syndromes, such as frailty, which lead to increased hospitalization and premature death. Frailty is not yet well understood in the context of patients undergoing cART, without known comorbidities. We performed a pilot study to tentatively investigate the determinants of frailty in aviraemic, asymptomatic HIV+ patients.

Materials and methods: We enrolled 80 patients with >1 year of successful cART. We excluded patients with active organ disease in the previous 2 years, diabetes mellitus, renal failure, <18 years old and pregnant women. We collected clinical data and measured frailty with the SHARE-FI test, degrees of depression with patient health questionnaire (PHQ)-2 following by PHQ-9 in case of a score >3, cognitive abilities with the Montreal Cognitive Assessment (MoCA). Based on frailty phenotype, three groups were constituted: prefrails, frails and robusts. In these groups plus a group of 20 healthy donors (HD) we determined the inflammatory background, detecting...
plasmatic soluble (s) CD163, sCD14, IL-6 using ELISA tests. HCV, CMV serology and CMV-DNA-PCR in urine were tested. Non-parametric tests were used for statistical analysis.

Results: The study population included 41 males and 39 females, with a median age of 49.5 years, 82.5% Italians, 50% employed, 53.7% smokers, 78.7% heterosexuals. 12.5% presented a frail and 28.8% a prefrail phenotype, 32.5% presented a mood variation and 51.2% a cognitive impairment. The frailty phenotype was associated with male gender (p = 0.05), smoker status (p < 0.001), HCV serostatus (p = 0.04), PI-based therapy (p = 0.002) and cognitive impairment (p < 0.001); no differences were found in age, CD4 nadir, actual CD4 and year living with HIV, CMV serostatus and CMV-DNA in urine. Moreover, 100% of frails were affected by mood variation, compared with 39% of prefrails and 21% of robusts (p < 0.001). Frails have shown abnormalities of MoCA in 33% of frails, in 77% of prefrails and in 27% of robusts (p < 0.0001). Regarding the plasma levels of sCD163 and sCD14 we observed an increased level compare with HD only in frail and prefrail subjects (p < 0.01 and p = 0.001, respectively).

Conclusions: Although our study population was asymptomatic and without known organ diseases, we found a high prevalence of prefrail and frail patients with cognitive impairment and depression. Factors associated with frailty were smokers status, HCV co-infection, depression, cognitive impairment, PI-based therapy and an increased inflammatory milieu in terms of sCD163 and sCD14. Multivariate analysis with a larger sample is needed to confirm these results.

P161 Current models of care for the management of HIV patients with comorbidities in England: a survey
Elaney Youssef1; Vanessa Cooper2; Eileen Nixon2; Jaime Vera3; Martin Fisher4 and Juliet Wright5
1Medical Education, Brighton and Sussex Medical School, Brighton, UK. 2HIV Research, Brighton and Sussex University Hospital NHS Trust, Brighton, UK. 3Global Health & Infectious Disease, Brighton and Sussex Medical School, Brighton, UK

Introduction: The number of people aged ≥50 living with HIV in the UK is rapidly increasing. Effective treatment means HIV is usually well controlled; however, there has been an increase in individuals experiencing comorbid conditions associated with “normal” ageing. This aim of this study was to find out what models of care are currently in place for the management of patients with comorbidities.

Materials and methods: A link to an online questionnaire was sent via the British HIV Association (BHIVA) Audit Committee to one HIV clinician in each HIV unit in England.

Results: Forty-four units responded. Only 11 units (25%) provided specialized clinics for the management of comorbidities. These included: 1) Specialist clinics for the management of a non-infectious comorbidity (any age) e.g. a liver or renal clinic (n = 10). These clinics utilized in-person appointments (n = 3), or a combination of virtual and in-person appointments (n = 7). They were managed by an HIV clinician and non-HIV clinician together (n = 8). HIV clinician with an interest in the specialist area (n = 4) or specialist with an interest in HIV (n = 4). 2) Services for HIV patients with multiple comorbidities (any age) (n = 2). 3) Dedicated clinics for older people (n = 5) with eligibility determined by age (≥50 years) or the presence of a comorbidity. Additionally, two HIV units employed a GP on site and two had set up a locally enhanced service providing enhanced primary care for HIV-positive patients. Six HIV units ran nurse-led clinics for patients with comorbid conditions. Coordination of care for patients with comorbid conditions was conducted by an HIV specialist doctor (n = 27), the patient’s GP (n = 18), HIV specialist nurse (n = 11) or the patient themselves (n = 9). Eleven clinics reported using case management for patients with multiple comorbid conditions. Self-management support (e.g. nurse-led or as part of an expert patient programme) for patients with comorbidity conditions was provided at 18 HIV units.

Conclusions: Only a quarter of the clinics surveyed had set up clinics for the management of comorbidities in people living with HIV. While a variety of different approaches were used, services were usually focused on the management of one comorbidity, and few provided services for multiple comorbidities. This is an increasing priority in the context of an ageing population.

P162 The HIV patient profile in 2013 and 2003: results from the Greek AMACS cohort
Nikos Pantazis1; Maria Chin2; Anastasia Antoniadou3; Helen Sambatakou4; Athanasios Skotules5; Panagiotis Gargalionos6; Vassilios Paparizos7; Charalambos Gogos8; George Chrysos4; Nina Psychogiou9; Nikolas Sipsas10; Olga Katsoarou11; Panagopoulos Sklias12 and Giota Touloumi1
1Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece. 23rd Department of Internal Medicine – Infectious Disease, Red Cross General Hospital, Athens, Greece. 33rd Department of Internal Medicine – Infectious Disease, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece. 41st Department of Internal Medicine, Medical School, HIV Unit, National and Kapodistrian University of Athens, Athens, Greece. 52nd Department of Internal Medicine, Medical School, HIV Unit, National and Kapodistrian University of Athens, Athens, Greece. 62nd Department of Internal Medicine, Medical School, HIV Unit, National and Kapodistrian University of Athens, Athens, Greece. 71st Department of Internal Medicine and Infectious Disease, G. Gennimatas General Hospital, Athens, Greece. 8AIDS Unit, Clinic of Venerologic & Dermatologic D, Syngros Hospital, Athens, Greece. 9Department of Internal Medicine & Infectious Diseases, Patras University General Hospital, Patras, Greece. 10Infectious Diseases Unit, Tzanio General Hospital of Piraues, Athens, Greece. 111st Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece. 12Infectious Diseases Unit, Department of Pathophysiology, Laikon Athens General Hospital and Medical School, National and Kapodistrian University of Athens, Athens, Greece. 13Infectious Diseases Unit, Department of Pathophysiology, Laikon Athens General Hospital and Medical School, National and Kapodistrian University of Athens, Athens, Greece. 14Infectious Diseases Unit, 2nd University Department, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece

Introduction: ART has improved life expectancy and significantly reduced AIDS-related morbidity/mortality. As people living with HIV (PLHIV) age, prevalence of chronic comorbidities including cardiovascular disease (CVD) and chronic kidney disease (CKD) increase. The aim of this study is to describe the demographics and evolution of HIV disease markers and comorbidities prevalence in PLHIV in Greece in 2003 versus 2013.

Materials and methods: Data were derived from AMACS (Athens Multicenter AIDS Cohort Study), a population-based cohort, that prospectively collects anonymized epidemiologic, clinical, laboratory and treatment data for PLHIV in Greece. Two cross-sectional analyses (2003 and 2013) were performed focusing on patient demographics, HIV disease markers, ART, comorbidities prevalence, including CKD, CVD, diabetes, dyslipidaemia and hypertension. CVD risk was estimated by Framingham 10-year Event Risk calculation (FRS); eGFR calculation was based on CKD-EPI formula. Comparisons were based on population average models excluding missing values.

Results: Two thousand four hundred and three PLHIV were identified in 2003 and 4910 in 2013 (1730 contributing for both cross-sections).
Abstract P162 – Table 1. Patient demographics, HIV markers and comorbidities in 2003 and 2013

<table>
<thead>
<tr>
<th></th>
<th>2003 (n = 2403)</th>
<th>2013 (n = 4910)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, years (SD)</td>
<td>41.1 (10.6)</td>
<td>43.8 (11.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age ≥ 50</td>
<td>18.2%</td>
<td>26.9%</td>
<td><0.001</td>
</tr>
<tr>
<td>Median CD4, count/mL (IQR)</td>
<td>493/ml (299–717)</td>
<td>610/ml (425-828)</td>
<td><0.001</td>
</tr>
<tr>
<td>AIDS diagnosis</td>
<td>16.2%</td>
<td>13.0%</td>
<td><0.001</td>
</tr>
<tr>
<td>Median time since diagnosis, years (IQR)</td>
<td>6.0 (2.9–9.0)</td>
<td>6.7 (2.8–13.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>HIV RNA <50 copies/mL</td>
<td>34.1%</td>
<td>72.4%</td>
<td><0.001</td>
</tr>
<tr>
<td>Patients on ART</td>
<td>76.5%</td>
<td>84.4%</td>
<td><0.001</td>
</tr>
<tr>
<td>Median time on ART, years (IQR)</td>
<td>3.8 (0.5–6.4)</td>
<td>4.5 (1.1–11.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>Triple therapy (2 NRTI + 3rd agent)</td>
<td>63.5%</td>
<td>76.9%</td>
<td><0.001</td>
</tr>
<tr>
<td>eGFR <60 mL/min/1.73 m²</td>
<td>2.4%</td>
<td>3.4%</td>
<td>0.006</td>
</tr>
<tr>
<td>Overall cardiovascular events (ever)</td>
<td>1.8%</td>
<td>2.1%</td>
<td><0.001</td>
</tr>
<tr>
<td>Myocardial infarction (ever)</td>
<td>1.3%</td>
<td>1.7%</td>
<td>0.001</td>
</tr>
<tr>
<td>Stroke (ever)</td>
<td>0.3%</td>
<td>0.4%</td>
<td>0.102</td>
</tr>
<tr>
<td>Median Framingham risk score (IQR)</td>
<td>9.7% (4.3–17.0)</td>
<td>8.2% (3.9–18.1)</td>
<td>0.096</td>
</tr>
<tr>
<td>Patients with high (FRS >20%) 10-year CVD risk</td>
<td>18.2%</td>
<td>22.2%</td>
<td>0.002</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>64.9%</td>
<td>70.3%</td>
<td><0.001</td>
</tr>
<tr>
<td>Patients on lipid-lowering treatment</td>
<td>3.5%</td>
<td>7.5%</td>
<td><0.001</td>
</tr>
<tr>
<td>Median total cholesterol, mg/dL (IQR)</td>
<td>202 (169–239)</td>
<td>189 (161–220)</td>
<td><0.001</td>
</tr>
<tr>
<td>Median HDL, mg/dL (IQR)</td>
<td>46 (37–55)</td>
<td>43 (36–53)</td>
<td><0.001</td>
</tr>
<tr>
<td>Median LDL, mg/dL (IQR)</td>
<td>122 (97–154)</td>
<td>114 (91–140)</td>
<td><0.001</td>
</tr>
<tr>
<td>Median triglycerides, mg/dL (IQR)</td>
<td>144 (96–237)</td>
<td>123 (86–183)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>27.0%</td>
<td>27.5%</td>
<td>0.819</td>
</tr>
<tr>
<td>Diabetes</td>
<td>6.2%</td>
<td>5.6%</td>
<td>0.028</td>
</tr>
</tbody>
</table>

Percentages calculated after exclusion of missing values. eGFR, estimated glomerular filtration rate; IQR, interquartile range; NRTI, nucleotide reverse transcriptase inhibitor; SD, standard deviation.

Table 1 details demographics, disease markers and comorbidities for both study years. Individuals in 2013 were on average older, and diagnosed/treated for HIV for longer, compared with those in 2003. In 2013, PLHIV were also more likely to be on ART (particularly on triple regimen), virologically suppressed and with a higher median CD4 count. CKD and dyslipidemia prevalence increased over time. There was an increase in prescription of lipid-lowering treatment (3.5% in 2003 vs. 7.7% in 2013, p < 0.001), accompanied by an improvement in LDL, triglycerides and total cholesterol. Among 220 and 879 individuals eligible for FRS calculation, the median score numerically decreased (9.7% in 2003 vs. 8.2% in 2013, p = 0.096) but the proportion of patients in the high-risk group (>20%) increased from 18.2% to 22.2%. The availability of new ART and the increased treatment uptake led to significant improvements, within the 2003 to 2013 decade, in the Greek AMACS cohort patients’ immunologic status and viral suppression rates. PLHIV aged alongside an increase in prevalence of comorbidities during these 10 years. The proportion of PLHIV with high FRS increased over time, but the median CVD risk of the cohort slightly declined, which might be partially attributed to the effective lipid control measures. The shift in HIV epidemic paradigm should be addressed with appropriate monitoring and holistic management of HIV care, in terms of optimal ART selection and long-term management and prevention of comorbidities.

Introduction: HIV-infected patients above 65 years of age have higher prevalence of comorbidities and polypharmacy. The aim of the study is to describe ARV use in elderly patients living with HIV.

Materials and methods: Cross-sectional study analyzing HIV+ patients aged ≥65 years, recruited from 11 HIV outpatient clinics in Italy. Multimorbidity (MM) was classified as the presence of three or more of non-infectious comorbidities in the same individual, including cardiovascular disease, chronic kidney disease, dyslipidemia, hypertension, type 2 diabetes mellitus and chronic obstructive

P163
Antiretroviral therapy in Italian geriatric patients living with HIV/AIDS: analysis of GEPPo cohort

Silvia Nozza1; Andrea Malagoli2; Giovanni Dolci3; Andrea Calcagnò4; Chiara Munita5; Benedetto Celesia6; Federica Carli7; Stefania Piconi8; Giuseppe De Socio9; Anna Maria Cattelan9; Giancarlo Orofino9; Agostino Riva10; Valentina Morena11; Emanuele Focà10; Elva Bugliosi11; Giovanni Di Perri9 and Giovanni Guaraldi8
1Department of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy. 2Infectious Diseases Clinic, University of Modena and Reggio Emilia, Modena, Italy. 3Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy. 4Centro di Valutazione e Ricerca Gerontologica, University of Modena and Reggio Emilia, Modena, Italy. 5University of Catania, ARNAS Garibaldi, Division of Infectious Diseases, Catania, Italy. 6University of Milano, Ospedale L Sacco, Division of Infectious Diseases Unit, Milan, Milan, Italy. 7Infectious Diseases Clinic, Azienda Ospedaliero-Università di Perugia, Perugia, Italy. 8Unit of Infectious Diseases, Azienda Ospedaliero-Università di Padova, Padova, Italy. 9Ospedale Amedeo di Savoia, ASLTO2, Unit of Infectious Diseases, Divisione A, Torino, Italy. 10Department of Infectious and Tropical Diseases, University of Brescia, Brescia, Italy. 11ViiV Healthcare, Verona, Italy

Introduction: HIV-infected patients above 65 years of age have higher prevalence of comorbidities and polypharmacy. The aim of the study is to describe ARV use in elderly patients living with HIV.

Materials and methods: Cross-sectional study analyzing HIV+ patients aged ≥65 years, recruited from 11 HIV outpatient clinics in Italy. Multimorbidity (MM) was classified as the presence of three or more of non-infectious comorbidities in the same individual, including cardiovascular disease, chronic kidney disease, dyslipidemia, hypertension, type 2 diabetes mellitus and chronic obstructive
Abstract P163 - Figure 1. Multivariate logistic regression for four not conventional ARV therapy.

P164

CD4/CD8 ratio matters to age-related health outcomes in HIV-infected patients with comorbidities, frailty and disability
Association were male sex and age. No association was found between CD4/CD8 ratio and disability. At further logistic regression models, higher CD4 cells nadir was positively associated with high CD4/CD8 ratio, while male sex, MM and frailty had a negative significant association.

Conclusion: Age-related health outcomes result from concomitant processes of ageing, inflammation, HIV infection, comorbidities and lifestyle. We found independent associations between routinely performed markers of immune reconstitution and important clinical features of ageing HIV-infected patients: low CD4/CD8 ratio was associated with comorbidities alone or aggregated in MM and frailty. This is a novelty presented by our study: previous studies found associations with isolated comorbidities and frailty phenotype. It also confirmed the reverse association between MM, frailty and low

Abstract P164

Table 1. Anthropometrical and clinical characteristics of patients

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>CD4/CD8 ratio < 0.8 - N (%) or median (IQR)</th>
<th>CD4/CD8 ratio ≥ 0.8 - N (%) or median (IQR)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients</td>
<td>1470 (49)</td>
<td>1475 (51)</td>
<td></td>
</tr>
<tr>
<td>Female sex</td>
<td>391 (27)</td>
<td>550 (37)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age</td>
<td>49 (45–54)</td>
<td>50 (45–54)</td>
<td>0.900</td>
</tr>
<tr>
<td>Smokers</td>
<td>775 (53)</td>
<td>854 (58)</td>
<td>0.004</td>
</tr>
<tr>
<td>Packyear (if smoker)</td>
<td>20.8 (10–32)</td>
<td>17.9 (9.3–30)</td>
<td>0.004</td>
</tr>
<tr>
<td>No physical activity</td>
<td>717 (51)</td>
<td>665 (48)</td>
<td>0.051</td>
</tr>
<tr>
<td>Intense alcohol intake (>3/week)</td>
<td>14 (0.9)</td>
<td>16 (1.1)</td>
<td>0.923</td>
</tr>
<tr>
<td>BMI</td>
<td>23.8 (21–26)</td>
<td>23.3 (21–25.7)</td>
<td>0.001</td>
</tr>
<tr>
<td>HIV duration (months)</td>
<td>241 (158–299)</td>
<td>239 (156–299)</td>
<td>0.427</td>
</tr>
<tr>
<td>Risk factor for HIV</td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Intravenous drug users</td>
<td>409 (28)</td>
<td>357 (24)</td>
<td></td>
</tr>
<tr>
<td>Men who have sex with men</td>
<td>453 (31)</td>
<td>407 (27.5)</td>
<td></td>
</tr>
<tr>
<td>Heterosexual</td>
<td>431 (29)</td>
<td>557 (37.8)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>177 (12)</td>
<td>154 (10)</td>
<td></td>
</tr>
<tr>
<td>CDC C stage</td>
<td>375 (25.5)</td>
<td>305 (20.7)</td>
<td>0.005</td>
</tr>
<tr>
<td>Age at ARV initiation</td>
<td>36 (31–43)</td>
<td>34 (31–42)</td>
<td>0.005</td>
</tr>
<tr>
<td>ARV initiation period</td>
<td></td>
<td>0.106</td>
<td></td>
</tr>
<tr>
<td><1996</td>
<td>437 (30.4)</td>
<td>397 (27.4)</td>
<td></td>
</tr>
<tr>
<td>1996–2005</td>
<td>637 (44)</td>
<td>696 (48)</td>
<td></td>
</tr>
<tr>
<td>≥2006</td>
<td>363 (25)</td>
<td>358 (24.7)</td>
<td></td>
</tr>
<tr>
<td>CD4 cells nadir cells/mm³</td>
<td>163 (60–260)</td>
<td>221 (109–330)</td>
<td><0.001</td>
</tr>
<tr>
<td>CD8/CD38 cells count cells/mm³</td>
<td>84 (51–152)</td>
<td>58.5 (38–94)</td>
<td><0.001</td>
</tr>
<tr>
<td>LDL cholesterol mg/dL</td>
<td>113 (37–57)</td>
<td>112 (92–136)</td>
<td>0.791</td>
</tr>
<tr>
<td>HDL cholesterol mg/dL</td>
<td>45 (35–57)</td>
<td>51 (41–62)</td>
<td><0.001</td>
</tr>
<tr>
<td>Total cholesterol mg/dL</td>
<td>188 (161–226)</td>
<td>189 (165–217)</td>
<td>0.352</td>
</tr>
<tr>
<td>Glucose</td>
<td>94 (86–103)</td>
<td>93 (87–102)</td>
<td>0.451</td>
</tr>
<tr>
<td>GOT</td>
<td>24 (20–34)</td>
<td>22 (19–31)</td>
<td><0.001</td>
</tr>
<tr>
<td>HOMA index</td>
<td>2 (1.2–3)</td>
<td>1.7 (1.1–2.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>C reactive protein</td>
<td>0.2 (0.13–0.3)</td>
<td>0.2 (0.18–0.22)</td>
<td>0.262</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>100 (6.8)</td>
<td>63 (4.3)</td>
<td>0.003</td>
</tr>
<tr>
<td>Hypertension</td>
<td>563 (38)</td>
<td>509 (34.5)</td>
<td>0.033</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>231 (15.7)</td>
<td>193 (13.1)</td>
<td>0.042</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>148 (10.1)</td>
<td>145 (9.8)</td>
<td>0.830</td>
</tr>
<tr>
<td>Cancer</td>
<td>39 (3.9)</td>
<td>36 (2.4)</td>
<td>0.026</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>57 (3.9)</td>
<td>36 (2.44)</td>
<td>0.026</td>
</tr>
<tr>
<td>Multimorbidty</td>
<td>90 (6.1)</td>
<td>55 (3.7)</td>
<td>0.003</td>
</tr>
<tr>
<td>Frailty (2643 patients)</td>
<td>722 (54.8)</td>
<td>577 (43.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>IADL deficit (830 patients)</td>
<td>94 (25.3)</td>
<td>118 (25.7)</td>
<td>0.903</td>
</tr>
<tr>
<td>SPPB < 9 (459 patients)</td>
<td>13 (6.28)</td>
<td>15 (5.95)</td>
<td>0.884</td>
</tr>
<tr>
<td>FALLS (665 patients)</td>
<td>57 (19.6)</td>
<td>76 (20.3)</td>
<td>0.815</td>
</tr>
</tbody>
</table>

Comorbidities (CVD, HTN, DM and COPD), MM and frailty prevalence were significantly higher in the low CD4/CD8 ratio group. No differences were found in disability items prevalence.
CD4/CD8 ratio. Further studies could be important to integrate clinical geriatric syndromes and immunologic elements in the ageing HIV-infected population.

References

Results: Overall, 347 deaths were recorded in 9569 (34,385 py of follow-up) persons, leading to a mortality rate of 10.09 per 1000 py (95% CI 9.08–11.21). The proportion of total py aged ≥50 years increased from 8.8 to 21.2%, from 2004 to 2014. The mortality rate ratio was 2.70 (95% CI 2.15–3.38) higher for patients aged ≥50. Forty-three percent of the total deaths were attributable to AIDS, followed by 14% due to NADM, 9% liver-related, 7% other infectious diseases, 3% cardiovascular and 12% for other causes and unknown. For cause-specific deaths, the mortality rate was 4.33 (3.69–5.09) for AIDS-related, 1.40 (1.05–1.85) for NADM, 0.93 (0.66–1.32) for liver-related, 0.67 (0.44–1.01) for other infectious diseases and 0.26 (0.14–0.50) for cardiovascular. Mortality rate ratio was higher for patients ≥50 years for all causes and for cause-specific death. The overall excess mortality rate was 8.81 per 1000 py (95% CI 7.87–9.87), being 7.37 (6.44–8.44) for subjects <50 years and 16.65 (13.51–20.53) for ≥50 years. For NADM, excess mortality rate was 0.46 (0.27–0.79) for <50 years and 2.79 (1.67–4.65) for ≥50 years. For liver-related, it was 0.84 (0.56–1.25) for <50 years and 1.13 (0.50–2.52) for ≥50 years. And finally, for other infectious diseases, it was 0.64 (0.43–0.98) for <50 years and 0.54 (0.33–0.89) for ≥50 years.

Conclusion: High overall mortality rate and excess mortality rate were observed in HIV-positive subjects, especially among older patients. By cause-specific, higher NADM mortality and excess mortality was observed in patients aged ≥50. However no significant differences by age were detected by liver diseases, although it represents an important cause of death in these patients.

P166 Changes in the prevalence of cardiovascular, renal and bone comorbidities and related risk factors in HIV-infected patients in the Spanish VACH cohort: a cross-sectional study in 2010 and 2014
Ramon Teira1; Ignacio Suarez-Lozano2; Maria Galindo3; Marta Montero1; Paloma Geijo4; Agustin Muñoz-San5; Elisa Martinez6; Pere Domingo7; Fernando Lozano5; Pompeo Viciana8; Belen de la Fuente9; Bernardino Roca10; Vicente Estrada11; Pepa Muñoz-Sanchez14; and Study group VACH15
1Infectious Diseases, Hospital de Sierrallana, Torrelavega, Spain. 2Infectious Diseases, Hospital Infanta Elena, Huelva, Spain. 3Infectious Diseases, Hospital Clinico, Valencia, Spain. 4Infectious Diseases, Hospital La Fe, Valencia, Spain. 5Internal Medicine, Hospital Virgen de la Luz, Cuenca, Spain. 6Infectious Diseases, Hospital Infanta Cristina, Badajoz, Spain. 7Internal Medicine, Hospital de Albacete, Albacete, Spain. 8Infectious Diseases, Hospital Arnau de Vilanova, Lleida, Spain. 9Infectious Diseases, Hospital de Valme, Sevilla, Spain. 10Infectious Diseases, Hospital Virgen del Rocio, Sevilla, Spain. 11Infectious Diseases, Hospital de Cabueñas, Gijon, Spain. 12Internal Medicine, Hospital General, Castellon, Spain. 13Infectious Diseases,
Introduction: In 2012, in Central and Western Europe, it was estimated that 33% of HIV patients were 50 years old or older. This will bring new challenges in the management of HIV population: patients are living longer and chronologically ageing; HIV itself has been associated with accelerated ageing and development of comorbidities; certain antiretrovirals are associated with age-related, organ-specific toxicities. Therefore, it is important to characterize the evolution of the prevalence of risk factors and comorbidities to inform management of HIV care in general, and choice of ART in particular.

Methods: The VACH cohort is a multicentre Spanish cohort. To be included in the cohort, a patient is required to have confirmed HIV infection, age over 16, and at least one follow-up visit in the cohort’s hospitals. All patients receiving ART with at least one visit in 2010 and at least one visit in 2014 were included in this analysis. Two cross-sectional analyses (2010 and 2014) were conducted on this set of patients. Analyzed outcomes included prevalence of: 1) comorbidities: a) cardiovascular events, b) renal impairment, c) bone fractures (any location); 2) risk factors: a) hypertension, b) dyslipidemia, c) diabetes, d) secondary osteoporosis, e) alcohol abuse (exceeding 3 units/day (42g/day)). Descriptive analysis consisted of number of patients/events and its respective percentage over the available information (missing data were not considered).

Results: Nine thousand nine hundred and sixty patients met the inclusion criteria and were included in the analysis. Forty-three percent of patients were at least 50 years old in 2014. 73.3% were male and 39% were ever-intravenous drug users. Among ART-experienced, the proportion of patients virologically suppressed increased by 7% and the proportion with CD4 cells count > 500 cells/mm³ increased by 8% from 2010 to 2014. Figure 1 shows the changes in the prevalence of comorbidities and risk factors between 2010 and 2014.

Conclusions: The proportion of patients older than 50 in the VACH cohort has increased significantly, as it has happened with the prevalences of age-related comorbidities in recent years.
viremic hepatitis C and renal disease were 5.9%, 3.1% and 7.7%, respectively. Cardiovascular disease, defined as the occurrence of myocardial infarction, stroke or an invasive coronary procedure, occurred in 3.3% of the patients. The combined prevalence of non-AIDS-defining cancers (defined as anal cancer, liver cancer, Hodgkin’s lymphoma and lung cancer) was 0.8% among the cohort population. Specific risk factors were also relatively common among patients: 38% were former or current cigarette smokers and one-third had been diagnosed with hypertension.

Conclusions: NICMs in the HIV-positive population such as cardiovascular disease and renal disease are of increasing importance as AIDS-related deaths are delayed through careful patient management. A country-wide analysis of available data, including data on the prevalence of common NICMs, is critical to planning for the healthcare needs of the ageing HIV-positive population in Belgium.

P168
From HIV diagnosis to viral suppression in a cohort of older patients
Mariana Kundro; Guerrero Viloria; Javier Toibaro and Marcelo Losso

Introduction: The proportion of new HIV diagnoses in later life is increasing. Older adults have clinical features that difference them from younger individuals, constituting a vulnerable population. However, data describing the steps of the care continuum for this age group are scarce.

Materials and methods: We conducted a retrospective analysis including all older adults (≥50 years) with a new HIV diagnosis over a 13-year period in a large public hospital in Buenos Aires. We calculated the proportion of patients presenting with advanced stage HIV disease (WHO clinical stage IV or CD4 cell count < 200 cells/mL), the proportion of patients who were linked and retained in care, initiated ART according to the WHO recommendations for each year these models were added to a multivariable model adjusted for LS and being on ART, on TBS; factors associated with a lower TBS in adjusted analyses, smoking status, nadir CD4 and receipt of PI therapy with TBS

Table 1. Results from multivariable linear regression analysis of associations between smoking status, nadir CD4 count and receipt of PI therapy with TBS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Effect on TBS</th>
<th>95% confidence intervals</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current smoker</td>
<td>-0.047</td>
<td>-0.085, -0.008</td>
<td>0.01</td>
</tr>
<tr>
<td>Nadir CD4 T-cell count (per 50 cells/mm³ higher)</td>
<td>0.005</td>
<td>0.003, 0.011</td>
<td>0.04</td>
</tr>
<tr>
<td>PI-containing ART</td>
<td>-0.045</td>
<td>-0.079, -0.011</td>
<td>0.009</td>
</tr>
</tbody>
</table>

*Model also adjusted for LS BMD, age, gender, ethnicity and BMI.

P169
The relative impact of antiretroviral drugs and baseline immune status on bone quality in HIV-positive subjects: results from the HIV UPBEAT cohort

Tara McGinty; Aoife Cotter; Caroline Sabin; Jack Lambert; Gerard Sheehan; Alan Macken; Eoin Kavanagh; Juliet Compston and Paddy Mallon

Objectives: Trabecular bone score (TBS) is a novel, non-invasive measure of bone microarchitecture that can detect differences in bone quality in individuals with similar bone mineral density (BMD). We have previously shown that lower TBS in HIV-positive subjects is influenced by the high-smoking rates in this population. We now aim to investigate HIV-specific factors associated with TBS.

Methods: BMD was measured by dual X-ray absorptiometry (DXA) in HIV-positive subjects from the HIV UPBEAT study; TBS was derived from baseline lumbar spine (LS) DXA images using TBS Insight software (version 2.2.1). Significant between-group differences were assessed using Wilcoxon tests. Univariate linear regression explored the impact of HIV-specific factors including: nadir CD4, current CD4 and CD8 T-cell counts, HIV RNA <40 copies, time from HIV diagnosis and being on ART; on TBS; factors associated with a lower TBS in these models were added to a multivariable model adjusted for LS BMD, demographics, body mass index (BMI) and current smoking.

Results: The 201 HIV-positive subjects (40% male, 39% African, median (inter-quartile range (IQR)) age 39 (33–46) years) had HIV diagnosed for a median (IQR) of 4.5 (2–8) years, a median nadir CD4 of 311 (108–306) cells/mm³, exposure to ART, protease inhibitors (PI) and tenofovir disoproxil fumarate (TDF) was 2.7 (0.5–5), 0.3 (0–2.4) and 1.3 (0–3) years, respectively. ART-naïve patients had higher TBS than those on ART (1.438 (1.306, 1.481) vs. 1.343 (1.258, 1.421), p = 0.005). While TDF exposure was not significantly associated with TBS (1.347 (1.270, 1.422) vs. 1.380 (1.265, 1.471), p = 0.314), those exposed to Pis had lower TBS (1.323 (1.248, 1.382)) compared with no PI exposure (1.386 (1.289, 1.452), p = 0.005). In unadjusted analysis lower TBS was associated with duration of diagnosed HIV, intravenous drug use, nadir CD4, being on ART (specifically Pis) and cumulative PI exposure (all p <0.05). HIV viremia was not significantly associated with TBS (0.008 (−0.031, 0.048), p = 0.69).

In adjusted analyses, smoking status, nadir CD4 and receipt of PI-containing ART were independent predictors of lower TBS (Table 1).

Conclusion: While smoking remains an independent predictor of TBS in HIV-positive subjects, our results, although derived from an observational study and therefore limited in determining causality, highlight the potential impact of ART on bone quality with Pis, but not TDF, being significantly associated with lower TBS. Baseline

CO-MORBIDITIES AND COMPLICATIONS OF DISEASE AND/OR TREATMENT: BONE
immune status was also an independent predictor of TBS suggesting a possible effect of immune activation on bone quality. Further studies should focus on the clinical utility of TBS to monitor bone quality and in fracture risk prediction in HIV-positive persons.

P170

Bone outcomes with EFV + TDF/FTC versus other TDF-containing antiretroviral regimens among HIV-infected veterans: a US national study

Joanne LaFleur1; Adam Bress1; Joel Myers2; Lisa Rosenblatt3; Jacob Crook4; Heather Nyman1; Roger Bedimo5; Pablo Tebas6 and Stephen Esker2

1Department of Pharmacotherapy, University of Utah and Salt Lake City VA Healthcare System, Salt Lake City, UT, USA. 2HIV Medical, Bristol-Myers Squibb, Princeton, NJ, USA. 3Health Economics and Outcomes Research, Bristol-Myers Squibb, Princeton, NJ, USA. 4Division of Epidemiology, University of Utah and Salt Lake City VA Healthcare System, Salt Lake City, UT, USA. 5Infectious Diseases, VA North Texas Healthcare System and University of Texas Southwestern Medical Center, Dallas, TX, USA. 6Peregrine School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) is a mainstay backbone in ART for treatment-naïve patients. Although potent and well tolerated, TDF may cause bone toxicity. The magnitude of off-target side effects is proposed to be related to tenofovir (TFV) plasma concentrations, which may be affected by drug–food and drug–drug interactions with concomitant antiretrovirals. We compared bone outcomes (osteoporosis and osteoporotic fractures) with efavirenz (EFV) / TDF/FTC versus non-EFV-based TDF/FTC regimens associated with higher TFV plasma concentrations in treatment-naïve HIV-infected veterans.

Methods: This historical cohort study used national Veterans Health Administration (VHA) datasets to identify veterans newly initiating ART in 2003 to 2015. We controlled for selection bias and confounding with inverse-probability treatment weighting. Covariates included baseline demographics, clinical characteristics, HIV laboratory measures, bone measures and other key diagnoses/medication exposures. We used weighted regression models to compare rates of bone adverse events between new users of TDF/FTC with EFV compared to TDF/FTC with non-EFV regimens (i.e. rilpivirine (RPV), elvitegravir/cobicistat (EVG/c) and boosted protease inhibitors (PIs)).

Results: Of 33,048 HIV+ veterans, 13,366 received an ART regimen of interest, and 7236 were treatment naive [4178 EFV and 3058 non-EFV]. The median age was 51, 96% were male, and 59% and 30% were Black and Caucasian, respectively. Standardized differences between groups were less than 0.1 for all baseline characteristics following weighting, indicating no significant differences between groups. Crude rates of bone outcomes and adjusted hazard ratios (aHRs) for comparisons with at least five events per treatment group are summarized in Table 1 and Table 2. Unadjusted rates of osteoporosis and osteoporotic fractures were lower in patients who received EFV + TDF/FTC versus each other treatment group. In adjusted analyses, risks were significantly lower for vertebral, upper arm and wrist/forearm fractures for EFV versus all non-EFV regimens combined and versus PIs. For EFV versus EVG/c and RPV, too few events were observed to make stable estimates for the individual outcomes, and no significant differences were observed for the composite bone outcome.

Conclusions: EFV + TDF/FTC was associated with a significantly lower risk for bone toxicity and fractures compared to other TDF-containing regimens in the VHA. The third agent in ART regimens can have a significant effect on the risk of bone adverse events associated with TDF.

Abstract P170–Table 1. Crude incidence of bone adverse events by treatment group (per 1000 PY)

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>EFV (n = 4178)</th>
<th>All non-EFV (n = 3059)</th>
<th>EVG/c (n = 234)</th>
<th>RPV (n = 173)</th>
<th>PI (n = 2651)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any bone outcome</td>
<td>28.4</td>
<td>37.4</td>
<td>49.8</td>
<td>36.0</td>
<td>36.7</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>8.7</td>
<td>12.0</td>
<td>20.6</td>
<td>14.1</td>
<td>11.4</td>
</tr>
<tr>
<td>Any osteoporotic fracture</td>
<td>9.9</td>
<td>18.5</td>
<td>13.6</td>
<td>28.6</td>
<td>18.1</td>
</tr>
<tr>
<td>Vertebral fracture</td>
<td>2.1</td>
<td>4.2</td>
<td>6.8</td>
<td>7.1</td>
<td>3.9</td>
</tr>
<tr>
<td>Hip fracture</td>
<td>3.7</td>
<td>3.1</td>
<td>0.0</td>
<td>14.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Upper arm fracture</td>
<td>1.4</td>
<td>3.5</td>
<td>0.0</td>
<td>0.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Wrist/forearm fracture</td>
<td>3.3</td>
<td>8.2</td>
<td>6.8</td>
<td>7.1</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Abstract P170–Table 2. Risk of bone adverse events by treatment group

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>EFV vs. non-EFV: aHR (95% CI)</th>
<th>EFV vs. EVG/c: aHR (95% CI)</th>
<th>EFV vs. RPV: aHR (95% CI)</th>
<th>EFV vs. PI: aHR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any bone outcome</td>
<td>0.78 (0.65–0.94)</td>
<td>0.94 (0.70–1.25)</td>
<td>0.85 (0.66–1.08)</td>
<td>0.78 (0.65–0.94)</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>0.75 (0.55–1.04)</td>
<td>–</td>
<td>–</td>
<td>0.77 (0.55–1.07)</td>
</tr>
<tr>
<td>Any osteoporotic fracture</td>
<td>0.57 (0.43–0.76)</td>
<td>–</td>
<td>–</td>
<td>0.57 (0.43–0.77)</td>
</tr>
<tr>
<td>Vertebral fracture</td>
<td>0.45 (0.25–0.81)</td>
<td>–</td>
<td>–</td>
<td>0.47 (0.26–0.85)</td>
</tr>
<tr>
<td>Hip fracture</td>
<td>1.24 (0.69–2.21)</td>
<td>–</td>
<td>–</td>
<td>1.50 (0.80–2.83)</td>
</tr>
<tr>
<td>Upper arm fracture</td>
<td>0.48 (0.23–0.98)</td>
<td>–</td>
<td>–</td>
<td>0.43 (0.21–0.88)</td>
</tr>
<tr>
<td>Wrist/forearm fracture</td>
<td>0.47 (0.29–0.75)</td>
<td>–</td>
<td>–</td>
<td>0.45 (0.28–0.72)</td>
</tr>
</tbody>
</table>

–, Fewer than five events.
P172

Quantifying fracture risk in clinical practice: treatment for osteoporosis should be considered in approximately one out of four HIV+ individuals ≥40 years

George Siakalis; Konstantinos Protopapas; Polyoysis Makras; Ioannis Katsarolis; Dimitra Kavatha; Antonios Papadopoulos and Anastasia Antoniadou

1Health and Welfare Department, Greece Ministry of National Defense, Greece. **2**14th Department of Internal Medicine, HIV Unit, Attikon University General Hospital, Athens, Greece. **3**Department of Endocrinology, 251 Hellenic Air Force & VA General Hospital, Athens, Greece.

Medical Affairs, Gilead Sciences Hellas, Hellinkon, Greece

Introduction: Guidelines for bone disease in HIV recommend a screening/risk evaluation process guided by age and classical risk factors, followed by implementation of bone mineral density (BMD) and/or FRAX algorithm accordingly [1-3]. Risk-mitigating interventions should take into account country-specific risk thresholds [2]. This study assessed the fracture risk in a cohort of HIV+ individuals and described factors associated with increased fracture risk.

Materials and methods: Cross-sectional fracture risk evaluation was performed by BMD (osteoporosis vs. osteopenia/normal values [3]) and by Greece-specific FRAX algorithm for those ≥40 years [4] through three sequential steps: (A) = HIV not added, (B) = HIV added as a “secondary cause” and (C) = (B) + inclusion of femoral neck T-score value. Greece-specific FRAX intervention thresholds were used: major osteoporotic fracture and hip fracture risk ≥10% and ≥2.5%, respectively for those ≥40 and <75 years [4]. Analysis was performed for factors associated with increased fracture risk (defined as osteoporosis, prevalent fragility fractures and/or FRAX score).

Results: Hundred and forty-three PLWH with available BMD were included: age 45 years, female 26%, stage C 10.5%, BMI 25.5 kg/m², HIV duration 5.4 years, CD4 current/nadir 604/285 cells/μL, 117 on ART, ART duration 5.1 years, VL <50 copies/ml, 74%, estimated Glomerular Filtration Rate calculated by CKD-EPI formula (Chronic Kidney Disease Epidemiology Collaboration formula) eGFR-CKD-EPI 102.7 ml/min/1.73 m² (median values where applicable). Osteoporosis and osteopenia were diagnosed in 11.9% and 43.4%, respectively. Osteoporosis was associated with ART exposure (naïve

<table>
<thead>
<tr>
<th>10-year FRAX-calculated fracture probability</th>
<th>(A) Median (IQR 1-3)</th>
<th>(B) Median (IQR 1-3)</th>
<th>(C) Median (IQR 1-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hip fracture</td>
<td>0.2% (0.1–0.7)</td>
<td>0.3% (0.1–1.1)</td>
<td>0.4% (0.1–1.42)</td>
</tr>
<tr>
<td>Major osteoporotic fracture</td>
<td>1.9% (1.4–3.6)</td>
<td>2.6% (1.9–4.9)</td>
<td>2.5% (2.5–4.5)</td>
</tr>
<tr>
<td>Above intervention thresholds</td>
<td>3/98 (3.1%)</td>
<td>8/98 (8.2%)</td>
<td>14/98 (14.3%)</td>
</tr>
</tbody>
</table>

References

Abstract P172

Table 1. Median 10-year FRAX calculated fracture probability (A) excluding or (B) including HIV infection as a secondary cause of osteoporosis or (C) including HIV infection plus the available femoral neck T-score

132
Results

2015. All patients underwent a DEXA scan.

Materials and methods: We conducted a cross-sectional study on 211 HIV mono-infected and 81 HIV/HCV co-infected patients attending the AIDS Centre of the Infectious Diseases Department of Palermo University Hospital, Italy, between January 2010 and May 2015. All patients underwent a DEXA scan.

Results: HIV mono-infection was prevalent among non-European Union (nEU) women. HIV/HCV co-infection was higher in nEU males than females. Comparing the groups split according to age, it turned out that there was a significant difference among them with respect to HIV in nEU and European Union (EU) patients (p < 0.000). These differences, identified by residual analysis, were greater in nEU patients aged between 28 and 47. Stratifying by age, prevalence of OP was significantly higher in patients >49 years with HIV/HCV co-infection. OP prevalence was higher among HIV/HCV co-infected EU and nEU female patients than among those with HIV mono-infection (p = 0.011). Comparing the groups split according to age and geographical origin, we found that there was a significant difference among them with respect to HIV/HCV and OP in nEU and EU patients (respectively, p = 0.017 and p < 0.000). These differences, identified by residual analysis, showed a higher prevalence of OP among nEU patients aged 28 to 47 years (p < 0.000).

Conclusions: Our study provides evidence for the usefulness of early screening for OP in HIV/HCV co-infected patients, especially in nEU women. Significant and sustained improvements in mortality and morbidity, and control of the current HCV epidemic in HIV-infected subgroups such as migrants could then become a feasible goal.

References

P173

Bone deficits in HIV mono-infected and HIV/HCV co-infected individuals belonging to the native Sicilian and migrant/ refugee populations, documented by DXA scanning

Giuseppe Lo Re1; Paola Di Carlo2; Angelo Gambino2; Nicola Serra2; Claudia Colomba2; Antonio Lo Casto2; Giuseppe Guglielmi4; Antonio Cascio2 and Roberto La Galla1

1Department of Biopathology and Biotechnologies (DiBiMed), Policlinico Universitale Hospital Paolo Giaccone, Palermo, Italy. 2Health Promotion and Child Health, Policlinico Universital Hospital of Palermo, Palermo, Italy. 3Department of Radiology, University of Naples, Naples, Italy. 4University of Foggia, Department of Radiology, Foggia, Italy

Introduction: Migrants and refugees from countries with a high incidence of HIV and other co-infections such as hepatitis C virus (HCV) and/or hepatitis B virus represent an emerging challenge for the healthcare system. We used dual-energy X-ray absorptiometry (DEXA) to detect osteoporosis (OP) in HIV/HCV co-infected and HIV mono-infected groups in order to determine OP prevalence by age, gender and geographic origin.

Materials and methods: We conducted a cross-sectional study on 211 HIV mono-infected and 81 HIV/HCV co-infected patients attending the AIDS Centre of the Infectious Diseases Department of Palermo University Hospital, Italy, between January 2010 and May 2015. All patients underwent a DEXA scan.

Results: HIV mono-infection was prevalent among non-European Union (nEU) women. HIV/HCV co-infection was higher in nEU males than females. Comparing the groups split according to age, it turned out that there was a significant difference among them with respect to HIV in nEU and European Union (EU) patients (p < 0.000). These differences, identified by residual analysis, were greater in nEU patients aged between 28 and 47. Stratifying by age, prevalence of OP was significantly higher in patients ≥49 years with HIV/HCV co-infection. OP prevalence was higher among HIV/HCV co-infected EU and nEU female patients than among those with HIV mono-infection (p = 0.011). Comparing the groups split according to age and geographical origin, we found that there was a significant difference among them with respect to HIV/HCV and OP in nEU and EU patients (respectively, p = 0.017 and p < 0.000). These differences, identified by residual analysis, showed a higher prevalence of OP among nEU patients aged 28 to 47 years (p < 0.000).

Conclusions: Our study provides evidence for the usefulness of early screening for OP in HIV/HCV co-infected patients, especially in nEU women. Significant and sustained improvements in mortality and morbidity, and control of the current HCV epidemic in HIV-infected subgroups such as migrants could then become a feasible goal.

References

P174

Cardiovascular events – a thing of the past? A real-life assessment in an inner-city Toronto clinic

Fred Crouzat1; Brenda Varriano2; Ina Sandler1; Graham Smith1; Samantha Steinberg1; Colin Kovacs1; David Fletcher1; David Knox1; Barry Merkley1; Benny Chang1; David Tilley1; Megan Ascal1; Malika Sharma3 and Mona Loutfy1

1Infectious Disease, Maple Leaf Medical Clinic, Toronto, Canada. 2Institute of Medical Sciences, University of Toronto, Toronto, Canada. 3Maple Leaf Medical Clinic, Toronto, Canada. 4Faculty of Science, University of Guelph, Guelph, Canada

Introduction: Following co-morbid cardiovascular events (CVE) amongst HIV-positive patients is essential. Abacavir’s impact on CVE is unclear and challenges clinicians. We characterized CVE at the largest Canadian HIV clinic stratified three-fold: 1) patients being antiretroviral-naïve or -experienced; 2) taking abacavir or tenofovir-disoproxil-fumerate (TDF) or switching between the two and 3) time-era (before and after 2009).

Materials and methods: This is a retrospective study using electronic medical records (EMRs) of all HIV-positive patients treated at Maple Leaf Medical Clinic, who started a combination ART (cART) regimen (3 to 7 drugs) with abacavir or TDF (one-switch between the two permitted). Patients were excluded if a pre-cART CVE or a second-switch between abacavir and TDF occurred. Patients were assessed as those starting cART (antiretroviral-naïve) and overall (antiretroviral-naïve and –experienced; overall (antiretroviral-naïve and –experienced; overall (antiretroviral-naïve and –experienced).

The outcome was CVE (cardiovascular (CAE) or cerebralvascular (CEE)). There were four exposures-of-interest: always-abacavir-, always-TDF-, first-abacavir-switched-to-TDF- and first-TDF-switched-to-abacavir cART regimens. The analysis was stratified into being on cART: (1) before or (2) after 1 January 2009. Evaluation started at cART-initiation and ended at: CVE date, second switch between abacavir and TDF or last data-cut date (16 July 2015). Descriptive statistics and bivariate analyses were done using standard statistical methods. Multivariable Cox regression was carried out with time-to-CVE as the outcome and time-on-abacavir or -TDF as the exposure-of-interest. Confounders corrected for included: Framingham-score and time-on-PI.
Results: Of 2851 patients, 1349 were antiretroviral-naive. Of the total, median age = 40 (IQR = 34–46), 92% male, 65% Caucasian, median HIV duration = 5.2 years (IQR = 1.5–10.6), baseline log10VL = 4.02 (IQR = 1.70–4.91) and CD4-count = 330 cells/μL (IQR = 210–500). 658 on-an-abacavir regimen, 1186 on-a-TDF regimen, 736 switched from abacavir-to-TDF and 271 switched-from-TDF-to-abacavir. Seventy-six CVE occurred [15-in antiretroviral-naive and 61-in antiretroviral-experienced (p < 0.0001)]. 61/76 of the events were CAE and 15/76 were CEE (P = 0.0001). 69/76 CVE were before 2009 and 8/76 after (p < 0.0001). 40/76 CVE were on-abacavir, 15/76 on-TDF, 19/76 switched from abacavir to TDF and 2/76 switched from TDF to abacavir (p < 0.0001). 21/21 switches occurred prior to 2009 and 38/40 on-abacavir remained on it after 2009. The multivariable Cox regression revealed that Framingham score and time-on-a-PI increased the CVE risk [aHR = 1.10-per-1-point (95%CI = 1.04–1.18) and aHR = 1.11-per-year (95%CI = 0.94–1.31), respectively]; time-on-abacavir [aHR = 0.17-per-year (95%CI = 0.09–0.34) and time-on-TDF (aHR = 0.13-per-year (95%CI = 0.06–0.25), both decreased the chance of a CVE.

Conclusions: 91% CVE occurred before 2009 and 80% in antiretroviral-experienced patients. Abacavir was associated with CVE before 2009 and in our overall-population and in univariate but not multivariable analyses. Our multivariable model showed that the Framingham score predicted CVE but the longer duration on TDF or abacavir decreased CVE risk. Abacavir’s impact on CVE is still unclear but this analysis is helpful to understand CVE in our clinic.

P175
Risk of cardiovascular disease events with atazanavir-based antiretroviral treatment regimens among HIV-infected veterans: a US national study
Joanne LaFleur1; Adam Bress2; Lisa Rosenblatt3; Jacob Crook4; Paul Sax5; Joel Myers6 and Corey Ritchings6
1Department of Pharmacoepidemiology, University of Utah and Salt Lake City VA Health Care System, Salt Lake City, UT, USA. 2Department of Population Health Sciences, University of Utah and Salt Lake City VA Health Care System, Salt Lake City, UT, USA. 3Health Economics and Outcomes Research, Bristol-Myers Squibb, Princeton, NJ, USA. 4Division of Epidemiology, University of Utah and Salt Lake City VA Health Care System, Salt Lake City, UT, USA. 5Department of Infectious Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA. 6HIV Medical, Bristol-Myers Squibb, Princeton, NJ, USA

Introduction: Cardiovascular disease (CVD) is a leading cause of death in HIV-infected patients. Atazanavir (ATV) has been associated with slower progression of atherosclerosis in several studies, but there is limited information on the relative impact of ATV on the risk of CVD events compared to other regimens. We examined CVD events with ATV-based regimens versus those based on other protease inhibitors (PIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs) and integrase inhibitors (INSTIs) in treatment-naive HIV-infected veterans.

Methods: This historical cohort study used national United States Veterans Health Administration (VHA) datasets to identify HIV+ veterans newly initiating ART in 2003 to 2015. We controlled for selection bias and confounding by indication with inverse probability of treatment weights. Covariates included baseline demographics, HIV laboratory measures, comorbidities and key concomitant medications. We used Cox proportional hazards regression models to calculate hazard ratios for incident CVD events (myocardial infarction (MI) and stroke) associated with new users of ATV compared to each non-ATV regimen.

Results: Of 33,048 HIV+ veterans, 21,289 received an ART regimen of interest during the study period, and 10,385 were treatment naïve including 1530 with ATV and 2459, 5785 and 611 with other PIs, NNRTIs and INSTIs, respectively. The mean (standard deviation) age was 50.0 (10.1), 93% were male, and 56% and 30% were Black and Caucasian, respectively. After weighting, standardized mean differences between groups were less than 0.1 for all baseline characteristics, indicating no significant differences between groups. Risks were significantly lower with ATV compared to other PIs for MI and for ATV compared to INSTI-based regimens for the MI/stroke composite outcome (Table 1).

Conclusions: In the VHA, ATV-based regimens were generally associated with a lower risk for CVD events compared to other antiretrovirals. Further research to elucidate the mechanism for a potential reduced risk of CVD events with atazanavir is warranted.

P176
A reappraisal with meta-analysis of abacavir use and cardiovascular disease events
Mario Cruciani1 and Saverio Parisi2
1Infectious Diseases Service, San Bonifacio Hospital, Verona, Italy. 2Department of Histology, Microbiology and Biotechnology, University of Padua, Padua, Italy

Introduction: Nucleoside reverse transcriptase inhibitors (NRTIs) continue to be a cornerstone of antiretroviral therapy (ART), and currently recommended regimens include the NRTIs combination of abacavir (ABC)/3TC or tenofovir (TDF)/emtricitabine. Whether the exposure to ABC contributes to cardiovascular risk remains unclear. Results from several cohort studies have identified an increase

Abstract P175 – Table 1. Risk of CVD events with ATV versus non-ATV-based regimens

<table>
<thead>
<tr>
<th>Outcome</th>
<th>ATV crude incidence (per 1000 patient-years)</th>
<th>ATV vs. other PIs: HR (95% CI)</th>
<th>ATV vs. NNRTIs: HR (95% CI)</th>
<th>ATV vs. INSTIs: HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>5.16</td>
<td>0.46 (0.26–0.81)*</td>
<td>0.72 (0.48–1.09)</td>
<td>0.71 (0.31–1.61)</td>
</tr>
<tr>
<td>Overall stroke</td>
<td>18.31</td>
<td>0.89 (0.66–1.22)</td>
<td>1.01 (0.81–1.27)</td>
<td>0.71 (0.47–0.70)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>17.65</td>
<td>0.90 (0.66–1.25)</td>
<td>1.03 (0.81–1.29)</td>
<td>0.74 (0.48–1.12)</td>
</tr>
<tr>
<td>Haemorrhagic stroke</td>
<td>0.64</td>
<td>0.50 (0.18–1.42)</td>
<td>0.50 (0.16–1.52)</td>
<td>0.18 (0.02–1.36)</td>
</tr>
<tr>
<td>MI/stroke</td>
<td>23.04</td>
<td>0.80 (0.61–1.05)</td>
<td>0.94 (0.77–1.15)</td>
<td>0.69 (0.47–1.00)*</td>
</tr>
<tr>
<td>MI/stroke/death</td>
<td>38.83</td>
<td>0.90 (0.73–1.12)</td>
<td>0.98 (0.84–1.15)</td>
<td>0.81 (0.60–1.10)</td>
</tr>
<tr>
<td>All-cause death *</td>
<td>16.02</td>
<td>1.01 (0.73–1.39)</td>
<td>0.91 (0.72–1.15)</td>
<td>1.11 (0.66–1.90)</td>
</tr>
</tbody>
</table>

*P < 0.05.
*Based on VA vital status files.
Abstract P176 - Figure 1. Forest plot: outcome: overall cardiovascular events. Comparison: abacavir versus tenofovir.

cardiovascular risk after ABC exposure, but the results of other cohort studies, of randomized clinical trials (RCTs) and of meta-analyses of RCTs did not find this association. In this study we have updated the results of a previous meta-analysis [1], focusing on trials with a head-to-head comparison of ABC and TDF.

Methods: A systematic review and meta-analysis was performed using Cochrane methodologies. Data extracted included: myocardial infarction (MI), any cardiovascular events and overall mortality. We used a conventional Mantel-Haenszel method, with risk ratio and 95% confidence intervals (CIs).

Results: We obtained data from 11 RCTs conducted from 2006 to 2015, comparing ART with ABC to TDF, both in combination with the same third agent. Risk of bias assessment showed an overall good methodological quality of included studies; however, since overall cardiovascular event and MI were not predefined outcomes in many of the included studies, we judged the quality of the evidence “moderate” for these outcomes. Data on overall cardiovascular events were available from nine RCTs (4847 patients), data on MI from nine RCTs (5130 patients) and data on mortality from six RCTs (3646 patients). Compared to the TDF, ABC use did not increase the occurrence of overall cardiovascular events (RR 1.32; 95% CI 0.26–2.91) and the overall mortality (RR 1.05; 95% CI 0.38–3.14; 3.59 (Figure 1)), the occurrence of MI (RR 0.74; 95% CI 0.26–2.12) and the overall mortality (RR 1.05; 95% CI 0.38–2.91).

Conclusions: Our meta-analysis of RCTs did not show an increase in the occurrence of overall cardiovascular events, MI and overall mortality in ABC compared to TDF recipients.

Reference

P177
Awareness and management of elevated blood pressure among HIV-infected adults receiving antiretroviral therapy in urban Zambia

Sophie Bauer1; Zude Zyambo2; Mwanza ma Mwanza2; Roma Chilenge2; Mary-Ann Davies3; Matthias Egger4; Hansjakob Furrer2; Michael Vinikoor5 and Gilles Wandeler1

1Department of Infectious Diseases, University Hospital Bern, Bern, Switzerland. 2Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA

Introduction: In recent years, effective ART resulted in increasing survival of HIV-infected individuals and in the emergence of comorbid non-communicable diseases (NCDs) as a global burden. We characterized the prevalence, awareness and management of elevated blood pressure (BP) among individuals engaged in ART programmes in urban Zambia to provide a foundation for future public health strategies.

Materials and methods: We analyzed recorded data about cardiovascular (CV) risk factors (elevated BP, overweight (body mass index ≥25 kg/m²), smoking, hazardous drinking) from all HIV-infected adults enrolled in a prospective cohort in Lusaka, Zambia. We used Chi-squared and Mann-Whitney tests to evaluate associations between individual patient characteristics and elevated BP, defined as one or more values of systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg. In patients with elevated BP, we explored patient awareness and management of elevated BP as well as history of CV events (diabetes, stroke and heart condition) and family history of hypertension using mobile phone follow-ups.

Results: Among 895 individuals, 92 (10.3%) individuals had elevated BP and 57 (6.4%) had at least two elevated measurements. Patients with elevated BP were older (median age 37 vs. 34 years, p < 0.001), more likely to be men (61% vs. 46%, p = 0.01) and to be overweight (26% vs. 12%, p < 0.001) compared to other participants. Pre-ART CD4 cell count as well as proportion of patients with hepatitis B infection and alcohol/tobacco consumption were similar in both groups. Among the group with elevated BP, 66 (72%) were contactable telephonically and 35 (53%) of them were aware of their condition (Figure 1). For those aware of their condition, the information about elevated BP had been communicated primarily by a nurse (60%) and at ART clinics at scheduled study visits (63%). Fourteen (21%) reported having ever taken BP-lowering drugs; however, only one (3%) was currently taking a BP-lowering drug prescribed following a CV event in a university teaching hospital. Of the 66 patients contacted, 24 (36%) had ≥2 related CV risk factors, and nine (14%) reported prior history of CV events.

Conclusions: Despite routine screening for arterial hypertension, awareness of elevated BP is low and prescription of BP-lowering drugs is rare even in individuals with reported CV events, and regular follow-ups. This suggests that integrated NCD screening and management in a population linked to care through ART programmes has not yet been realized.
Reduction of immune activation in HIV-infected patients after introducing pitavastatin

Enrique Bernal Morell; Monica Martinez; Joaquin Bravo; Francisco Vera; Onofre Martinez; Carlos Galera; Angeles Muñoz; Irene Marín; Antonia Alcaraz; Alfredo Cano; Salvador Valero; Jose Miguel Gomez Verdu; Ana Torres; Salvador Valero; Jose Miguel Gomez Verdu; Ana Torres; Alfredo Minguela

1Infectious Disease Unit, Reina Sofia Hospital, Murcia, Spain. 2Infectious Disease Unit, Morales Meseguer Hospital, Murcia, Spain. 3Infectious Disease Unit, Santa Lucia Hospital, Murcia, Spain. 4Infectious Disease Unit, Virgen de la Arrixaca Hospital, Murcia, Spain. 5Cardiology Unit, Reina Sofia Hospital, Murcia, Spain. 6Immunology Service, Virgen de la Arrixaca Hospital, Murcia, Spain

Introduction: Pitavastatin is a new statin highly effective in lowering cholesterol, but its effect on the immune system in HIV-infected patients is unknown. The aim of this study was to evaluate the effects of pitavastatin on immune activation in HIV patients receiving antiretroviral treatment.

Materials and methods: Clinical trial was carried out to compare in HIV-infected patients with hypercholesterolemia on antiretroviral treatment, diet/pitavastatin versus diet at 24 weeks. Student's t-test for paired data was used to compare changes of the parameters analyzed.

Results: Fifty-one patients were included, 30 started with pitavastatin and 21 with diet. Three patients were withdrawn in the pitavastatin group and five in the diet group. There were 21 males, 51 years receiving treatment with NNRTIs (14 patients), PI (11 patients) and integrase inhibitors (one patient) in pitavastatin group. There were 14 males, 47 years receiving treatment with NNRTIs (seven patients), PI (seven patients) and integrase inhibitors (two patients). After 24 weeks, there was a significant decrease in total cholesterol (237.6 ± 43.24 mg/dL to 191.6 ± 26.7 mg/dL; p < 0.001), cholesterol-LDL (158.5 ± 35.8 mg/dL to 114.79 ± 27.4 mg/dL; p < 0.001), triglycerides (205.89 ± 103.9 mg/dL to 169.05 ± 88.7 mg/dL; p = 0.027), CD38-mean fluorescence intensity (MFI) in NKs (9007.05 ± 3692.2 to 7640.53 ± 4720.66; p = 0.034) and CD38-MFI in CD4+CD28+ T lymphocytes (1415.67 ± 509.87 to 1253.39 ± 592.39; p = 0.049) and increased of Apo A1 (127.33 ± 6.42 mg/dL to 150.67 ± 9.71 mg/dL; p = 0.007) in pitavastatin group. However the levels of total cholesterol, cholesterol-LDL and Apo A1 were not affected in the diet group. There was a significant increase of CD38-MFI in CD4+CD28- T lymphocytes (4230 ± 1021.2 to 3106.71 ± 1171.3; p = 0.012) in diet group. Pitavastatin was well tolerated and there were no serious side effects.

Conclusions: Pitavastatin is safe and significantly reduces the levels of total cholesterol and LDL in HIV-infected patients on antiretroviral therapy. Additionally, pitavastatin decreases immune activation and therefore might reduce non-AIDS events.
Immune activation levels measured by the frequency of CD38 + HLA-DR + CD8 T (left panel). Levels of the exhaustion marker PD-1 in the CD8 T (right panel).

Abstract P180: Figure 1. Immunoologic responses to initiation of cART.

P180
Initiation of antiretroviral therapy restores endothelial cell function in HIV-infected individuals

Patricia Echeverría1, Elisabet Gómez-Mora2, Santiago Roura3,4, Anna Bonjoch1, Jordi Puig1, Nuria Pérez-Alvarez1,2,3, Antonio Bayés-Genis1,4,6,7, Bonaventura Clotet Sala1,2,7,8, Julià Blanco2,8 and Eugenia Negredo1,8

1HIV Unit, Foundation Lluita contra la SIDA, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. 2HIV, AIDS Research Institute-IRISICAIXA, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. 3Cardiology, ICREC Group, Institut Germans Trias i Pujol, Badalona, Spain. 4HIV, AIDS Research Institute-IRISICAIXA, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. 5Centro de Medicina Regenerativa de Barcelona, Barcelona, Spain. 6Universidad Central de Madrid, Madrid, Spain. 7Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain. 8Universitat de Vic – Universitat Central de Catalunya UVIC-UCC, Vic, Spain

Introduction: Initiation of antiretroviral therapy reduces hyperactivity of the immune system; however, the effect on endothelial cell function seems to be contradictory [1].

References

Materials and methods: Consecutive HIV-infected individuals, free of CVD, underwent by the same technician vascular tests for the detection of (i) atheromatosis (common/internal carotid and femoral bed plaque, ankle-brachial index), (ii) arteriosclerosis (common carotid elasticity, aortic pulse wave velocity) and (iii) arterial hypertrophy (common carotid intimal-medial thickness). The European Society of Cardiology (ESC), Framingham (FR), American Heart Association/American College of Cardiology (AHA/ACC) and the Data collection on Adverse effects of Anti-HIV Drugs study (DAD) scores were assessed. Logistic regression and ROC analysis were performed.

Results: Out of 134 participants (92.5% males; age 40.8 ± 1.5 years), 76.1% had at least one type of subclinical arterial pathology, 60% arteriosclerosis, 35.3% arterial hypertrophy, 31.6% atheromatosis. The ESC, FR and DAD scores presented statistically significant and consistent association with combined as well as with almost each type of arterial pathology in separate. On the contrary, the AHA/ACC score failed to associate with any type of arterial pathology. The ESC, FR and DAD scores, but not the AHA/ACC score, detected the presence of combined arterial pathology: the FR-10 year-CHD score had higher area under the curve than all other scores (AUC: 0.756, p <0.001; c-statistics <0.05 versus all other scores).

Conclusions: This single-center, single-operator vascular phenotyping study in HIV-infected individuals suggests that: (i) extensive subclinical arterial damage of all types is present in this population; (ii) the ESC, DAD and FR scores, but not the AHA/ACC score, associate with and detect all types of subclinical arterial pathology.

6Cardiovascular Prevention and Research Unit, Laikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece

Introduction: Accelerated subclinical arterial damage has been widely identified in HIV-infected individuals and has arterial site-specific predilection [1]. The increased incidence of cardiovascular disease (CVD) in HIV-infected individuals is mediated [2] and predicted [3] by the presence of subclinical arterial damage. Various CVD risk prediction scores – derived mostly from general populations – are used for CVD prevention in HIV-infected individuals. All scores underestimate the presence of subclinical arterial damage in these populations and exhibit low agreement [4]. No mortality-based comparison studies and no consensus exist regarding the best available CVD risk prediction score for HIV-infected individuals. We performed (i) extensive vascular phenotyping to detect subclinical arterial damage of all types of arterial pathology at different arterial beds and (ii) tested/compared the association of the four most widely applied CVD risk prediction scores with the presence of subclinical arterial pathology.

Materials and methods: Consecutive HIV-infected individuals, free of CVD, underwent by the same technician vascular tests for the detection of (i) atheromatosis (common/internal carotid and femoral bed plaque, ankle-brachial index), (ii) arteriosclerosis (common carotid elasticity, aortic pulse wave velocity) and (iii) arterial hypertrophy (common carotid intimal-medial thickness). The European Society of Cardiology (ESC), Framingham (FR), American Heart Association/American College of Cardiology (AHA/ACC) and the Data collection on Adverse effects of Anti-HIV Drugs study (DAD) scores were assessed. Logistic regression and ROC analysis were performed.

Results: Out of 134 participants (92.5% males; age 40.8 ± 1.5 years), 76.1% had at least one type of subclinical arterial pathology, 60% arteriosclerosis, 35.3% arterial hypertrophy, 31.6% atheromatosis. The ESC, FR and DAD scores presented statistically significant and consistent association with combined as well as with almost each type of arterial pathology in separate. On the contrary, the AHA/ACC score failed to associate with any type of arterial pathology. The ESC, FR and DAD scores, but not the AHA/ACC score, detected the presence of combined arterial pathology: the FR-10 year-CHD score had higher area under the curve than all other scores (AUC: 0.756, p <0.001; c-statistics <0.05 versus all other scores).

Conclusions: This single-center, single-operator vascular phenotyping study in HIV-infected individuals suggests that: (i) extensive subclinical arterial damage of all types is present in this population; (ii) the ESC, DAD and FR scores, but not the AHA/ACC score, associate with and detect all types of subclinical arterial pathology.

References

Poster Abstracts

Journal of the International AIDS Society 2016, 19 (Suppl 7)

Design: We performed a 24-week prospective, case-control and comparative pilot study of antiretroviral-naive HIV-infected patients who started a darunavir (DRV) or rilpivirine (RPV)-based regimen and age/sex-matched non-HIV-infected volunteers to compare changes at week 24 from baseline in levels of circulating endothelial cells (CECs), endothelial progenitor cells (EPCs) and circulating angiogenic cells (CACs), as well as changes in immune activation markers and their association with virologic, immunologic and clinical parameters.

Results: The study population comprised 48 participants (24 HIV-infected patients and 24 non-infected volunteers). Both HIV groups completely suppressed viremia and had significantly increased CD4 T-cell counts after 24 weeks of treatment. HIV-infected patients had higher levels of activation markers than the control group in CDB T-cell populations at baseline; these decreased after 24 weeks of treatment but without reaching the levels of the control group. No statistical differences in immune activation were seen between the DRV and RPV groups (Figure 1.). Levels of CECs were higher and levels of EPCs and CACs were lower in HIV-infected patients than in the control group, although all these parameters were similar between the DRV group and the control group but not the RPV group at week 24 (Figure 2). An unfavourable association was observed between RPV, age and increased number of CECs.

Conclusions: Restoration of circulating levels of EPCs and CECs in DRV-treated patients was greater than in those treated with RPV, suggesting ongoing endothelial repair mechanisms.

Reference

P181
Cardiovascular risk factors and use of lipid-lowering therapy in a cohort of HIV-positive patients with high cardiovascular risk
Johanna Denman and Kaveh Manavi
Genitourinary Medicine, University Hospital Birmingham NHS Trust, Birmingham, UK

Introduction: Patients with HIV have high cardiovascular risk [1]. Cardiovascular disease (CVD) is a common cause of death amongst people with HIV [2]. We aimed to review contributors to cardiovascular risk in patients with HIV at high risk of CVD and the management of lipids with reference to NICE guidelines 2008 [3].

Materials and methods: Patients with estimated 10-year CVD risk greater than 20% (QRISK2 score) in 2014 were selected from the clinic database. Data recorded included demographic details, CD4 count, viral load, antiretroviral treatment, contributors to QRISK2 score and lipid management.

Results: We identified 39 patients with QRISK2 greater than 20%. The viral load was undetectable (<40 copies/mL) in 89% of these patients indicating well-controlled HIV. Median CD4 count was 612 cells/mm³, four patients had CD4 less than 350 cells/mm³. Modifiable risks were identified in 86.5% of patients; 40.5% were current smokers, 43.2% had a systolic blood pressure >140 mmHg or diastolic >90 mmHg, 54.1% had non-HDL cholesterol greater than 3 mmol/L, 32.4% had a BMI >30 kg/m². NICE guidelines 2008 (CG67) recommended statin be offered if 10-year risk >20% [3]. Only 26 out of 37 patients (70.3%) were on statin prior to risk assessment (included two patients on fenofibrate due to intolerance of statin). A statin was subsequently commenced in 4 of the remaining 11 patients (36.4%). None achieved the recently adopted target of 40% reduction in non-HDL cholesterol after 8 months [4].

Conclusions: Modifiable CVD factors (smoking, hypertension, lipids and weight) contributed to a significant number of patients with high CVD in our cohort. Lifestyle changes should be promoted and supported better in HIV clinics. This would include better communication with the GPs. Our clinic is developing a standard letter for GPs requesting assistance with addressing modifiable risk factors, to be sent when a patient with high cardiovascular risk is identified. Once statin is commenced lipids should be monitored and reviewed to ensure target reduction in non-HDL cholesterol is achieved.

References

P182
Prevalence of cardiovascular diseases in West African HIV-infected adults receiving HAART
Ngoibou Frederic Ilio1; Chrysostome Mossou2; Patrick Coffie3; Affoue Gisséle Kouakou2; Coulibaly Wlo2; Jean-Baptiste Anzoua-Kacou2 and Serge Paul Ehollie1
1 Dermatology-Infectious Diseases, Treichville University Teaching Hospital, Abidjan, Ivory Coast. 2 Thoracic and Vascular Treichville University Teaching Hospital, Abidjan, Ivory Coast
Introduction: Non-communicable diseases (NCDs) are emerging as an important concern related to the improvement of life expectancy of HIV-infected patients, to antiretroviral drug toxicity and also to the chronic inflammation associated with persistent viral replication [1]. Few studies have been conducted in low-income countries, particularly in West Africa [2,3]. We are interested in severe morbidity of cardiovascular diseases (CVD) in HIV-positive patients on antiretroviral therapy. Therefore, we assessed the prevalence of severe CVD in HIV-infected patients followed up in the Tropical and Infectious Diseases Unit (TIDU) and looked for factors associated with them.

Materials and methods: A cross-sectional study was conducted at the TIDU in Abidjan, from April to July 2015, in patients aged over 18 years, HIV positive and on antiretroviral therapy for at least 12 months. Data were collected using a structured questionnaire. Clinical assessment, laboratory tests, transthoracic echocardiography and electrocardiogram were performed for all the patients. All the subjects underwent ultrasonography of the carotid and femoral vessels to evaluate intima-media thickness. The primary endpoint was proportion of patients with severe CVD. Analysis of factors associated was conducted by logistic regression.

Results: Two hundred and seventy eight patients (mean age 46 years, female 74.5%) were included. The proportion of patients with clinical stage C of the CDC classification was 119 (42.8%) and 229 (82.4%) were with virologic suppression (undetectable viral load). The prevalence of severe CVD was 7.6% [95% CI 4.7–11.3%]. The majority was represented by pulmonary arterial hypertension (5%). In multivariate analysis, running time below 30 min, high blood pressure, high ALT rate, high glycaemia rate and low nadir CD4 count were significantly associated with the prevalence of CVD.

Conclusion: The prevalence of life-threatening CVD was significant. Therefore, standardized screening and risk reduction interventions should be routinely undertaken among HIV-infected patients on HAART [4] and discussion of the current approach to primary prevention of CVD in HIV-positive patients is crucial.

References

P183
Premature cerebral atherosclerosis in HIV-infected individuals in Lisbon: a carotid ultrasound and transcranial Doppler study
António Pais de Lacerda1; Marta Melo2; Pedro Coelho3; Paulo Baptista2; Vítor Oliveira4
1Hospital de Santa Maria, Centro Hospitalar Lisboa Norte / Faculdade de Medicina da Universidade de Lisboa, Serviço de Medicina Intensiva, Lisboa, Portugal. 2Faculdade de Medicina da Universidade de Lisboa, Clínica Unid de D. Infecções e Parasitárias, Lisboa, Portugal. 3Nova Information Management School, Universidade Nova de Lisboa, Lisboa, Portugal. 4Laboratório de Hemodinâmica Cerebral, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal. 5Clínica Univ de D. Infecções e Parasitárias, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal

Introduction: Premature atherosclerosis has been linked to HIV infection and/or to antiretroviral treatment [1]. Carotid intima-media thickness (CIMT) and pulsatility index (PI) assessed by carotid duplex ultrasonography (CDU) and transcranial Doppler (TCD) may be useful markers [2–4].

Materials and methods: Carotid and cerebral circulation were evaluated by CDU and TCD in 40 HIV-infected Caucasian men (mean age 49.4 ± 5.9 years). CD4+ T-cell current and nadir counts, and current and zenith viral load and HIV drug classes with duration of ART were registered; cardiovascular risk scores were also assessed. Multivariate regression analysis and Pearson’s correlation coefficient were used.

Results: All men received ART and presented mean CD4+ count of 817 ± 369 cells/mm³ (mean nadir 242.8 ± 158.2 cells/mm³) at the time of the study, 95% had non-detectable viral load (mean zenith 381,416 ± 858,881 copies/ml), 35% had history of high blood pressure, 35% dyslipidaemia, 7.5% diabetes and 80% tobacco consumption. Cardiovascular risk by Framingham Risk Score, SCORE and ASCVD score were low at 10 years and lifetime. More than half (67.5%) had increased CIMT (mean 0.92 ± 0.13 mm), but none presented increased PI. No correlation was found between duration of infection, ART classes or cardiovascular risk scores with CDU or TCD data. However, a significantly positive association between a CD4+ nadir count <400 cells/mm³ and an increase of 0.12 in PI was confirmed by regression analysis where CD4 categories showed significant effect over PI (p = 0.04).

Conclusions: In this series, HIV infection showed an association with premature cerebral atherosclerosis, even at low cardiovascular risk scores, and independently of therapies employed and treatment time. PI may be an early marker of atherosclerosis in HIV-infected people with CD4+ nadir <400 cells/mm³. There is a need to evaluate these parameters in a larger number of HIV-infected people, including elite controllers.

References

P184
CVD risk assessment using various tools in an HIV cohort in Greece
Efimolfi Zouzia1; Eleni Kakalou2; Vasilios Papastamopoulos2; Theodoros Kakavas3; Diomysios Dimas1; Theophilos Rosenberg4 and Athanasios Skoutelis5
1Medical School, MSc International Medicine-Health Crises Management, School of Medicine, National and Kapodistrian
University of Athens, Greece. 2Infectious Diseases Department, Evangelismos General Hospital, Athens, Greece

Introduction: ART has led to improvements in life expectancy and chronic diseases, including cardiovascular disease (CVD), but have emerged as a major factor of morbidity and mortality among the HIV infected. Traditional CVD risk prediction tools have questionable accuracy in this population. Only the D:A:D algorithm has been specifically developed for HIV patients. This study aims: a) to describe the prevalence of CVD risk factors in an HIV-infected population using various CVD risk prediction tools; b) to compare the results calculated by standard CVD risk assessment tools with those of the D:A:D risk equation.

Materials and methods: A cross-sectional study was conducted in Evangelismos General Hospital in Athens, Greece. Patients attending the outpatient HIV clinic during the period of 1 to 31 March 2016 were included. A total of 120 patients were included and their data were analyzed. Electronic medical records were used to collect data. Seven cardiovascular risk assessment tools were used (Framingham CVD, Framingham Hard CHD, SCORE, PROCAM, QRISK2 and D:A:D Risk Score). Agreement between D:A:D and other CVD calculation tools (high, non-high risk) was assessed using Cohen’s weighted kappa coefficient.

Results: 81.5% (95% CI 73.6–87.5) of participants were male and 76.3% (95% CI 67.8–83.0) were born in Greece. The mean age was 41.9 (SD 10.47) and transmission mode was sexual in 62.2% (95% CI 53.2–70.4) and intravenous drug use in 30.3% (95% CI 22.7–39.7) of cases; 67.8% were current smokers. Electronic medical records were used to collect data. Seven cardiovascular risk assessment tools were used (Framingham CVD, Framingham Hard CHD, SCORE, PROCAM, Health Check, CUORE, QRISK2 and D:A:D Risk Score). Agreement among results was assessed using Cohen’s weighted kappa coefficient.

Conclusions: The effect of immune restoration with ART on HIV-related cardiac inflammation is unknown. We investigated the presence of myocarditis before and after ART initiation in patients with HIV advanced disease.

Materials and methods: Myocardial inflammatory changes were studied with MRI, using Lake Louise Consensus Criteria [1] in ART-naive, HIV-infected adults with CD4+ T cell counts < 200 cells/μl at ART initiation and 6 weeks later. Myocardial function was assessed with transsthoracic echocardiogram. Troponin I, proBNP (heart-injury biomarkers) and serum antibodies and plasma PCR for cardiotropic pathogens were measured. Immune activation and lymphocyte differentiation were analyzed by flow cytometry.

Results: Seventeen patients were enrolled, 15 (88%) were men. At baseline, median age was 34 years and CD4 count 46 cells/μl. No patients had cardiovascular-related symptoms at enrolment. We summarized in Table 1 the frequency of myocardial inflammation, myocardial dysfunction and pulmonary hypertension, and the presence of HHV-6, HHV-8 and parvovirus B19 at baseline and 6 weeks after ART in all subjects. Among those with baseline myocardial inflammation (n = 6), three (50%) had systolic dysfunction and one had diastolic dysfunction. None had cardiovascular-related symptoms. Among the five (29%) patients with myocardial inflammation at week 6, two (40%) had systolic dysfunction, two (40%) diastolic and one more had both. One patient progressed to symptomatic heart failure after ART initiation. He had the most severe baseline systolic dysfunction (LVEF 41%), which resolved with medical treatment after 1 year of follow-up (LVEF 61%). No myocardial inflammation at baseline and at 6 weeks was observed in eight (47%) subjects; four (23%) had baseline inflammation that spontaneously resolved after 6 weeks; inflammation persisted after 6 weeks of ART in 2/6 patients, and three more developed new inflammation after ART. Baseline and 6-week IgG for T. gondii, CMV

Abstract P184 Table 1. Agreement between D:A:D and other CVD calculation tools (high, non-high risk)

<table>
<thead>
<tr>
<th></th>
<th>Framingham CVD</th>
<th>Framingham Hard CHD</th>
<th>Score</th>
<th>PROCAM</th>
<th>QRISK2</th>
<th>CUORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D:A:D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.729</td>
<td>0.191</td>
<td>0.434</td>
<td>0.595</td>
<td>0.266</td>
<td>0.206</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.475, 0.982</td>
<td>−0.104, 0.485</td>
<td>0.092 , 0.775</td>
<td>0.278, 0.912</td>
<td>−0.070, 0.602</td>
<td>−0.137, 0.548</td>
</tr>
<tr>
<td>p-value</td>
<td><0.001</td>
<td>0.047</td>
<td><0.001</td>
<td><0.001</td>
<td>0.004</td>
<td>0.002</td>
</tr>
</tbody>
</table>

References
Abstract P185 – Table 1. Frequency of abnormal findings in heart assessment, cardiotropic pathogens and CD4+ counts and HIV RNA measurements at baseline and 6 weeks after ART initiation in 17 patients starting treatment with advanced HIV disease (\(< 200\) CD4+ cells/mm³)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Basal n (%)</th>
<th>6 weeks n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial inflammation</td>
<td>6 (35)</td>
<td>5 (29)</td>
</tr>
<tr>
<td>Systolic dysfunction (LVEF < 60%)</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Diastolic dysfunction (slow relaxation pattern)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Systolic + diastolic dysfunction</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary hypertension (TTE)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Plasma PCR for HHV6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Plasma PCR for HHV8</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Plasma PCR for parvovirus B19</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CD4 + cells/mm³</td>
<td>46 (18–81)</td>
<td>208 (90.5–205)</td>
</tr>
<tr>
<td>CD4 + /CD8+ ratio</td>
<td>0.063 (0.048–0.092)</td>
<td>0.25 (0.131–0.326)</td>
</tr>
<tr>
<td>HIV RNA copies/mm³</td>
<td>449,967 (227,367–740,959)</td>
<td>143 (87–502)</td>
</tr>
</tbody>
</table>

and EBV were frequent and not associated with myocardial inflammation. No evidence of past or present T. cruzi or Coxsackie virus was found. No association was found between myocardial inflammation and HPV19, HHV-6 or -8, or with immune activation markers.

Conclusions: Subclinical myocarditis was common in this group of patients with HIV-associated advanced disease; and resolved spontaneously after ART initiation in most patients. Three patients developed myocarditis after ART initiation with no apparent associated infectious cause, suggesting a possible role of immune restoration disease. In one of them, myocardial inflammation caused heart failure requiring clinical management for 1 year. Awareness of this condition may improve management of those patients.

Reference

P186
TDF/FTC/RPV + atorvastatin as comorbidity-driven cART
Franco Maggiolo1; Elisa Di Filippo1; Laura Comi1; Annapaola Callegaro2; Daniela Valenti3 and Giampietro Gregis4
1Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy. 2Laboratory of Microbiology and Virology, ASST Papa Giovanni XXIII, Bergamo, Italy.

Introduction: Comorbidities are relevant in the management of HIV infection; however, few studies have considered the choice of ARV regimen based on non-HIV-dependent comorbidities.

Materials and methods: In this uncontrolled pilot study, we enrolled patients with cardiovascular disease or diabetes. All were on an effective cART (HIV RNA < 50 copies/mL for > 6 months). Patients were switched to TDF/FTC/RPV STR and all received a 40 mg dose of atorvastatin. According to the American Heart Association indications [1], the reduction of LDL-cholesterol levels at 3 and 6 months were used as primary goal of the study.

Results: Twenty patients, half diabetics and half with a previous cardiovascular accident (e.g. stroke, MI, stent positioning), were enrolled. Nineteen were males, with a mean age of 55 years (range 40–69). One-third were smokers. They had been on cART for a mean of 11 years (range 2–22) and on current cART for 4.8 years (range 0.6–13). At enrolment, all had HIV RNA < 50 copies/mL with a mean CD4 count of 693 cells/ml. Their copharmacy included aspirin and beta-blockers (40% each), antidiabetics, statins (35% each) ramipril, anti-lipid drugs (30% each) and a sartan (20%). Other medications were taken by 35% of subjects. All patients maintained viral suppression over time, a single virologic blip (60 copies/mL) was observed in one patient at 6 months. CD4 counts increased by 57 cells/mL. Total cholesterol decreased from 206 (SD 33) to 144 mg/dL (SD 35), HDL from 46 (SD 19) to 39 mg/dL (SD 14) and LDL from 123 (SD 19) to 79 mg/dL (SD 24) (for all p < 0.001). HDL/LDL ratio was normalized in all patients. D-dimer levels were studied to explore the anti-inflammatory, non-lipidic lowering effects of atorvastatin. They varied from 391 ng/mL (SD 263) at baseline to 311 ng/mL (SD 260) at 3 months, to 319 ng/mL (SD 261) after 6 months (p = 0.012). Therapy was well tolerated and CPK levels did not modify.

Conclusions: The management of comorbidities is paramount in HIV patients. Cardiovascular diseases are recognized as a major contributor to morbidity and mortality in HIV-infected subjects. TDF/FTC/RPV has a neutral lipid effect and no interactions with statins allowing for the use of these drugs at full dose. We demonstrated that the concomitant use of TDF/FTC/RPV and atorvastatin reduces the cardiovascular risk of HIV patients by significantly lowering both LDL and d-dimer blood levels while maintaining virologic suppression.

Reference

P187
Lipid profile in HIV patients with long-term ART: darunavir versus raltegravir versus rilpivirine
Bianca Branco Ascenc¸a˜o; Isabel Casella; Catarina Gonc ¸alves; Nuno Luis; Ana Teresa Goes; Joana Sá; Ana Paula Brito and José Poças
Infectious Diseases, Centro Hospitalar de Setubal, Setubal, Portugal

Introduction: The long-standing use of ART in association with dyslipidaemia and cardiovascular events has previously been thoroughly studied. Protease inhibitors (PIs) have been linked to an increased risk of dyslipidaemia when compared with other ART groups such as integrase inhibitors (INIs) or non-nucleoside reverse transcriptase inhibitors (NNRTIs), namely, rilpivirine. Our aim was to describe the lipid profile outcome of three different drugs (darunavir, raltegravir and rilpivirine) in a real-life situation.

Materials and methods: We conducted an observational study in our Infectious Diseases Department. Eligible subjects included HIV-1 infected adults, with virologic suppression, under an ART regimen consisting of a backbone of two nucleoside reverse transcriptase inhibitors (NRTIs) plus a third agent: darunavir (group 1), raltegravir (group 2) and rilpivirine (group 3), for at least 1 year (2015). We evaluated the changes in the lipid profile in these groups, comparing the differences in total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides (TG), at baseline (without ART, under PIs, NNRTIs or INIs) and at current time.

Results: A total of 192 patients were included, 72.4% males with a mean age of 47.2 years. In group 1 (N = 101), we observed a medium increase of 4 mg/dL in TC, with a major increase in LDL (17 mg/dL). However, medium TG value decreased 11 mg/dL. In subgroup analysis, 22 patients naïve at baseline had an increase of 34 mg/dL in TC (LDL: 25 mg/dL), with decrease in TG. Sixty-three patients initially under other PIs showed the same pattern. In group 2 (N = 37), TC and TG decreased, but LDL increased 2 mg/dL. Six patients were naïve, and showed a TC increase of 25 mg/dL, and TG decrease 1 mg/dL; 21 patients on PIs had TC and LDL decreased (7 mg/dL, 5 mg/dL), with 62 mg/dL decline in TG. However, the 10 patients with NNRTIs at baseline presented with TC increase: 5 mg/dL; HDL decrease: 7 mg/dL, LDL increase: 11 mg/dL; and TG decrease: 5 mg/dL. In group 3 (N = 54), all parameters of lipid profile showed a substantial decrease. In patients initially under PIs (N = 13) TC decreased: 18 mg/dL; LDL: 11 mg/dL; TG: 28 mg/dL. Seventeen patients under NNRTIs showed 19 mg/dL decline in TC, 12 mg/dl in LDL and 25 mg/dL in TG. Even the naïve subgroup (N = 22) showed a TC decrease 2 mg/dL and TG decrease 13 mg/dL. Adversely two patients under INIs showed an increase in all parameters.

Conclusions: Rilpivirine showed a better evolution in lipid profile, both in naïve and experienced patients, in comparison to darunavir and raltegravir. As this study considered real-life data, the information could be very useful in clinical practice and future ART decision making.

P188
Cardiovascular disease risk scores comparison in Serbian HIV-infected patients

Bozana Dimitrijevic 1; Djordje Jevtovic 2; Ivan Soldatovic 3; Jovan Ranin 4; Dubravka Salemovic 4, Jovana Kusic 4 and Gordana Dragovic 4

1Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Pharmacology, Belgrade, Serbia and Montenegro. 2Infectious and Tropical Diseases Hospital, HIV/AIDS Center, Belgrade, Serbia and Montenegro. 3School of Medicine, Institute for Biomedical Statistics, Belgrade, Serbia and Montenegro

Introduction: Increased rates of non-AIDS mortality, including cardiovascular diseases (CVD), emerged as an important issue in HIV-infected patients [1,2]. Thus, we aimed to estimate cardiovascular risk in HIV-infected patients using four cardiovascular risk scores recommended by different international guidelines: Framingham Risk Score (FRS), Systematic Coronary Risk Evaluation (SCORE), American Heart Association Atherosclerotic Cardiovascular Disease risk score (ASCVD) and one designed particularly for HIV-infected patients, Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) model. Furthermore, we also aimed to analyze the agreement of the high D:A:D CVD score with other high CVD scores and to calculate discriminative power for each of used scores in Serbian patient population.

Materials and methods: We included 202 patients in cross-sectional study conducted at HIV/AIDS Center at Clinic for Infectious and Tropical Diseases, Belgrade, Serbia from January 2014 to January 2015. We collected data on risk factors for CVD including age, gender, race, total cholesterol, systolic blood pressure, smoking status and also HIV-specific parameters such as duration and current use of lopinavir or abacavir, as well as family history. Inclusion criteria were at least 12 months on antiretroviral therapy and age range of 40 to 79 years. We calculated agreement between D:A:D score and three other scores using Cohen’s kappa coefficient (κ). We also described discriminative power of each of the scores using receiver operating characteristic (ROC curves).

Results: All patients were Caucasians with median age of 49 years, 151 (74.8%) were males. As for traditional risk factors, 100 (49.5%) patients are current smokers, 64 (31%) had hypertension, while hypercholesterolemia was found in 72 (35.4%). Fifty-one (25.2%) persons were overweight (BMI >25), 15 (7.4%) were obese (BMI >30), 45 (22.3%) had metabolic syndrome and seven diabetes (3.5%). The prevalence of high CVD scores were 8%, 13%, 35% and 40% for SCORE, FRS, D:A:D and ASCVD score, respectively. The agreement between high D:A:D score and high ASCVD score was higher (κ = 0.73) than between the D:A:D score and FRS (κ = 0.59) or SCORE (κ = 0.60) algorithms. We also found that D:A:D score and ASCVD score had a highly significant predictive value for outcome in comparison with two other scores (Figure 1). Among four estimated CVD risks, D:A:D score and ASCVD score had a highly significant predictive value for outcome. D:A:D score had the area under the receiver operator, ROC curve, AUC of 0.691 (p < 0.004), while the ASCVD had the area under the ROC curve of 0.624 (p = 0.05).

Abstract P188—Figure 1. Evaluation of discriminative power (D:A:D ROC = 0.691, ASCVD ROC 0.624).
Conclusion: We found a high number of HIV-infected patients in our population who are in need of CVD risk reduction. We also found substantial agreement of D:A:D and ASCVD risk score in order to estimate CVD risk in Serbian patient population.

References

CO-MORBIDITIES AND COMPLICATIONS OF DISEASE AND/OR TREATMENT - MALIGNANCIES: AIDS-DEFINING

P189
The extent of B-cell activation and dysfunction preceding lymphoma development
Leah Shepherd; Alvaro Borges; Richard Harvey; Mark Bower; Andrew Grulich; Michael Silverberg; Jonathan Weber; Matti Ristola; Jean-Paul Viard; Johannes Bogner; Panagiotis Gargalianos-Kakolyri; Cristina Mussini; Kamal Mansinho; Israel Yust; Alexandra Calmy; Dzmitry Paduta; David Jilich; Tomasz Smiatacz; Roxana Radoi; Janez Tomazic; Peter Plomgaard; Ruth Frikke-Schmidt; Jens Lundgren; Amanda Mocroft and EuroSIDA in Eurocoord

Introduction: B-cell dysfunction and activation is thought to contribute to lymphoma development in HIV+ people; however, the mechanisms are complex and not well understood. We investigated markers of B-cell dysfunction prior to lymphoma diagnosis.

Abstract P189 - Figure 1. Odds ratios of lymphoma in those with a marker level of greater than the upper limit of the normal (ULN) relative to a level in the normal range, <2 and >2 years prior to diagnosis.

Abstracts of the HIV Glasgow supplement
Journal of the International AIDS Society 2016, 19 (Suppl 7)

143
Materials and methods: A nested case control study of 73 HIV+ people with lymphoma (52 non-Hodgkin lymphoma and 21 Hodgkin lymphoma) and 142 matched controls within EuroSIDA was conducted. Controls and cases were matched on date of first and last sample preceding lymphoma, age and CD4 cell count at first sample, gender and region of Europe. Prospectively stored plasma samples before lymphoma (or matched date in controls) were measured for markers of B-cell dysfunction and activation: free light chain (FLC)-kappa, FLC-lambda, immunoglobulin (Ig)G, IgA, IgM and IgD. Conditional logistic regression investigated associations between markers and lymphoma <2 and >2 years prior to diagnosis.

Results: A total of 215 HIV+ people were included with a median of 2.0 (IQR 0.4–4.3) years between first sample and end of follow-up. Considering cases and controls together, all markers were correlated with lower CD4 level (FLC-lambda; Spearman’s ρ = −0.31, p < 0.01; FLC-kappa: ρ = −0.24, p < 0.01; IgG: ρ = −0.27, p < 0.01; IgA: ρ = −0.13, p < 0.01; IgM: ρ = −0.17, p < 0.01; IgD: ρ = −0.09, p < 0.01). FLC-lambda (ρ = 0.32, p < 0.01), FLC-kappa (ρ = 0.28, p < 0.01), IgG (ρ = 0.40, p < 0.01) and IgM (ρ = 0.40, p < 0.01) were also positively correlated with HIV-VL. In the years prior to diagnosis, levels of FLC-kappa were stable in cases but increasing in controls by 4% (95% CI 1–8%) per year, respectively, but stable in controls (p = 0.10 and p = 0.01 respectively). Levels of FLC-lambda, IgA and IgD were similar in cases and controls over time (all p > 0.05). Elevated FLC-lambda (OR 3.28, 95% CI 1.47–7.7), FLC-kappa (OR 3.40, 95% CI 1.05–14.5), and IgG (OR 2.67, 95% CI 1.20–6.28) were associated with higher odds of lymphoma >2 years prior to diagnosis; however, levels were not predictive within 2 years prior to diagnosis (Figure 1). A similar trend was observed for IgM; however, significance was borderline with high uncertainty (>2 years OR 9.10, 95% CI 1.00–433.52; <2 years OR 7.12, 95% CI 0.69–354.54). IgA and IgD were not associated with lymphoma.

Conclusions: FLC-lambda, FLC-kappa and IgG were higher than 2 years before lymphoma diagnosis, but the difference diminished nearer diagnosis. B-cell dysfunction, as demonstrated by polyclonal hypergammoblinemia, occurs many years prior to lymphoma development.

P190 Survival in HIV-1 infected individuals with diagnosis of lymphoma compared to general population: data from ICONA Foundation cohort study
Antonella Cingolani1; Alessandro Cozzi Lepri2; Luciana Teofili3; Laura Galli1; Valentina Mazziotta7; Gian Maria Baldin7; Stefan Hohaus1; Alessandra Bandera1; Lucia Alba7; Nadia Galizzi4; Antonella Castagna3; Antonella d’Arminio Monforte3; Andrea Antonini5 and Study Group on behalf of Icona Foundation6
1Infectious Diseases, Catholic University, Roma, Italy. 2Department of Infection & Population Health, University College London, London, UK. 3Hematology, Catholic University, Roma, Italy. 4Infectious Diseases, San Raffaele Hospital, Milano, Italy. 5Clinical Department, National Institute for Infectious Diseases, Roma, Italy. 6Infectious Diseases, San Gerardo Hospital, Milano, Italy. 7Infectious Diseases, San Paolo Hospital, University of Milano, Milano, Italy. 8Health Sciences, San Paolo, Milano, Italy

Introduction: There are limited data on comparison of clinical outcome of lymphoma in HIV-positive (HIV-L) versus HIV-negative individuals (nHIV-L). Objectives of our analysis were to estimate overall survival (OS) after a diagnosis of lymphoma, comparing HIV-L versus nHIV-L and to identify predictors of death.
Materials and methods: All HIV-infected patients with a diagnosis of HIV-L (non-Hodgkin lymphoma, NHL; Hodgkin disease, HD) between 1 January 2000 and 31 December 2013 in ICONA or in three collaborating hospital databases were included. As controls, patients with nHIV-L seen for care in one of these centres over the same time period were included. Survival estimates by Kaplan meier (KM) and predictors of OS by multivariable Cox regression after adjusting for main potential confounders (calendar year, age, gender, international prognostic index (IPI), treatment) were performed.

Abstract P190 Table 1. Unadjusted and adjusted HR of death in all NHL, in DLBCL and in HD from fitting three separate multivariable Cox regression hazard models

<table>
<thead>
<tr>
<th>Unadjusted HR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>All NHL</td>
<td></td>
</tr>
<tr>
<td>HIV-</td>
<td>1.00</td>
</tr>
<tr>
<td>HIV+</td>
<td>1.63 (1.29–2.06)</td>
</tr>
<tr>
<td>DLBCL</td>
<td></td>
</tr>
<tr>
<td>HIV-</td>
<td>1.00</td>
</tr>
<tr>
<td>HIV+</td>
<td>1.44 (1.09–1.91)</td>
</tr>
<tr>
<td>HD</td>
<td></td>
</tr>
<tr>
<td>HIV-</td>
<td>1.00</td>
</tr>
<tr>
<td>HIV+</td>
<td>2.36 (1.50–3.70)</td>
</tr>
<tr>
<td>Adjustedb HR (95% CI)</td>
<td></td>
</tr>
<tr>
<td>All NHL</td>
<td></td>
</tr>
<tr>
<td>HIV-</td>
<td>1.00</td>
</tr>
<tr>
<td>HIV+</td>
<td>2.08 (1.56–2.76)</td>
</tr>
<tr>
<td>Adjustedc HR (95% CI)</td>
<td></td>
</tr>
<tr>
<td>All NHL</td>
<td></td>
</tr>
<tr>
<td>HIV-</td>
<td>1.00</td>
</tr>
<tr>
<td>HIV+</td>
<td>1.83 (1.33–2.53)</td>
</tr>
<tr>
<td>Adjustedc HR (95% CI)</td>
<td></td>
</tr>
<tr>
<td>HD</td>
<td></td>
</tr>
<tr>
<td>HIV-</td>
<td>1.00</td>
</tr>
<tr>
<td>HIV+</td>
<td>2.26 (1.37–3.74)</td>
</tr>
</tbody>
</table>

*aAdjusted for age gender and calendar year; badjusted for rituximab and IPI; cadjusted for factors in a and b; dadjusted for ABVD regimen and staging; eadjusted for factors in a and d.
Results: A total of 1355 patients were included: 488 HIV-L (343 NHL and 145 HD) and 867 nHIV-L (589 NHL and 278 HD). Median age 49 years (IQR 38–64), 522 female (38%) and 433 (32%) had HD; of NHL, 765 (84%) were diffuse large B-cell lymphoma (DLBCL); among HIV-L, 91 (22%) were intravenous drug user (IVDU), median CD4+ count at lymphoma diagnosis 235 cells/mm3 (IQR 134–428) and 443 (91%) were on cART. HIV-L was more aggressive than nHIV-L (worse IPI score). The 3-year cumulative probability of death was 34% for HIV-L (95% CI 30–38) and 18% (15.5–20.8) for nHIV-L (log rank p = 0.001). In univariable analysis, a significantly increased 3-year cumulative probability of death for HIV-L compared to nHIV-L was reported for all NHL (38.9% vs. 22.1%; p < 0.001), for DLBCL (36.9% vs. 22.5%; p = 0.008), for HD (22.3% vs. 10.1%; p < 0.001). Unadjusted and adjusted hazard ratio (HR) of death according to HIV status in all NHL, in DLBCL and in HD from fitting separate Cox regression models are shown in Table 1. Results were mostly consistent when we performed a matched-cohort analysis using propensity scores, and restricting analysis, among HIV-L, to cART-treated only. Comparing only NHL in HIV, older age (HR 1.45 (1.26–1.66)) and higher IPI (1.39 (0.87–2.23)) were independently associated with increased risk of death, whereas female gender (0.64 (0.45–0.90)) were associated with a decreased risk.

Conclusions: Comparing a large population of HIV-L and nHIV-L, we found an increased risk of death associated with HIV. The excess of risk independently attributable to HIV status ranged between 37% for DLBCL and >-2-fold higher for HD, after controlling for unbalanced aggressive presentation and advanced stage at diagnosis. We cannot rule out bias due to other unmeasured confounding.

P191
Cervical and breast cancer screening practices among women living with HIV
Kate Salters 1; Monica Ye 2; Ann Burchell 3; Neora Pick 4; Danielle Smith 2; Shahab Jabbari 2; Mark Hull 5; Jeannie Shoveller 2; Kate Salters 1; Monica Ye 2; Neora Pick 3; Danielle Smith 2; Sam Wiseman 3; Shahab Jabbari 2; Mark Hull 5; Jeannie Shoveller 2; Julio Montaner 5 and Robert Hogg 1
1Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada. 2Epidemiology & Population Health, British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada. 3Dalla Lana School of Public Health, University of Toronto, Toronto, Canada. 4Oak Tree Clinic, BC Women’s Hospital, Vancouver, Canada. 5AIDS Research Program, British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada

Introduction: Research suggests significant gaps exist in cancer screening practices for women living with HIV (WLWH); however, there is limited research from regions where screening is universally available. Annual Pap tests are considered best practice for WLWH, in response to the higher rates of cervical cancer. Current mammography recommendations suggest once every 24 months for women aged 40 to 74, with no specification for WLWH or immune-suppressed women.

Materials and methods: The comparison of outcomes and service utilization trends (COAST) study provides a retrospective, population-based cohort of HIV-positive individuals between 1996 and 2013 in British Columbia, Canada. The primary outcome variables (mammography for breast cancer and pelvic exams and/or Pap tests for cervical cancer screening) were identified by physician billing codes. Screening was identified between HIV diagnosis date and December 2013 as well as within the previous 12 and 24 months for cervical and breast cancer, respectively. Multivariate logistic model identified factors associated with receipt of breast and cervical cancer screening since HIV diagnosis.

Results: Of the 1070 WLWH between ages 40 and 74 in our study, 198 (18.5%) received at least one mammogram since being diagnosed with HIV, and only 61 (5.7%) in the previous 24 months. Additionally, among 1683 WLWH between ages 25 and 69, 628 (37.3%) received at least one Pap test since being diagnosed with HIV and only 97 (5.8%) in the previous 12 months. Receipt of Pap test since known HIV diagnosis date was less likely for individuals who have used injection drugs (AOR 0.62, 95% CI 0.50–0.77), are of Indigenous ancestry (AOR 0.66, 95% CI 0.50–0.87) and urban dwellers (AOR 0.50, 95% CI 0.34–0.74), but more likely for older individuals (AOR 1.16, 95% CI 1.05–1.28) and those with higher baseline CD4 cell count (AOR 1.11, 95% CI 1.05–1.16). Receiving a mammogram since HIV diagnosis was less likely for WLWH who were diagnosed with HIV after the year 2000 (compared to 1996 to 2000) (AOR 0.59, 95% CI 0.43–0.81) and those of Indigenous ancestry (AOR 0.59, 95% CI 0.40–0.87), but more likely for older individuals (AOR 1.96, 95% CI 1.70–2.26).

Conclusions: An alarmingly small proportion of WLWH in our sample received a mammogram and Pap test since being diagnosed with HIV despite current recommendations. This is notably low, even when accounting for completeness of administrative data such as physician billing codes. Of note, there may be significant barriers to screening for Indigenous WLWH and those with advanced HIV infection.

P192
Immune suppression at cART initiation is associated with cancer development in women living with HIV/AIDS
Kate Salters 1; Monica Ye 2; Neora Pick 3; Danielle Smith 2; Sam Wiseman 3; Shahab Jabbari 2; Mark Hull 5; Jeannie Shoveller 2; Julio Montaner 5 and Robert Hogg 1
1Faculty of Health Sciences, Simon Fraser University, Vancouver, Canada. 2Epidemiology, British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada. 3AIDS Research Program, British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada. 4Department of Surgery, St Paul’s Hospital, Vancouver, Canada. 5AIDS Research Program, British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada

Introduction: The elevated risk of AIDS-defining malignancies (ADM) among people living with HIV has been largely and directly attributed to cell-mediated immune suppression, characterized by low CD4 counts. Since the advent of modern cART, rates of ADM have subsequently declined; however, the potential protective effect of early cART therapy initiation on cancer incidence, particularly non-ADM, remains largely unknown.

Materials and methods: The comparison of outcomes and service utilization trends (COAST) study provides a retrospective, population-based cohort of HIV-positive individuals between 1996 and 2013 in British Columbia, Canada. For this study, we included women with a confirmed HIV diagnosis. Incident cancer cases were identified by International Classification of Diseases for Oncology (ICD-O) codes. We conducted a Poisson regression to determine correlates of all-type cancer, ADM and non-ADM, and an adjusted model to determine incidence rate (per 1000 PY) by baseline CD4 cell count (<200, 200–350 and >350 cells/mm3) among women living with...
HIV (WLWH). We also calculated the attributable fraction (AF) of malignancies associated with CD4 count at cART initiation.

Results: Among 1660 WLWH included in this study, 50 WLWH were diagnosed with cancer between 1996 and 2013 (31 ADM and 19 non-ADM). Compared to WLWH without cancer, WLWH with a cancer diagnosis were more likely to have lower baseline CD4 (median 135 (IQR 60–260) cells/mm3 vs. 260 (IQR 140–390) cells/mm3), nadir CD4 (median 45.0 (10–101) cells/mm3 vs. 133 (43–250) cells/mm3) and a higher proportion of AIDS-defining illness at baseline (26.0% vs. 10.3%). Initiating cART with higher baseline CD4 cell count (> 350 cells/mm3) is associated with lower all-type cancer diagnosis (RR 0.33 (95% CI 0.16–0.70)) and non-ADM diagnosis (RR 0.15 (95% CI 0.03–0.64)) compared to those to initiate cART with CD4 of <200 cells/mm3. No significant association was found between baseline CD4 and incidence of ADM diagnosis. After adjusting for age at HIV diagnosis, the incidence rate of all-type cancer is 5.55 (95% CI 3.89–7.91) cases per 1000 PY with AF of 63.66% and non-ADM incidence is 2.50 (95% CI 1.47–4.27) cases per 1000 PY with AF of 82.06% for those with a CD4 of <200 cells/mm3, compared to those with CD4 of >350 cells/mm3 at cART baseline.

Conclusions: Early initiation of cART may be protective against all-type cancer and non-ADM diagnosis. In the context of “Treatment as Prevention,” this study suggests there may be significant oncologic health benefits of early treatment initiation for some WLWH.

P193

High rate of the progression of low squamous intraepithelial lesion (LSIL) to high squamous intraepithelial lesion (HSIL) in a cohort of HIV MSM in “the modern antiretroviral era”

Carmen Hidalgo-Tenorio1; Concepcion Gil Anguita1; Jessica Ramirez Taboada2; Miguel Angel Lopez Ruz3; Mohamed Omar Momamed Balghata1; Rosario Javier1; Javier Esquivias1; Marina Gutierrez4 and Juan Pasqua1

1Infectious Disease Service, Complejo Hospitalario Universitario, University Hospital Virgen de las Nieves, Granada, Spain. 2Infectious Disease Unit, Complejo Universitario Hospitalario de Jaen, Jaen, Spain. 3Pathology Service, Complejo Hospitalario Universitario, University Hospital Virgen de las Nieves, Granada, Spain

Introduction: Anal squamous cell carcinoma (ASCc) is one of the most frequent non-AIDS-defining malignancies in HIV-infected MSM [1]. A protocol of early diagnosis of ASCc has been considered cost-effective.

Materials and methods: This is a single-centre study conducted between May 2010 and June 2015. The patients were included in a screening, therapeutic and prophylaxis (implement use of condom, and qHPV vaccine (n = 64 patients)) programme of HIV and ASCc. Baseline visit (V0) included HPV PCR genotyping (GeneAmp PCR System 9700, Applied Biosysytems), cytology and high-resolution anoscopy (HRA). In V0 and each visit, we collected medical history, sexual habits, CD4 and HIV viral load. Patients diagnosed with LSIL were subjected to an annual check-up that included HPV testing and HRA; patients diagnosed with HSIL were sent to the general surgery service where they underwent a mucosectomy; or they received intra-anal imiquimod three times/week for 16 weeks. When ASCc was diagnosed, the patient was sent to the Oncology Service; patients with normal HRA were evaluated every year with anal cytology and HPV PCR, in cases of anal squamous intraepithelial lesions and/or oncogenic HPV, a HRA was carried out. The cytologic and histologic classification was Bethesda’s and LASTS Project for HPV-Associated Lesions, respectively.

Results: Two hundred and seventy-seven patients were included, with an average age of 36.8 years, and follow-up during 18.1 months/patient (IQR 0–34). In V0, 277 HRA were carried out: 40.8% were normal, 44.4% LSIL, 14.4% HSIL and 0.4% ASCc. IR of HSIL was 78.4 × 1000 person-years, and IR of ASCc 242 × 1000,000 person-years. 16.1% and 1.6% of patients with normal HRA progressed to HSIL and ASCc, respectively. 19.1% of patients with LSIL progressed to HSIL. In the multiple logistic regression analysis, we observed, as a predictive factor of a new case of HSIL, previous LSIL in HRA, OR 5 (95% CI 1.6–159). The rest of variables analyzed (history of AIDS-defining illnesses, median time of HIV duration, antiretroviral therapy, education, employment, smoking, alcohol, STDs, genotypes or number of HPV, viral load, CD4 cells/ul, qHPV vaccine, imiquimod and mucosectomy) were not related.

Conclusions: One in every five of patients with LSIL progressed to premalignant lesions in 18 months. The only risk factor associated with the high IR of HSIL was preliminary diagnosis of low squamous intraepithelial lesions.

Reference

P194

Relapse of HIV-associated multicentric Castleman’s disease following rituximab-based immunotherapy

Alessia Dalla Pri1; Jennifer Roe2; Margherita Bracchi2; Nicole Pagan2; Katie McFaul2; John Forni2; Shairoz Merchant1; Amit Samani1; Ruth Byrne2; Mark Nelson2 and Mark Bower1

1National Centre for HIV Malignancy, Chelsea and Westminster Hospital, London, UK. 2HIV-GUM, Chelsea and Westminster Hospital, London, UK

Introduction: The management of HIV-associated multicentric Castleman’s disease (MCD) was revolutionized by the introduction of rituximab-based immunotherapy in 2003. However, relapses may occur following treatment and the clinicopathological features and outcomes after relapse of MCD have not been described.

Materials and methods: A retrospective review of prospectively collected data on 83 patients treated with rituximab-based therapy at the National Centre for HIV Malignancy.

Results: Eighty-four patients (72 male, mean age 42 years) were treated with rituximab-based immunotherapy for MCD (median plasma HHV8 viral load at MCD diagnosis 375,000 copies/mL). Four died from refractory or progressive MCD within the first month of treatment and 80 achieved clinical remission. The median follow-up for these 80 patients is 4.2 years, the 5-year overall survival is 92% (95% CI 84–99%) (Figure 1) and seven patients have died (three from HHV8-related lymphomas, one pulmonary Kaposi Sarcoma (KS), two suicides and one MCD (at fourth relapse). Fifteen of 80 who achieved remission have relapsed at least once with biopsy-confirmed relapsed MCD (including three patients with concurrent lymphoma). The median time to first relapse is 22 months (range 8–94). At first relapse all 15 had symptoms of median duration 2 months (compared to 4 months at first diagnosis) and detectable plasma HHV8 viraemia. The median CD19 (B-cell) count at relapse was 474/mL (16%) suggesting that this had recovered following rituximab first-line therapy. The 5-year relapse-free survival for patients achieving remission is 78% (95% CI 67–89%) (Figure 2). The risk of relapse was not influenced by gender (p = 0.7), age (p = 0.1), time since HIV diagnosis (p = 0.3), prior AIDS diagnosis (p = 0.2), plasma HIV viraemia (p = 0.9), use of antiretroviral therapy (p = 0.1), CD4 (p = 0.9), CD8 (p = 0.1), CD19 (B cell) (p = 0.4) and
rituximab first-line therapy: 78% (95% CI 67–99%).

Clinical, virological and immunological predictors of relapse are not infrequent and may occur after recovery of CD19 (B cell) counts. The plasma HHV8 at MCD diagnosis (p = 0.4) and the addition of chemotherapy to rituximab for high-risk patients (p = 0.2) similarly did not affect the relapse risk. All 12 patients with no lymphoma at relapse were retreated with rituximab-based immunotherapy and all achieved a second clinical remission. Five have had second relapses also successfully treated and three have had third relapses including one patient who died from progressive MCD at fourth relapse 9.4 years after first MCD diagnosis.

Conclusions: Relapse following rituximab-based treatment for MCD is not infrequent and may occur after recovery of CD19 (B cell) counts. Clinical, virological and immunological predictors of relapse have not been identified. Relapses are usually sensitive to rechallenging with rituximab-based immunotherapy.

Incidence of cancer in a cohort of HIV-positive patients on virologically suppressive antiretroviral therapy in western India: a resource-limited setting perspective

Introduction: With advent of antiretroviral therapy, non-communicable diseases, including malignancies, are increasingly contributing to morbidity and mortality among HIV-infected patients. Data on incidence of cancer (AIDS-defining and non-AIDS-defining malignancies) in patients on virologically suppressive ART from resource-limited settings like India are rare.

Materials and methods: HIV-infected patients following up at a private HIV clinic from February 2009 to 2016 and on virologically suppressive ART (plasma viral load <1000 copies/mL) were included. Patients presenting with incident cancer were recorded. Histopathology examination, immunohistochemistry testing, bone marrow and cerebrospinal fluid examination and positron emission tomography scan were done for diagnosis, staging and prognostication of cancer. Cox proportional hazard model was developed to assess relationship between time to cancer and covariates namely age, gender, baseline CD4, hepatitis B co-infection, baseline addictions and duration of virologically suppressive ART.

Results: A total of 1431 HIV-infected individuals (36% females) with median follow-up on suppressive ART of 40 months were included. Median age was 40 years and median baseline CD4 count 161 cells/mm3. Of these, 39 patients had diagnosis of incident cancer with an incidence of 7.29 (95% CI 5.32–9.97) episodes per 1000 person-years. Non-Hodgkin’s lymphoma (15/39), Hodgkin’s lymphoma (4/39) and hepatocellular carcinoma (3/39) were the commonly diagnosed incident cancers in our cohort. Overall 18/39 (46.15%) patients had AIDS-defining cancers while 21/39 (53.85%) had non-AIDS-defining cancers. Eight of 21 (38.1%) patients had infection-related non-AIDS-defining cancers (i.e. hepatocellular carcinoma, anal cancer and Hodgkin’s lymphoma) and 13/21 (61.9%) patients had infection-unrelated non-AIDS-defining cancer (i.e. lung cancer, ovarian cancer, cancer of oral cavity). Median time to development of cancer was 24 months. Male patients (p = 0.039) and those with HIV/hepatitis B co-infection (p = 0.018) were significantly associated with incident cancer (Table 1). Forty-one percent of patients died during treatment of incident cancer.

Conclusion: Spectrum of incident cancers in our cohort of virologically suppressed HIV patients is evenly distributed between AIDS-defining and non-AIDS-defining malignancies. Regular screening for cancer amongst elderly HIV-infected males and HIV/hepatitis B co-infected patients is warranted. Emphasis on tobacco de-addiction can further reduce cancer incidence.

Self-administered treatment with imiquimod 5% cream for intra-anal HSIL (AIN2/3) in HIV-positive patients: efficacy, safety and a comfortable option

Poster Abstracts
P197
Investigating Barriers In HIV-Testing Oncology Patients: the IBITOP study phase II
Tu Nguyen-Ngoc2; Matthias Cavassini2; Laurent Merz2; Stefan Zimmermann2; Solange Peters1 and Katharine Darling2
1Department of Oncology, Oncology Centre, Lausanne University Hospital, Lausanne, Switzerland. 2Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland

Introduction: The prevalence of non-AIDS-defining cancers (non-ADCs) is increasing among people living with HIV. Conversely, some non-ADCs are associated with HIV prevalence figures higher than those of the general population. After observing HIV testing rates below 5% in our oncology centre, we performed a study investigating Barriers In HIV-Testing Oncology Patients (IBITOP I) among oncology physicians and patients at Lausanne University Hospital (LUH) [1]. We found that 18% of cancer patients were offered HIV testing although patient acceptance of testing was high (93%). After this study, the Swiss Federal Office of Public Health HIV testing recommendations were updated to include cancer patients undergoing chemotherapy in the lists of HIV testing indications. The study presented here, IBITOP II, examined HIV testing practices and physician barriers to testing following these recommendations.

Methods: Between 1 January and 31 October 2015, patients of unknown HIV status newly diagnosed with solid-organ non-ADCs referred to LUH Oncology Service, Lausanne, Switzerland, were offered free HIV testing as part of their oncology work-up. The primary endpoints were 1) physician proposition rates for HIV testing and 2) physician reasons for not offering testing.

Results: Of 438 patients of unknown HIV status with a new non-ADC diagnosis, 255 (58%) were offered HIV testing, of whom 42 declined (acceptance rate 213/255, 84%). Excluding 37 patients tested prior to their oncology consultation, 146 patients (of 438, 33%) were not offered testing. The most frequent physician reasons for not testing were: forgetting (35 patients, 24%); patient follow-up elsewhere (25 patients, 17%); no planned chemotherapy (25 patients, 17%); excessive burden of information for the patient (23 patients, 16%) and no time (21 patients, 14%).

Conclusion: This is the first study exploring physician reasons for not HIV-testing cancer patients despite current national HIV testing recommendations. Given the physician barriers we observe, testing will not be practised universally among cancer patients. Further, it is possible the testing rate of 58% will be lower outside the context of a study on testing. As HIV-positive status impacts on the medical management of cancer patients, knowledge of HIV status is important. We conclude that opt-out testing in this setting, conducted as part of the baseline oncology work-up, would circumvent physician barriers and optimize testing rates.

Reference

P198
A descriptive study of cancer incidence in a cohort of HIV-infected patients followed since 1986
Rocio Montejano; J Ramon Arribas; J Ignacio Bernardino; Luz Martin-Carbonero; M Luisa Montes; Victoria Moreno; Ignacio Perez-Valero; Juan Gonzalez-Garcia and Eulalia Valencia

References
Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Median age at cancer diagnosis</td>
</tr>
<tr>
<td>Caucasian</td>
</tr>
<tr>
<td>Risk behaviour</td>
</tr>
<tr>
<td>- Sexual</td>
</tr>
<tr>
<td>- Parenteral</td>
</tr>
<tr>
<td>- Unknown</td>
</tr>
<tr>
<td>Chronic HBV</td>
</tr>
<tr>
<td>Chronic HCV</td>
</tr>
<tr>
<td>AIDS</td>
</tr>
<tr>
<td>CD4+ nadir (cells/mL)</td>
</tr>
<tr>
<td>Receiving ART on diagnosis</td>
</tr>
</tbody>
</table>

Infectious Diseases Unit, Hospital Universitario La Paz, Madrid, Spain

Introduction: HIV-infected patients are at increased risk of developing certain cancers, especially those related to viral infections [1,2].

Patients and methods: We conducted a retrospective cohort study on 4994 HIV-infected patients that were followed up in our hospital between 1986 and 2016. We evaluated the incidence of types of cancer occurring in this cohort.

Results: We detected 416 patients with at least one malignancy. Epidemiological data appears in Table 1 and Table 2. HIV infection and cancer were simultaneously diagnosed in 111 patients (26.6%) and in the other 304 patients after a median of 7 years (IQR 1–15) of follow-up. The malignancy was diagnosed as clinically advanced in 35 patients (8.4%). The most frequent cancers were Kaposi’s sarcoma (110, 26.4%) disseminated 40/110, 36.7%), cervix carcinoma (85, 20.4%), lymphoma (78, 18.7%); non-Hodgkin lymphoma 43/78, 55.84%), anal carcinoma (26, 6.25%), hepatocellular carcinoma (20, 4.8%), lung carcinoma (13, 3.1%) and head and neck tumours (11, 2.6%). Hundred and fifteen (27%) cancers were related to human papillomavirus (HPV) and 20 hepatocellular carcinoma (100%) had chronic HBV and/or HCV infection, 19/20 chronic HCV co-infection. After 15 years (IQR 8–21) of follow-up, 73 patients developed a second malignancy (mainly lymphoma and cervix carcinoma) and afterwards, 8 patients developed a third cancer. Non-AIDS-defining cancers (lung carcinoma, hepatocellular carcinoma and head and neck cancers) were significantly more frequent in late ART period (p <0.001 for all). No differences were found in the incidence of anal carcinoma. On the other hand, AIDS-defining cancers tended to decrease with the ART improvement. During follow-up, 62 patients died mainly due to progression of their malignancies (87.1%). Higher mortality was observed in patients with lung carcinoma (100%) and hepatocellular carcinoma (65%).

Conclusions: A malignancy was, in a substantial number of cases, the first manifestation of HIV infection. As expected, a significant proportion of cancers were related to other viral infections; especially HPV and hepatitis virus. Non-AIDS-defining cancers were more frequent during the late ART period and have high mortality.

References

P199

Human papilloma virus and HIV
Anna Popova1, Alexey Kravtchenko1, Marina Deulina1 and Olga Shipulina2
1Russian Federal AIDS Center, Federal Budget Institution of Science Central Research Institute of Epidemiology, Moscow, Russian Federation. 2Federal Budget Institution of Science Central Research Institute of Epidemiology, CMD, Moscow, Russian Federation

Introduction: In recent years in Russia, the number of cases of HIV infection transmitted heterosexually increased. This led to an increase in the number of women of reproductive age among patients with HIV infection. HIV-infected women have a higher risk of papillomavirus infection than HIV-negative women, as well as a higher risk of malignancy and persistence.

Objective: To study the prevalence of human papilloma virus (HPV) in HIV-infected women.

Materials and methods: We examined 561 people (155 (27.6%) HIV-positive patients and 406 (72.4%) HIV-negative women) from January 2014 to March 2016. For all women, HPV PAP test was performed.

Results: In the study group, young women up to 40 years (62.4%) were predominant. For 60 (38.7%) patients, HIV infection was diagnosed with HPV. In 92% of these patients, HPV concentration were 14.8%. In 92% of these patients, HPV concentration was greater than log circ;3. In the control group, HPV was found to be 14.8%. HPV concentration in the control group was observed log circ;3 more in 75% of cases. Analyzing the distribution of ASC-US and CIN, we discovered in the group with HIV infection that CIN1 and CIN2 substantially prevailed. The study showed a difference in the frequency of detection of certain genotypes in the study groups (Table 1).

Abstract P198–Table 2. Type of malignancy related to ART use and diagnosis time

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total malignancies</td>
<td>46</td>
<td>148</td>
<td>222</td>
<td>0.031</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>3 (6.5%)</td>
<td>35 (23.6%)</td>
<td>40 (18%)</td>
<td></td>
</tr>
<tr>
<td>Kaposi’s sarcoma</td>
<td>18 (39.1%)</td>
<td>56 (37.8%)</td>
<td>36 (16.2%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Cervix cancer</td>
<td>17 (36.9%)</td>
<td>38 (25.6%)</td>
<td>30 (13.5%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Anal cancer</td>
<td>4 (8.7%)</td>
<td>4 (2.7%)</td>
<td>18 (8.1%)</td>
<td>0.084</td>
</tr>
<tr>
<td>Hepatocellular cancer</td>
<td>0</td>
<td>2 (1.35%)</td>
<td>18 (8.1%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Lung carcinoma</td>
<td>0</td>
<td>0</td>
<td>13 (5.8%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Head and neck cancer</td>
<td>0</td>
<td>0</td>
<td>11 (4.9%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
In both groups, we found no combination of 16 and 18 genotypes. The most common changes in the results of cytogram PAP test were correlated with genotype 16. The group of HIV-infected women shared the leading position 16, 31 and 18 genotypes. The high oncogenic HPV types were more often detected in HIV-infected women.

Conclusions: In the group of HIV-infected women significant abnormalities associated with HPV were observed more than the control group. We must look for ways to solve this problem by advising HIV-positive women and their partners, conducting educational seminars, providing information on the need for screening for HPV among women living with HIV and the general population.

CO-MORBIDITIES AND COMPLICATIONS OF DISEASE AND/OR TREATMENT: METABOLIC

P200
Glucose metabolism disorders, HIV and antiretroviral therapy among Tanzanian adults
Emmanuel Maganga1; Luke Smart2; Samuel Kalluvya3; Johannes Kataraih1; Ahmed Saleh3; Lama Obeid3; Jennifer Downs2; Daniel Fitzgerald2 and Robert Peck2
1Internal Medicine, Weill Bugando Medical Center, Mwanza, Tanzania. 2Internal Medicine, Weill Cornell Medicine, New York, USA. 3Medical Education, Weill Cornell Medicine, Doha, Qatar

Introduction: Millions of HIV-infected Africans are living longer due to long-term antiretroviral therapy (ART), yet little is known about glucose metabolism disorders in this group. We aimed to compare the prevalence of glucose metabolism disorders among HIV-infected adults on long-term ART to ART-naive adults and HIV-negative controls, hypothesizing that the odds of glucose metabolism disorders would be two-fold greater even after adjusting for possible confounders.

Methods: In this cross-sectional study conducted between October 2012 and April 2013, consecutive adults (>18 years) attending an HIV clinic in Tanzania were enrolled in three groups: 153 HIV-negative controls, 151 HIV-infected, ART-naive and 150 HIV-infected on ART for ≥2 years. The primary outcome was the prevalence of glucose metabolism disorders as determined by oral glucose tolerance testing. We compared glucose metabolism disorder prevalence between each HIV group versus the control group by Fisher’s exact test and used multivariable logistic regression to determine factors associated with glucose metabolism disorders.

Results: HIV-infected adults on ART had a higher prevalence of glucose metabolism disorders (49/150 (32.7%) vs. 11/153 (7.2%), \(p < 0.001 \)) and frank diabetes mellitus (27/150 (18.0%) vs. 8/153 (5.2%), \(p = 0.001 \)) than HIV-negative adults, which remained highly significant even after adjusting for age, gender, adiposity and socioeconomic status (OR 5.72 (2.78–11.77), \(p < 0.001 \)). Glucose metabolism disorders were significantly associated with higher CD4+ T-cell counts. Awareness of diabetes mellitus was <25%.

Conclusions: HIV-infected adults on long-term ART had five-fold greater odds of glucose metabolism disorders than HIV-negative controls but were rarely aware of their diagnosis. Intensive glucose metabolism disorder screening and education are needed in HIV clinics in sub-Saharan Africa. Further research should determine how glucose metabolism disorders might be related to immune reconstitution.
P201
Decreasing incidence of diabetes mellitus in HIV-positive Taiwanese patients on combination antiretroviral therapy from 2004 to 2013
Pei-Ying Wu1; Shang-Ping Yang1; Yu-Zhen Lou1; Jun-Yu Zhang1; Hsi-Yen Chang2; Hsin-Yun Sun2; Wang-Huei Sheng3; Szu-Min Hsieh2 and Chien-Cheng Hung2
1Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan. 2Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. 3Harrison Wing, Guy’s and St Thomas’ Hospital NHS University Hospital, Taipei, Taiwan

Introduction: The widespread use of combination antiretroviral treatment (cART) has led to a decrease of mortality and morbidity and improvement of survival in HIV-positive patients. However, increasing trends of metabolic complications including type 2 diabetes mellitus (DM) have threatened the long-term successful management of HIV infection. Our study aimed to evaluate the incidence of DM in ART-naïve HIV-positive Taiwanese adults who initiated ART in 2004 to 2013.

Materials and methods: Between 2004 and 2013, 1432 ART-naïve HIV-positive patients without DM initiated cART at the National Taiwan University Hospital. All patients were followed until the date when DM was diagnosed, 31 December 2015, loss to follow-up or death, whichever occurred first. Incident DM was defined as fasting glucose ≥126 mg/dL or HbA1C >6.5%. The trends of DM were compared between patients initiating cART in 2004 to 2008 (n = 564 patients) and those in 2009 to 2013 (n = 866).

Results: Over a total observation of 7632 person-years of follow-up (PYFU), DM was diagnosed in 28 patients, with an overall incidence rate of 3.7 per 1000 PYFU. While the rate increased with cumulative exposure to cART, from 0 per 1000 PYFU in patients with cumulative exposure to cART of <12 months to 3.9 per 1000 PYFU in those with cumulative exposure of ≥36 months, the overall rate decreased from 4.8 per 1000 PYFU in 2004–2008 to 1.2 per 1000 PYFU (p = 0.02). The occurrence of DM was associated with an older age (adjusted hazard ratio (aHR) 1.049; 95% CI 1.013–1.085), exposure to boosted darunavir (aHR 3.287; 95% CI 1.168–9.254) and exposure to tenofovir/emtricitabine (aHR 0.194; 95% CI 0.072–0.522). The incident rate of DM increased with cumulative exposure to zidovudine/lamivudine duration: <12 months, 2.6 per 1000 PYFU; 12 to 24 months, 2.0 per 1000 PYFU; 24 to 36 months, 4.3 per 1000 PYFU; and ≥36 months, 4.8 per 1000 PYFU. In contrast, the rate remained stable with cumulative exposure to tenofovir/emtricitabine: <12 months, 0.9 per 1000 PYFU; 12 to 24 months, 1.2 per 1000 PYFU; 24 to 36 months, 1.3 per 1000 PYFU; and ≥36 months, 1.2 per 1000 PYFU. The rates were higher in patients with exposure to stavudine and/or didanosine, ranging from 7.7 to 10 per 1000 PYFU.

Conclusions: The incidence of DM in HIV-positive Taiwanese patients initiating cART decreased from 4.8 per 1000 PYFU in 2004–2008 to 1.2 per 1000 PYFU in 2009–2013. The trends of DM incidence varied with the cumulative exposure to different combinations of nucleos(t)ide reverse transcriptase inhibitors.

P202
Comparison of risk tools to estimate type 2 diabetes risk in an urban HIV cohort
Jonathan Mok1; Louise Goff2; Barry Peters2 and Alastair Duncan2
1School of Medical Education, King’s College London, London, London, UK. 2Division of Diabetes and Nutritional Sciences, King’s College London, London, UK. 3Harrison Wing, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, UK

Introduction: Type 2 diabetes (T2D) is more common in people living with HIV (PLHIV) than general populations, thought to be driven by HIV-specific and general factors. Early detection of risk is key to limit disease progression. Several clinical risk tools are available but do not account for the consequences of HIV infection. We aimed to compare the sensitivity and specificity of diabetes risk tools in PLHIV.

Materials and methods: A wide range of clinical factors was measured and recorded in a representative HIV-positive patient sample attending three London outpatient clinics. Glycaemic status was classified as: normal, prediabetes or T2D by fasting glucose (<6.0, 6.0–6.9 and ≥7.0 mmol/L respectively) or by previous diagnosis. T2D risk was calculated using three risk tools: the Finnish (FINDRISC), Q-Diabetes and the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) risk scores. Percentage calculations were used to evaluate glycaemia prevalence against published national averages. Receiver operator characteristic (ROC) curves were used to calculate tool sensitivity and specificity.

Results: Of 338 patients sampled, 17.2% had prediabetes and 15.1% had T2D. In the general London population, the rates of prediabetes and T2D are 10.8% and 7.6% respectively (data collected elsewhere). The Q-Diabetes tool calculates T2D relative risk; the mean for this cohort was 2.4. ROC analysis suggested that D:A:D is the most sensitive and specific of the three tools for prediabetes, correctly identifying 100% of those affected (area under curve [AUC] 0.879; 95% CI 0.843–0.914; p < 0.001), compared to FINDRISC and QDiabetes with 0.804 (95% CI 0.751–0.858; p < 0.001) and 0.611 (95% CI 0.533–0.688; p < 0.001) respectively. For T2D detection, D:A:D had the greatest specificity, followed by the FINDRISC score, identifying 96% and 90%, respectively (AUC 0.888; 95% CI 0.851–0.924; p < 0.001 for D:A:D; for FINDRISC, AUC 0.825; 95% CI 0.775–0.875; p < 0.001). Q-Diabetes had a comparable specificity of 84% for T2D (AUC 0.676; 95% CI 0.605–0.747; p < 0.001) but the poorest sensitivity of the three tools tested (42%, 65% and 68% for Q-Diabetes, FINDRISC and D:A:D, respectively).

Conclusion: The D:A:D tool appears to be the most statistically sensitive and specific method for predicting both prediabetes and T2D in this HIV-positive cohort, with the FINDRISC tool also performing well. The Q-Diabetes tool, developed for use in the UK, has the lowest sensitivity of the three tools. Pending development of an HIV-specific diabetes risk tool, the D:A:D tool should be used to estimate risk of T2D in PLHIV.

P203
Lipodystrophy as cause of metabolic syndrome: a contribution of antiretroviral drugs to increased cardiovascular risk
Vanessa Muñoz-Mendoza1; Maria Fonteche-Ortega2; Cristina Gómez-Ayerbe3; Maria Jesus Vivancos Gallego3; Matilde Sánchez Conde3 and José Luis Casado Osorio3
1Internal Medicine, Hospital Obispo Polanco, Teruel, Spain. 2Internal Medicine, Hospital de Getafe, Madrid, Spain. 3Infectious Diseases, Hospital Ramón y Cajal, Madrid, Spain

Introduction: Lipodystrophy syndrome (LS) is characterized by abnormal fat distribution with visceral fat accumulation and peripheral lipoatrophy. The aim of this study was to evaluate the development of cardiovascular risk factors and the progression to metabolic syndrome in patients with previous lipodystrophy according to the severity of fat accumulation.

Materials and methods: Cross-sectional study of 276 HIV patients previously evaluated for the presence of lipodystrophy and its severity (absence, mild, moderate or severe) through HOPS questionnaire during 2004–2011. Patients were evaluated for fat accumulation by dual X-ray absorptiometry (DXA) and the presence of hypertension (HTA), diabetes mellitus (DM), waist circumference,
A wide range of clinical factors were defined according to ATP-III, IDF and AHA criteria.

Results: Mean age was 45.1 years (20–80), 80% were males, and prior fat accumulation was classified as absent in 37%, mild in 21%, moderate in 19% and severe in 23%. Mean BMI was 24.2 (16.1–34.5) and 6% had a BMI > 30. The median time of HIV infection was 15 years (7–21). All patients with lipodystrophy had a history of prior therapy with thymidine analogues, and at the inclusion, 47% were receiving a PI and 53% an NNRTI. Median time from questionnaire to evaluation was 9.5 years. DXA scan showed a close correlation with severity of lipodystrophy by questionnaire. A systolic blood pressure > 140 mmHg was observed in 30%, serum glucose > 110 mg/dL in 13%, insulin resistance in 23%, total cholesterol > 200 mg/dL in 30%, LDL cholesterol > 130 mg/dL in 31%, HDL cholesterol < 35 mg/dL in 29% and triglycerides (TG) > 200 mg/dL in 22%. Patients having moderate or severe fat accumulation showed increased values of these parameters. Thus, overall, 40% fulfilled the ATP III criteria for metabolic syndrome (ranging from 23% in absence of LD, 32% mild, 46% moderate to 71% in case of previous severe LD), a similar presentation to that observed with the IDF definition (36% of MS; ranging from 20% in absence to 69% in severe) and higher than that of AHA (overall, 19%; ranging from 8% to 21% to 45%).

Conclusions: The presence of fat accumulation and its severity is associated with increased incidence of different cardiovascular risk factors and progressive appearance of “iatrogenic” secondary metabolic syndrome.

P204

Normalisation of undernutrition following initiation of HAART is not associated with future diabetes risk

Jonathan Mok1; Louise Goff2; Barry Peters3 and Alastair Duncan2

1School of Medical Education, King's College London, London, UK. 2Division of Diabetes and Nutritional Sciences, King's College London, London, UK. 3Harrison Wing, Guy's and St Thomas’ Hospital NHS Foundation Trust, London, UK

Introduction: HAART and HIV infection have been implicated in impairing glucose and lipid metabolism in people living with HIV. Increases in body mass index (BMI) following HAART initiation have been well documented in the literature. We aimed to investigate the association between BMI status at HAART initiation and future risk of developing type 2 diabetes.

Methods and materials: A wide range of clinical factors were measured and recorded in a representative HIV-positive patient sample attending three London outpatient clinics. BMI was calculated prior to commencing HAART and 1 year after initiating therapy and were classified according to World Health Organization international criteria (underweight ≤ 18.5 kg/m², normal 18.5–24.9 and overweight 25.0–29.9, obese ≥ 30.0). Glycaemic status was classified by fasting glucose as normal or dysglycaemia (< 6.0 and ≥ 6.0 mmol/L, respectively). Univariate statistical analysis and binary logistic regression were used to estimate contributions to risk of dysglycaemia.

Results: Binary logistic regression suggests that BMI percentage change in the first year post-HAART was a significant predictor of dysglycaemia with relative risk (RR) of 6.6% for each percentage increase in BMI (RR 1.066; 95% CI 1.031–1.101; p < 0.001) (Table 1). Dysglycaemia risk increased by 13% for each percentage increase in BMI (RR 1.131; 95% CI 1.068–1.198; p < 0.001) for normal weight subjects and by 41% for obese patients (RR 1.408; 95% CI 1.069–1.853; p = 0.015). Weight gain in those patients with a BMI below 18.5 kg/m² was not associated with future diabetes risk. The type of HAART used in the first year of treatment was not significantly associated with future dysglycaemia.

Table 1. Percentage change in BMI after 1 year of HAART, stratified by pre-HAART BMI status

<table>
<thead>
<tr>
<th>BMI status</th>
<th>n (cohort%)</th>
<th>HAART change (%)</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td>19 (6)</td>
<td>19.2</td>
<td>9.3, 31.3</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Normal weight</td>
<td>171 (56)</td>
<td>4.7</td>
<td>3.6, 5.8</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Overweight</td>
<td>80 (26)</td>
<td>3.3</td>
<td>1.5, 5.1</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Obese</td>
<td>36 (12)</td>
<td>1.6</td>
<td>-1.2, 4.1</td>
<td>0.221</td>
</tr>
</tbody>
</table>

Conclusion: Normalisation of undernutrition in the year following initiation of HAART is not associated with future diabetes risk. Prevention of excessive weight gain following initiation of HAART should be a priority in those with a BMI greater than 18.5 kg/m².

P205

Hepatic steatosis is highly prevalent in HIV and significantly associated with diabetes risk

Jonathan Mok1; Louise Goff2; Barry Peters3 and Alastair Duncan2

1School of Medical Education, King’s College London, London, UK. 2Division of Diabetes and Nutritional Sciences, King’s College London, London, UK. 3Harrison Wing, Guy’s and St Thomas’ Hospital NHS Foundation Trust, London, UK

Introduction: HIV infection and antiretroviral therapy have been implicated in mediating metabolic derangement. Hepatic steatosis has been associated with the development of dysglycaemia in HIV-negative cohorts; however, the impact of HIV and concordant factors has been relatively understudied. We aimed to investigate the prevalence of hepatic steatosis in an urban HIV cohort and assess its association with other factors.

Methods and materials: As part of the NIHR-funded STOP Diabetes in HIV cross-sectional study, a range of clinical information was collected from a sample structured to statistically represent HIV-positive patients attending large South London clinics. Hepatic steatosis was diagnosed by biopsy or FibroScan. Glycaemic status was classified by fasting glucose as normal or dysglycaemia (< 6.0 and ≥ 6.0 mmol/L, respectively). Univariable statistical analysis and binary logistic regression were used to estimate risk factors for hepatic steatosis, and contributions to risk of dysglycaemia.

Results: Hepatic steatosis was present in 21% (n = 339) of the total cohort (n = 339). There was a significant correlation between hepatic steatosis and dysglycaemia (Pearson’s Chi-squared p < 0.001). For those with hepatic steatosis, the odds ratio (OR) of developing the condition is 10.08 (95% CI 5.53–18.40; p < 0.001). Significant ORs were found for nucleoside reverse transcriptase inhibitors traditionally associated with metabolic dysfunction: didanosine, stavudine, didanosine and zalcitabine (OR 20.339; 95% CI 1.144–361.611; p = 0.040). Other significant factors included statin therapy (OR 3.313; 95% CI 1.767–6.211; p < 0.001), overweight (OR 0.320; 95% CI 0.134–0.767; p = 0.011) and obesity (OR 0.873; 95% CI 0.993–0.948; p < 0.001).

Conclusion: Hepatic steatosis is significantly correlated with diabetes risk in people living with HIV. Factors that are implicated in mediating this metabolic derangement include the use of nucleoside reverse transcriptase inhibitors and statin therapies, and BMI. The diagnosis and subsequent treatment of hepatic steatosis in HIV patients is key.
P206
HIV-positive inflammatory activity monitoring correlated to insulin resistance: HIRE study
Melissa Soares Medeiros1; Henrique Pires Moreira2; Debora Veras Da Ponte2; Ana Carolina dos Santos Araujo2; Andre Pereira de Brito Neves2; Rebecca Santos Souza2; Huylmer Lucena Chaves2; Morgana Feitosa de Queiroga2,3; Vinicius Ximenes Paula2 and Erico Antonio Gomes Arruda2
1Infectious Diseases, Unichristus University/Hospital Sao Jose, Fortaleza, Brazil. 2Infectious Diseases, Unichristus University, Fortaleza, Brazil. 3Infectious Diseases, UUCE University/Hospital Sao Jose, Fortaleza, Brazil

Introduction: Insulin resistance and diabetes mellitus are important metabolic complications of HIV-infected patients’ therapy, since an increased survival occurred after HAART [1,2]. HIV-infected patients have an increased risk of hyperglycaemia associated with inflammatory activity and medications, and this can implicate directly in survival and life quality [3]. Inflammatory status related to these patients can also be responsible for increases risk of hospitalization and bad prognosis [4].

Materials and methods: This study was a retrospective analysis of a multicentre cohort proposed to evaluate impact and risk factors for insulin resistance in HIV outpatients of Unichristus Center University and Hospital Geral de Fortaleza, including sociodemographic issues, hospitalization data, comorbidities and laboratory data.

Results: A total of 218 patients were included, 73.9% male, median age of 37 years, median HIV diagnosis of 24 months and median follow-up period of 21 months. CD4/CD8 ratio before ART 0.38 ± 0.29 and final 0.62 ± 0.4, initial CD4 count mean 400 cells/mm³ and final 570 cells/mm³, 97.3% had suppressed viral load in final visit. Only 2.8% of patients had diabetes mellitus before HIV diagnosis. There was a significant increase in glucose levels after HAART initiation (18.5% vs. 36.7%, p = 0.0025). Fasting glucose elevation was detected as a risk factor to develop symptoms during follow-up (RR 1.35; 95% CI 1.01–1.80; p = 0.002). A higher monocyte/lymphocyte ratio was associated with hospitalization during the follow-up before (p = 0.011) and after (p = 0.033) introduction of ART. After the introduction of HAART, there was an increase in Castelli index for hyperglycaemic patients, but significant difference did not remain during follow-up. Castelli index was 4.5 ± 1.2 before ART, 4.8 ± 1.4 after 12 months, 5.4 ± 1.8 after 24 months and 5.3 ± 1.8 after 36 months.

Conclusion: Antiretroviral therapy is an important factor associated with higher glucose levels, and causes insulin resistance associated with uncontrolled lipid levels. Perhaps, HIV treatment is essential to control chronic inflammation and its consequences. Monocyte/lymphocyte ratio can be an easy marker for inflammation activation monitoring and could be associated with higher risk for hospitalization.

References

P207
A cross-sectional study of comorbidities in HIV-infected patients receiving CART in Taiwan: a nationwide surveillance
Chia-Jui Yang1; Hsiu-Yin Wang2; Tse-Chih Chou3 and Chee-Jen Chang4
1Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan. 2Janssen, Medical Affair, Taipei, Taiwan. 3Clinical Informatics and Medical Statistics, Chang Gung University, Taoyuan, Taiwan

Introduction: HIV-infected individuals may be at increased risks of age-associated non-communicable comorbidities during use of CART. We conducted a nationwide surveillance for the prevalence of non-communicable comorbidities among HIV-infected patients receiving CART.

Materials and methods: Comorbidity data from 2010 to 2013 were obtained from the Taiwan National Health Insurance Research Database while 20,726 HIV-infected patients were identified. Non-communicable comorbidities are defined as type II diabetes mellitus (DM), hypertension, dyslipidaemia, acute coronary syndrome (ACS) and cholelithiasis or nephrolithiasis.

Results: Among 20,726 HIV-infected patients in Taiwan, 13,142 of them receiving antiretroviral therapy were included in the analysis. Mean age of the 13,142 patients was 36.6 while 34.1% of them are older than 40 years and most are male (93.6%). The annual number of subjects newly on CART increased from 1819 to 3418 during study period. In the newly on CART group, around 70% were aged between 20 and 39 years and the majority were male (93%). The prevalences of comorbidities in the total study population were type II DM 7.3%, hypertension 33.6%, dyslipidaemia 24.0%, major depressive disorder 21.2%, use of sedative drug 39.5%, ACS 0.5% and cholelithiasis or nephrolithiasis 5.5%. In addition, the prevalence increased sharply after age 40, especially for metabolic comorbidities (type II DM: 15.0% vs. 3.3%; hypertension: 46.7% vs. 26.8%; dyslipidaemia: 34.9% vs. 18.4%; ACS: 1.2% vs. 0.2%; cholelithiasis or nephrolithiasis: 7.3% vs. 4.6%). In the study population, 13.2% of patients had more than two concomitant comorbidities and that prevalence also increased sharply after 40 years old (24.8% vs. 7.2%).

Conclusion: According to our nation-wide surveillance between 2010 and 2013, comorbidities among HIV-infected patients receiving CART in Taiwan demonstrated high prevalence in patients aged 40 years or older.

CO-MORBIDITIES AND COMPLICATIONS OF DISEASE AND/OR TREATMENT: NEUROLOGICAL

P208
Tryptophan metabolism and its relationship with central nervous system toxicity in subjects switching from efavirenz to dolutegravir
Michael Keegan1; Alan Winston2; Chris Higgs3; Dietmar Fuchs4; Adrian Boasso5 and Mark Nelson6
1HIV Research Unit, Clinical Trials Centre, Imperial College London/VIiv Healthcare Ltd., London, UK. 2HIV Research Unit, Clinical Trials Centre, Imperial College London, London, UK. 3Chelsea & Westminster Hospital, St Stephen’s AIDS Trust, London, UK.
Multicentre open-label pilot study of switching from efavirenz to dolutegravir for central nervous system (CNS) toxicity

Margherita Bracchi 1; Nicole Paganino 2; Amanda Clarke 3; Tanya Adams 2; Laura Waters 2; Matthew Bolton 2; Alan Winston 4; Borja Mora-Peris 6; Laura Dickinson 2; Marta Boffito 1 and Mark Nelson 6
1Chelsea and Westminster Hospital, St Stephen’s AIDS Trust, London, UK. 2HIV/GUM, Royal Sussex County Hospital, Brighton, UK. 3HIV/GUM, Mortimer Market Centre, London, UK. 4Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK. 5HIV/GUM, Chelsea and Westminster Hospital, London, UK

Introduction: Efavirenz (EFV) remains a widely used third agent with increasing numbers of patients switching due to CNS toxicities. Data on improvement of CNS toxicities after switch to dolutegravir (DTG) are scarce. We investigated substitution of EFV for DTG, in combination with two NRTIs, in patients with ongoing EFV-associated CNS side effects.

Methods: A randomized open-label multicentre study of virologically-suppressed PLWH receiving an EFV-containing regimen for >12 weeks with ongoing CNS toxicity were switched to DTG and followed-up for 12 weeks. Plasma neopterin, TRP and KYN concentrations were measured and the KYN/TRP ratio calculated. Rates of CNS toxicities were measured using a questionnaire based on the EFV label and graded according to the ACTG adverse events scale. They included dizziness, depression, insomnia, anxiety, confusion, impaired concentration, headache, somnolence, aggression and abnormal dreams. Scores ranged from 0 (none) to 3 (severe) and were summed, giving a total score ranging from 0 to 30.

CNS toxicity measurements also included assessment using the Instrumental Activities of Daily Living (IADL) and Hospital Anxiety & Depression (HAD) scales. Univariate (paired-samples t-tests) and linear mixed model analyses were conducted.

Results: The majority of subjects were male (95%) and White (95%). Mean age was 47.8 years. The mean plasma concentration of KYN significantly increased from baseline to week 12 (2.12 to 2.49 μmol/L, p = 0.002). A non-significant increase was observed for the KYN/TRP ratio (39.7 to 44.8 μmol/mmol, p = 0.012). Significant reductions in mean CNS toxicity score (10.1 to 4.5, p < 0.001) and HAD score (14.1 to 8.4, p < 0.001) were observed from baseline to week 12.

Mean IADL scores did not change significantly (7.8 to 7.90, p < 0.570). In the linear mixed model analyses, plasma KYN concentrations and KYN/TRP ratios were found to be statistically, significantly, negatively correlated with CNS toxicity scores. For every 1 μmol/L increase observed in KYN concentration, a 1.7 point decrease was observed in the CNS toxicity score (Table 1). Likewise, for every 1 μmol/mmol increase observed in the KYN/TRP ratio, a 0.1 point decrease was observed in the CNS toxicity score. No significant relationship was observed for KYN or KYN/TRP ratios and HAD scores.

Conclusions: Switching from EFV to DTG was associated with improvements in CNS toxicity and HAD scores, and increases in plasma KYN concentrations. Increases in plasma KYN concentrations and the KYN/TRP ratio correlated with decreases in CNS toxicity. Underlying mechanisms need to be established and may include EFV-induced changes in concentrations of hepatic reactive oxygen species and CNS inflammatory processes.
Depression 42.1 38.1 5.3 38.1 0.035 5.3
Dizziness 21.1 28.6 0 28.6 0.037 0
Anxiety 36.8 52.4 10.5 19.1 0.756 10.5
Insomnia 47.4 61.9 21.1 42.9 0.258 21.1
Impaired concentration 26.3 28.6 10.5 19.1 0.756 10.5
Headache 0 19.1 0 19.1 0.140 0
Somnia 21.1 28.6 0.128 5.3 14.3 10.5
Aggressive behaviour 10.5 23.8 5.3 19.1 0.402 5.3

Overall CNS score at week 4 (IS vs. DS) and CNS grade 3/4 side effects (S/E) at 4 and 12 weeks post-switch in IS and DS arms

<table>
<thead>
<tr>
<th></th>
<th>IS (N19)</th>
<th>DS (N21)</th>
<th>IS (N19)</th>
<th>DS (N21)</th>
<th>IS (N21)</th>
<th>DS (N19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall CNS score (0–100), median (IQR)</td>
<td>33 (20–53)</td>
<td>40 (27–53)</td>
<td>10 (7–20)</td>
<td>33 (20–43)</td>
<td>10 (7–20)</td>
<td>10 (3–23)</td>
</tr>
<tr>
<td>Overall grade 3/4 toxicity</td>
<td>100</td>
<td>95.2</td>
<td>26.3</td>
<td>95.2</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Insomnia</td>
<td>47.4</td>
<td>61.9</td>
<td>21.1</td>
<td>42.9</td>
<td>0.258</td>
<td></td>
</tr>
<tr>
<td>Abnormal dreams</td>
<td>84.2</td>
<td>85.7</td>
<td>5.3</td>
<td>81</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>21.1</td>
<td>28.6</td>
<td>0</td>
<td>28.6</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>Depression</td>
<td>42.1</td>
<td>38.1</td>
<td>5.3</td>
<td>38.1</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td>36.8</td>
<td>52.4</td>
<td>10.5</td>
<td>19.1</td>
<td>0.756</td>
<td></td>
</tr>
<tr>
<td>Confusion</td>
<td>15.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Impaired concentration</td>
<td>26.3</td>
<td>28.6</td>
<td>10.5</td>
<td>19.1</td>
<td>0.756</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>0</td>
<td>19.1</td>
<td>0</td>
<td>19.1</td>
<td>0.140</td>
<td></td>
</tr>
<tr>
<td>Somnolence</td>
<td>21.1</td>
<td>28.6</td>
<td>5.3</td>
<td>28.6</td>
<td>0.128</td>
<td></td>
</tr>
<tr>
<td>Aggressive behaviour</td>
<td>10.5</td>
<td>23.8</td>
<td>5.3</td>
<td>19.1</td>
<td>0.402</td>
<td></td>
</tr>
<tr>
<td>% of improvement</td>
<td>16% (4–36)</td>
<td>13% (10–26)</td>
<td>17% (4–33)</td>
<td>16% (10–33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion (%) of patients with grade 3/4 S/E:</td>
<td>p < 0.001 p < 0.001 p < 0.001 p < 0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion (%) of patients</td>
<td>47.6</td>
<td>15.8</td>
<td>0</td>
<td>19.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.9</td>
<td>(p < 0.001)</td>
<td>(p < 0.001)</td>
<td>(p < 0.001)</td>
<td>(p < 0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5.3</td>
<td>14.3</td>
<td>0</td>
<td>19.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>3.2</td>
<td>(p < 0.001)</td>
<td>(p < 0.001)</td>
<td>(p < 0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>14.3</td>
<td>0</td>
<td>19.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>3.2</td>
<td>(p < 0.001)</td>
<td>(p < 0.001)</td>
<td>(p < 0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.3</td>
<td>4.8</td>
<td>5.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BL, baseline; DS, delayed switch; IQR, inter-quartile range; IS, immediate switch; S/E, side effect; W4, week 4; W12, week 12.

of DTG plasma concentrations 24 hours post-dose (predicted by population PK modelling) was 862.8 ng/mL (848.9–962.2 ng/mL). Concentrations increased over the 4 weeks post-switch and all remained above DTG IC90 for WT virus (64 ng/mL).

Conclusions: Switching EFV to DTG was associated with significant improvement in CNS toxicity, with a reduction in overall CNS score and improvement in depression, dizziness and quality of sleep, without affecting antiretroviral efficacy.

P210
Psychiatric adverse events from the DTG ART-naïve phase 3 clinical trials
Romina Quercia1; Jeremy Roberts2; Andrew Murungi3; Lloyd Curtis4; Nassrin Payvand5; Justin Koteff6 and Michael Aboud1

1Research and Development, Viiv Healthcare, Brentford, UK.
2Statistics, Viiv Healthcare, Mississauga, Canada.
3Medical Affairs, Viiv Healthcare, Brentford, UK.
4Pharmacovigilance, GlaxoSmithKline, Stockley Park, UK.
5Pharmacovigilance, Viiv Healthcare, Brentford, UK.
6Medical Affairs, Viiv Healthcare, Research Triangle Park, North Carolina, USA

Introduction: To provide characterization of select psychiatric adverse events (pAEs), including anxiety, depression (including: depression, bipolar, suicidal ideations and hypomania), insomnia and nightmares/abnormal dreams reported in the dolutegravir (DTG) phase 3/3b treatment-naïve clinical trials.

Materials and Methods: Safety data of pAEs from phase 3/3b trials in ART-naïve adults were analysed. Data at 96 weeks for SPRING-2, SINGLE, FLAMINGO and at 48 weeks for the all-women study, ARIA,
were analysed. Frequencies of pAEs were summarized for DTG and the comparator drug by study. **Results:** There were 2634 subjects analysed in the four clinical studies including 1315 patients treated with DTG. Safety summaries showed a low number of pAEs across all study treatment arms, with the majority of these being low grade (1–2). The rates of pAEs leading to withdrawals were low across all trials (<5% for each individual analysis). Anxiety led to four discontinuations with EFV in SINGLE. Depression led to one discontinuation with DTG in SINGLE, two with RAL in SPRING-2 and seven patients on EFV in SINGLE. Insomnia led to two DTG discontinuations, one each in SINGLE and ARIYA respectively, and three EFV patients in SINGLE. Additionally in SINGLE, two DTG and seven EFV patients discontinued because of nightmares/abnormal dreams. There was higher pAE reporting within SINGLE that was inconsistent with the other studies. The rates of nightmares/abnormal dreams. There was higher pAE reporting within SINGLE that was inconsistent with the other studies. The rates of anxiety, insomnia, depression and nightmares/abnormal dreams, in the DTG and comparators arms across the four phase 3/3b clinical trials, are outlined in Figure 1.

Conclusions: In the four treatment-naïve clinical trials, DTG once daily was well tolerated with a low rate of pAEs. The inconsistency seen in the SINGLE study may be partially explained by study design bias; a double-blind study versus efavirenz and the use of the HIV Symptom Index Distress Module. The majority of all pAE cases were low grade, and few led to discontinuations.

P211

Prevalence of undiagnosed neurocognitive impairment in HIV-infected adults taking efavirenz on a long-term basis with undetectable or low HIV RNA compared with protease inhibitors

Nuno Marques1; Catarina Fernandes2; Sandra Tejo2; Ana Cristina Rosa1; Maria Emilia Nogueira1; Sónia Rocha2; João Trêpa2 and José Saraiva da Cunha2

1Infectious Diseases, Hospital Garcia de Orta, EPE, Almada, Portugal.
2Infectious Diseases, Centro Hospitalar e Universitário de Coimbra, EPE, Coimbra, Portugal.
3Department of Mathematics, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal

Introduction: Neurocognitive impairment remains a major issue in HIV infection. The main objective was to assess the prevalence of HIV-associated neurocognitive disorders (HAND) according to the Frascati criteria in asymptomatic HIV-infected adults on stable and long-term cART regimen containing EFV versus a protease inhibitor (PI) regimen.

Materials and methods: Cross-sectional comparative study of HIV-infected adults on cART containing EFV or a PI (DRV/r; ATV/r or LPV/r) with undetectable or low (<400 copies/mL) viral load for over 6 months and on the same regimen for at least the past 12 months. Exclusion criteria were pregnancy; previous diagnosis of: dementia of any cause; major opportunistic infection of the brain in the past 3 years before study entry; history of ischemic or haemorrhagic stroke; history of untreated and/or symptomatic syphilis; current major psychiatric/neurologic disorders according to the opinion of the investigators; current illicit drug-use disorder and/or alcohol abuse. Patients were clinical evaluated with neurologic exam, CD4 – count, HIV viral load, urine drug screen and syphilis serology. Psychological testing included International HIV Dementia Scale (IHDS), Beck Depression Inventory, The Lawton Instrumental Activities of Daily Living and an adaption of the questionnaire to assess adherence to antiretroviral treatment – HIV (CEAT-VIH). Additional testing was performed in case of IHDS score <10. Statistical analysis was performed using SPSS version 22 and SAS-JMP version 12 for Firth bias-adjustment in logistic regression.

Results: A total of 314 patients (sample size with power of 80% and level of significance of 5%), 157 on EFV and 157 on PI were included. HAND was not associated with EFV or PI regimens (p = 0.359). Its prevalence was 18.5% (n = 29) on EFV and 14% (n = 22) on PI group. Baseline characteristics are shown in Table 1. In the univariate analysis, the variables associated with HAND were: mental status abnormalities such as memory (p < 0.001), abstraction, judgment and mood (p < 0.001) and calculation abilities (p = 0.015); abnormalities in the casual gait (p = 0.032), heel-to-toe gait (p < 0.001) and toes walking (p = 0.007); dysdiadochokinesis (p = 0.002); diabetes (p = 0.025); dyslipidaemia (p = 0.043); hypertension (p = 0.048); anaemia (p = 0.028), report of adverse events on CEAT-VIH (p = 0.05); educational level, such as illiteracy (p < 0.001) and primary education (p < 0.01) and older age (p < 0.001).

Conclusions: Abnormalities in the neurologic exam, metabolic comorbidities, anaemia, older age and education level were associated with HAND.

Acknowledgements: This work has been supported by an unrestricted grant from Gilead Sciences Europe Ltd.
Abstract P211—Table 1. Baseline characteristics

<table>
<thead>
<tr>
<th>Baseline characteristics</th>
<th>EFV group (n = 157)</th>
<th>PI group (n = 157)</th>
<th>[DRV/r: 66; ATV/r: 63; LPV/r: 28]</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean ± SD)</td>
<td>48.82 (± 12.12)</td>
<td>48.74 (± 11.35)</td>
<td></td>
<td>0.95</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>121 (77.1%)</td>
<td>123 (78.3%)</td>
<td></td>
<td>0.892</td>
</tr>
<tr>
<td>Female</td>
<td>36 (22.9%)</td>
<td>34 (21.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body mass index (mean ± SD)</td>
<td>24.47 (± 4.27)</td>
<td>25.51 (± 4.33)</td>
<td></td>
<td>0.112</td>
</tr>
<tr>
<td>Educational level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illiteracy</td>
<td>4 (2.5%)</td>
<td>4 (2.5%)</td>
<td></td>
<td>0.446</td>
</tr>
<tr>
<td>Basic 1st cycle</td>
<td>33 (21%)</td>
<td>49 (31.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic 2nd cycle</td>
<td>24 (15.3%)</td>
<td>19 (12.1%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic 3rd cycle</td>
<td>45 (28.7%)</td>
<td>42 (26.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>36 (22.9%)</td>
<td>28 (17.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higher education</td>
<td>15 (9.6%)</td>
<td>15 (9.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV transmission categories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterosexual</td>
<td>89 (56.7%)</td>
<td>88 (56%)</td>
<td></td>
<td>>-0.999</td>
</tr>
<tr>
<td>Men who have sex with men</td>
<td>33 (21%)</td>
<td>34 (21.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood transfusion</td>
<td>1 (0.6%)</td>
<td>0 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection drug use</td>
<td>34 (21.7%)</td>
<td>35 (22.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of HIV infection (mean ± SD)</td>
<td>10.73 (± 5.37)</td>
<td>9.95 (± 6.01)</td>
<td></td>
<td>0.224</td>
</tr>
<tr>
<td>Years on current CART (mean ± SD)</td>
<td>5.36 (± 2.4)</td>
<td>4.27 (± 2.34)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Years on antiretroviral therapy (mean ± SD)</td>
<td>7.98 (± 4.59)</td>
<td>7.18 (± 4.75)</td>
<td></td>
<td>0.098</td>
</tr>
<tr>
<td>Years of HIV viral suppression (mean ± SD)</td>
<td>7.21 (± 4.21)</td>
<td>5.34 (± 3.56)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>AIDS</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>History of AIDS</td>
<td>21 (13.4%)</td>
<td>49 (31.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No history of AIDS</td>
<td>136 (86.6%)</td>
<td>108 (68.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nadir CD4 +</td>
<td>243.85 (± 136.56)</td>
<td>177.24 (± 150.58)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>CD4 + count at the time of study entry</td>
<td>690.27 (± 285.89)</td>
<td>589.77 (± 287.32)</td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>CPE, antiretroviral CSF penetration-effectiveness</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>CPE of 6</td>
<td>0 (0%)</td>
<td>47 (29.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPE of 7</td>
<td>135 (86%)</td>
<td>84 (53.5%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPE of 8</td>
<td>21 (13.4%)</td>
<td>23 (14.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPE of 9</td>
<td>1 (0.6%)</td>
<td>3 (1.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syphilis</td>
<td></td>
<td></td>
<td></td>
<td>0.019</td>
</tr>
<tr>
<td>History of syphilis</td>
<td>37 (23.6%)</td>
<td>57 (36.3%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No history of syphilis</td>
<td>120 (76.4%)</td>
<td>100 (63.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erectile dysfunction</td>
<td></td>
<td></td>
<td></td>
<td>0.036</td>
</tr>
<tr>
<td>Presence of erectile dysfunction</td>
<td>1 (0.6%)</td>
<td>8 (5.1%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No erectile dysfunction</td>
<td>156 (99.4%)</td>
<td>149 (94.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antidepressant use</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>No antidepressant use</td>
<td>141 (89.8%)</td>
<td>130 (82.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antidepressant use</td>
<td>16 (10.2%)</td>
<td>27 (17.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV co-infection</td>
<td></td>
<td></td>
<td></td>
<td>0.599</td>
</tr>
<tr>
<td>No HCV co-infection</td>
<td>112 (73.2%)</td>
<td>115 (76.2%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV co-infection</td>
<td>41 (26.8%)</td>
<td>36 (23.8%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC/3TC backbone</td>
<td>21 (13.4%)</td>
<td>25 (15.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZT/3TC backbone</td>
<td>1 (0.6%)</td>
<td>9 (5.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTC/TDF backbone</td>
<td>135 (86%)</td>
<td>121 (77.1%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZT + TDF backbone</td>
<td>0 (0%)</td>
<td>2 (1.3%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cristina Fernandez; Kirsten Michie; Rebecca Thomson-Glover; Mas Chaponda and Libby Ratcliffe

1Infectious Diseases Department, Royal Liverpool Hospital, Liverpool, UK. 2GUM Department, Royal Liverpool Hospital, Liverpool, UK.

Introduction: Dolutegravir was first available for use on a compassionate basis in the UK in 2013 for the treatment of HIV and was then licensed in 2014. It is now recommended as one of the preferred third agents in the national British HIV Association guidelines [1].
Despite dolutegravir’s perception as a well-tolerated antiretroviral, its SPC describes psychiatric side effects including insomnia, abnormal dreams and depression as common (incidence 1–10%) and headaches as very common (incidence >10%) [2]. This study looked at real-world data of dolutegravir tolerability and switch in our UK tertiary centre that manages over 1500 HIV-positive patients.

Materials and methods: A retrospective case review of all patients who received dolutegravir-containing antiretroviral regimens was conducted, both as fixed-dose combination (Triumeq) and dolutegravir single tablet. Data were collected from when dolutegravir was first prescribed in our centre (June 2013) until June 2016. Information regarding patient demographics, previous experience to ART, documented side effects and switch was collected from HIV patient records.

Results: Hundred and seventy-eight patients have received dolutegravir-containing regimens in our centre, 126/178 (71%) were treatment-experienced patients and 52/178 (29%) naïve patients. Table 1 shows patient demographics; they are predominantly Caucasian males, with ART-naïve patients being on average 10 years younger than their ART-experienced counterparts. More ART-naïve patients commenced a fixed-dose combination tablet containing dolutegravir (Triumeq) compared to ART-experienced patients, 90% (47/52) compared to 69% (87/126).

In total, 59/178 (33%) patients starting a regimen containing dolutegravir experienced adverse events. Of these, 68% (40/59) were experienced patients. Table 2 shows the adverse events experienced. Despite 35 (20%) of all patients suffering severe CNS side effects (anxiety, depression, paranoia and personality change) only one patient suffered severe CNS disturbance with new suicidal ideation and self-harm. Only 10 patients (6%) had to stop their dolutegravir-containing regimen with eight (4%) of these stopping due to side effects.

Conclusion: In our cohort, the majority of patients starting dolutegravir-containing regimens were treatment experienced. ART-experienced patients also suffered the most adverse events, with CNS problems being the most common. Whilst up to one-third of patients experienced adverse events from their dolutegravir-containing regimen, very few patients have needed to stop their treatment. From our real-world data the incidence of CNS side effects is significantly greater than in its licensing studies and has an implication on the use of dolutegravir in the clinical setting.

Table 1. Patient demographics

<table>
<thead>
<tr>
<th>Demographics</th>
<th>Naïve</th>
<th>Experienced</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>47/52 (90%)</td>
<td>81/126 (64%)</td>
<td>128/178 (72%)</td>
</tr>
<tr>
<td>Female</td>
<td>5/52 (10%)</td>
<td>45/126 (36%)</td>
<td>50/178 (28%)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>46/52 (88%)</td>
<td>92/126 (73%)</td>
<td>138/178 (78%)</td>
</tr>
<tr>
<td>African/Caribbean</td>
<td>4/52 (8%)</td>
<td>32/126 (25%)</td>
<td>36/178 (20%)</td>
</tr>
<tr>
<td>Asian/other</td>
<td>2/52 (4%)</td>
<td>2/126 (2%)</td>
<td>4/178 (2%)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>34 years</td>
<td>43 years</td>
<td>40 years</td>
</tr>
<tr>
<td>Range</td>
<td>20–64 years</td>
<td>18–76 years</td>
<td>18–76 years</td>
</tr>
</tbody>
</table>

Table 2. Incidence of adverse events of patients in dolutegravir-containing regimens

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Naïve (/52)</th>
<th>Experienced (/126)</th>
<th>Total (/178)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central nervous system (CNS)</td>
<td>10 (19%)</td>
<td>25 (20%)</td>
<td>35 (20%)</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>6 (12%)</td>
<td>11 (9%)</td>
<td>17 (10%)</td>
</tr>
<tr>
<td>Neurological</td>
<td>7 (13%)</td>
<td>5 (4%)</td>
<td>12 (7%)</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td>0 (0%)</td>
<td>6 (5%)</td>
<td>6 (3%)</td>
</tr>
<tr>
<td>Lethargy</td>
<td>1 (2%)</td>
<td>5 (5%)</td>
<td>6 (3%)</td>
</tr>
<tr>
<td>Dermatological</td>
<td>1 (2%)</td>
<td>3 (2%)</td>
<td>4 (2%)</td>
</tr>
<tr>
<td>Urogenital</td>
<td>0 (0%)</td>
<td>2 (2%)</td>
<td>2 (1%)</td>
</tr>
</tbody>
</table>

References

P213

Cerebrospinal fluid and plasma biomarkers in patients with HIV-associated neurocognitive disorders

Mattia Trunfio1; Daniela Vaï2; Alessandra Romito3; Cristina Atzori4; Daniele Imperiale5; Sabrina Audagnotto6; Chiara Montrucchio7; Silvia Scabini8; Chiara Cardellino9; Veronica Pirriatore10; Giovanni Di Peru11; Stefano Bonora12 and Andrea Calcagno13

1Department of Medical Science, Amedeo di Savoia Hospital, University of Turin, Torino, Italy. 2Unit of Neurology, Maria Vittoria Hospital, ASL TO2, Torino, Italy. 3Laboratory of Immunology, Maria Vittoria Hospital, ASL TO2, Torino, Italy

Introduction: Biomarkers able to differentiate patients with HIV-associated neurocognitive disorders (HAND) are urgently needed for diagnosing and managing HIV-positive patients. Specifically infected astrocytes may be involved in the process since they are key elements in the neurovascular unit and blood brain barrier (BBB).

Materials and methods: Naïve and treated patients complaining of cognitive disturbances and undergoing complete cognitive tests (eight areas, diagnosis according to the Frascati criteria) and lumbar puncture (less than 6 months apart) were included; patients with opportunistic infections or neoplasms affecting the central nervous system were excluded. Immunovirological and therapeutic data as well as plasma S100Beta and CSF (tau, ptau, BAmil, neopterin, S100Beta, CSAR) biomarkers were recorded. Variables are described as medians (interquartile ranges) and analysed through non-parametric tests.

Results: Seventy-nine patients were included: 58 (73.4%) were male and 38 (48.1%) were on treatment. Median age, plasma and CSF HIV RNA and CD4+ T cell count were 47 years (43–56), 74,912 copies/ml (55–342,216), 1614 copies/ml (68–12,662) and 102 cells/mm3 (48–408). Thirty-six patients (45.5%) were diagnosed with HAND: 25 asymptomatic (31.6%), eight mild neurocognitive impairment (10.1%) and three dementias (3.8%). CSF tau, p-tau, BAmil, neopterin, S100Beta and CSAR biomarkers were higher in patients with HAND; CSF neopterin was borderline higher in patients with HAND.
Abstract P213 Table 1. Correlations between CSF biomarkers and specific neurocognitive tests among HIV-positive patients

<table>
<thead>
<tr>
<th>Marker</th>
<th>Stroop test</th>
<th>Trail Making test</th>
<th>Corsi test</th>
<th>Serial Repetition of Disyllabic Words</th>
<th>Serial Repetition of Verbal Fluency</th>
<th>Free and Cue Selective Reminding test</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF tau</td>
<td>p 0.05 rho 0.39</td>
<td>NS</td>
<td>p <0.01 rho –0.47</td>
<td>p 0.01 rho –0.35</td>
<td>p 0.03 rho –0.30</td>
<td>NS</td>
</tr>
<tr>
<td>CSF S100β</td>
<td>NS</td>
<td>p 0.03 rho –0.29</td>
<td>p <0.01 rho –0.37</td>
<td>p 0.04 rho –0.24</td>
<td>NS</td>
<td>Delayed: p 0.04 rho –0.40 Immediate: p 0.03 rho –0.41</td>
</tr>
<tr>
<td>CSF neopterin</td>
<td>p 0.03 rho 0.36</td>
<td>NS</td>
<td>p 0.01 rho –0.31</td>
<td>NS</td>
<td>p 0.05 rho –0.26</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS, non-significant. Spearman correlation test was used to make statistical analysis.

(2.9 ng/mL (1.25–8.95) vs. 1.45 ng/mL (0.75–3.18), p = 0.051). Plasma S100β was found to be mildly associated with CSAR (p = 0.042, r = 0.272). Furthermore, we observed significant correlations between CSF S100β, CSF neopterin and tau and specific neurocognitive tests (mostly in the areas of attention, verbal fluency, concentration and short-term memory), as shown in Table 1, underneath.

Conclusions: CSF tau and S100β were significantly higher in patients with HAND. The former represents a marker of neuronal damage while the latter is produced by activated astrocytes, thus highlighting the potential role of these cells in the pathogenesis of HIV-associated neurological damage. Higher CSF markers were associated with worse performances in selected tests in memory, attention and verbal fluency domains. Plasma S100β was associated with CSAR but this observation needs to be further confirmed in order to validate a peripheral marker of BBB impairment.

P214
Incidence of CSF HIV escape in patients on virologically suppressive second-line protease inhibitor-based ART in Pune, Western India
Ameet Dravid1; Chinmay Saraf2; Milind Kulkarni3; Sachin Kore3; Niranjan Rathod4 and Uma Mahajan5
1Department of HIV Medicine, Ruby Hall Clinic, Pune, India. 2Pathology, Precision Diagnostics and Biosciences, Pune, India. 3Department of HIV Medicine, Ashwini Sahakari Rugnalaya, Solapur, India. 4Department of HIV Medicine, Apex Hospital, Kolhapur, India. 5Biostatistics, Precision Diagnostics and Biosciences, Pune, India

Introduction: Incidence of neurosymptomatic CSF HIV escape in patients on suppressive protease inhibitor (PI)-based ART is inadequately studied in resource-limited settings (RLS) like India. Data on emergence of multidrug-resistant HIV in CNS are also rare.

Methods: HIV patients enrolled in cohort from February 2009 to 2016 and currently taking PI-based ART (two nucleoside reverse transcriptase inhibitors (NRTI) plus boosted PI or ritonavir plus boosted PI) for minimum 6 months with plasma viral load <1000 copies/mL were included. Those presenting with incident neurodegeneration were recorded as cases. Magnetic resonance imaging (MRI) and CSF study was done to establish diagnosis. Paired plasma and CSF viral load was done to diagnose CSF HIV escape. CSF escape was defined as CSF viral load >50 copies/mL while plasma load <50 copies/mL or CSF viral load 1 log higher than plasma viral load. CSF genotypic resistance testing (GRT) was performed in a subset of patients.

Results: Out of 1427 ART-experienced individuals (36% females), 322 were on PI-based suppressive ART. Median age was 40 years, median baseline CD4 count 161 cells/mm3 and median duration of suppressive ART 39 months. Seventeen patients developed CSF HIV escape and incident encephalopathy (incidence rate: 14.73 (95% CI 8.16–26.59) episodes per 1000 person-years). Median plasma and CSF viral load in patients were 170 and 2300 copies/mL. Median time to development of CSF escape was 33 months. CSF GRT was performed in 7/17 patients. Resistance mutations to lamivudine (M184V) and NRTI were seen in all seven patients. Thymidine analogue mutations (TAMs) conferring NRTI cross resistance and major PI mutations (I50L, V82A) were seen in 5/7 patients each. In 10/17 therapy was changed only on basis of cerebral penetration effectiveness score (CPE) of ART. Eleven of 17 patients with CSF escape had plasma and CSF HIV viral load <50 copies/mL after change to neuroactive ART. There was one death due to CSF HIV escape. Use of tenofovir and atazanavir/ritonavir was associated with CSF escape while zidovudine protected against it. History of smoking (p = 0.034) and CPE score <6 (p = 0.031) were strongly associated with CSF escape.

Conclusions: Association of CSF escape with CPE score <6 further strengthens the case for using ART with better CNS penetration. CSF GRT shows emergence of multidrug-resistant CNS HIV requiring use of newer ARVs like darunavir, ritonavir and maraviroc which are sparsely available in RLS like India.

P215
Monitoring of 8-hydroxy-efavirenz concentrations for management of mood changes
Nádia Grilo1; Maria Correia1; Catarina Sequeira1; Shrika Harjivan2; Umbelina Caixas2; Lucília Diogo3; Matilde Marques2; Emília Monteiro3; Alexandra Antunes3 and Sofia Pereira3
1Centro de Estudos de Doenças Crônicas (CEDOC), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Translational Pharmacology, Lisboa, Portugal. 2Instituto Superior Técnico, Universidade de Lisboa, Centro de Química Estrutural (CQE), Lisboa, Portugal. 3Centro de Estudos de Doenças Crônicas (CEDOC)/Centro Hospitalar de Lisboa Central, Translational Pharmacology, Lisboa, Portugal

Introduction: The major efavirenz metabolite, 8-hydroxy-efavirenz, has been reported as plausibly responsible for efavirenz-induced neurotoxic effects [1–3]. Notably, up to 35% of patients on efavirenz suffer from mood changes [4]. This work aimed to investigate 8-hydroxy-efavirenz as a determinant of mood changes and to evaluate the suitability of 8-hydroxy-efavirenz biomonitoring for the management of these manifestations.

Materials and methods: A case control study comparing the plasma concentrations of efavirenz, 8-hydroxy-efavirenz and 8-hydroxy-efavirenz-glucuronide was performed in two age-matched groups of HIV-infected male patients, one without adverse central nervous...
system complaints (control group, 28 patients) and the other presenting mood changes (study group, 14 patients). The following anthropometric and clinical data were gathered for each patient: age, time on efavirenz, antiretroviral comedication, time between blood sampling and last efavirenz dose intake, viral load, CD4+ cell count, alanine aminotransferase levels and self-reported symptoms of mood changes (anxiety, agitation, euphoria, mental confusion, paranoia, hallucinations and depression). The study protocol received prior approval from the Ethics Committee of Centro Hospitalar de Lisboa Central, EPE (115/2013). Patients gave their written informed consent in accordance with the Declaration of Helsinki and compliance was controlled by the clinician.

Results: There were no differences between the two groups regarding the recorded clinical and anthropometric parameters. The most noticed mood change was anxiety, in 71% of the patients. Non-conjugated 8-hydroxy-efavirenz plasma levels were higher in the study group, when compared to the control group (p = 0.020). No differences were found for efavirenz or 8-hydroxy-efavirenz-glucuronide levels among groups. Efavirenz was directly associated with 8-hydroxy-efavirenz-glucuronide (Spearman r = 0.414, p < 0.010) within therapeutic efavirenz concentrations. However, for toxic plasma concentrations of the parent drug (> 4 mg/L), this correlation was lost.

Conclusion: The biotransformation of efavirenz into 8-hydroxy-efavirenz has a role in efavirenz-related mood changes. The plasma concentration of this metabolite is a suitable parameter for therapeutic drug monitoring and mood changes management. Moreover, these data suggest that 8-hydroxy-efavirenz crosses the blood-brain barrier and that toxic concentrations of efavirenz might inhibit peripheral detoxification of 8-hydroxy-efavirenz via glucuronidation.

References

P216

The predictive role of cerebrospinal fluid (CSF)/plasma immune activation and neuronal injury biomarkers for HIV-associated neurocognitive disorders (HAND) diagnosis: a cross-sectional study

Carmela Pinnetti1; Valentina Fedele2; Pietro Balestra3; Stefania Carta2; Patrizia Lorenzini1; Adriana Ammassari4; Veronica Bordon1; Lucia Alba1; Valentina Mazzotta1; Susanna Grisetti1; Federico Martini1; Francesca Ceccherini-Silberstein1; Carlo Federico Perro2 and Andrea Antinori1

1Clinical Department, National Institute for Infectious Disease Lazzaro Spallanzani IRCCS, Rome, Italy. 2Laboratory of Antiretroviral Therapy Monitoring, National Institute for Infectious Disease Lazzaro Spallanzani IRCCS, Rome, Italy. 3Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Disease Lazzaro Spallanzani IRCCS, Rome, Italy. 4Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy

Introduction: The diagnosis of HAND relies on neuropsychological assessment (NPA), often confounded by other conditions affecting cognitive performance. Moreover, these methods do not distinguish static and residual impairment from active and ongoing brain injury. For a more accurate clinical diagnosis, plasma and CSF biomarkers analysis was performed.

Materials and methods: Single-centre, cross-sectional analysis of immune activation (neopterin, sCD14) or neuronal injury (neurofilament light-chain protein, NFL) biomarkers by ELISA assay in CSF/plasma paired samples from HIV-positive patients well characterized for neurocognitive impairment (NCI) and HAND classification. All patients underwent lumbar puncture (LP) and received NPA in a period of 6 months before or after LP. A comprehensive tests battery (14 tests/five domains) was used to diagnose NCI. HAND were classified according to Frascati’s criteria. Wilcoxon matched-pairs test was used.

Results: Fifty-four CSF/plasma pairs from as many patients included: 74% male, median age 47 years (IQR 40–51), heterosexual 31%, MSM 9%, IVDU 33%; 79% CDC C. Neurological signs/symptoms in 118 (Suppl 7) patients, respectively; 41 patients (76%) were on ARV, median plasma log10 HIV RNA was 2.5 (IQR 1.6–4.5) and CSF 2.2 (IQR 1.6–3.8). Undetectable HIV RNA in 30% of plasma and 32% of CSF sample. According to Frascati’s criteria, eight patients (14.8%) resulted unimpaired, 30 patients had NCI (nine ANI 30%; 13 MND 43.3%; eight HAD 26.7%), and 16 patients (29.6%) showed a major confounder and were excluded from the analysis. CSF neopterin
Sixty-three patients were screened with the evaluation of neurocognitive disorders after 48 and 96 weeks. Both NFL concentration in CSF (median in unimpaired 677 pg/mL, p = 0.036) and in plasma (unimpaired 1676 pg/mL, ANI 1719, MND 1830, HAD 2795, p for linear trend = 0.033) increased by HAND occurrence and severity, and a significant difference was observed both for NFL concentration in CSF (p = 0.036) and NFL concentration in plasma (p = 0.027) in pairwise comparison between unimpaired and HAND (Figure 1). No differences were found in plasma and CSF sCD14 by HAND.

Conclusions: NFL concentration both in CSF and in plasma seems to better discriminate patients with active neuronal injury with a good correlation with HAD stage. Instead, CSF neopterin was less sensitive to predict HAND. Mild NCJ, remarkably ANI, was not sufficiently characterized by all biomarkers, due to presumably sub-clinical active CNS disease even in cognitively unimpaired individuals.

P217
Neuro+3 study: cognitive evolution in HAND after 96 weeks of treatment intensification with higher CNS penetration score

Gilles Force1; Pierre De Truchis2; Dhiba Marigot-Outtandy2; Damien Le Du3; Didier Troisvallets4; Laurent Blum4; Hocine Ait-Mohand5; Idris Ghoufi5; Valérie Hahn6; Hélène Defferrière6; Natacha Darchy7; Claire Lecomte7; Sandrine Brefort8; Maud Larroze8; Myriam Sauvage9; Constance Delaugerre9; Marie-Laure Nére9; Nadia Mahjoub9 and Gilles Peytavin10

1Department of Infection and Population Health, University College London, London, UK. 2Infectious Disease, Raymond Poincare Hospital, Garches, France. 3Clinical Research Unit, Raymond Poincare Hospital, Garches, France. 4Infectious Disease, Raymond Poincare Hospital, Garches, France. 5Infectious Disease, Raymond Poincare Hospital, Garches, France. 6Clinical Research Unit, Raymond Poincare Hospital, Garches, France. 7Neurology, Sainte-Anne Hospital, Paris, France. 8Neurology, Pontoise Hospital, Pontoise, France. 9Pharmacology, Bichat Hospital, Paris, France

Introduction: Neuro+3 is a pilot open-label study of ARV intensification in virologically controlled patients presenting HAND (HIV-associated neurocognitive disorders): ARV was changed for a new combination with CNS penetration effectiveness (CPE or CHARTER) score improved ≥ 3 points and total CPE ≥ 9. The major endpoint is the evaluation of neurocognitive disorders after 48 and 96 weeks.

Materials and methods: Sixty-three patients were screened with BREF ≤ 15/18 or mHIVDS ≤ 10/12 in eight investigation centres. Thirty-one patients were included with at least two ability domains altered (>1 SD) for the following tests, after Beck Depression Inventory BDI II: Grooved Pegboard (d and nd), Verbal Fluency, CVLT, Digit span, PASAT, Digit symbol, Wisconsin Card Sorting Test (six domains). Raw test scores were converted to obtain a global deficit score (GDS) and each patient was classified into HAND levels (ANI, MND, HAD) using Cognitive Complaint Questionnaire (CCQ) score. Ultrasensitive HIV RNA and ARV drugs concentrations were performed at baseline and follow-up in plasma and CSF. Exclusion criteria were drug or alcohol abuse, positivity for HBsAg or HCV, hypothyroidism, vitamin B deficiency and psychiatric troubles. For CPE score, we considered only drugs without genotypic resistance.

Results: Median range characteristics of the 31 enrolled patients were: 26 men, 54 years (33–64), educational level of 11 years (5–17), HIV duration 20 years (2–29), undetectable plasma HIV RNA duration 7 years, baseline plasma HIV RNA 2 copies/mL (2 patients > 20.26 and 40 copies/mL), baseline CSF HIV RNA <1 copy/mL (nine patients between 7 and 78 copies/mL), 29% of undetectable drugs in CSF, baseline CPE of 6 (3–8) with current ARV therapy, CPE after new combination of 10 (all score ≥ 9 except two patients). Treatment intensification was obtained with INSTI (64.5%), CCR5 inhibitor (32.3%) or NNRTI (19.4%). Median GDS was significantly reduced from 1.4 at baseline to 0.8 at week 48 and 1.0 at week 96, number of altered domains from four to three at week 48 and week 96, CCQ score from 4 to 2 at week 48 and 1 at week 96, BDI score from 14 to 8 at week 48 and 10 at week 96. At baseline, there were seven ANI, eight MND, and 16 HAD. At weeks 48 and 96, 16/31 (52%) and 19/31 (61%) were classified in an improving category of HAND. The evolution of CSF HIV RNA and drug concentrations are consistent with the drug combination used.

Conclusions: Treatment intensification by NNRTI, INSTI and/or R5 inhibitor was associated with a statistically significant improvement in cognitive tests at week 48 and week 96.

CO-MORBIDITIES AND COMPLICATIONS OF DISEASE AND/OR TREATMENT: RENAL

P218
Improved kidney function in patients who switch their protease inhibitor from atazanavir or lopinavir to darunavir

Sophie Jose1; Mark Nelson2; Andrew Phillips3; David Chadwick4; Roy Trevelion5; Rachael Jones6; Debbie Williams7; Lisa Hamzah8 and Caroline Sabin9 and Frank Post

Introduction: Atazanavir (ATV) and lopinavir (LPV) have been associated with kidney disease progression in HIV-positive individuals, with no data reported for darunavir (DRV). We examined kidney function in patients who switched their protease inhibitor from ATV or LPV to DRV.

Materials and methods: The UK CHIC study is an ongoing cohort of HIV-positive individuals accessing HIV care in the UK since 1996. Individuals who switched from either ATV or LPV to DRV with at least 6 months exposure and two estimated glomerular filtration rate (eGFR) measurements both pre- and post-switch were included in this study. Mixed effects linear regression models were used to compare pre- and post-switch eGFR slopes in all switchers, those with rapid eGFR decline (> 5 mL/min/1.73 m²/year) on ATV or LPV, those with eGFR < 60 mL/min/1.73 m² prior to switch and according to tenofovir (TDF) use. Models were adjusted for age, gender, ethnicity and time-updated CD4 cell count, HIV RNA and TDF use. Mean (95% CI) eGFR slopes were reported in mL/min/1.73 m²/year. Results: Data from 1691 patients were included. At the time of switching, median age was 45 years, 79% were male, 77% had an undetectable viral load, and the median eGFR was 93 mL/min/1.73 m². Mean (95% CI) pre- and post-switch eGFR slopes were —0.97 (—1.35, —0.59) and 1.06 (0.69, 1.44) for ATV, and —0.51 (—0.90, —0.12) and 0.43 (0.14, 0.71) for LPV, showing a significant increase in eGFR after switching to DRV. Amongst those with rapid eGFR decline on ATV or LPV, stable or improved kidney function was observed following the switch to DRV (Table 1). Improved kidney function after switching was also observed in those with an eGFR < 60 mL/min/1.73 m² prior to switch (Table 1). When split by TDF use prior to switch, we observed steeper eGFR declines pre-switch...
Abstract P218—Table 1. Pre- and post-switch eGFR slopes amongst individuals who switch from either atazanavir or lopinavir to darunavir

<table>
<thead>
<tr>
<th>N</th>
<th>Pre-switch</th>
<th>Post-switch</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>All switchers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atazanavir</td>
<td>676</td>
<td>−0.97 (−1.35, −0.59)</td>
<td>1.06 (0.69, 1.44)</td>
</tr>
<tr>
<td>Lopinavir</td>
<td>1015</td>
<td>−0.51 (−0.90, −0.12)</td>
<td>0.43 (0.14, 0.71)</td>
</tr>
<tr>
<td>Rapid eGFR decline (> 5 mL/min/1.73 m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atazanavir</td>
<td>49</td>
<td>−14.74 (−18.79, −10.69)</td>
<td>2.55 (0.50, 4.61)</td>
</tr>
<tr>
<td>Lopinavir</td>
<td>42</td>
<td>−12.99 (−15.68, −12.30)</td>
<td>0.63 (−0.85, 2.11)</td>
</tr>
<tr>
<td>eGFR <60 mL/min/1.73 m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atazanavir</td>
<td>87</td>
<td>−6.59 (−8.69, −4.48)</td>
<td>2.68 (1.23, 4.13)</td>
</tr>
<tr>
<td>Lopinavir</td>
<td>66</td>
<td>−2.77 (−4.08, −1.46)</td>
<td>2.13 (0.28, 3.99)</td>
</tr>
<tr>
<td>Received TDF prior to switch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atazanavir</td>
<td>478</td>
<td>−1.08 (−1.52, −0.64)</td>
<td>1.47 (1.01, 1.93)</td>
</tr>
<tr>
<td>Lopinavir</td>
<td>605</td>
<td>−0.90 (−1.09, −0.52)</td>
<td>0.48 (0.13, 0.82)</td>
</tr>
<tr>
<td>Did not receive TDF prior to switch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atazanavir</td>
<td>198</td>
<td>−0.27 (−0.93, 0.40)</td>
<td>0.69 (0.04, 1.34)</td>
</tr>
<tr>
<td>Lopinavir</td>
<td>410</td>
<td>0.35 (−0.87, 1.57)</td>
<td>0.55 (0.05, 1.05)</td>
</tr>
<tr>
<td>Did not discontinue TDF at the time of switch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atazanavir</td>
<td>530</td>
<td>−0.42 (−0.86, 0.02)</td>
<td>0.38 (0.07, 0.69)</td>
</tr>
<tr>
<td>Lopinavir</td>
<td>901</td>
<td>−0.44 (−0.74, −0.14)</td>
<td>0.52 (0.27, 0.77)</td>
</tr>
</tbody>
</table>

and more rapid eGFR increases post-switch amongst those exposed to TDF, compared to those unexposed. Further, there was no significant difference in pre- and post-switch eGFR slopes amongst those not receiving TDF. Significant changes in eGFR slopes were still observed following switch to DRV in those who did not also discontinue TDF at the time of the switch (Table 1).

Conclusions: Improved kidney function was observed in patients who switched from ATV or LPV to DRV, particularly amongst those with renal dysfunction and those exposed to TDF prior to switching, suggesting that DRV may have a more favourable renal safety profile.

Methods: Patients underwent a comprehensive clinical and laboratory assessment, including serum biochemistry with creatinine and eGFR (CKD-EPI), urinary protein-to-creatinine ratio (uPCR), albumin-to-protein ratio (uAPR; if uPCR <20 mg/mmol), glycated haemoglobin (HbA1c), urinary schistosoma antigen, full blood count and CD4 cell count, and HIV-1 RNA and HBV DNA load. Tubular proteinuria (TP) was defined as a uPCR >20 mg/mmol in the absence of significance albuminuria (uAPR <0.4 mg/mmol).

Results: The study comprised 101 subjects (66% women; mean age 45 years) that had received ART for median 7.9 years (IQR 6.0–9.2) and TDF for median 4.1 years (3.9–4.3). 90% were on efavirenz (n = 87) or nevirapine (n = 4) and 10% were on lopinavir/ritonavir (LPV/r). CD4 counts were median 572 (383–716) cells/mm³. Overall 21% had detectable HIV-1 RNA (>40 copies/mL), with median levels of 4.2 (2.1–5.1) log10 copies/mL; 17% had detectable HBV DNA (>15 IU/mL) with median levels of 2.4 (1.7–3.4) log10 IU/mL. Blood pressure was raised in 35% of subjects and 10% had grade 3 elevations; 6% had diabetes (HbA1c ≥ 48 mmol/mol and/or specific treatment); 17% had a positive schistosoma test. Median uPCR was 13 (13–20) mg/mmol; 28% had uPCR ≥20 and 13% ≥50 mg/mmol. TP was detected in 16% of participants and was independently predicted by female gender (adjOR 10.5; 95% CI 1.3–88; p = 0.03) and hypertension (adjOR 2.1 per grade increment; 95% CI 1.3–3.5; p <0.01). Five of 13 patients with uPCR >50 mg/mmol had uAPR <0.4, and this was associated with diabetes (OR 27; 95% CI 2.81–265; p <0.01). Median eGFR was 103 (91–115) and <60 mL/min/1.73 m² in 4%. When comparing the eGFR measured after 1 year of TDF with the current one, the mean eGFR change was −2.6 mL/min/1.73 m²/year (SD ± 4.3), and independently predicted by LPV/r use (p = 0.05) and a suppressed HBV DNA load (p = 0.01).

Conclusions: Subjects on stable ART in Ghana have a substantial prevalence of comorbidities that can impact on renal function. The findings point to an urgent need to define ascertainment and management strategies for renal health in these populations.
P220
Factors associated with decreased estimated glomerular filtration rate (eGFR) among HIV-1 positive persons in methadone programme: data from Warsaw HIV Outpatient Clinic
Barłomiej Matlosz1; Ewa Pietraszkiewicz1; Ewa Firlag-Burkacka1; Ewa Grycner1; Andrzej Horban2 and Justyna Kowalska2
1HIV Outpatient Clinic, Hospital for Infectious Diseases, Warsaw, Poland. 2Department for Adults Infectious Diseases, Medical University of Warsaw, Warsaw, Poland

Introduction: Intravenous drug use is listed as one of the risk factors for impaired renal function; however, this group is rarely assessed for specific renal-related risks. Here we analyze the group of patients in methadone programme due to opiates and/or mixed addiction.

Materials and methods: Patients attending methadone programme from 1994 to 2015 were included in the study. Electronic medical records (available since 1994) included demographic data, laboratory tests, antiretroviral treatment history, methadone dosing and drug abstinence. Methadone was provided in oral solution (0.1% concentration before and 0.5% after 2 January 2014). Patients’ drug abstinence was routinely checked monthly on personnel demand (BioMaxima urine tests) for amphetamine, opiates, benzodiazepines and THC. We have evaluated two study outcomes: (i) having at least one (1eGFR) or (ii) three (3eGFR) eGFR <60 mL/min (MDRD formula). Logistic regression models investigated factors related to study outcomes (multivariate included all p < 0.1 in univariate).

Results: In total, 267 persons with 2593 person-years of follow-up were included into analyses, 83 (31.1%) women, 218 (81.6%) infected through injecting drugs. Median age at entering HIV care was 30.2 (IQR 25.9–35.5) years, weight 69 (61–77) kg, HIV RNA 4.2 (3.2–4.8) log copies/mL, CD4 count 440 (255–777) cells/μL, serum creatinine 71 (56–88) mmol/L. At the time of analyses 251 (94%) were on ARV, 204 (81%) on PIs, 123 (46%) were anti-HBc total and anti-HCV status, 97 (36%) had 1eGFR and 20 (7.5%) 3eGFR <60. In total, 57 (21%) patients broke abstinence with no effect on study outcomes (univariate OR 1.09 (0.35–3.41; p = 0.88) for 1eGFR; OR 1.62 (0.72–3.62) when compared to before 1999) and 51 (19%) patients broke abstinence with effect on study outcomes (OR 3.41; p = 0.003). In total, 57 (21%) patients broke abstinence with no effect on study outcomes. These findings imply the need for frequent but standard kidney function monitoring in this subgroup of patients.

Reference

P221
Kidney tubular dysfunction and decline in renal function in HIV-infected Chinese receiving tenofovir disoproxil fumarate
Chung Yan Grace Lui1; Pui Chung Denise Chan2; CY Simon Cheung3; Man Po Lee5; Claire Naftalin4; Ka Lun Chan3; Ngai Sze Wong2 and Shui Shan Lee5
1Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, Hong Kong. 2Stanley Ho Centre for Emerging

Abstract P220 Table 1. Logistic regression odds ratios for having one or three eGFR measurements <60

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>OR (95% CI)</th>
<th>p</th>
<th>Univariate</th>
<th>OR (95% CI)</th>
<th>p</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (female vs. male)</td>
<td>2.77 (1.49–5.18)</td>
<td>0.001</td>
<td>4.58 (2.03–10.3)</td>
<td>0.002</td>
<td>4.70 (1.80–12.25)</td>
<td>0.002</td>
</tr>
<tr>
<td>Entering care in 1999–2006 (vs. before 1999)</td>
<td>0.60 (0.27–1.36)</td>
<td>0.291</td>
<td>0.875</td>
<td>0.25</td>
<td>1.21 (0.47–3.65)</td>
<td>0.686</td>
</tr>
<tr>
<td>Entering care in 2007–2016 (vs. before 1999)</td>
<td>0.60 (0.27–1.36)</td>
<td>0.291</td>
<td>0.875</td>
<td>0.25</td>
<td>1.21 (0.47–3.65)</td>
<td>0.686</td>
</tr>
<tr>
<td>Age at registration (per 5 years older)</td>
<td>1.37 (1.10–1.72)</td>
<td>0.005</td>
<td>4.05 (1.05–15.5)</td>
<td>0.056</td>
<td>4.23 (1.17–15.1)</td>
<td>0.038</td>
</tr>
<tr>
<td>Nadir CD4 count (per 1 cell higher)</td>
<td>1.00 (0.99–1.01)</td>
<td>0.950</td>
<td>1.18 (1.00–1.38)</td>
<td>0.006</td>
<td>1.19 (1.02–1.40)</td>
<td>0.026</td>
</tr>
<tr>
<td>Baseline eGFR (per 1 unit higher)</td>
<td>0.99 (0.98–1.00)</td>
<td>0.194</td>
<td>0.89 (0.76–1.06)</td>
<td>0.196</td>
<td>1.00 (0.98–1.02)</td>
<td>0.996</td>
</tr>
<tr>
<td>Time on ARV (per 1 year longer)</td>
<td>1.13 (1.07–1.21)</td>
<td>0.001</td>
<td>0.94 (0.80–1.11)</td>
<td>0.482</td>
<td>1.09 (0.96–1.24)</td>
<td>0.289</td>
</tr>
<tr>
<td>Undetectable on cART (yes vs. no)</td>
<td>0.99 (0.97–1.01)</td>
<td>0.189</td>
<td>0.99 (0.96–1.02)</td>
<td>0.349</td>
<td>0.99 (0.92–1.07)</td>
<td>0.858</td>
</tr>
<tr>
<td>Detectable on cART (yes vs. no)</td>
<td>1.00 (0.98–1.02)</td>
<td>0.987</td>
<td>1.00 (0.98–1.02)</td>
<td>0.987</td>
<td>1.00 (1.00–1.01)</td>
<td>0.038</td>
</tr>
<tr>
<td>Risk group (HIV risk group)</td>
<td>2.34 (1.14–4.81)</td>
<td>0.02</td>
<td>1.64 (0.60–4.99)</td>
<td>0.338</td>
<td>1.58 (0.60–4.99)</td>
<td>0.338</td>
</tr>
<tr>
<td>Anti-HBC total, anti-HCV status (yes vs no)</td>
<td>2.91 (0.74–10.70)</td>
<td>0.010</td>
<td>0.85 (0.76–0.99)</td>
<td>0.070</td>
<td>0.90 (0.78–1.04)</td>
<td>0.035</td>
</tr>
<tr>
<td>Methadone dose, breaking abstinence tested in univariate as non-significant (p > 0.1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, Hong Kong. 5Department of Medicine, Queen Elizabeth Hospital, Hong Kong, Hong Kong

Introduction: The prevalence of kidney tubular dysfunction (KTD) in Chinese HIV-infected individuals taking tenofovir disoproxil fumarate (TDF) and its impact on renal function over time are not known.

Materials and methods: A cross-sectional study was performed in a cohort of HIV-infected individuals in Hong Kong who had received ≥3 months of TDF. Blood and urine tests were taken to measure creatinine clearance (by Cockcroft Gault equation), and markers of KTD (fractional tubular resorption of phosphate and excretion of uric acid, β2-microglobulin, θ1-microglobulin, N-acetyl-β-D-glucosaminidase and retinol-binding-protein). KTD was defined as the presence of at least three abnormal markers. Serial creatinine clearance from prior to initiation of TDF until up to 96 months post-treatment were collected from patients’ records. Variables associated with KTD were evaluated using binary logistic regression. Association between KTD and serial creatinine clearance was evaluated by generalized estimating equations (GEE).

Results: Hundred and forty-one HIV-infected individuals were recruited from June 2014 to January 2015: mean (±50) age 46 ±10 years, 88% male, median (IQR) duration of HIV diagnosis 84 (40–155) months, 51% with history of AIDS, 8% with diabetes, 15% with hypertension, median duration of TDF 40 (17–61) months, 55% on protease inhibitors (PI). KTD was present in 21% of individuals, and was associated with older age, lower body weight, higher prevalence of diabetes, history of AIDS, lower nadir CD4 count, duration of TDF, use of PI and lower baseline creatinine clearance prior to initiation of TDF (all p <0.05). Multivariable analysis showed that KTD was independently associated with diabetes (adjusted odds ratio (OR) 11.5, 95% CI 2.1–61.8, p =0.005), current use of PI (OR 3.1, 95% CI 1.0–9.6, p =0.048), duration of TDF (OR 1.02, 95% CI 1.00–1.03, p =0.048) and baseline creatinine clearance (OR 0.97, 95% CI 0.95–1.00, p =0.022), after adjustment for the above variables. KTD was a significant variable for creatinine clearance across time in GEE model, and remained significant after adjustment for comorbidities, class of antiretroviral drugs, duration of HIV diagnosis, duration of TDF therapy and baseline creatinine clearance in GEE models. Creatinine clearance decreased over time after initiation of TDF (B = −0.14, p =0.01), and negatively correlated with KTD (B = −16.9, p =0.002). Annual rate of change of creatinine clearance was −2.14 mL/min and −1.57 mL/min in those with and without KTD (Figure 1).

Conclusions: KTD was present in 21% of HIV-infected Chinese individuals taking TDF, and was associated with more rapid decline in creatinine clearance over time.

P222
TDF, ATV/r and other ARV: renal safety in a resource-limiting country
Francisco Beraldi de Magalhaes 2; Suelen Silva Penteado 3; Mariana Colloidetto Soares 1; Daniel Claro Amaral 3; Melissa Mello Mazepa 2; Paulo Kato 3 and Monica Gomes da Silva 1

1Infectious Diseases, Federal University of Parana, Curitiba, Brazil. 2Pharmacy, Federal University of Parana, Curitiba, Brazil. 3School of Medicine, Federal University of Parana, Curitiba, Brazil

Introduction: With increased options of ARV and the need for long-term intake, tolerance and safety are important characteristics of ARV combinations. In resource-limited settings, economic restraints may guide ARV choices [1]. In Brazil, a frequent combination is the association of TDF/3TC with ATV/r, mostly because its low pill burden compared to other local options. Concerning the nephrotoxicity of these ARVs [2,3], alone or in combination, we design this study to evaluate the eGFR in HIV patients taking ARVs, and compare the effect of different ARV combinations.

Materials and methods: This is a retrospective cohort to evaluate renal impairment in HIV-infected patients followed at the infectious disease out-clinic in a Brazilian hospital. During the study period, 777 patients were seen at the clinic and withdrawn their ARV at hospital’s pharmacy. Patients were analyzed in four groups: group 1: patients taking TDF with any ARV except ATV/r; group 2: patients taking TDF associated with ATV/r; group 3: patients taking ATV/r with any ARV except TDF; group 4: patients taking any ARV but never ATV/r and TDF. All patients had their eGFR by using the CKD-EPI formula, calculated on their 6-month visits, until 4 years [4]. Proteinuria, crystalluria, diabetes, hepatitis B and C and viral load suppression were also evaluated.

Results: A total of 639 patients were enrolled. Comparing groups 1, 2 and 3 with group 4, we observed different decline in eGFR. In up to
4 years of follow-up, group 3 presents a reduction of 4.82 mL/min/1.73 m² (p = 0.0003). controller group 1 reduces in 4.25 mL/min/1.73 m² (p < 0.00001). However, group 2 exhibited a more pronounced reduction compared with other groups, declining 7.51 mL/min/1.73 m² (p < 0.00001) of eGFR after 4 years of use, compared to other strategies. Group 2 eGFR decline was 76% higher than in patients who took TDF without ATV/r and 56% higher than ATV/r without TDF. Group 4 expressed a lower eGFR reduction during study period. The presence of HCV co-infection was also associated with eGFR reduction of 13.89 mL/min/1.73 m² (p = 0.00026) as proteinuria and diabetes, eGFR decline of 6.01 mL/min/1.73 m² (p < 0.000001) and 3.40 mL/min/1.73 m² (p = 0.0628), respectively. Interestingly, eGFR was higher when patients maintain partially suppressed VL compared to those with undetectable VL.

Conclusion: In summary, combinations including TDF, ATV/r or both lead to a significant reduction in eGFR compared to strategies without these medications. This reduction is more pronounced with the association of TDF and boosted ATV. More convenient ARV options with safer kidney profile are needed in resource-limiting countries.

References

P223
Kidney transplant in HIV-positive population: outcomes and therapeutic perspectives in a 10-year experience
Claudia Chiscio1, Ilaria Izzo2, Salvatore Casari4, Nicola Bossini2, Nigrittella Brianese1, Maria Antonia Forleo3, Emanuele Focà3, Silvio Sandrini2 and Francesco Castelli1
1Infectious Diseases, ASST Spedali Civili, Brescia, Italy. 2Kidney Transplantation Unit, ASST Spedali Civili, Brescia, Italy

Introduction: The introduction of HAART made solid organ transplantation a concrete option for HIV-infected patients with end-stage organ disease, due to a prolonged life expectancy. Data about patients and grafts survival are encouraging, but there are still uncertainties about the prognosis in this category of patients and about PK interactions between HAART and immunosuppressive therapy, often with necessity of HAART modification. The aim of our study was to investigate the outcome of HIV-infected patients after kidney transplantation, focusing on the grafts survival, on the control of HIV disease and on HAART options.

Materials and methods: We performed a retrospective, single-centre study on kidney transplantation in HIV-positive patients, evaluated between 2005 and February 2016 in the Department of Infectious Diseases of Brescia, Northern Italy. We included HIV-positive patients with end-stage renal disease, sustained virologic suppression (if appropriate) and CD4+ T-cell count > 200 cells/mm³.

Results: We evaluated 60 patients; 32 (53%) met the eligibility criteria (all in HAART except one patient) and entered the waiting list for kidney transplantation; 24 (40%) patients underwent transplantation, while 22 (37%) were excluded (three died, nine lost to follow-up, three transplanted in other centres, seven for personal reasons). In a median follow-up time of 51 months, we observed a cumulative number of 19 rejections in 15 patients (62.5%) and a general graft survival proportion of 67% (N = 16 patients). Three patients (12.5%) experienced AIDS-defining events (one oesophageal candidiasis, two cutaneous Kaposi’s sarcoma). We observed a mortality of 21% (five patients), for: invasive sinusal mucormycosis (one), sepsis in oncolisis (one), West Nile virus encephalitis (one), acute myocardial infarction (one) and colorectal cancer (one). To avoid PK interactions, we changed the regimen from a PI/NRTI-based to a INI-based regimen in 12 patients (50%).

Conclusion: Our study confirms the safety and effectiveness of kidney transplantation in HIV-infected patients. In our experience, we observed a high incidence of acute rejection, as reported by other studies. We expect that the recent implementation of the immunosuppressive protocol at transplant will allow a better immunologic control. The recent introduction of INI allows a better strategy of HAART, with lower incidence of PK interactions with immunosuppressive drugs.
50–69 mL/min 84.5% and < 50 mL/min 88.9% (p < 0.001). A similar pattern was identified for multimorbidity prevalence (p < 0.001): > 70 mL/min 14.1%, 50–69 mL/min 32.4% and < 50 mL/min 44.4%. Multimorbidity followed the same pattern per D:A:D risk group: low 5% – medium 17.6% – high 27.8%. Of interest, 46/173 (26.6%) with eGFR ≥ 90 mL/min were at medium and high risk for CKD progression (26% and 0.6% respectively). For those 46 with normal eGFR and medium or high D:A:D risk score, 28 had at least one comorbidity (p < 0.001).

Conclusions: Approximately 40% of the cohort displayed normal eGFR levels (>90 mL/min), while 41% were at high risk for CKD progression. eGFR and D:A:D risk group were closely associated with the co-existence of comorbidities. Special consideration should be paid to PLHIV with normal eGFR levels and their treatment management, given the identified medium/high risk for CKD progression. Given the rising prevalence of ageing HIV+ population, the implementation of the D:A:D CKD prediction algorithm, along with eGFR, may optimize HIV treatment decisions.

References

P225
Different classifications of chronic kidney disease (CKD) in HIV-infected patients result in large discrepancies in CKD prevalence in this population
Amandine Gagneux-Brunon; Anne Frésard; Claire Guglielmimotti; Céline Cazorla; Frédéric Lucht and Elisabeth Botelho-Nevers
Infectious and Tropical Diseases, University Hospital of Saint-Etienne, Saint-Etienne, France

Introduction: Chronic kidney disease (CKD) is more prevalent in HIV-infected patients than in general population. EACS [1], IDSA [2] published guidelines for CKD diagnosis with classifications integrating estimated glomerular filtration rate (eGFR) and urinary protein to creatinine ratio (uPCR) or urinary albumin creatinine ratio (uACR). These guidelines differ and may have an impact for the estimation of the prevalence of CKD in HIV-infected patients.

Materials and methods: We compared in a single centre population of HIV-infected patients the prevalence of CKD using French [3], EACS and IDSA guidelines for CKD diagnosis. GFR was estimated with MDRD (for French guidelines) and CKD-EPI (for EACS and IDSA guidelines). uACR and uPCR were measured in spot urine at the same time of estimates of GFR. EACS and IDSA classifications combined uPCR and/or uACR to eGFR. French classification uses only eGFR (except in patients with eGFR greater than 90 mL/min/1.73 m², CKD is defined if uPCR > 200 mg/g). We also estimated in this population the prevalence of eGFR under 60 and 70 mL/min/1.73 m².

Results: We included 236 participants (mean age 48.9 ± 10 years, sex ratio 4.64/1), 219 (92.4%) received combined antiretroviral therapies, and 201 (91.7%) of them had an undetectable viral load. Median of CD4 positive cells count was 552/mm³ (55–1840). Median uPCR and uACR respectively were 116 mg/g (0–8934) and 11 mg/g (0–5914). uPCR exceeded 150 mg/g in 86 (36.3%) patients and uACR exceeded 30 mg/g in 51 (21.5%) patients. Mean MDRD and CKD-EPI respectively were 93.4 ± 21.2 and 97.7 ± 17.3 mL/min/1.73 m². EACS, IDSA with uACR, IDSA with uPCR, and French classifications respectively identify 21 (8.9%), 54 (22.9%), 87 (36.9%) and 126 (47.4%) patients at risk for poorer kidney outcomes (p < 0.001 for EACS vs. IDSA, IDSA uACR vs. IDSA uPCR, French vs. EACS and IDSA guidelines). Eighteen and 26 patients were respectively identified with a GFR under 70 mL/min/1.73 m² using CKD-EPI or MDRD (p < 0.001). Nine and 18 patients were respectively identified with a GFR under 60 mL/min/1.73 m² using respectively CKD-EPI and MDRD (p < 0.001).

Conclusion: A standardized definition of CKD in HIV-infected patients based on both markers is needed. EACS and IDSA guidelines for CKD diagnosis should be more evaluated in HIV-infected patients.

References

P226
Urinary products of N-acetyltransferase 8 as indicators of kidney disease progression in HIV infection
Clara Dias¹; Lucília Diogo²; Díva Trigo²; Pedro Campos³; Ana Lemos³; Júdit Morello⁴; Patrícia Pazcacho⁵; Emilie Monteiro⁵; Karina Soto⁶ and Sofia Pereira⁶
¹Translational Pharmacology, CEDOC – NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, Lisboa, Portugal. ²Infectious Diseases, Hospital Fernando Fonseca, Lisboa, Portugal. ³Nephrology, Hospital Fernando Fonseca, Lisboa, Portugal. ⁴CEDOC – NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Hospital Fernando Fonseca, Translational Pharmacology/Nephrology, Lisboa, Portugal

Introduction: The continuous exposition to antiretrovirals has been pointed out as important risk factor for earlier kidney dysfunction in HIV+ individuals [1]. This nephrotoxic effect is mainly focused at kidney tubular level. Screening for newly selective and non-invasive markers reflecting a pathophysiological mechanism is paramount for early diagnosis in order to prevent kidney disease progression. The mercapturic acid pathway is a metabolic route for processing drugs and toxins. The last step of this pathway is catalysed by N-acetyltransferase enzyme type 8 (NAT8) allowing the transfer of an acetyl group from acetyl-CoA to the cysteine amino group, producing a mercapturic acid, which is excreted in the urine [2]. This proximal tubular enzyme has recently been pointed out as a regulator of kidney function and nephrotoxic response [3]. The aim of the present work was to evaluate N-acetylated cysteine-disulphides conjugates, namely N-acetyl-cysteine (uNAC) and coenzyme A (ucoA) on kidney disease progression.

Methods: A 1-year prospective nested case-control analysis was performed in a cohort of HIV patients under cART, with visits at time 0 of study admission (T0), 6 (T6) and 12 (T12) months. Glomerular filtration rate (eGFR) was estimated by CKD-EPI equation, expressed in mL/min/1.73 m². Patients were stratified according their eGFR evolution: group A – no decline in eGFR; group B – declined eGFR ≥ 10% at T12. uNAC and ucoA were quantified by HPLC-FD. Data are presented as percentage relative to T0.
Results: A total of 23 HIV-infected patients were included (70% men, 30% Black, 51 [IQR 46–63] years old at month 0, 88% with undetectable viral load at 0; ART scheme: 96% NRTI; 83% NNRTI; 29% PI; 8% IL-2). The percentage of patients on tenofovir and the time of exposure to antiretrovirals between group A (69%, 8 ± 4 years) and group B (70%; 9 ± 6 years) was similar. The eGFR and analytes remain unchanged in group A throughout the study time (n = 13). Patients of group B (n = 10) at month 12 showed decreased eGFR (83 ± 7% of TO paired t-test, p = 0.010), corresponding to significant decreased uNAC (60 ± 40% Wilcoxon signed rank test, p = 0.006) and ucoA (44 + 52D7% paired t-test, p = 0.032).

Conclusions: Kidney disease progression was associated with a significant decline in both acetylated cysteine-disulphides conjugates and coenzyme A. The present results might suggest the NAT8 role in the pathophysiological mechanism of underlying kidney dysfunction. This functional tool seems to be suitable to study kidney disease progression in HIV patients and to assess the contribution of antiretroviral drugs in this context.

References
1. Izedine H, Harris M, Peraza MA. The nephrotoxic effects of HAART. Nat Rev Nephrol. 2009;5:563–73. doi: http://dx.doi.org/10.1038/nrneph.2009.142

P227
Nephrotic range proteinuria in a patient with HIV infection and a history of intravenous drug abuse: case report and review of the literature
Maria Tsilika; Dimitra Kavatha; Konstantinos Protopapapas; Georgios Siakallis; Antonios Papadopoulos and Anastasia Antoniadou

Introduction: Nephrotic range proteinuria in patients infected with HIV and a history of intravenous drug abuse may occur in the context of several underlying conditions such as HIV nephropathy, HCV or HBV nephropathy in co-infected cases, heroin-associated nephropathy or AA amyloidosis complicating chronic infections or lymphomas. We describe the case of nephrotic range proteinuria in a patient with HIV infection and active intravenous heroin abuse.

Material and methods: A 37-year-old Caucasian male with HIV and HCV co-infection was admitted to our department for epistaxis and anaemia. He had been successfully suppressed with HAART, with a CD4 cell count of 308/L. His medical history was also remarkable for active intravenous heroin abuse, chronic skin and soft tissue infection of the lower extremities and deep venous thrombosis for which he received acenocoumarol. Initial laboratory work-up revealed acute renal failure and significant hypoalbuminemia (creatinine: 3.2 mg/dL, urea: 68.9 mg/dL, ALB: 1.6 g/dL). Urine analysis was positive for excessive protein loss (16.489 g/24h), whereas his ultrasound imaging revealed enlarged kidneys with increased echogenicity. Further diagnostic work-up included renal biopsy, which was positive for AA amyloidosis.

Results: Recurrent chronic infections associated with intravenous drug abuse in HIV patients may be complicated with renal AA amyloidosis. Overt proteinuria with normal sized or enlarged kidneys may help diagnostic guidance; however, clinical features between HIVAN and AA amyloidosis are often indistinguishable thus making diagnostic accuracy quite daunting. Unless patients remain abstinent from drug abuse, prognosis is poor with rapid progression to end stage renal disease.

Conclusions: Treating physicians should be aware of the association between renal AA amyloidosis and intravenous drug abuse in HIV-infected patients, and its indistinguishable clinical and laboratory findings when compared to HIVAN. High-risk groups with chronic skin and soft tissue infections in the context of intravenous substance abuse should be periodically assessed for proteinuria. In suspicious cases, renal biopsy remains the gold standard for establishing accurate diagnosis and guiding therapeutic approach.

Co-morbidities and complications of disease and/or treatment: Other

P228
Tolerability of integrase inhibitors in a real-life setting
Mirreia Padilla; Jhon Rojas; Ana Gonzalez-Cordon; Jose Blanco; Jordi Blanch; Montserrat Lonca; Berta Torres; Maria Martinez-Rebollar; Montserrat Laguna; Amparo Tricas; Ana Rodriguez; Josep Mallolas; Jose Gatell; Elisa de Lazzari; Judit Peilañel and Esteban Martinez

Introduction: Integrase inhibitors are preferentially recommended in guidelines because they have shown better tolerability than other drugs in clinical trials. We aimed to compare the rates and reasons for discontinuation of raltegravir (RAL), elvitegravir (EVG) and dolutegravir (DTG) in a large cohort of HIV-infected patients.

Methods: Retrospective study of all antiretroviral-naïve and antiretroviral-experienced with undetectable plasma HIV RNA who were prescribed a first regimen containing RAL, EVG or DTG and had at least one follow-up visit. We predefined the following major outcomes: early (≤ 1 year) discontinuation, and early discontinuation due to toxicity. Specific toxicities were grouped by organs/systems according to the description in the clinical history database. We also planned sensitivity analyses regarding any discontinuation irrespective of follow-up, and discontinuation restricted to the period 2014–2015 (when all three integrase inhibitors were available). Incidence was calculated as the number of episodes per 1000 person-years. Risk factors for discontinuation were assessed by multivariate Cox models.

Results: Patients on EVG were younger, more commonly men who had sex with men, and with higher baseline CD4 cell count, and patients on RAL were less frequently males. Incidence of early discontinuation was 271 (n = 71, 12.7% of the patients on RAL, n = 557), 168 (n = 26, 8.1% of the patients on EVG, n = 322) and 264 (n = 26, 12.3% of the patients on DTG, n = 322) per 1000 patient-years (p = 0.0821). Early discontinuations due to toxicity were more common with EVG (n = 16, 5.0%) (61.5% of EVG discontinuations) than with RAL (n = 20, 3.6%) (28.2% of RAL discontinuations) or DTG (n = 8, 3.8%) (38.8% of DTG discontinuations) (p = 0.0083). Specific reasons for early discontinuations due to toxicity were digestive (n = 7, 35%), neuropsychiatric (n = 7, 35%), skin/mucoses (n = 4, 20%), muscular (n = 3, 15%), respiratory (n = 1, 5%) and systemic (n = 2, 10%) for RAL; muscular (n = 6, 38%), digestive (n = 4, 25%),...
neuropsychiatric (n = 3, 19%), skin/mucoses (n = 2, 13%), and kidney (n = 1, 6%) for EVG; and neuropsychiatric (n = 7, 88%), muscular (n = 3, 38%), and systemic (n = 3, 38%) for DTG. Some specific specifications such as neuropsychiatric (p = 0.0046) or systemic (p = 0.0224) were more common with dolutegravir. Age (HR 1.04, 95% CI 1.02–1.07, p = 0.0007) was the only independent risk factor for early discontinuation due to toxicity. Planned sensitivity analyses confirmed previous results.

Conclusions: EVG tended to be less discontinued in general, but discontinuations due to toxicity were more common with EVG than with RAL or DTG. Neuropsychiatric toxicity leading to drug discontinuation was more frequently associated with DTG than with RAL or EVG.

P229

Erythrocyte inosine triphosphatase activity: a potential biomarker for adverse events during combination antiretroviral treatment for HIV

Chantal Peltenburg1; Jörgen Bierau2; Jaap Bakker3; Jolanda Schippers4; Selwyn Lowe5; Aimé Paulussen6; Bianca van den Bosch7; Mathie Leers8; Bettina Hansen9 and Annelies Verbon10

1Internal Medicine, Division Infectious Diseases, Erasmus Medical Center, Rotterdam, Netherlands. 2Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands. 3Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, Netherlands. 4Infectious Diseases Unit, San Gerardo Hospital, Monza, Italy. 5Infectious Diseases, A. Manzoni Hospital, Lecco, Italy. 6Unit of Infectious Diseases, Garibaldi Hospital, Catania, Italy. 7Department of Infectious Diseases, Amedeo di Savoia Hospital, Turin, Italy. 8Unit of Infectious Diseases, ASST della Valle Olona, Busto Arsizio, Italy. 9Department of Infectious Diseases, University of Bologna, Bologna, Italy. 10Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Sassari, Sassari, Italy. 11Department of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy. 12Unit of Infectious Diseases, San Matteo Polyclinic Foundation – IRCCS, Pavia, Italy. 13Infectious Diseases Unit, San Gerardo Hospital – University of Milano-Bicocca, Monza, Italy. 14Infectious Diseases Unit, Santa Maria Hospital, Perugia, Italy. 15Infectious Diseases Unit, ASST della Valle Olona, Busto Arsizio, Italy. 16Infectious Diseases, University of Milano, DIBIC Luigi Sacco, Milan, Italy. 17Unit of Infectious Diseases, Garibaldi Hospital, Catania, Italy. 18Infectious Diseases Clinic, University of Bari, Bari, Italy. 19Unit of Infectious Diseases, IRCCS San Martino Hospital-IST, Genoa, Italy. 20Department of Infectious Diseases, S. Orsola Malpighi Hospital, University of Bologna, Bologna, Italy. 21Infectious Diseases Unit, University of Chieti, Chieti, Italy. 22Infectious Diseases Unit, Santa Maria Annunziata Hospital, Florence, Italy. 23Infectious Diseases Unit, Galliera Hospital, Genoa, Italy

Introduction: Predicting whether adverse events (AEs) will occur in combination antiretroviral therapy (cART) for patients infected with HIV would be a valuable tool in the choice of cART regimens. A biomarker predicting AEs in other diseases is the enzyme inosine 5’-triphosphatase pyrophosphohydrolase (ITPase). A decreased ITPase activity is associated with a reduced risk of anaemia in patients treated for hepatitis C, but with an increased risk of AEs in patients treated with thiopurines. The purine analogues abacavir, tenofovir and didanosine that are part of the backbone in most cART regimens are a potential substrate for ITPase. Here, we determined whether ITPase activity may be used as biomarker for occurrence of AEs during tenofovir, abacavir or didanosine use.

Materials and methods: In 393 adult HIV-seropositive patients (1464 cART regimens), AEs were defined as events that led to stop or change of cART regimen. Clinical and demographic data were retrieved from the Dutch HIV monitoring foundation and the medical records. ITPase activity in erythrocytes was measured. ITPase activity ≥ 4 mmol IMP/mmol Hb/hour was considered as normal. Logistic regression analysis was used to find significant differences in ITPase activity and occurrence of AEs. GT-Pase activity was used to determine odds ratios (ORs) for developing AEs.

Results: Two hundred and five patients (52.2%) had an ITPase activity ≥ 4 mmol IMP/mmol Hb/hour. In cART regimens containing tenofovir, a decreased GT-Pase activity was associated with a reduction in AEs (p = 0.01; OR 0.65), a longer mean regimen duration (p = 0.001) and significantly less often switching of medication secondary to AEs (p = 0.02) compared to normal GT-Pase activity. Moreover, all of the renal AEs that occurred in patients using tenofovir 63.6% occurred in the patients with normal GT-Pase activity (p = 0.04). In contrast, in cART regimens containing abacavir, a decreased GT-Pase activity was associated with increased switching of medication due to AEs (p = 0.03) and significantly more AEs occurred compared to regimens prescribed in normal GT-Pase activity (crude p = 0.02; after logistic regression p = 0.08; OR 1.69). No association was found for GT-Pase activity and occurrence of AEs in didanosine-containing regimens.

Conclusions: Here, we show that GT-Pase activity is a potential biomarker for AEs in patients using tenofovir and abacavir in their cART regimen. GT-Pase enzyme activity < 4 mmol IMP/mmol Hb/hour seems to be protective against occurrence of AEs in cART regimens containing tenofovir, while it leads to an increase in AEs in cART regimens containing abacavir.

P230

Dolutegravir tolerability in clinical practice: results from the SCOLTA cohort

Giordano Madeddu1; Elena Ricci2; Roberto Gulminetti3; Bagelia Paola4; Nicola Squillace5; Giuseppe De Socio6; Barbara Menzaghi7; Croftino Giancarlo7; Chiara Molteni7; Stefano Rusconi1; Benedetto Maurizio Celesia10; Chiara Bellacosa11; Antonio Di Biagio12; Giovanni Pellicianc13; Canio Martineili14; Laura Carezz12; Laura Valsceci2; Leonardo Calza12; Katia Falasac16; Francesca Vichi17; Giovanni Penco18 and Paolo Bonfant19

1Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Sassari, Sassari, Italy. 2Department of Infectious Diseases, ASST Fatebenefratelli Sacco, Milan, Italy. 3Unit of Infectious Diseases, San Matteo Polyclinic Foundation – IRCCS, Pavia, Italy. 4Infectious Diseases Unit, San Gerardo Hospital – University of Milano-Bicocca, Monza, Italy. 5Infectious Diseases Unit, Santa Maria Hospital, Perugia, Italy. 6Unit of Infectious Diseases, ASST della Valle Olona, Busto Arsizio, Italy. 7Department of Infectious Diseases, Amedeo di Savoia Hospital, Turin, Italy. 8Unit of Infectious Diseases, A. Manzoni Hospital, Lecco, Italy. 9Infectious Diseases Unit, University of Milano, DIBIC Luigi Sacco, Milan, Italy. 10Unit of Infectious Diseases, Garibaldi Hospital, Catania, Italy. 11Infectious Diseases Clinic, University of Bari, Bari, Italy. 12Unit of Infectious Diseases, IRCCS San Martino Hospital-IST, Genoa, Italy. 13Infectious Diseases Unit, University of Messina, Messina, Italy. 14Unit of Infectious and Tropical Diseases, Careggi Hospital, Florence, Italy. 15Department of Infectious Diseases, S. Orsola Malpighi Hospital, University of Bologna, Bologna, Italy. 16Infectious Diseases Unit, University of Chieti, Chieti, Italy. 17Infectious Diseases Unit, Santa Maria Annunziata Hospital, Florence, Italy. 18Infectious Diseases Unit, Galliera Hospital, Genoa, Italy

Introduction: In clinical trials dolutegravir (DTG) proved efficacious and safe in naive and experienced patients. However, a recent study in a real-life setting reported an unexpectedly high rate of discontinuation mainly due to central nervous system (CNS) events. Materials and methods: The SCOLTA project is a prospective, observational, multicentre study created to assess the incidence of adverse events in patients receiving new antiretroviral drugs. We aimed to further investigate the tolerability of DTG in a cohort of HIV-infected patients in clinical practice.

Results: A total of 358 HIV-infected patients were included, 266 (74.3%) males and 113 (31.6%) were heterosexuals. CDC stage A was in 156 (43.6%) patients. Mean age at enrolment was 46.9 ± 11.4 years, mean CD4 cell count 520 ± 383 cells/µL and mean HIV RNA 2.0 ± 1.9 log10 copies/mL. Eighty-three (23.3%) patients were HIV Ab – and 60 (16.7%) were naive. After a median follow-up of 7 (IQR 6–11) months, 20 (4.5%) therapy interruptions were reported. These were caused by virologic failure in four (1.1%), death in three (0.8%), therapy simplification in two (0.5%), adverse events in eight (2.2%), lost to follow-up and other reason in one case each. Among adverse
P231
Prevalence, spectrum, predictors and screening of clinically significant chronic liver disease associated with didanosine use in HIV-infected individuals
James Millard1, Yvonne Gilleece2 and Sumita Verma3
1Infectious Disease, St. Mary’s Hospital, London, UK. 2Lawson Unit, Royal Sussex County Hospital, Brighton, UK. 3Department of Medicine, Brighton and Sussex Medical School, Brighton, UK

Introduction: Chronic liver disease (CLD) is a leading cause of morbidity amongst HIV-infected individuals. An increasing burden is due to non-viral causes, including non-alcoholic fatty liver disease (NAFLD) and potentially hepatotoxic ARVs [1]. Exposure to the antiretroviral didanosine (DDI) can result in non-cirrhotic portal hypertension (NCPH) [1]. Our aim was to assess the spectrum of CLD associated with DDI use.

Methods: This prospective study (December 2014–April 2016) included HIV-infected individuals exposed to DDI for ≥6 months. Those without liver imaging (ultrasound scan (USS), computed tomography (CT) or magnetic resonance imaging (MRI)) within 1 year underwent liver USS. Hepatic fibrosis was determined by assessment of liver stiffness measurement (LSM) using FibroScan®. Prior liver biopsy, laboratory and endoscopy results were reviewed and likely aetiology identified. Clinically significant CLD was defined by one or more of the following: portal hypertension (PHT), ≥F2 fibrosis (liver biopsy/FibroScan®), LSM ≥9.5 kPa (in HIV mono-infected without NAFLD or alcohol excess), moderate–severe steatohepatitis on liver biopsy.

Results: Amongst our cohort of 2300 patients, 271 (11.8%) had ≥6 months DDI exposure. Complete data were available in 162. Individuals were a mean of 55 years old (range 27–83), predominately male (92.6%) and Caucasian (93.8%), HIV infected (mean 267, range 33–381 months) and taking ARVs (mean 237, range 21–544 months) for a prolonged period and most were virologically suppressed (85.2%). Current hepatitis C and B infection was present in 5.5% and 9.3%, respectively. PHT was present in 9.1%, with overall NCPH prevalence 3.1%. All individuals with NCPH had been previously isolated by biopsy, amongst individuals with NCPH, with LSM, 50% had abnormal, median 8.2 kPa (IQR 6.7–13.2). Individuals with NCPH had almost three times the median exposure to DDI (92 months vs. 34 months, p = 0.067) and significantly lower current mean CD4 count (421 cells/mm³ vs. 676 cells/mm³, p = 0.03), despite no difference in CD4 nadir (187 cells/mm³ vs. 193 cells/mm³, p = 0.54) or virological suppression (< 40 copies/mL; 80% vs. 85%, p = 0.75). The prevalence of clinically significant CLD was 29.6%, with over half due to NAFLD.

Conclusions: Approximately 30% of HIV-infected individuals with DDI exposure have clinically significant CLD related to NAFLD (16.7%) and NCPH (3.1%). Fifty percent of those with NCPH had abnormal LSM and hence FibroScan® lacked utility in either predicting NCPH or excluding fibrosis/cirrhosis in individuals with NCPH. Our preliminary results support screening for CLD in DDI-exposed individuals and emphasize the under-recognized burden from NAFLD.

References

P232
Neurocognitive performance and psychological symptoms improve in HIV-positive patients switching from an efavirenz (EFV)- to a rilpivirine (RPV)-based cART
Carmela Pinnetti; Martina Riccotti; Pietro Balestra; Patrizia Lorenzini; Raffaella Ubertone; Valentina Mazzotta; Maria Maddalena Plazzi; Rita Bellagamba; Mauro Zaccarelli; Andrea Antinori and Adriana Ammassari
Clinical Department, National Institute for Infectious Diseases, Rome, Italy

Introduction: Neurocognitive impairment (NCI) is an important issue in the HIV setting, even though CART has reduced prevalence in recent years. Treatment with EFV may cause well-recognized neuropsychiatric side effects, but association with NCI remains controversial. Aim was to assess neurocognitive performance and psychological symptoms in patients switching from EFV to RPV.

Materials and methods: Single-centre prospective evaluation of patients switching from EFV to RPV in 2015. All patients underwent neuropsychological assessment (NPA), before (T1) and after (T2) the switch. NPA was carried out through a standardized and comprehensive battery of 14 tests (five different domains). Furthermore, the Beck Anxiety Inventory (BAI), Beck Depression Inventory (BDI) and Sleep Disorders Questionnaire were administered. Patients were classified as having NCI if they scored >1 standard deviation (SD) below the normal mean in at least two tests, or >2 SD in one test. HIV-associated neurocognitive disorders (HAND) were classified according to Frascati’s criteria. Paired Wilcoxon and McNemar tests were used for statistical comparisons.

Results: Forty-two patients were evaluated: 83.3% male; median age 46 years; 52.4% MSM; median education 13 years; 14% HCV-Ab positive; CD4/mm³ nadir was <200 in 35.7%; median CD4 were 555 and 621 cells/mm³ at T1 and T2, respectively; HIV RNA was <40 copies/mL in 95.2% and 97.6% of patients at T1 and T2. At T1, all patients were receiving an EFV-based cART (92.8% with FTC + TDF and 7.2% with ABC + 3TC). After switch, all patients received coformulated TDF + FTC + RPV. Median time between the two tests was 6.6 months (IQR 4.2–10.9). At T1, 11 patients (26.2%) had NCI (mild neurocognitive disorder (MND) 2.4%; asymptomatic neurocognitive impairment (ANI) 16.7%; not HIV-related cognitive disorder 7.1%), whereas at T2, only seven patients (16.7%) presented NCI (ANI 11.9%; cognitive disorder not HIV-related 4.8%). NPA improved in five patients (11.9%),

Abstracts of the HIV Glasgow supplement
Poster Abstracts
Evidence, Merck & Co., Inc., Upper Gwynedd, PA, USA. 2Center for Observational and Real-World Evidence, Merck & Co., Inc., Rahway, NJ, USA. 3Center for Observational and Real-World Evidence, Merck & Co., Inc., Upper Gwynedd, PA, USA

Introduction: The aim of this study was to describe ARV treatment patterns in previously naive US-based HIV patients with and without comorbidities.

Materials and methods: A retrospective study was conducted using Truven Health MarketScan Commercial Claims and Encounters, and Medicare Supplemental and Coordination of Benefits database. Index date was the earliest date of any ARV medications between 1 July 2011 and 30 June 2014. HIV patients ≥18 years old on index date, and with continuous health plan enrollment of at least 12 months prior to and 15 days after index date, were included. Patients who received ARV drugs during 12 months prior to index date or had only one class of ARV drugs during observation period were excluded. Comorbidities in 12 months prior to index date were identified using ICD-9 diagnosis codes. ARV regimen was defined based on class of third agent used in combination with two NRTIs.

Results: A total of 9960 HIV patients were analyzed. Average age was 40 years (SD 12 years). Majority were men (79%), resided in South (46%) and had PPO/EPO health plan (58%). Lipid disorder (18%) was the most common comorbidity detected followed by hypertension (20%) and depression (12%). Patients with comorbidities were noted to be older except for patients with depression and tuberculosis (no difference in age), and anxiety and bipolar disorder (patients with comorbidity were younger). Presence of comorbidity was observed to be more common in men with exception of osteoporosis. A total of 9319 (94%) patients received ARV regimen containing two NRTIs with a NNRTI (44%), INSTI (27%) or a PI (23%). A total of 641 (6%) received other combinations of ARV drugs. NNRTI-based regimens were observed to be more commonly utilized when compared to INSTI- and PI-based regimens, respectively, among patients with lipid disorder (47% vs. 25% vs. 21%), cardiovascular disease (48% vs. 22% vs. 20%), cerebrovascular disease (36% vs. 24% vs. 31%), renal disease (39% vs. 21% vs. 26%), hepatic impairment (44% vs. 28% vs. 19%), diabetes mellitus/abnormal glucose control (50% vs. 23% vs. 19%), depression (39% vs. 31% vs. 25%), anxiety (40% vs. 35% vs. 21%) and bipolar disorder (37% vs. 36% vs. 23%).

Conclusion: DHHS guidelines recommend consideration of individual comorbidities when selecting initial ARV regimen. The study findings suggest the need for clinicians to consider comorbidities when selecting ARV therapy in order to minimize drug-drug interactions, adverse events and thereby optimize treatment outcomes.

P234

Adverse events occurring after introduction of EVG/CObI/FTC/TDF: data from the Surveillance COhort Long-term Toxicity Antiretrovirals/antivirals (SCOLTA) cohort

Nicola Squillace1; Paolo Bonfanti2; Elena Ricci3; Benedetto Maurizio Celesia4; Canio Martinelli5; Francesca Vichi6; Laura Cordier7; Laura Carenenzi7; Marco Frantetti7; Giuseppe De Socio8; Francesca Peruzzo10; Giancarlo Orofino11; Chiara Bellacosa12; Antonio Di Biagio13; Andrea Gori1; Tiziana Quirino14; Nicola Squillace1; Paolo Bonfanti2; Elena Ricci3; Benedetto Maurizio Celesia4; Canio Martinelli5; Francesca Vichi6; Laura Cordier7; Laura Carenenzi7; Marco Frantetti7; Giuseppe De Socio8; Francesca Peruzzo10; Giancarlo Orofino11; Chiara Bellacosa12; Antonio Di Biagio13; Andrea Gori1; Tiziana Quirino14

1Infectious Diseases Unit, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy. 2Unit of Infectious Diseases, A. Manzoni Hospital, Lecco, Italy. 3Department of Infectious Diseases, Asst Fatebenefratelli Sacco, Milan, Italy. 4Department of Infectious Diseases, S. Orsola Malpighi Hospital, Bologna, Italy. 5Unit of Infectious Diseases, Garibaldi Hospital, Catania, Italy. 6Unit of Infectious Diseases, Careggi Hospital, Firenze, Italy. 7Unit of Infectious Diseases, Santa Maria Annunziata Hospital, Firenze, Italy. 8Infectious Diseases Clinic, Asst Fatebenefratelli Sacco, Milan, Italy. 9Unit of Infectious Diseases, Santa Maria Hospital, Perugia, Italy. 10Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy. 11Unit of Infectious Diseases, Amedeo di Savoia Hospital, Torino, Italy. 12Infectious Disease Clinic, University of Bari, Bari, Italy. 13Infectious Diseases Clinic, San Martino Hospital Genoa, University of Genoa, Genoa, Italy. 14Unit of Infectious Diseases, Asst della Valle Olona — Busto Arsizio, Busto Arsizio, Italy

Introduction: Most studies evaluating safety of EVG/CObI/FTC/TDF described a significant increase of creatinine in the first 2 weeks of treatment and only few changes through 48 weeks and no significant elevation in ALT and AST [1,2]. Our aim was to evaluate the impact of this regimen on patients experienced (E) or naive (N) to cART on liver and kidney toxicity.

Materials and methods: Patients initiating EVG/CObI/FTC/TDF were enrolled in SCOLTA project, a multicentre observational study reporting all adverse events (AEs). Patients were evaluated at T0 (baseline), T1 (6 months) and T2 (12 months). Groups were compared using chi-square for categorical variables and univariate and multivariate analysis of variance for continuous variables. Repeated measures were analyzed as change from baseline.

Results: Three hundred and twenty-nine patients were enrolled and 280 (85.1%) had at least one follow-up visit. Patients' characteristics are depicted in Table 1: 202 (72.1%) were E and 78 (27.9%) were N. ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; eGFR, estimated glomerular filtration rate; HDL, high-density lipoprotein-cholesterol; IQR, interquartile range; IVDU, intravenous drug user; SD, standard deviation.
Abstract P234–Table 1. Patients’ characteristics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Experienced</th>
<th>Naive</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 202 (72.1%)</td>
<td>N = 78 (27.9%)</td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>147 (72.8)</td>
<td>65 (83.3)</td>
<td>0.06</td>
</tr>
<tr>
<td>Risk factor (IVDU)</td>
<td>50 (24.8)</td>
<td>2 (2.6)</td>
<td><0.0001</td>
</tr>
<tr>
<td>CDC stage C</td>
<td>52 (25.7)</td>
<td>14 (18.0)</td>
<td>0.05</td>
</tr>
<tr>
<td>HCV co-infection (14 missing)</td>
<td>58 (30.0)</td>
<td>2 (2.7)</td>
<td><0.0001</td>
</tr>
<tr>
<td>eGFR BL <90.0</td>
<td>99 (50.8)</td>
<td>23 (30.3)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mean (SD) or median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD) or median (IQR)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>45.6 (9.9)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.1 (3.4)</td>
</tr>
<tr>
<td>CD4+ (cells/mL)</td>
<td>579 (356)</td>
</tr>
<tr>
<td>HIV RNA (copies/mL)</td>
<td>24 (19–67)</td>
</tr>
<tr>
<td>ART duration (years)</td>
<td>8.1 (3.4–16.8)</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>191.0 (45.2)</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>43.3 (12.8)</td>
</tr>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>140 (91.5–194.5)</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>94.2 (29.6)</td>
</tr>
<tr>
<td>AST (IU/L)</td>
<td>24.5 (20–35)</td>
</tr>
<tr>
<td>ALT (IU/L)</td>
<td>28 (18–46)</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>0.94 (0.47)</td>
</tr>
<tr>
<td>Alkaline phosphatase (IU/L)</td>
<td>119.1 (77.4)</td>
</tr>
<tr>
<td>Phosphate (mg/dL)</td>
<td>3.19 (0.68)</td>
</tr>
<tr>
<td>eGFR</td>
<td>94.7 (25.3)</td>
</tr>
</tbody>
</table>

The median observation time was 11 months (IQR 7–15.5). Fifty-four (19.3%) patients withdrew treatment: 11 were virologic failures, six switched for significant drug interactions, nine were lost to follow-up, 11 chose to interrupt. One patient died for hepatic cancer and one for accidental drug overdose. Fifteen patients (4.5%) interrupted their treatment because of AE (nine grade 1–2, six grade 3–4). At T1, we observed a significant decline in eGFR both in E and N patients (mean change from T0: E: –7.0 ± 14.1 mL/min, N: –14.7 ± 20.2 mL/min, p < 0.001) that was confirmed at T2 (mean change from T0: E: –7.1 ± 17.7 mL/min, N: –16.0 ± 22.9 mL/min, p < 0.001). After adjusting for HCV co-infection, CDC stage, BMI, CD4+ and eGFR at T0, change from baseline was statistically significant both in N and E patients at T1 and T2 versus T0. Both for naïve and experienced subjects, change from T1 to T2 was negligible (respectively, –1.2 ± 12.2 and 0.9 ± 15.7 mL/min). No significant differences were observed in AST and ALT (grade 1–2 AE) during the observation between N and E and between HCVAb-positive and HCVAb-negative patients. Four patients (two E, one of which HCV co-infected and two N) interrupted because of kidney-related events (impaired creatinine clearance), two for liver-related events (one liver decompensation in a N HCV co-infected and one transaminase increase in a N HCV negative).

Conclusions: A close monitoring of renal function is required in patients initiating Efavirenz/Cobicistat/Tenofovir/FTC/TDF especially in first 6 months. No significant liver toxicity was observed.

References

P235

Prevalence of smoking and nicotine dependence in HIV patients, the project STOPS HIV from Italy

Giuseppe Vittorio De Socio1; Elena Ricci2; Marco Dell’Omo3; Paolo Maggi4; Elisabetta Scharoi1; Carmen Rita Santoro4; Nicola Squillace5; Giorgia Angeli6; Aria Pataccia7; Beatrice Tin6; Clara Abelli2; Giordano Madeddu8; Federica Magné6; Chiara Molteni9; Francesca Vichi10; Daniela Francisci11 and Franco Baldelli1

1Malattie Infettive, Azienda Ospedaliero-Universitaria di Perugia, Perugia, Italy. 2Malattie Infettive, Università di Milano, Milan, Italy. 3Medicina del Lavoro, Azienda Ospedaliero-Universitaria di Perugia, Perugia, Italy. 4Malattie Infettive, Università di Bari, Bari, Italy. 5Division of Infectious Diseases, Department of Internal Medicine, San Gerardo Hospital, University Milano-Bicocca, Monza, Italy. 6Malattie Infettive, Ospedale Terni, Terni, Italy. 7Divisione di Malattie Infettive, Ospedale di Circolo, Busto Arzizio (VA), Italy. 8Malattie Infettive, Università di Sassari, Sassari, Italy. 9Malattie Infettive, Università di Genova, Genoa, Italy. 10Unit of Infectious Diseases, San Raffaele Hospital, Lecco, Italy. 11Department of Infectious Diseases, Santa Maria Annunziata Hospital, Firenze, Italy

Introduction: Tobacco use is a leading cause of preventable illness and death for all individuals, but it is even more of a concern for people living with HIV, who tend to smoke more than the general population. Well-treated HIV-infected individuals may lose more life years through smoking than through HIV [1].

Objective: We aimed to investigate in HIV patients, prevalence of smoking, the nicotine dependence and the propensity to stop according to the stages of change by a standardized questionnaire.
Abstract P235 - Table 1. Characteristics of 899 HIV patients at enrolment: 474 (52.7%) current smokers; 273 (30.4%) never smokers; 152 (16.9%) ex-smokers

<table>
<thead>
<tr>
<th></th>
<th>All HIV patients</th>
<th>Current smokers N = 474 (52.7%)</th>
<th>Ex-smokers N = 152 (16.9%)</th>
<th>Never smokers N = 273 (30.4%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>48.0 ± 11</td>
<td>46.9 ± 10</td>
<td>53.5 ± 12</td>
<td>46.5 ± 12</td>
<td><0.0001</td>
</tr>
<tr>
<td>Men (%)</td>
<td>71.2</td>
<td>73.2</td>
<td>80.3</td>
<td>62.3</td>
<td>0.002</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>24.8 ± 4</td>
<td>24.1 ± 4</td>
<td>26.0 ± 4</td>
<td>25.3 ± 4</td>
<td><0.0001</td>
</tr>
<tr>
<td>Caucasian ethnicity (%)</td>
<td>87.8</td>
<td>93.5</td>
<td>93.4</td>
<td>74.7</td>
<td><0.0001</td>
</tr>
<tr>
<td>CDC C3 (%)</td>
<td>27.1</td>
<td>26.0</td>
<td>31.6</td>
<td>26.6</td>
<td>0.95</td>
</tr>
<tr>
<td>CD4 lymphocytes (mm³)</td>
<td>649 ± 327</td>
<td>696 ± 365</td>
<td>631 ± 272</td>
<td>576 ± 265</td>
<td><0.0001</td>
</tr>
<tr>
<td>Psychiatric comorbidity (%)</td>
<td>9.5</td>
<td>13.3</td>
<td>5.9</td>
<td>4.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>ASCVD risk (%), median (IQR)</td>
<td>5.5 (2.6–10.1)</td>
<td>6.9 (4.2–12.0)</td>
<td>5.5 (2.6–10.9)</td>
<td>2.6 (1.1–6.1)</td>
<td></td>
</tr>
</tbody>
</table>

Values are mean ± SD.
ASCVD, atherosclerotic cardiovascular diseases risk prediction; p, unadjusted.

Methods: Multicentre nationwide Italian study, consecutive HIV patients were included. We evaluated the nicotine dependence by Fagerström Test for Nicotine Dependence (FTND), and the propensity to stop according to the stages of change by a standardized questionnaire. Smokers and non-smokers were compared using chi-square for categorical variables and univariate and multivariate analysis of variance for continuous variables.

Results: A total of 899 patients (age 48 ± 11, male 71%, Caucasian ethnicity 88%) were included. Prevalence of current smokers was 52.6%, ex-smokers 16.9% and never smokers 30.4%. Among current smokers, the mean pack years was 23.9 ± 19.6. According the stages of change, 65.2% of the smokers were in the precontemplation, 14.8% in contemplation, 15.8% in preparation and 4.2% in the action. The median of FTND was 4 (IQR 2–6). The dependence degree was low (point 0–4), moderate–high (point 5–6), very high (point 7–10) in 55.5%, 22.2% and 22.4%, respectively. The main study population characteristics are reported in Table 1.

In multivariable regression model including age, gender, risk factor for HIV acquisition and ethnicity, CD4 ± cells count and atherosclerotic cardiovascular diseases risk prediction were confirmed as associated with current but not former smoking. Similarly, in a logistic multivariate model, current smoking remained associated with psychiatric comorbidity and alcohol use.

Conclusion: Prevalence rates for smoking in HIV+ subjects (around 50%) is higher than expected in the Italian general population (approximately 20%) [2], smoking screening and cessation support should be offered at HIV clinics. Our findings underscore the value of smoking cessation strategies targeting HIV+ persons.

References:

P236
Soft modelling of health-related quality of life specific to HIV in relation to anxiety, depression, personality traits and precariousness

Martin Duracinsky¹; Christophe Lalanne²; Lionel Piroth³; Melanie Aboromman¹; Laurence Weiss¹; Agathe Rami⁴ and Olivier Chassany⁵

¹AP-HP DRCD EA REMES 7334, Hôpital Fernand Widal, Paris, France. ²Internal Medicine, CHU Dijon Bourgogne, Dijon, France. ³Clinical Immunology, Hôpital Européen Georges-Pompidou, Paris, France. ⁴Internal Medicine, Hôpital Lariboisière, Paris, France

Introduction: Depression is a well-known predictor of health-related quality of life (HRQL), specifically in HIV and ageing populations. Little is known, however, on how precariousness is related to both depression and HRQL status. A structural equation model relying on partial least squares (SEM-PLS) was used to analyze the relation between anxiety/depression, harm avoidance and quality of life among HIV patients in an online survey.

Methods: Data were collected on 517 HIV+ patients (70% males, mean age 48 years) using validated self-reported measures. A structural model was posited a priori to link various domains: HRQL (PROQOL-HIV, three dimensions: physical, cognitive and social health, on a 0–100-points scale), personality traits (TCI-56, two dimensions: harm avoidance and novelty seeking) and anxiety/depression (HADS, two dimensions). Participants were classified into a precarious (52%) and a non-precarious (48%) group based on the French EPICES score. Two-group comparisons were performed using two-tailed Student’s t and Pearson chi-squared tests. The links between the various dimensions were assessed using SEM-PLS on the whole sample and on the two subgroups separately.

Results: Adherence was high (97%) and few patients reported using drug or having excessive drinking habits. HRQL was higher in men (p <0.001), non-smokers and soft users of alcohol or drugs (p <0.01). Univariate analysis suggest that average scores were lower (p <0.001) in the precarious group for all dimensions of PROQOL-HIV (<14% up to <20%) and HADS (<10% and <14%) but not for harm avoidance. The SEM-PLS analysis indicates that all prespecified path coefficients were positive and significant at the 5% level. Depression was strongly associated with the cognitive (p <0.001) and the physical (p <0.001) dimensions of PROQOL-HIV while anxiety was strongly related to harm avoidance (p <0.001) as expected. However, no significant differences were observed between the two groups at the level of the structural models despite interesting variations in regression weights between the two subgroups (lower impact of depression of social and sexual relationships in the precarious group).

Conclusion: Depression is a strong predictor of lower physical, cognitive and social health but anxiety and personality traits are also potential moderators of HRQL, independent of the level of precariousness.
Prevalence and predictors of HPV infection at oral cavity and anal site: findings in an Italian anal cancer screening programme for HIV-positive males

Anna Rosa Garbuglia1; Pierluca Piselli2; Marco Gentile3; Franca Del Nono2; Catia Sias1; Daniele Lapa1; Raffaella Ubertone3; Federico Lupi1; Andrea Baicchi2; Maria Rosaria Capobianchi2 and Adriana Ammassari3

1Laboratory of Virology, Istituto Nazionale per le Malattie Infettive “Lazzaro Spallanzani” IRCCS, Rome, Italy. 2Department of Epidemiology, Istituto Nazionale per le Malattie Infettive “Lazzaro Spallanzani” IRCCS, Rome, Italy. 3Clinical Department, Istituto Nazionale per le Malattie Infettive “Lazzaro Spallanzani” IRCCS, Rome, Italy.

Introduction: HIV-infected men carry an increased risk of HPV-associated infection, and information for appropriate allocation of cancer screening as well as vaccination programmes is needed. Purpose was to describe prevalence of HPV infection at the oral cavity of HIV-positive men, to identify predictors and to assess concordance with anal site.

Methods: Paired oral rinse and anal samples were collected from HIV-positive males within a large cross-sectional programme for anal cancer screening. Samples were tested with two sets of primers (MY09/MY11; FAP59/64) and HPV-positive samples typed by CLART2. HPV in the oral cavity was significantly lower compared with anal infection associated infection, and information for appropriate allocation of cancer screening as well as vaccination programmes is needed. Purpose was to describe prevalence of HPV infection at the oral cavity of HIV-positive men, to identify predictors and to assess concordance with anal site.

Results: Two hundred and forty-two HIV-positive males through homo-/bisexual contact in 85.5% and heterosexual in 10.3%. Median age 44.7 years. At testing, cART was prescribed in 93.9%, HIV RNA <40 copies/ml in 88% and median CD4 699/mm³. Prevalence of HPV in the oral cavity was significantly lower compared with anal site: 22.7% (n = 55) versus 88.8% (n = 207) (p < 0.001). Multiple HPV types were found in 13 (23.6%) oral and in 157 (75.8%) anal samples (p < 0.001). Risk factors for oral infection were: CD4 <200/mm³ (p = 0.009), more than 10 partners in previous 12 months (p < 0.001), more than 100 lifetime sexual partners (p = 0.04). Infection at both sites was found in 51 (21.7%) cases and oral infection was more frequent in patients with HPV at anal site in respect to those without, but association was only slightly significant (24.6% vs. 11.4%; p = 0.08). In Figure 1, frequency of HPV types by anatomic site, HR/LR groups and multiplicity are shown. Among the 51 patients with typed HPV infection at both sites, 44 (86.3%) had completely different HPV types at oral rinses from those found in anal swabs.

Patients with theoretical benefit from 9-valent vaccination were: 17 (30.9%) with oral and 153 (73.9%) with anal infection. Cytologic examination of oral rinses showed ASCUS in 37 cases (49%) and HSIL in one.

Conclusions: In HIV-positive patients, prevalence of HPV infection in the oral cavity was significantly lower than that observed at anal site. Severe immune depression and sexual history, but not anal infection, are crucial to identify persons at highest risk of oral HPV infection and in need of screening. The absence of significant concordance between oral and anal sites may suggest different infection routes or timing.

Prevalence and presentation of syphilitic hepatitis in HIV-infected patients

Tyler Raycroft; Arshia Almohammadi; Arpreet Singh; Ghazaleh Kiani; Rajvir Shati; Syune Hakobyan and Brian Conway

Clinical Research, Vancouver ID Research and Care Centre Society, Vancouver, Canada.

Introduction: Rates of syphilis have been increasing in recent years, particularly in HIV-infected populations [1]. The reciprocal interaction between Treponema pallidum and HIV has been well established, but progression to liver inflammation, termed syphilitic hepatitis (present in up to 38% of cases in some studies [2]), is understudied in this setting. Liver enzyme abnormalities are well documented in HIV patients, often attributed to co-infection with viral hepatitis, alcohol use or direct hepatotoxicity of HAART [3]. However, previous studies have failed to sufficiently examine syphilis as a potential cause of hepatic inflammation. The aim of this analysis is to determine the prevalence of syphilitic hepatitis among HIV-infected individuals diagnosed with acute syphilis.

Methods: We performed a retrospective analysis of all HIV-infected individuals regularly attending a tertiary clinic in Vancouver, Canada. We identified cases of acute syphilis resulting in syphilitic hepatitis according to the following criteria: (1) RPR-confirmed T. pallidum infection occurring after HIV infection; (2) elevated liver enzyme laboratory tests, including alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) that normalized after penicillin treatment; and (3) no clearly identifiable cause of liver inflammation beyond syphilis (such as viral hepatitis or alcohol use). Any patient exhibiting ongoing risk factors for T. pallidum acquisition received routine syphilis screening every 6 months. In addition to laboratory data, demographic and clinical information were collected for each patient. The cases included in this study occurred between April 2011 and December 2015.

Abstract P237 - Figure 1. Frequency and multiplicity of HPV infection at the oral (a) and at the anal site (b).
Results: Among 567 HIV-infected patients, 35 (6.2%) were diagnosed with acute syphilis based on RPR results. According to our definition, 3/35 (8.6%) cases of early syphilis resulted in syphilitic hepatitis. Within the cohort demonstrating syphilitic hepatitis, the age range was 28/63, the median RPR titre was 1:256 and all three self-identified as men who have sex with men (MSM). The common presenting symptoms are listed in Table 1. However, as demonstrated in Table 2, no symptoms demonstrated a statistically significant difference in prevalence between the syphilitic hepatitis and syphilis without hepatitis groups.

Conclusions: Syphilitic hepatitis is not uncommon in HIV-infected patients and should be considered as an etiologic agent in this setting. Active case finding and prompt initiation of treatment may contribute to the lower prevalence observed in our cohort as compared to previous reports in the literature.

References

Abstract P238 - Table 2. Comparison of patients with acute/early syphilis with and without syphilitic hepatitis

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Syphilitic hepatitis (N = 3)</th>
<th>Syphilis without hepatitis (N = 32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal pain</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pharyngitis</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rash</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Fever</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Skin lesion</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Median RPR titre</td>
<td>1:256</td>
<td>1:10</td>
</tr>
<tr>
<td>Median CD4 count (cells/μL)</td>
<td>423</td>
<td>754</td>
</tr>
<tr>
<td>Median HIV viral load (copies/mL)</td>
<td><40</td>
<td><40</td>
</tr>
<tr>
<td>Receiving ARVs</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>Virologic suppression</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>(VL < 40 copies/mL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Mean age (range)</td>
<td>44 (28–63)</td>
<td>46 (25–63)</td>
</tr>
<tr>
<td>African American</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Caucasian</td>
<td>2</td>
<td>27</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Asian</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

VL, HIV viral load.

Results: Among 567 HIV-infected patients, 35 (6.2%) were diagnosed with acute syphilis based on RPR results. According to our definition, 3/35 (8.6%) cases of early syphilis resulted in syphilitic hepatitis. Within the cohort demonstrating syphilitic hepatitis, the age range was 28–63, the median RPR titre was 1:256 and all three self-identified as men who have sex with men (MSM). The common presenting symptoms are listed in Table 1. However, as demonstrated in Table 2, no symptoms demonstrated a statistically significant difference in prevalence between the syphilitic hepatitis and syphilis without hepatitis groups.

Conclusions: Syphilitic hepatitis is not uncommon in HIV-infected patients and should be considered as an etiologic agent in this setting. Active case finding and prompt initiation of treatment may contribute to the lower prevalence observed in our cohort as compared to previous reports in the literature.

References

P239

The impact of engagement in care on the life expectancy of people living with HIV
Sophie Jose1; Margaret May2 and Caroline Sabin1
1Department of Infection and Population Health, University College London, London, UK. 2School of Social and Community Medicine, University of Bristol, Bristol, UK

Introduction: Poor retention in care is associated with higher rates of mortality. However, the impact of poor engagement in care (EIC) on life expectancy is not known.

Materials and methods: The UK CHIC study is a cohort of HIV-positive individuals who have accessed HIV care in the UK since 1996. Individuals who initiated ART aged ≥ 20 years between 2000 and 2011 with ≥ 1 year of follow-up were included. Pregnant women and injecting drug users were excluded. EIC rates at 1, 2, 3, 4 and 5 years on ART were calculated as the proportion of months since ART start that an individual was considered to be in care based on the REACH algorithm [1] and classified as high (> 80%) or low (< 80%). Age-specific mortality rates from each time point on ART (1, 2, 3, 4 and 5 years) for those with high and low EIC were used to construct abridged life tables for the estimation of life expectancy. Life expectancy is the average number of additional years an individual can expect to live at a given age. Expected age at death was lower for those with low EIC (Figure 1). Expected age at death increased with longer duration of high EIC on ART. At 1 year on ART, expected age at death (standard error) for a 35- and 50-year-old with high EIC was 72 (0.3) and 74 (0.2), and after 5 years on ART was 74 (0.4) and 76 (0.4). Life expectancy decreased with a longer duration of low EIC on ART. Expected age at death for those aged 35 and 50 years with low EIC was 68 (0.6) and 71 (0.6) at 1 year on ART, but decreased to 65 (0.8) and 68 (0.8) at 5 years on ART.

Conclusions: Poor EIC is associated with decreased life expectancy, especially if maintained over a long duration on ART. Whilst ART adherence is vital, high EIC may also contribute to good outcomes in people living with HIV.

Reference

Long sleep and longer naps are associated with severity of HIV disease
Brice Faraut1; Alexandre Malmartel2; Jade Ghosn3; Martin Duracinsky4; Damien Léger1; Sophie Grabar5 and Jean-Paul Viard6
1Centre du Sommeil et de la Vigilance, Hotel Dieu Hospital, Université Paris-Descartes, Paris, France. 2Family Medicine, Biostatistics and Epidemiology, Hotel Dieu Hospital, Université Paris-Descartes, Paris, France. 3Immuno-infectiology Unit, Hotel Dieu Hospital, Université Paris-Descartes, Paris, France. 4Department of Clinical Research (PRO Unit), Hôpital Fernand-Widal, Paris, France. 5Biostatistics and Epidemiology Unit, Hotel Dieu Hospital, Paris, France. 6Immuno-infectiology Unit, Hotel Dieu Hospital, Paris, France

Introduction: Total sleep time is usually linked to health status with short sleep (< 6 hours) and long sleep (≥ 8 hours) both associated with inflammation and a higher morbidity risk. In HIV infection, little is known on the association between sleep duration and quality, and disease severity.

Methods: Self-administered questionnaires were systematically proposed to HIV-infected patients in a single-centre study to assess insomnia (ICSD-3 criteria), poor sleep quality (PSQI > 5) and total sleep time. Actigraphy over a 10-day period was also performed in a sub-sample of voluntary patients. SF-12 (38) and PROQOL-HIV (39) evaluated quality of life.

Results: Six hundred and forty patients were enrolled, including 97 with actigraphy recordings. PSQI > 5 (68%) and insomnia (50%) reached high prevalence. A CD4 count < 500 cells/mm³ was inversely associated with both insomnia (OR 0.73; p < 0.01) and short sleep (OR 0.73; p < 0.01) but positively associated with long sleep (OR 1.49; p < 0.01). Long sleep according to actigraphy was...
also associated with a low CD4 nadir (OR 0.2; \(p = 0.05 \)) and AIDS status (OR 3.99; \(p = 0.04 \)). Seventy-six percent of long sleepers took long naps (\(\geq 1 \) hour) during weekdays, and napping \(\geq 1 \) hour was associated with lower CD4 nadir and AIDS status when compared to napping less than \(< 1 \) hour (OR 0.52; \(p = 0.02 \) and OR 17.26; \(p = 0.03 \), respectively). Self-reported napping \(\geq 1 \) hour was also associated with a CD4/CD8 ratio \(< 1 \) (OR 2.08; \(p = 0.03 \) vs. non-napper status). The prevalence of PSQI \(> 5 \) and insomnia were associated with the physical component of PROQOL-HIV (respectively: 64.5 vs. 85.5; \(p < 0.01 \) and 66.3 vs. 81.5; \(p = 0.01 \)), SF-12 MCS (39.6 vs. 48.2; \(p = 0.01 \) and 39.6 vs. 47.9; \(p = 0.01 \)) and PCS (48.0 vs. 53.7; \(p = 0.03 \) and 48.8 vs. 52.3; \(p = 0.01 \)).

Conclusions: A high prevalence of insomnia and impaired sleep quality was found in HIV patients. Severity of the infection was not associated with short sleep but with long sleep and long naps, possibly in relation with T-cell activation.

P241

High rates of alcohol and illicit drug consumption among HIV-infected patients attended in Spain

Alicia Gonzalez-Baeza\(^1\); Victor Hontanón-Antonana\(^2\); Gema Caceres\(^1\); Jesus Montes\(^3\) and Ignacio Perez-Valero\(^1\)

\(^1\)HIV Unit, Hospital Universitario La Paz (IdiPAZ), Madrid, Spain.

\(^2\)Medicina Interna, Hospital Universitario La Paz (IdiPAZ), Madrid, Spain

Introduction: The prevalence of risky alcohol and illicit drug consumption and its associated factors is not well established among HIV patients attended in Spain.

Materials and methods: All the participants completed self-administered questionnaires to screen for risky alcohol consumption (AUDIT \(> 8 \)) and drug use (DUIDT \(> 5 \) in men; DUIDT \(> 1 \) in women), and emotional distress (HADS \(> 12 \)). Type of illicit drugs used and adherence rates were also reported. We calculated the association between clinical/demographic and consumption variables. Multiple logistic regressions were conducted including risky alcohol intake, risky drug use, use of drugs and polydrug use in the last year as dependent variables. Covariates included those clinical/demographic that showed association (\(p < 0.10 \)) with each dependent variable in the univariate analysis. Moreover, rates of consumption were compared among participants with different sexual orientation.

Results: Two hundred and forty-six participants were included. The majority were middle age (mean: 46.4 years), male (82%), high school or college educated (71.6%) and Spanish born (75.2%). The 96.7% received ART. Of all the participants, 32% reported consumption of any illicit drug during the last year: marijuana/cannabis (21.6%), cocaine (11.4%), poppers (6.3%), amphetamine derivatives (6.1%), opioids (2.9%), ketamine (2.3%), GHB (1.6%) and pentadone (1.5%). The prevalence of risky alcohol intake was 14% and 15.6% of the participants had risky drug consumption. Of the total of drug consumers, 21.5% received boosted ART agents. Patients out of ART (OR (95% CI) 5.22 (1.16–23.49), \(p = 0.031 \)) and those with poorer ART adherence (4.97 (1.88–13.30), \(p = 0.001 \) had higher rates of risky alcohol intake. The use of any drug in the last year was independently associated with lower age (0.97 (0.94–0.99), \(p = 0.016 \)) and viral rebound in the last year (5.27 (2.11–13.14), \(p = 0.001 \)), whereas risky drug use was only associated with some viral rebound in the last year (3.09 (1.15–8.27), \(p = 0.025 \)). Moreover, homo- and bisexual participants (2.50 (0.98–6.38), \(p = 0.055 \)) and those younger (0.5 (0.91–0.97), \(p = 0.008 \)) had higher rates of polydrug use during the last year. Comparison between homo-/bisexual and heterosexual patients are included in Table 1.

<table>
<thead>
<tr>
<th>Homosexual/</th>
<th>Heterosexual</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD)</td>
<td>43.3 (10.9)</td>
<td>49.9 (7.8)</td>
</tr>
<tr>
<td>Years since HIV diagnosis, mean (SD)</td>
<td>10.6 (8.1)</td>
<td>20.3 (8.5)</td>
</tr>
<tr>
<td>Months on ART, mean (SD)</td>
<td>106.8 (86.2)</td>
<td>187.8 (90.2)</td>
</tr>
<tr>
<td>Non-Spanish born, N (%)</td>
<td>45 (34.4)</td>
<td>16 (13.9)</td>
</tr>
<tr>
<td>Risky alcohol intake, N (%)</td>
<td>14 (10.9)</td>
<td>18 (18.2)</td>
</tr>
<tr>
<td>Risky drug use, N (%)</td>
<td>19 (17.4)</td>
<td>18 (14.1)</td>
</tr>
<tr>
<td>Polydrug use, N (%)</td>
<td>25 (19.2)</td>
<td>7 (6.1)</td>
</tr>
<tr>
<td>Cannabis/marijuana, N (%)</td>
<td>22 (16.9)</td>
<td>31 (27)</td>
</tr>
<tr>
<td>Cocaine use, N (%)</td>
<td>22 (16.9)</td>
<td>6 (5.2)</td>
</tr>
<tr>
<td>Amphetamine derivates use, N (%)</td>
<td>15 (11.5)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Mephedrone use, N (%)</td>
<td>6 (4.6)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Poppers, N (%)</td>
<td>16 (12.3)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Opiates, N (%)</td>
<td>1 (0.77)</td>
<td>6 (5.2)</td>
</tr>
</tbody>
</table>

Table 1. Comparison between homo/bisexual and heterosexual patients

in the last year. Heterosexual participants had a trend towards higher cannabis and opiates use (Table 1).

Conclusion: We found a substantially high prevalence of risky alcohol intake and drug use. Measures of consumption were associated with poorer ART adherence, viral rebounds, age or sexual orientation. Homo- and bisexual participants had higher polydrug use and higher intakes of particular drugs – amphetamine derivates, cocaine, popper – that can be used as sexual enhancer. We show updated data of drugs and alcohol consumption in a HIV sample routinely attended in Spain.

P242

Common comorbidities found in a population of clinically stable HIV-infected patients on chronic antiretroviral therapy in five ambulatory clinics in Lima-Callao, Peru

Jose Hidalgo\(^1\); Alberto Florez\(^2\); Cecilia Agutto\(^3\); Yvette Pinedo\(^2\);

Raul Gutierrez\(^2\); Lourdes Rodriguez\(^2\) and Rosemarie Ayarza\(^4\)

\(^1\)Infectious Diseases/HIV Clinic, Almenara Hospital/Via Libre, Lima, Peru.

\(^2\)Infectious Diseases, Grau Hospital, Lima, Peru.

\(^3\)Infectious Diseases, Sabogal Hospital, Lima, Peru.

\(^4\)Infectious Diseases, Loayza Hospital, Lima, Peru.

\(^5\)Medical Affairs, Mrck Sharp & Dohme Peru, Lima, Peru.

\(^6\)HIV Clinic, Via Libre, Lima, Peru

Introduction: As earlier and more regular access to HAART increases globally, the proportion of chronically treated, clinically stable HIV patients will increase. The incidence of non-AIDS-defining comorbidities in these patients is not well defined in Peru. The aim of this study is to characterize this population and to describe most commonly found comorbidities to help design future policies of HIV care in the country.

Materials and methods: Review of HIV patients’ records selected from five HIV clinics in Lima-Callao attending regular appointments for follow-up visits in January–February 2016. Patients were adults (\(> 21 \) years), ambulatory, on HIV therapy for (\(> 6 \) months and with no current or recent AIDS-defining condition (\(> 6 \) months). Records
were reviewed to collect information regarding epidemiologic, clinical and laboratory characteristics. Data obtained were processed statistically to describe frequencies observed.

Results: Three hundred and three patients were found eligible for review. A majority of patients were male (73.3%, n = 222), with a median age of 46.1 years (range 21–79 years). Older individuals (≥ 60 years) were 15.2% (n = 46) of the group. Patients had a diagnosis of HIV infection for an average time of 9.41 years, and were on HAART for an average of 7.78 years. Most patients were on an NNRTI-based first-line regimen (76.2%, n = 231), followed by rescue regimens (12.2%, n = 37), PI-based first-line regimens (9.3%, n = 28) and other combinations for first-line therapy (2.3%, n = 7). Median CD4 count was 614.2 cells/µL and proportion of patients with undetectable viral load (< 40 copies/mL) was 91.1% (n = 276). Seventeen patients (5.6%) had viral loads between 41 and 400, and only 10 patients (3.3%) higher than that. The most frequently observed metabolic diagnoses were dyslipidaemia, found in 40.6% patients (n = 123), and obesity (BMI > 30) in 11.9% (n = 36). Diabetes mellitus was diagnosed in 21 patients (6.9%). Hypertension has been diagnosed in 23 patients (7.6%). Other recorded diagnoses of cardiovascular disease (coronary disease, CHF, cerebrovascular disease) were nine (3.0%), one myocardial infarction was reported in the group. Record of regular medical treatment for dyslipidaemia was 27.6%. Diabetes and hypertension were regularly treated in 91.3%.

Conclusions: A population of stable, ambulatory HIV patients on long-term HAART showed a high proportion of metabolic comorbidities, with dyslipidaemia the most frequent condition, followed by obesity. Prevalence of diabetes was similar to reported elsewhere. Relatively infrequent was cardiovascular disease. Medical treatment of dyslipidaemia was low. Care needs to consider proper treatment of chronic comorbidities in HIV.

P243
Quality of life in an Italian cohort of women living with HIV: preliminary results from IANUA study on Antiretroviral Therapy

Alberto Venturini1; Giovanni Cenderello1; Barbara Giannini1; Marcello Montefiori2; Antonio Di Biagio2; Giovanni Penco1; Giovanni Mazzarello3; Patrizia Orcamo3; Caterina Merlano3; Maurizio Setti3; Mauro Giacomini2; Claudio Viscoli1 and Giovanni Cassola1

1Infectious Diseases, Ospedali Galliera, Genoa, Italy. 2Informatica, Bioingegneria, Robotica e Ingegneria, Università di Genova, Genoa, Italy. 3Economia, Università di Genova, Genoa, Italy. 4Health Department, Regione Liguria, Genoa, Italy. 5Clinical Immunology Unit, Università di Genova, Genoa, Italy

Introduction: The introduction of cART has reduced HIV-associated morbidity and mortality and changed the patients’ perspective of life. As a result, health-related quality of life (HRQoL) has become a crucial clinical issue. It has been suggested that factors influencing HRQoL in women may differ from those in men. The major problem is “anxiety/depression” with more than half of the sample reporting moderate or high level.

The respondents provide information on marital status, education, employment/unemployment, other treatments used in addition to HAART (one, two, three, four, five or more) and number of hospitalizations due to HIV/AIDS.

Results: Three hundred and twenty patients completed the questionnaire. The mean age of the sample was 49 years (range 21–86). The mean VAS score was 74.1. It was lower than the mean VAS score of the sample of men (n = 620) of 76.1 (p = 0.01). Table 1 provides information about five dimensions of the EQ-5D-3L questionnaire.

<table>
<thead>
<tr>
<th>Table 1. Subjects frequencies in the EQ-5D dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobility</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Mobility</td>
</tr>
<tr>
<td>Self-care</td>
</tr>
<tr>
<td>Usual activities</td>
</tr>
<tr>
<td>Pain/discomfort</td>
</tr>
<tr>
<td>Anxiety/depression</td>
</tr>
</tbody>
</table>

Positive correlations were found between HRQoL and CD4+ cells count at last available visit (R = 0.14, p = 0.05) and nadir CD4+ cells count (R = 0.17, p = 0.01). Negative correlations were found between HRQoL and co-infection HIV–HCV (R = −0.16, p = 0.01) and anxiety/depression (R = −0.49, p = 0.01).

Conclusions: The analysis of self-reported questionnaires indicates that HRQoL in our sample group is not deeply affected by HIV/AIDS. The dimensions that are affected in the least are “mobility” and “self-care” while the major problem is “anxiety/depression” with more than half of the sample reporting moderate or high level.

P244
Seasonal variations in vitamin D levels in HIV-infected patients: when to test for hypovitaminosis?

Sebastian Noe1; Silke Heldwein2; Rita Pascucci3; Celia Oldenburg1; Ariane von Krosigk1; Carmen Wiese2; Eva Jaegel-Guedes3; Hans Jäger4; Wolfgang Mayer2; Eva Wolf4 and Christoph Spinner4

1Private Practice, MVZ Karlsplatz, Munich, Germany. 2Private Laboratory, MVZ Bavariahaus, Munich, Germany. 3MUC Research, Munich, Germany. 4Department of Medicine II, University Hospital Klinikum rechts der Isar, Munich, Germany

Introduction: The best time for accurate testing for vitamin D deficiency in HIV-infected patients remains unclear. We aimed to study the seasonal changes in serum 25OH-cholecalciferol (vitamin D), serum calcium and other markers of bone metabolism in an unselected European population of HIV-infected patients, most of whom were treated with antiretroviral drugs.

Methods: Retrospective single-centre study. Patients’ medical records were screened for serum vitamin D levels, β-crosslaps and surrogate values of bone turnover (serum calcium, phosphate and alkaline phosphatase (AP)).

Results: A total of 1011 data sets (625 patients) were evaluated. Overall, the median vitamin D level was 19.6 µg/L (95% confidence interval 18.8–20.6). In 207 (16.4%) data sets, patients were receiving oral cholecalciferol supplementation. Seasonal changes in serum vitamin D levels were reflected by minimum levels (median 13.5 µg/L) in March and maximum levels (median 23.7 µg/L) in July (p < 0.001). Seasonal changes in vitamin D levels are shown in Figure 1. In contrast, serum calcium levels were lowest in September and October (2.23 mmol/L) and highest in May (2.32 mmol/L).
The dotted line shows a polynomial trend line, the x-axis indicates serum vitamin D levels (µg/L) and the y-axis indicates months (1 = January, 2 = December).

Conclusions: Significant variation in seasonal serum vitamin D levels was found in an unselected population of HIV-infected patients. This finding is in line with results from HIV-negative populations. Accordingly, the time point of vitamin D testing might be crucial for appropriate diagnosis of hypovitaminosis. We recommend vitamin D testing between December and May. However, given the seasonal variation, varying thresholds for vitamin D insufficiency and deficiency may be needed. As serum calcium levels did not demonstrate the same pattern, the meaning of this finding is unclear and warrants further investigation.

P245
Utilizing US prescription and claims data to better understand treatment dynamics of HIV/HCV co-infection patients in the second generation DAA era
Michel Denarie1; Steven Gubernick2; Nirmala Panchatcharam3; Shiwei Gao4; Sean O’Neil5 and Jacob Arluck2
1Real World Evidence Solutions, IMS Health, Plymouth Meeting, PA, USA. 2IMS Consulting Group, IMS Health, Plymouth Meeting, PA, USA. 3Advanced Analytics, IMS Health, Plymouth Meeting, PA, USA. 4Managed Services, IMS Health, Plymouth Meeting, PA, USA

Introduction and aims: Since the introduction of the second generation DAAs, many HIV/HCV co-infection patients previously warehoused for HCV, but in treatment for HIV, started undergoing HCV therapy. The intent of this study is to better understand the treatment dynamics of HIV/HCV co-infection patients in the second generation DAA era. Key parameters include gender and age distribution across HIV third agents, proportion of patients receiving DAA therapies, proportion of HIV third agents pre- and post-HCV diagnosis and dynamics of patients who switched HIV third agents post-HCV diagnosis.

Design and methods: This retrospective study utilized IMS longitudinal prescription (LRx) and medical claims data (Dx). LRx covers 88% of all retail scripts. The linked Dx data cover 1.1 billion office claims annually. Patients were selected if they received an HIV diagnosis or HIV treatment between May 2014 and October 2015. Patients were identified as HCV if they received either a diagnosis or treatment between May 2014 and October 2015. Claims annually. Patients were selected if they received an HIV diagnosis or HIV treatment between May 2014 and October 2015. Patients were identified as HCV if they received either a diagnosis or treatment between May 2014 and October 2015.

Conclusions: Only 11% of patients having both HIV and HCV diagnoses and an identifiable HIV regimen pre and post-HCV diagnosis switched their HIV regimen prior to initiating DAA therapy. Of those who switched their HIV regimens, 87% switched to include an integrase inhibitor as part of their regimen. Of these 149 patients, 50% switched to Tivicay/Triumeq, 45% to Isentress and 5% to Stribild.

Results: This retrospective study assesses IMS APLD and claims data from 30,061 patients having both HIV and HCV diagnoses. Sixty-eight percent of patients are male and 72% over the age of 50. Thirteen thousand three hundred and fifty-nine patients have both HIV and HCV diagnoses and an HIV index regimen. Of these patients, 69% are male and 73% are over the age of 50 with both age and gender similar across HIV third agents. Twelve percent received a DAA regimen for HCV. Greater than 88% of these patients were placed on a sofosbuvir-based regimen (Harvoni or Sovaldi), and this was similar across HIV third agents. One thousand five hundred and thirty-three patients have both HIV and HCV diagnoses and an identifiable HIV regimen pre- and post-HCV diagnosis. In these patients (which include those on standard triple therapy and nuc-sparing regimens), integrase inhibitors are the most frequently used HIV third agent pre- (51%) and post- (53%) HCV diagnosis followed by NNRTIs (33% pre and 32% post) and protease inhibitors (32% pre and 26% post). Hundred and seventy-three patients switched their HIV third agent post-HCV diagnosis with most (87%) switching to include an integrase inhibitor as part of their regimen. Of these 149 patients, 50% switched to Tivicay/Triumeq, 45% to Isentress and 5% to Stribild.
with men. Compared with HIV-positive patients, HIV-uninfected patients had more cases of secondary syphilis (66.7% vs. 30.6%, p = 0.002), less early latent syphilis (25.0% vs. 60.4%, p = 0.003), less prior syphilis (8.3% vs. 70.3%, p < 0.001). HIV-negative patients had faster serologic response than HIV-positive patients: 58.3% versus 31.8% (p = 0.02), 100% versus 60.2% (p < 0.001), 100% versus 77.7% (p = 0.02) and 93.8% versus 80.4% (p = 0.3) at week 4, week 8, week 12 and week 24, respectively. In multivariate analysis to examine the factors associated with 12-week serologic response, we found that the response was associated with early latent syphilis (adjusted odds ratio (AOR) 0.17; 95% confidence interval (CI) 0.05–0.61) and per 1 – log, increase of RPR titre at baseline (AOR 1.01; 95% CI 1.00–1.01, p = 0.029).

Conclusions: HIV-negative patients had better early serologic response of early syphilis to BPG than HIV-positive patients during the first 12 weeks of follow-up. Early latent syphilis was associated with a poorer response while a higher RPR titre was associated with a better response to BPG.

Reference

P247
Cognitive and emotional functioning in HIV-infected MSM treated with effective antiretroviral therapy
Bogna Szymanska 1; Emilia Łojek 2; Natalia Gawron 2; Grażyna Cholewinska 3; Ewa Firlag-Burkacka 1; Andrzej Horban 4 and Robert Borstein 5

2 Outpatients Clinic, Hospital for Infectious Diseases in Warsaw, Warsaw, Poland. 3Faculty of Psychology, University of Warsaw, Warsaw, Poland. 4HIV/AIDS, Hospital for Infectious Diseases in Warsaw, Warsaw, Poland. 5HIV/AIDS, Medical University of Warsaw, Warsaw, Poland. 6Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA

Introduction: There is growing evidence that despite effective cART, cognitive and emotional impairments have been still observed in HIV-infected individuals, which depends on multiple factors. One of the most important predictors of neurocognitive changes is the nadir CD4 cells count. The aim of the current report is to determine the neurocognitive and emotional differences between HIV-infected MSM with undetectable viral load and non-infected controls and to examine the significance of ARV regimens and nadir CD4 count in HIV(+) group.

Materials and methods: In this study, there were 95 HIV(+) MSM and 95 HIV-uninfected controls matched on socio-demographic variables. The characteristics of HIV(+) group were as follows: duration of HIV infection M = 63.5 years (SD = 5.8); CD4+ nadir M = 265.2 cells/mL (SD = 147.5); current CD4+ M = 586.1 cells/mL (SD = 217); duration of cART M = 5.1 years (SD = 4.9); 56% were treated with 2NRTI + PI/r, 23% 2NRTI + NNRTI, 21% other regimen. HIV(+) subjects were divided into two groups with nadir CD4 count < 350 cells/mL (n = 69) and > 350 cells/mL (n = 26). The participants performed a battery of standard neuropsychological tests and psychological questionnaires. In the analyses were used Student’s, non-parametric tests (Kolmogorov–Smirnov) and correlations.

Results: HIV(+) and HIV(−) groups did not differ in terms of age and years of education. HIV(+) individuals achieved lower outcomes in attention (p < 0.05), executive function (p < 0.05) and language (p < 0.01) tasks when compared to HIV(−) controls. Moreover, the HIV(+) group demonstrated higher levels of anxiety (p < 0.05) and depression (p < 0.05). There were no differences between cART regimens as well as cognitive and emotional domains. HIV-infected participants with CD4 nadir < 350 cells/mL obtained lower results in attention (p < 0.05) than HIV-infected participants with CD4 nadir > 350 cells/mL.

Conclusions: Despite effective cART, the HIV(+) MSM showed lower functioning in neurocognitive domains and frail emotional condition as compared to the control group. We found differences in neurocognitive functioning in relation to nadir CD4 count. However, ARV regimen was not an important factor of cognitive decline in patients with undetectable viral load.

Viral Hepatitis

P248
TURQUOISE-I part 2: safety and efficacy of ombitasvir + paritaprevir/r + dasabuvir with or without RBV in patients with HIV-1 and HCV GT1 or GT4 co-infection
Jürgen Rockstroh 1; Chloe Orkin 2; Rolando Viani 3; David Wyles 4; Anne Luetkemeyer 5; Adriano Lazzarin 6; Ruth Soto-Malave 7; Mark Nelson 8; Sanjay Bhagani 9; Hartwig Klinker 10; Giuliano Rizzardi 11; Pierre-Marie Girard 12; Nancy Shulman 13; Yiran Hu 14; Linda Fredrick 15; Roger Trinh 16 and Edward Gane 17

1Medicine, Universitätsklinikum Bonn, Bonn, Germany. 2Emergency Services, The Royal London Hospital, London, UK. 3Infectious Disease Development, AbbVie Inc., North Chicago, IL, USA. 4Medicine, University of California San Diego, La Jolla, CA, USA. 5Infectious Disease, San Francisco General Hospital, San Francisco, CA, USA. 6Infectious Disease, Fondazione Centro San Raffaele del Monte Tabor, Milan, Italy. 7Infectious Disease, Innovative Care PSC, Bayamon, Puerto Rico. 8Infectious Disease, Chelsea and Westminster Hospital, London, UK. 9Infectious Disease, Royal Free London Foundation Trust, London, UK. 10Infectious Disease, Universitätsklinikum Wuerzburg, Wuerzburg, Germany. 11Infectious Disease, ASST Fatebenefratelli Sacco, Milan, Italy. 12Infectious and Tropical Disease, Hospital Saint Antoine, Paris, France. 13Statistics, AbbVie Inc., North Chicago, IL, USA. 14Liver Unit, Medicine, Auckland City Hospital, Auckland, New Zealand

Introduction: Ombitasvir, paritaprevir co-administered with ritonavir, and dasabuvir (OBV/PTV/r + DSV) comprise the 3 direct-acting antiviral agents as core components of a four-drug regimen (OBLR) for the treatment of HCV GT1+2 or GT4 infected patients who are also co-infected with HIV-1. The results of TURQUOISE-I part 1, an exploratory, non-comparative, phase 2 study of the combination of OBLR and cART in co-infected patients with undetectable viral load, were reported in 2016. TURQUOISE-I part 2 assessed the safety and efficacy of OBLR in patients with HIV-1 and HCV GT1 or GT4 co-infection, who were not treated with antiretroviral therapy (cART) in the previous 12 weeks.

Table 1. Baseline demographics and disease characteristics

<table>
<thead>
<tr>
<th></th>
<th>GT1</th>
<th>GT4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 199</td>
<td>N = 28</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>156 (78)</td>
<td>26 (93)</td>
</tr>
<tr>
<td>White race, n (%)</td>
<td>172 (86)</td>
<td>25 (89)</td>
</tr>
<tr>
<td>Age, median (range), years</td>
<td>50 (26–69)</td>
<td>47 (30–63)</td>
</tr>
<tr>
<td>BMI, median (range), kg/m²</td>
<td>25 (17–41)*</td>
<td>24 (15–38)</td>
</tr>
<tr>
<td>HCV genotype 1a, n (%)</td>
<td>147 (74)</td>
<td>–</td>
</tr>
<tr>
<td>Cirrhosis, n (%)</td>
<td>22 (11)</td>
<td>0</td>
</tr>
<tr>
<td>Treatment-experienced, n (%)</td>
<td>64 (33)</td>
<td>11 (39)</td>
</tr>
<tr>
<td>HCV RNA, median (range), log₁₀ IU/mL</td>
<td>6.5 (1.8–7.6)</td>
<td>6.0 (4.7–7.0)</td>
</tr>
<tr>
<td>CD4+ cell count, median (range), µL⁻¹</td>
<td>612 (133–2351)</td>
<td>731 (262–1533)</td>
</tr>
</tbody>
</table>

BMI, body mass index.

* N = 198; ¹ N = 193; ² N = 197 GT1, N = 27 GT4.
antiviral (DAA; 3D) regimen + ribavirin (RBV) approved for HCV genotype (GT) 1 infection. Here we investigate the safety and efficacy of 3D + RBV for GT1, and the 2 DAA (2D) regimen of OBV/C27 PTV/r/C27 RBV approved for GT4, in HIV-1 co-infected patients with or without compensated cirrhosis.

Methods: TURQUOISE-I, part 2 is a phase 3 multicentre study. Eligible patients were HCV treatment-naive or RBV/interferon-experienced, on an HIV-1 antiretroviral regimen containing atazanavir, raltegravir, dolutegravir or darunavir (for GT4 only) and had plasma HIV-1 RNA ≤40 copies/mL at screening. Patients received OBV/PTV/r (25/150/100 mg) + DSV (250 mg) + weight-based RBV for 12 or 24 weeks per label guidelines. Interim safety and efficacy data are presented.

Results: Table 1 presents baseline demographics on 227 treated patients as of 21 April 2016. Of the 194 GT1- and 26 GT4-infected patients with available data, 98% and 100% achieved sustained virologic response (SVR) at post-treatment week (PTW) 4 (SVR4), respectively. Three patients experienced virologic failure: one GT1a, treatment-naive patient without cirrhosis relapsed at PTW4, a second GT1a, treatment-naive patient without cirrhosis relapsed at PTW12 and one GT1b, treatment-experienced patient with cirrhosis experienced breakthrough at week 10. No patients discontinued treatment due to adverse events (AEs). Most AEs were mild to moderate in severity, and key lab abnormalities were rare (Table 2).

Conclusions: The 2D and 3D regimens were well tolerated and yielded high SVR4 rates in patients with HCV GT1 or GT4/HIV-1 co-infection. OBV + PTV/r + DSV + RBV is a potent HCV treatment option for patients with HIV-1 co-infection, regardless of treatment experience or presence of compensated cirrhosis.

Table 2. Safety and post-baseline laboratory abnormalities

<table>
<thead>
<tr>
<th>Event, n (%)</th>
<th>GT1</th>
<th>GT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any AE</td>
<td>167 (84)</td>
<td>24 (86)</td>
</tr>
<tr>
<td>Serious AEs</td>
<td>9 (5)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>RBV dose modifications due to haemoglobin decline</td>
<td>25 (13)</td>
<td>3 (11)</td>
</tr>
<tr>
<td>ALT grade ≥ 3 (> 5 x ULN)</td>
<td>1 (1)</td>
<td>0</td>
</tr>
<tr>
<td>Total bilirubin grade ≥ 3 (> 3 x ULN)</td>
<td>26 (13)</td>
<td>2 (7)</td>
</tr>
<tr>
<td>Patients on ATV-containing ART, n/N (%)</td>
<td>23/26 (88)</td>
<td>2/2 (100)</td>
</tr>
<tr>
<td>Haemoglobin grade 2 (<10 g/dL)</td>
<td>15 (8)</td>
<td>0</td>
</tr>
<tr>
<td>Haemoglobin grade 3 (<8 g/dL)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

AE, adverse event; ALT, alanine aminotransferase; ATV, atazanavir; RBV, ribavirin; ULN, upper limit of normal.

P249
New findings in HCV genotype distribution in selected West European, Russian and Israeli regions
Vladimir Kartashev1; Matthias Doering2; Leonardo Nieto3; Eleda Coletta4; Eva Heger5; Maria Neumann-Fraune5; Rolf Kaiser5 and Saleta Sierra5

1Infectious Diseases, Rostov State Medical University, Rostov on the Don, Russian Federation. 2Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbruecken, Germany. 3Biochemistry and Microbiology, University Hospital Vall d’Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain. 4Microbiology and Immunology, Valladolid University Hospital, Valladolid, Spain. 5Institute of Virology, University of Cologne, Cologne, Germany

Introduction: HCV affects 185 million people worldwide and leads to death and morbidities. HCV has a high genetic diversity and is classified into seven genotypes and 67 subtypes. Novel anti-HCV drugs (direct-acting antivirals) eligibility, resistance and cure rates depend on HCV geno/subtype (GT).

Materials and methods: Anonymized GT and epidemiological information gained in 2011–2015 was analyzed retrospectively. Data were obtained from 52 centres in Austria, Belgium, Germany, Israel, Italy, Luxembourg, Portugal, Russia, Spain and the UK.

Abstract P249 Figure 1. HCV GT distribution patterns.
Results: Thirty-seven thousand eight hundred and thirty-nine samples were included in the study. The most prevalent was GT1 (64.9%), followed by GT3 (20.9%) and GT4 (9.0%). Three samples classified as the recombinant genotype-P were identified in Munich (Germany). We show that the GT distribution is similar throughout Western European countries, with some local differences. Here, GTs 1b and 2 prevalences are lower and of GT 1a and 4 higher than in all previous reports. Israel has a unique GT pattern with only GT1b, 1a and 4 (78.6%, 20.2% and 1.2%, respectively). In South Russia, the GT proportions are more similar to Asia, with prevalent GTs 1, 3 and Z (50.8%, 37.9% and 11.2%, respectively). GTs 5 and 6 were detected in very low proportions. Three cases of the recombinant genotype P were reported in Munich (Germany). In addition, we observed that GT proportion was dependent on patients’ gender, age and transmission route (Figure 1): GTs 1b and 2 were significantly more common in female, older, nosocomially-infected patients, while GTs 1a, 3 and 4 were more frequent in male, younger patients infected by tattooing, drug consume and/or sexual practices. In infections acquired by drug consume, GTs 1a (35.0%) and 3 (28.1%) prevailed. In infections related to sexual practices, lower proportion of GT3 (14.0%) and higher of GT4 (20.2%) were detected. GT4 was mostly abundant in MSM (29.6%). HIV co-infection was significantly associated with higher proportions GTs 1a and 4 (42.5% and 19.3%, respectively).

Conclusions: Genotype prevalence evolves and correlates to epidemiological factors. Continuous surveillance is necessary to better assess hepatitis C infection in Europe and to take appropriate health actions.

P250
Progression of liver fibrosis among HIV-infected patients under suppressive antiretroviral therapy: role of untreated HCV and other unrelated factors in the ICONA Foundation study cohort

Giuseppe Lapadula1; Alessandro Soria1; Patrizia Lorenzini2; Andrea De Luca3; Massimo Puoti4; Andrea Antinori5; Claudio Mastroianni6; Giovanni Cassola7; Stefano Bonora7; Mirella Santoro8; Andrea Gori9 and Antonella d’Arminio Monforte9
1Division of Infectious Diseases, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy. 2Clinical Department, National Institute for Infectious Diseases, IRCCS, Lazzaro Spallanzani, Rome, Italy. 3University Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy. 4Department of Infectious Diseases, Ospedale Niguarda Ca’ Granda, Milano, Italy. 5Infectious Diseases Unit, Sapienza University, Polo Pontino, Latina, Italy. 6Division of Infectious Diseases, Galliera Hospital, Genova, Italy. 7Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Turin, Italy. 8Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy. 9Clinic of Infectious and Tropical Diseases, Department of Health Sciences, University of Milan, Milan, Italy

Introduction: Liver fibrosis progression is faster in HIV/HCV co-infected than in HCV mono-infected patients. We aimed at assessing the rate of progression to advanced liver fibrosis among HIV-infected patients on suppressive ART, with or without HCV co-infection, and identifying its predictors.

Methods: Patients from the ICONA cohort with known HCV-antibody (HCVAb) status and a FIB-4 ≤ 3.25 were studied from baseline (the first of two consecutive HIV RNA <50 copies/mL under ART), up to the last available FIB-4, HIV RNA rebound or anti-HCV treatment introduction, whichever occurred first. Time to development of advanced fibrosis (the first of two consecutive FIB-4 >3.25) was assessed using multivariable Cox analyses, separately conducted among HCVAb-positive and HCVAb-negative patients. The tested covariates were as follows: gender, country of birth, injecting drug use as HIV risk factor, CD4 nadir, baseline CD4, HDL cholesterol, diabetes, duration of HIV infection, HCV RNA, HCV genotype, baseline FIB-4 and first-line ART drugs.

Results: Five thousand seven hundred and seventeen patients with a median follow-up of 4 (IQR 2.2–7.4) years, contributing to 30,299 patient-years of follow-up (PYFU) were included. The median number of FIB-4 measurements was 7 per patient (IQR 4–14). Patients were predominantly males (75%), their median age was 40 years (IQR 34–46); 20% were HCVAb-positive. Median baseline FIB-4 was 1.09 (IQR 0.81–1.58) and 0.81 (IQR 0.59–1.12) among HCVAb-positive and HCVAb-negative patients, respectively (Table 1). During follow-up, 272 patients progressed to advanced fibrosis. Incidence (0.9 per 100 PYFU [95% CI 0.8–1.0]) was higher among HCVAb-positive patients with positive or unknown HCV RNA (2.94 [95% CI 2.43–3.55] or 3.10 [95% CI 2.51–3.83] per 100 PYFU) than among HCVAb-negative or HCVAb-positive HCV RNA-negative patients (0.33 [95% CI 0.26–0.41] and 0.49 [95% CI 0.19–0.32] per 100 PYFU, respectively). At multivariable analysis, in HCVAb-negative patients, higher baseline FIB-4 (per unit increase, HR 3.88, 95% CI 2.86–5.26, p <0.001) and first-line ART containing didanosine or stavudine (HR 1.65, 95% CI

Abstract P250 - Table 1. Baseline characteristics of HIV-infected patients under suppressive antiretroviral therapy, with or without HCV co-infection

<table>
<thead>
<tr>
<th>Characteristics at baseline</th>
<th>HCVAb-negative</th>
<th>HCVAb-positive</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender, n (%)</td>
<td>3449 (75.4)</td>
<td>832 (72.7)</td>
<td>0.060</td>
</tr>
<tr>
<td>Age (years), median (IQR)</td>
<td>39 (33–47)</td>
<td>40 (36–45)</td>
<td>0.005</td>
</tr>
<tr>
<td>Migrants, n (%)</td>
<td>674 (14.7)</td>
<td>53 (4.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>IDU as mode of HIV transmission</td>
<td>108 (2.4%)</td>
<td>806 (70.4%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Time since HIV infection, sum (IQR)</td>
<td>1.9 (0.7–4.9)</td>
<td>9.0 (3.7–14.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>CD4 at baseline cell/mm³, n (%)</td>
<td>276 (152–378)</td>
<td>243 (120–343)</td>
<td>0.016</td>
</tr>
<tr>
<td>Nadir CD4, cell/mm³, n (%)</td>
<td>463 (321–619)</td>
<td>442 (285–630)</td>
<td><0.001</td>
</tr>
<tr>
<td>Calendar year of baseline, median (IQR)</td>
<td>2010 (2004–2012)</td>
<td>2004 (2001–2008)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes at baseline</td>
<td>176 (3.8%)</td>
<td>53 (4.6%)</td>
<td>0.226</td>
</tr>
<tr>
<td>HDL cholesterol, mg/dL</td>
<td>44 (37–53)</td>
<td>44 (36–55)</td>
<td>0.502</td>
</tr>
<tr>
<td>NVP-based first line</td>
<td>217 (4.7%)</td>
<td>79 (6.9%)</td>
<td>0.030</td>
</tr>
<tr>
<td>PI/r-based first line</td>
<td>1831 (40.0%)</td>
<td>267 (23.3%)</td>
<td><0.001</td>
</tr>
<tr>
<td>ddI/d4t-containing first line</td>
<td>509 (11.1%)</td>
<td>261 (22.8%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
P251
Hepatitis C can be cured for less than $100 per person: analysis of drug exports from India

Andrew Hill1; Dzintars Gotham2; Melissa Barber2; Anton Pozniak3 and Joseph Fortunak4
1St Stephen’s AIDS Trust, Chelsea and Westminster Hospital, London, UK. 2Faculty of Medicine, Imperial College London, London, UK. 3Centre of Development Studies, Cambridge University, Cambridge, UK. 4Chemistry and Pharmaceutical Sciences, Howard University, Washington, DC, USA

Introduction: Novel direct-acting antivirals (DAAs) for chronic hepatitis C virus (HCV) achieve sustained virologic response (SVR) rates of >90%. Current high prices limit global access to DAAs. While Gilead (originator company of sofosbuvir) offers voluntary anti-HCV therapy to patients on current antivirals (DAAs) depends on host and viral factors. This observational, retrospective and non-interventional study collects data from viral geno/subtypes (GTs), DAA-resistance-associated mutations (RAMs) in the NS3/protease, NS5A and NS5B genes, to predict clinical outcome of HCV therapy of direct-acting antivirals (DAAs) to predict clinical outcome of HCV therapy of direct-acting antivirals (DAAs)

Materials and methods: Data were extracted from an online database of Indian export ledgers for per-kilogram prices and volumes of DAA APIs exported from India over January to June 2016. Average API costs were calculated for June 1, using linear regression models, weighted by individual export size. Costs of per-pill API production requirements were combined with estimated costs for formulation and excipients ($0.04/pill), packaging ($0.35/month). Finally, a profit margin of 50% was added to estimate a price at which generic producers could profitably enter the market. Current US and Indian prices were collected, for comparison, from multiple databases.

Results: Export volumes from India in January–June 2016 were as follows: sofosbuvir 10,200 kg, (equivalent to 303,000 12-week treatment courses), daclatasvir 5443 kg (1,080,000 courses), ledipasvir 240 kg (32,000 courses). API prices decreased throughout the time frame. Mean API prices on 1 June 2016 were: sofosbuvir $1094/kg, daclatasvir $998/kg, ledipasvir $2441/kg. API cost for velpatasvir was estimated at $8900–11,700/kg. US prices were 1355 times higher than the target price for sofosbuvir, 4500 times higher for daclatasvir, 984 times higher for sofosbuvir + ledipasvir and 346–413 times higher for sofosbuvir + velpatasvir (Table 1).

Conclusions: HCV DAAs production costs are falling rapidly. Twelve-week treatments of sofosbuvir can be manufactured for $62, sofosbuvir + ledipasvir $96, daclatasvir $14, sofosbuvir + velpatasvir $181–216. These target prices all include a 50% profit margin for generic suppliers. These estimated generic prices for DAAs are comparable to those that have allowed massive treatment scale-up in HIV/AIDS.

Abstract P251—Table 1. Calculated target prices and current prices for 12-week DAA treatment courses:

<table>
<thead>
<tr>
<th>Drug</th>
<th>June 2016 API cost/kg (USD)</th>
<th>Target price per 12-week treatment</th>
<th>Current global lowest price per 12-week treatment</th>
<th>Current US price per 12-week treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sofosbuvir (SOF)</td>
<td>$1094</td>
<td>$62</td>
<td>$324</td>
<td>$49,860–84,000</td>
</tr>
<tr>
<td>Daclatasvir</td>
<td>$998</td>
<td>$14</td>
<td>$153</td>
<td>$50,653–63,000</td>
</tr>
<tr>
<td>Ledipasvir (LDV)</td>
<td>$2441</td>
<td>$34</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>SOF+LDV</td>
<td>N/A</td>
<td>$96</td>
<td>$507</td>
<td>$56,700–94,500</td>
</tr>
<tr>
<td>Velpatasvir (VEL)</td>
<td>$8900–11,700</td>
<td>$119–154</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>SOF+VEL</td>
<td>N/A</td>
<td>$181–216</td>
<td>unknown</td>
<td>$74,760</td>
</tr>
</tbody>
</table>
using the geno2pheno (HCV) tool. The current geno2pheno version interprets resistance according to viral GT background.

Materials and methods: Baseline NS3/protease, NS5A and NS5B sequences were obtained. Subtyping and presence of RAMs against asunaprevir (ASV), boceprevir (BOC), grazoprevir (GZV), paritaprevir (PTV), simeprevir (SMV), telaprevir (TVR), daclatasvir (DCV), elbasvir (EBR), ledipasvir (LDV), ombitasvir (OBV), dasabuvir (DSV) and sofosbuvir (SOF) were determined by sequencing (either Sanger or NGS) and subsequent interpretation with geno2pheno (HCV) (www.hcv.bioinf.mpi-inf.mpg.de/).

Results: One thousand five hundred and seventy HCV-infected patients from the PEPSI project have been enrolled until June 2016. We obtained 1024 NS5B sequences, which were used for genotyping. The most prevalent GTs were as follows: GT1a = 39.1%; GT1b = 34.2%; GT3a = 16.6%; GT4d = 4.6%. Baseline treatment susceptibility was analysed. 595 NS3/protease sequences were obtained and used for protease-inhibitors resistance prediction (Figure 1). Baseline resistance was found: ASV = 2.8%; BOC = 3.4%; GZV = 16.5%; PTV = 2.0%; SMV = 21.8%; TVR = 3.4%. For ASV, 22.0% of the samples were predicted as possibly resistant. NS5A: the susceptibility of 402 sequences was analyzed. The percentage of resistant samples was similar for all four NS5A inhibitors, 10.2%–11.6%. NS5B: the sequence sets used for the analysis of each of the NS5B inhibitors varied, since the described RAM patterns for each drug comprise different amino acid residues. While 14.2% of the 502 sequences used for DSV screening were reported as resistant, none of the 912 samples were tested for HCVAb at least once over follow-up. People were defined HCVAb+ if they were ever tested positive. Individuals who seroconverted for HCV, spontaneously reverted to HCV negative, cured or HBV co-infected patients were excluded. Exposure factors were calculated at the date of starting cART apart from the number of ART lines ever used which was calculated at the date of last visit. Total ART lines used were calculated first counting all switches and, in three other analyses, counting only switches that occurred for a given time in care.

Introduction: Despite a common perception that ART leads to more drug discontinuations in HIV/HCV co-infected patients, especially for certain compounds, as compared to HIV mono-infected, it remains unclear whether co-infection leads to higher frequency of treatment changes for a given time in care.

Methods: We performed a cross-sectional analysis within the Icona Foundation study cohort including all patients who started cART and were tested for HCVAb at least once over follow-up. People were defined HCVAb+ if they were ever tested positive. Individuals who seroconverted for HCV, spontaneously reverted to HCV negative, cured or HBV co-infected patients were excluded. Exposure factors were calculated at the date of starting cART apart from the number of ART lines ever used which was calculated at the date of last visit. Total ART lines used were calculated first counting all switches and, in three other analyses, counting only switches that occurred for a specific reason as reported by the physician: (1) treatment failure (virological/immunological failure); (2) change due to toxicity/intolerance; and (3) change due to ART simplification. Univariable and multivariable analyses logistic regression models were performed. Potential confounders used in the multivariable model are listed in the footnote of Table 1.

Results: We enrolled 8188 patients: 1626 HCVAb+, 6562 HCVAb−. At the date of starting cART, HCVAb+ patients were younger (median (IQR) 37 [33–42] vs. 38 [31–46]; p < 0.001); more frequently Italian (95.5% vs. 83%; p < 0.001), IDU (79.4% vs. 2.4%; p < 0.001), smokers (32% vs. 29%; p < 0.001) and alcohol abusers (7% vs. 6%; p < 0.001); they had lower CD4+ nadir (HCVAb+ with <350 CD4+/µL, 69% vs. 62%; p < 0.001). Overall, in HCVAb+ subjects, a significantly higher proportion of HCVAb+ patients had a history of >3 ART lines (31% vs. 19%; p < 0.001). Results were similar when counting only changes due to failure (4% vs. 3%,
Abstract P253—Table 1. Odds ratios from fitting a logistic regression model

<table>
<thead>
<tr>
<th>No. of ARV lines previously used</th>
<th>n = 1626 HCVAb+ n</th>
<th>n = 6562 HCVAb – n</th>
<th>All switches (n = 8188)</th>
<th>Unadjusted OR (95% CI)</th>
<th>Adjusted* OR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per additional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1</td>
<td>566 (35%)</td>
<td>2745 (42%)</td>
<td>1.07 (1.03–1.12)</td>
<td><0.001</td>
<td>1.01 (0.93–1.10)</td>
<td>0.82</td>
</tr>
<tr>
<td>2–3</td>
<td>560 (34%)</td>
<td>2541 (39%)</td>
<td>1.07 (0.94–1.21)</td>
<td>0.06</td>
<td>0.31 (0.23–0.44)</td>
<td>0.09</td>
</tr>
<tr>
<td>>3</td>
<td>500 (31%)</td>
<td>1276 (19%)</td>
<td>1.90 (1.65–2.16)</td>
<td><0.001</td>
<td>1.77 (1.60–1.96)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Only switches due to treatment failure (n = 755)

Per additional	204 (128%)	551 (132%)	1.07 (1.03–1.12)	<0.001	0.95 (0.87–1.04)	0.27
None	1422 (87%)	6011 (92%)	1.00	1.0		
1 ARV	59 (4%)	141 (2%)	1.77 (1.30–2.41)	<0.001	0.94 (0.53–1.66)	0.82
2–3 ARV	75 (5%)	228 (3%)	1.39 (1.06–1.82)	0.02	0.79 (0.47–1.33)	0.38
>3 ARV	70 (4%)	182 (3%)	1.62 (1.23–2.16)	<0.001	0.81 (0.46–1.45)	0.49

Only switches due to toxicity/intolerance (n = 1471)

Per additional	391 (24%)	1080 (26%)	1.10 (1.06–1.13)	<0.001	1.01 (0.95–1.08)	0.80
None	1235 (76%)	5482 (84%)	1.00	1.0		
1 ARV	91 (6%)	213 (3%)	1.90 (1.47–2.44)	<0.001	1.28 (0.78–2.08)	0.33
2–3 ARV	165 (10%)	550 (8%)	1.33 (1.11–1.60)	0.002	1.38 (0.99–1.93)	0.06
>3 ARV	135 (8%)	317 (5%)	1.89 (1.53–2.33)	<0.001	0.98 (0.62–1.57)	0.96

Only switches due to simplification (n = 1292)

Per additional	1474 (90%)	5422 (83%)	0.89 (0.84–0.93)	<0.001	0.86 (0.80–0.94)	0.001
None	1474 (90%)	5422 (83%)	1.00	1.0		
1 ARV	9 (0.5%)	126 (2%)	0.26 (0.13–0.52)	<0.001	0.21 (0.07–0.59)	0.003
2–3 ARV	84 (5%)	728 (11%)	0.42 (0.34–0.54)	<0.001	0.74 (0.49–1.12)	0.16
>3 ARV	59 (4%)	284 (4%)	0.76 (0.57–1.01)	0.06	0.48 (0.27–0.82)	0.007

*Adjusted for age, CD4+ , HIV RNA, mode of HIV transmission, gender, nationality, smoking, alcohol consumption, calendar year, follow-up duration and previous use of individual drugs.

p < 0.001 and toxicity/intolerance (8% vs. 5%, p < 0.001). After controlling for potential confounders, especially after adding lifestyle factors, these differences were attenuated and, for the analysis counting switches due to simplification, there was an inverted trend (Table 1).

Conclusions: Overall, HCVAb + individuals were more likely to be exposed to multiple lines than HIV mono-infected while in care, especially when comparing people who used at least three ART lines. This difference was most likely driven by toxicity and treatment failure. In contrast, HCVAb – showed a cumulative lower risk to change ART because of simplification, reflecting the tendency of clinicians to maintain an already suppressive regimen in this population.

P254

Rapid decline of anti-HCV antibodies following treatment of incident HCV infection in HIV-infected MSM in the Swiss HIV Cohort Study (SHCS)

Karoline Aebi-Popp1; Gilles Wandeler2; Luisa Salazar-Vizcaya2; Jan Fehr3; Marcel Stoockle3; Matthias Hoffmann3; Franziska Suter-Riniker3; Alexander Luethi3; Alexander Calmy3; Matthias Cavassini3; Enos Bernasconi9 and Andri Rauch1

1Infectious Diseases, University Hospital Bern, Bern, Switzerland. 2Infectious Diseases, University Hospital Zuerich, Zuerich, Switzerland. 3Infectious Diseases, University Hospital Basel, Basel, Switzerland. 4Infectious Diseases, Cantonal Hospital St. Gallen, St. Gallen, Switzerland. 5Institute for Infectious Diseases, University of Bern, Bern, Switzerland. 6Infectious Diseases, University Hospital Geneva, Geneva, Switzerland. 7Infectious Diseases, University Hospital Lausanne, Lausanne, Switzerland. 8Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland

Introduction: Following clearance of hepatitis C virus (HCV) infection, HCV antibody titres (anti-HCV) may decline resulting in seroreversion. However, it is unclear whether changes in antibody levels differ between patients with spontaneous HCV clearance and those treated during early or chronic HCV infection.

Material and methods: We compared anti-HCV dynamics following an incident HCV infection after HIV diagnosis in 67 HIV-seropositive men who have sex with men (MSM) grouped by different clinical outcomes: 22 patients not treated for HCV infection (untreated), 12 with spontaneous HCV clearance and 33 with treatment-induced sustained virological response (SVR) (median time from diagnosis to treatment 3.2 months). Anti-HCV antibody levels were measured at baseline and annually for 3 years thereafter using a commercial ELISA kit (ARCHITECT, Abbott Laboratories). Results were compared to 12 SHCS participants with chronic HCV infection acquired before HIV diagnosis and subsequent SVR (chronic HCV infection). We compared the relative change (%) in antibody levels between patient groups by
estimating: (1) the maximum drop over the study period and (2) rates of decline per year over time. Re-infections were assessed by repeated HCV RNA measurements in all participants.

Results: MSM with SVR following treatment of incident HCV infections showed a more pronounced decrease in anti-HCV levels within the first 3 years after treatment (median decline 71%) compared to patients with spontaneous clearance (median decline 37.6%, \(p < 0.001 \), Figure 1a). Antibody titres remained stable in untreated patients and in those treated during chronic HCV infection. There was no association between antibody decline and HCV genotype, IL28B, CD4+ T cell count and HIV viral load. Five of 33 (15%) with SVR and 1/12 (8%) subjects with spontaneous clearance seroreverted during follow-up. Nine (20%) subjects experienced a re-infection during follow-up; anti-HCV levels increased above the level of primary infection at time of re-infection. Figure 1b shows the estimated trajectories for the relative change in antibody levels. Patients with an SVR following an incident HCV infection experienced the fastest decline (rate (IQR) \(-0.47 \) (\(-0.18 \) to \(-0.85 \))), followed by spontaneous clearers (\(-0.15 \) (\(-0.06 \) to \(-0.27 \)) and patients with an SVR due to HCV treatment during chronic HCV infection (\(+0.05 \) (\(-0.05 \) to \(0.13 \))).

The origin was diagnosis of incident HCV infection for patients in the "untreated" and "spontaneous clearance" categories and HCV

![Figure 1. Maximum and relative change in antibody titre (%) by clinical outcome category.](http://www.jiasociety.org/index.php/jias/article/view/21487)
treatment start for patients in the “treated with SVR” and “treated during chronic infection” categories. The light grey dots indicate seroreversions

Conclusions: Treatment-induced HCV clearance of incident infection was associated with the greatest decline in anti-HCV antibody levels and with highest rates of seroreversions among HIV-seropositive MSM. These results suggest that fast clearance of HCV RNA following treatment of incident HCV infection might lead to a limited viral antigen stimulation required for a persistent antibody response.

P255

Effectiveness of hepatitis A vaccination in HIV-positive men who have sex with men during an ongoing hepatitis A outbreak in Taiwan

Kuan-fen Lin1; Pei-Ying Wu2; Wen-Chun Liu1; Hsin-Yun Sun1; Yi-Chun Lo3; Shu-Min Hsieh4; Wang-Huei Sheng1; Yu-Chung Chuang1; Guan-thou Chen1; Chien-Ching Hung1 and Shan-Chwen Chang5

1Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. 2Center of Infection Control, National Taiwan University Hospital, Taipei, Taiwan

Introduction: An ongoing outbreak of acute hepatitis A virus (HAV) infection has been occurring among men who have sex with men (MSM) in Taiwan since June 2015, with more than 400 cases reported to the Taiwan CDC as of June 2016. This study aimed to evaluate the effectiveness of HAV vaccination in HIV-positive patients in an outbreak setting.

Materials and methods: In light of an ongoing outbreak of acute HAV infection among MSM, we prospectively performed a seroepidemiologic survey of HAV in HIV-positive patients during June 2015 to June 2016. The HAV-seronegative patients were offered HAV vaccine. The serologic outcomes were assessed after the first and last doses of HAV vaccine. The clinical outcome was acute HAV infection.

Results: During the 1-year study period, 1237 HAV-seronegative patients with 94.7% being MSM and a median CD4 count of 567 cells/mm3 (range 4–2342 cells/mm3) were included for analysis. Before 30 June 2016, 728 patients (58.9%) had received at least one dose of HAV vaccine, and 100 (8.1%) had completed the two-dose vaccine series. Compared with non-vaccinated patients, the vaccinated patients were older (mean age, 35.5 years vs. 34.0 years), less likely to be anti-hepatitis C-positive (5.5% vs. 10.8%) and more likely to be anti-hepatitis B-positive (27.8% vs. 24.1%). The seroconversion rate increased to 95.5%. The factors associated with the greatest decline in anti-HCV antibody levels and with highest rates of seroreversions among HIV-seropositive MSM. These results suggest that fast clearance of HCV RNA following treatment of incident HCV infection might lead to a limited viral antigen stimulation required for a persistent antibody response.

P256

High sustained virological response rates using imported generic direct-acting antiviral treatment for hepatitis C, imported into Australia, UK, Europe and North America

Andrew Hill1; Anna Savage2; Greg Jeffreys3; Richard Salls4; Adam Kennedy5; Pham Thi Ngoc Nieu6; John Freeman7 and James Freeman8

1St. Stephen’s AIDS Trust, Chelsea and Westminster Hospital, London, UK. 2Faculty of Medicine, Imperial College London, London, UK. 3University of Tasmania, Hobart, Australia. 4Hepatology, Nedlands Medical Centre, Perth, Australia. 5Kingswood, Pharmacy, Kingswood, Australia. 6FixHepC, GP2U Telehealth, Hobot, Australia. 7Nephrology, Sandy Bay Medical, Sandy Bay, Australia

Introduction: High prices of direct-acting antivirals (DAAs) can prevent access to treatment. Generic versions of sofosbuvir (SOF) are being mass produced for prices under 1% of the current U.S. retail price. Under UK and Australian law, individual patients have the legal right to import 3 months of treatment for hepatitis C virus (HCV), for their personal use. This analysis assessed the efficacy and safety of generic DAAs legally imported into countries where treatment access is limited.

Methods: SOF, ledipasvir (LDV) and daclatasvir (DCV) were imported from generic companies into Europe, Australia and North America. Selection of DAAs and treatment duration depended on baseline HCV genotype and fibrosis stage. Initial generic supplies were evaluated using high precision liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) to evaluate presence of active drug. Patients taking generic DAAs were evaluated pretreatment, and at weeks 2, 4, 12 and then for SVR4 and 12. Adverse events were recorded. This analysis includes data from 448 patients, whose imported treatment was organized from the FixHepC website.

Results: Of the 448 patients treated, 237 received SOF/LDV, 208 SOF/DCV and 3 SOF/RBV. By HPLC and NMR, all imported drugs passed quality control standards for active DAA drugs. Overall, the patients were 57% male with a mean age of 55 years; 66% were genotype 1, 25% genotype 3 and mean baseline HCV RNA was 6.5 log10 IU/mL. Based on currently available data, the percentage with HCV RNA <LLOQ was 196/223 (90.4%) at end of treatment (EOT), 192/211 (91%) at SVR4 and 130/144 (90%) at SVR12. Summary baseline and outcome data from the patients given SOF/LDV or SOF/DCV are shown in Table 1.

Conclusions: In this analysis, treatment with legally imported generic DAAs achieved SVR4 rates of 93% on SOF/LDV and 89% on SOF/DCV. These SVR rates are comparable to those seen in phase III trials of the same, but more expensive, branded treatments. Mass treatment with legally imported generic DAAs is a feasible, low-cost option where high prices prevent access to branded treatment.

Table 1. HCV RNA undetectability rates for generic DAAs

<table>
<thead>
<tr>
<th>HCV RNA</th>
<th>SOF/LDV</th>
<th>SOF/DCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 237</td>
<td>N = 208</td>
<td></td>
</tr>
<tr>
<td>Treatment naive (%)</td>
<td>121/237 (52)</td>
<td>130/208 (63)</td>
</tr>
<tr>
<td>Cirrhosis (%)</td>
<td>52/237 (23)</td>
<td>79/208 (38)</td>
</tr>
<tr>
<td>Genotype 1 (%)</td>
<td>215/237 (91)</td>
<td>80/208 (39)</td>
</tr>
<tr>
<td>HCV RNA < 25 IU/mL</td>
<td>180/182 (99)</td>
<td>171/173 (99)</td>
</tr>
<tr>
<td>Week 12/EOT (%)</td>
<td>104/112 (93)</td>
<td>85/96 (89)</td>
</tr>
</tbody>
</table>
P257
Long-term virologic and serologic response of chronic hepatitis B virus infection to tenofovir disoproxil fumarate-containing regimens in HIV-positive patients
Yu-Shan Huang1; Yi-Ching Su2; Wen-Chun Liu3; Sui-Yuan Chang4; Fang-Huei Sheng5; Hsin-Yun Sun6; Szu-Min Hsieh1; Yu-Cheng Chuang4; Chien-Ching Hung2 and Shan-Chwen Chang2
1School of Medicine, National Taiwan University Hospital, Taipei, Taiwan. 2Division of Hepatology and Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan. 3Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan. 4Division of Infectious Diseases, University of California, San Diego, CA, USA. 5Department of Medicine, Icahn School of Medicine, James P. Biers VA Medical Center, New York, NY, USA. 6Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA. 7Viral Hepatitis Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. 8Institute of Liver Studies, King’s College Hospital, London, UK. 9Division of Gastroenterology.

Introduction: Tenofovir disoproxil fumarate (TDF) combined with lamivudine (LAM) or emtricitabine are the recommended nucleos(t)ide reverse-transcriptase inhibitors backbone for patients co-infected with HIV and hepatitis B virus (HBV). TDF leads to rapid decline of HBV DNA. However, data regarding the durability of HBV suppression of TDF-containing cART in HIV/HBV co-infected patients are scarce in hyperendemic area of chronic HBV infection. This study aimed to assess the long-term virologic response of HBV to TDF-containing cART in HIV-positive patients in Taiwan where the prevalence of chronic HBV infection was estimated 15–20% in persons born before nationwide neonatal HBV vaccination programme was implemented in 1986.

Methods: Between 2004 and 2016, 186 HIV/HBV co-infected patients with baseline HBV DNA >1000 copies/mL were included and followed for 5 years or longer. Serial blood samples were collected for determinations of plasma HBV DNA load, HBV serologic markers (HBsAg, anti-HBs, HBeAg, and anti-HBe) and liver and renal functions after initiation of cART with or without TDF. Factors associated with undetectable HBV DNA at 5 years of treatment were explored by logistic regression.

Results: Of 186 HIV/HBV co-infected patients included, 53 received cART which contained LAM as the only therapy for HBV, 58 switched to TDF-containing cART after detection of resistance-associated mutations of HBV to LAM (n = 40) or an elevation of HBV DNA load (n = 18) and 75 received TDF-containing cART as initial anti-HBV therapy. The percentages of HBV viral suppression at year 1 and year 5 were 64% and 73.7%, respectively, in patients receiving LAM monotherapy for HBV, 76.4% and 89.7%, respectively, in patients switching to TDF-containing cART, and 86.1% and 100%, respectively, in patients receiving TDF-containing regimens as their first cART. In multivariate analysis, the only factor associated with failure to achieve viral suppression at 5 years was higher HBV DNA load at baseline (adjusted odds ratio (AOR), per 1 – log10 copies/mL increase, 1.72; 95% CI 1.094–2.711, p = 0.019). TDF exposure was of borderline statistical significance (AOR 1.83; 95% CI 0.988–3.39, p = 0.076) in the analysis. During study period, 10 of 46 patients (21.7%) with baseline HBsAg positivity had HBeAg seroconversion and loss of HBsAg was observed in four patients (2.2%).

Conclusions: TDF-containing cART achieved durable HV viral suppression in HIV/HBV co-infected patients. A higher HBV DNA load at baseline was associated with failure to achieve HBV viral suppression after long-term TDF-containing cART.
P260

HIV/hepatitis C co-infected patients are significantly more complex to manage than HIV mono-infected patients in a large cohort of treatment-naïve, HIV-positive individuals

Douglas Dieterich1; Jennifer Fusco3; Cassidy Henegar3; Ronald D’Amico3; Kathy Schulman; Susan Zeil1 and Philip Lackey5

Introduction: Twelve-week therapy with the single-tablet regimen (STR) of sofosbuvir/velpatasvir (SOF/VEL) has demonstrated high efficacy in genotypes 1 to 6 HCV mono-infected patients. Astral-5 clinical trial completed the phase 3 program with the analysis of 12-week SOF/VEL regimen in HIV/HCV co-infected individuals. Previous SOF-based combinations showed a comparable safety and efficacy profile in both HCV mono-infected and HCV/HIV co-infected individuals. In order to confirm these data also for SOF/VEL, we compared data obtained in Astral-5 trial with safety and efficacy results of HCV mono-infected individuals produced by Astral 1, 2 and 3.

Methods: Astral-5 study enrolled treatment-naïve and -experienced HCV/HIV co-infected patients of all HCV genotypes, with or without cirrhosis. Patients who were on stable ARV regimens with fully suppressed HCV RNA received SOF/VEL (400 mg/100 mg daily) for 12 weeks. Patients were on a wide range of ARV regimens including emtricitabine/tenofovir disoproxil fumarate or abacavir/lamivudine with a backbone of raltegravir, cobicistat/elvitegravir, rilpivirine, ritonavir-boosted atazanavir, darunavir or lopinavir. Astral 1, 2 and 3 phase 3 trials enrolled treatment-naïve and treatment-experienced genotype 1 to 6 HCV-infected patients, with and without cirrhosis, no limit of BMI and no limit of age. Patients received SOF/VEL for 12 weeks.

Results: A total of 106 HCV/HIV co-infected patients were enrolled and treated with SOF/VEL for 12 weeks. Overall 86% were male, 45% were black, 77% had IL28B non-CC genotype, 29% had prior treatment failure (primarily pegIFN/RBV) and 16% had compensated cirrhosis. The genotype distribution in HIV/HCV patients was 62% GT1a, 11% GT1b, 10% GT2, 11% GT3 and 5% GT4. The median baseline CD4 count was 548 cells/µL (range 183–1513 cells/µL) with a median estimated glomerular filtration rate of 97 mL/min (range 57–198 mL/min). Boosted protease inhibitor regimens were the most commonly used regimen (47%). No patient experienced confirmed HIV virologic rebound (HIV-1 RNA ≥400 copies/mL). A total of 1035 HCV mono-infected individuals were treated with a 12-week SOF/VEL regimen in Astral 1, 2 and 3 trials. Cirrhotic patients represented the 21% (n = 220) of the total population, and 291 patients (28%) failed a previous anti-HCV treatment. The genotype distribution was 20% GT1a, 12% GT1b, 23% GT2, 27% GT3, 11% GT4, 3% GT5 and 4% GT6. IL28B non-CC genotype was present in 77% of the patients. Efficacy and safety outcomes of mono- and co-infected patients, including complete SVR12, HIV parameters and the impact of HCV resistance variants on outcome will be presented.
EGYPT. The choice of DAAs and the length of treatment were determined based on baseline HCV genotype and stage of fibrosis. Patients taking generic DAAs were evaluated pretreatment, and at week 4 (rapid virological response – RVR), Week 12 or end of treatment (EOT), and then for sustained virologic response (SVR) 4, 12 and 24. This analysis includes available data from 179 patients being monitored in infectious disease and state university hospitals throughout Russia, Belarus, Ukraine, Spain, Colombia, Israel and Estonia. Patients are monitored by state university hospitals, private doctors, infectious disease hospitals, local AIDS centres and online patient Facebook groups such as the Gepatitka group.

Results: Of the 179 patients treated, 42 received SOF/LDV, 136 SOF/DCV and 1 patient received SOF/RBV. The backbone of their generic DAA treatment, SOF, was mainly from Indian generic companies: Hetero (54%), Natco (13%), Mylan (8%) and Zydis (7%). Overall, the patients were 57% male with a mean age of 36.5 years; 40% were genotype 1, and mean baseline HCV RNA was 6.34 log_{10} IU/mL. A RVR was observed in 70% (26/37) of the patients treated with SOF/DCV, 82% (9/11) of the patients treated with SOF/LDV. Based on currently available data, the percentage with HCV RNA < LLOQ was 93% (37/40) at EOT and 16/16 (100%) at SVR 4. EOT responses were similar for patients treated with SOF/LDV (92%) and SOF/DCV (93%).

Conclusions: In this analysis, treatment with legally imported generic DAAs achieved high rates of HCV RNA undetectability at EOT, and SVR in all 16 patients evaluated so far. Mass treatment with the current generic DAAs is a feasible and economical alternative route of accessing curative DAAs, where the high prices for branded DAAs prevent access to treatment.

P262
High sustained virologic response rates using generic direct-acting antiviral treatment for hepatitis C, imported into Africa
Giten Khwairakpam 1
1Faculty of Medicine, Imperial College London, London, UK.

Introduction: Global elimination of hepatitis C virus (HCV) would be feasible only if prices of direct-acting antivirals (DAAs) are affordable for mass treatment programs. Several countries in Southeast Asia are not included in voluntary license agreements, and prices of DAAs in Southeast Asia are high. An increasing number of individuals in Southeast Asia are treating their HCV infection with generic drugs produced in India. This analysis assessed the efficacy of generic DAAs imported into Southeast Asia.

Methods: Generic versions of sofosbuvir (SOF), ledipasvir (LDV) and daclatasvir (DCV) were sourced from generic suppliers in India. The choice of DAAs and the length of treatment were determined based on baseline HCV genotype and stage of fibrosis. Patients taking generic DAAs were evaluated pretreatment, and at weeks 4 and 12 during treatment and then for sustained virologic response (SVR) 4, 12 and 24. This analysis includes available data from 62 patients being monitored in regional medical institutes and national university hospitals throughout Singapore, Vietnam, Thailand, Indonesia and India.

Results: Of the 62 patients treated, 22 received SOF/LDV, 15 SOF/DCV and 25 SOF/RBV. The backbone of combination DAA therapy, SOF, was predominantly from Indian generic companies: Cipla (40%), Zydis (21%), Hetero (13%), Natco (8%) and Mylan (8%). Overall, the patients were 87% male with a mean age of 46 years; 59% were genotype 1, and mean baseline HCV RNA was 6.6 log_{10} IU/mL. Based on baseline HCV genotype and stage of fibrosis. Patients taking generic DAAs were evaluated pretreatment, and at week 4 (rapid virological response – RVR), Week 12 or end of treatment (EOT), and then for sustained virologic response (SVR) 4, 12 and 24. This analysis includes available data from 179 patients being monitored in infectious disease and state university hospitals throughout Russia, Belarus, Ukraine, Spain, Colombia, Israel and Estonia. Patients are monitored by state university hospitals, private doctors, infectious disease hospitals, local AIDS centres and online patient Facebook groups such as the Gepatitka group.

Results: Of the 179 patients treated, 42 received SOF/LDV, 136 SOF/DCV and 1 patient received SOF/RBV. The backbone of their generic DAA treatment, SOF, was mainly from Indian generic companies: Hetero (54%), Natco (13%), Mylan (8%) and Zydis (7%). Overall, the patients were 57% male with a mean age of 36.5 years; 40% were genotype 1, and mean baseline HCV RNA was 6.34 log_{10} IU/mL. A RVR was observed in 70% (26/37) of the patients treated with SOF/DCV, 82% (9/11) of the patients treated with SOF/LDV. Based on currently available data, the percentage with HCV RNA < LLOQ was 93% (37/40) at EOT and 16/16 (100%) at SVR 4. EOT responses were similar for patients treated with SOF/LDV (92%) and SOF/DCV (93%).

Conclusions: In this analysis, treatment with legally imported generic DAAs achieved high rates of HCV RNA undetectability at EOT, and SVR in all 16 patients evaluated so far. Mass treatment with the current generic DAAs is a feasible and economical alternative route of accessing curative DAAs, where the high prices for branded DAAs prevent access to treatment.
ART-induced toxicity. One way to evaluate this hypothesis is to compare the risk of alanine aminotransferase (ALT) elevation associated with the use of ART in HIV mono-infected versus HIV/HCV co-infected populations.

Materials and methods: We selected individuals in the ICONA Foundation study cohort with at least one ALT measurement and known current HCV status. We designed a case-control analysis nested in the cohort. Cases were defined as individuals who showed liver enzyme elevation (LEE) > 5 x upper limit normal at their last clinical observation; controls were participants who showed normal liver enzyme levels over the same calendar time after enrolment in the cohort. Controls were matched by a predefined set of potential confounders: age (< 20, 21–25 and 26–30 to > 65), CD4 count cells/mm³ (< 350, 351–500 and > 501), HIV RNA viral load copies/mL (<1000 and 1001–5000 to >100,000) and mode of HIV transmission. A conditional logistic regression model was used to evaluate the associations between ART exposure and risk of LEE in a univariable model adjusted for matching factors and after further controlling for gender, nationality, alcohol use, smoking status and calendar year of enrolment. Interaction between HIV/HCV co-infection status and ART exposure were also formally assessed.

Results: We included 2061 (n = 687 cases) individuals of whom 70% were males with median calendar year of last clinical visit in 2014 (IQR 2007–2015). Median age was 35 (IQR 31–40) and CD4 count was 386 (IQR 188–586), matched in cases and controls. Proportion of HIV/HCV co-infected individuals was higher in cases than controls 39 and 29%, respectively (p < 0.001). Proportion of ART use was higher in cases than controls 79 and 72%, respectively (p < 0.001). In the model without interaction, ART use was associated with an increased risk of LEE (adjusted odds ratio 1.87 [95% CI 1.38–2.52; p < 0.001]) independently of all factors shown in footnote of Table 1. In the multivariable model, the association between ART use and risk of LEE was 2.37 [95% CI 1.36–4.12] in HIV/HCV co-infected individuals and 1.84 [95% CI 1.24–2.73] in HIV mono-infected (p = 0.60).

Conclusions: Using a nested case-control study approach, we found no evidence that ART use has a synergistic effect with HIV/HCV co-infection on the risk of ALT elevation. These results are consistent with those obtained in other studies including those of a previous analysis of this cohort.

P264

Long-term trends in HCV treatment uptake, efficacy and liver disease in the SHCS

Charles Baguelin1; Annatina Sutter1; Enos Bernasconi1; Dominique Braun2; Helen Kovari3; Heiner Bucher4; Marcel Stoelckle5; Mathias Cavassini6; Mathieu Rougemont7; Patrick Schmid8 and Andri Rauch1

1Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland. 2Division of Infectious Diseases, Regional Hospital Lugano, Lugano, Switzerland. 3Division of Infectious Diseases, University Hospital Zurich, Zürich, Switzerland. 4Institute for Clinical Epidemiology & Biostatistics, University Hospital Basel, Basel, Switzerland. 5Department of Infectious Diseases, University Hospital Basel, Basel, Switzerland. 6Division of Infectious Diseases, University Hospital Lausanne, Lausanne, Switzerland. 7Division of Infectious Diseases, University Hospital Geneva, Geneva, Switzerland. 8Division of Infectious Diseases, Cantonal Hospital St. Gallen, St. Gallen, Switzerland

Introduction: Interferon-free hepatitis C virus (HCV) therapies with second-generation direct-acting antiviral agents (DAAs) are highly effective and well tolerated. For that reason they have the potential to substantially increase treatment eligibility and efficacy in HIV-infected patients. We assessed the impact of DAAs on treatment uptake, efficacy as well as its impact on liver disease burden in the Swiss HIV Cohort Study (SHCS).

Materials and methods: We prospectively collected data on all SHCS participants who started HCV therapy since January 2009. HCV treatment uptake and efficacy as well as the stage of liver fibrosis was compared between three different time periods: period 1, January 2009 to August 2011 (prior to the availability of DAAs); period 2, September 2011 to March 2014 (first-generation DAAs); period 3, April 2014 to December 2015 (second-generation DAAs).

Results: Treatment uptake (4.5/100 patient years [py], 5.7/100 py and 22.4/100 py) and efficacy ([SVR 12]; 54%, 70% and 90%) continuously increased through the different periods (Figure 1). Treatment uptake increased across all HCV genotypes in period 3. At the beginning of the third period, 876 SHCS participants had a chronic HCV infection and of those, 186 started HCV therapy with a second-generation DAA. Eighty-eight of 98 patients who reached the end of follow-up, and from whom complete data were already available, achieved an SVR: three patients died (two of liver decompensation and one of sepsis), four had viral relapses (three SOF/RBV and one SOF/LDV), one had a virologic breakthrough (SOF/RBV) and two were lost to follow-up. The majority of treated patients were Caucasian (95%) male (77%) PWIDs (59%) on ART (96%) with advanced liver fibrosis (69% with F4). Patients treated for HCV-genotype 1 during period 3 had significantly higher liver fibrosis stages (44/61, 72% with F4) than those treated during period 2 (21/58, 36% with F4). The proportion of SHCS patients remaining to be treated with liver cirrhosis declined during the last two periods from 18% to 10%.

Abstract P263

Table 1. Multivariable conditional logistic regression models for ALT elevation

<table>
<thead>
<tr>
<th></th>
<th>Elevated ALT N = 687 (%)</th>
<th>No elevated ALT N = 1374 (%)</th>
<th>Total N = 2061 (%)</th>
<th>Unadjusted OR (95% CI); p</th>
<th>Adjusted OR (95% CI); p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV status (time-dependent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV negative</td>
<td>418 (60.8)</td>
<td>971 (70.7)</td>
<td>1389 (67.4)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>HCV positive</td>
<td>269 (39.2)</td>
<td>403 (29.3)</td>
<td>672 (32.6)</td>
<td>2.89 (2.10–3.97); < 0.001</td>
<td>2.95 (2.09–4.16); < 0.001</td>
</tr>
<tr>
<td>ART status (time-dependent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ART naive</td>
<td>144 (21.0)</td>
<td>389 (28.3)</td>
<td>533 (25.9)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>On ART</td>
<td>543 (79.0)</td>
<td>985 (71.7)</td>
<td>1528 (74.1)</td>
<td>1.82 (1.39–2.37); < 0.001</td>
<td>1.87 (1.38–2.52); < 0.001</td>
</tr>
</tbody>
</table>

*Besides HCV status and ART use, the model was further adjusted for age, CD4 cell count, HIV RNA viral load, mode of HIV transmission, gender, nationality, alcohol use, smoking status and calendar year of enrolment.
Conclusions: The introduction of interferon-free second-generation DAA treatments in the SHCS increased treatment uptake and efficacy across all HCV genotypes. Because of treatment priorities and limitations in reimbursement, most patients treated with second-generation DAAs had advanced fibrosis or cirrhosis. The treatment of these patients was made possible because of the favourable safety profile of new drugs, and resulted in a significant reduction of the number of cirrhotic patients with replicating HCV infection in the SHCS.

Abstract P264–Figure 1. Treatment uptake and efficacy over the 3 periods.

Efficiency of all-oral DAAs for HCV genotype 4 in HIV/HCV co-infected subjects with compensated liver disease: real-world experience from the MADRID-CoRe study

Juan Gonzalez-Garcia1; Teresa Aldamiz-Echevarria2; Carmen Quereda3; Victor Hontanon1; Lourdes Dominguez-Dominguez4; Angela Gil-Martin5; Encarnacion Cruz-Martos5; Maria Tellez6; Ignacio Santos7; Guillermo Cuevas-Tascon8; Gabriel Gaspar9; Beatriz Alvarez-Alvarez10; Juan Losa11; Miguel Cervero12; Carlos Barros13; Raquel Mosalvo14; M Antonia Menendez15; Luis Belda16; Maria Calvo17; Marta Alcaraz18; Inmaculada Jarrin19 and Juan Berenguer20

1Internal Medicine/Infectious Diseases, Hospital Universitario La Paz/IdiPAZ, Madrid, Spain. 2Infectious Diseases, Hospital General Universitario Gregorio Maranon, Madrid, Spain. 3Infectious Diseases, Hospital Ramon y Cajal, Madrid, Spain. 4Internal Medicine/Infectious Diseases, Hospital Doce de Octubre, Madrid, Spain. 5Pharmacy, Servicio Madrileño de Salud, Madrid, Spain. 6Internal Medicine/Infectious Diseases, Hospital Clinico San Carlos, Madrid, Spain. 7Internal Medicine/Infectious Diseases, Hospital Doce de Octubre, Madrid, Spain. 8Pharmacy, Servicio Madrileño de Salud, Madrid, Spain. 9Internal Medicine/Infectious Diseases, Hospital de la Princesa, Madrid, Spain. 10Internal Medicine, Hospital Infanta Leonor, Madrid, Spain. 11Internal Medicine/Infectious Diseases, Hospital Universitario de Alcorcon, Madrid, Spain. 12Internal Medicine/Infectious Diseases, Fundacion Jimenez Diaz, Madrid, Spain. 13Internal Medicine/Infectious Diseases, Fundacion Hospital de Alcorcon, Madrid, Spain. 14Internal Medicine/Infectious Diseases, Hospital Severo Ochoa, Madrid, Spain. 15Internal Medicine/Infectious Diseases, Hospital Universitario de Mostoles, Madrid,
Abstract P266
Continued increase of recent hepatitis C virus infections amongst HIV-positive patients in Taiwan

Spain. 1Internal Medicine, Hospital del Tajo, Madrid, Spain. 2Internal Medicine/Infectious Diseases, Hospital Gomez Ulla, Madrid, Spain. 3Internal Medicine, Hospital del Escorial, Madrid, Spain. 4Public Health, Instituto de Salud Carlos III, Madrid, Spain

Introduction: We evaluated therapeutic outcomes of all-oral direct-acting antivirals (DAAs) for HCV genotype 4 (GT4) in HIV/HCV co-infected patients with compensated liver disease.

Methods: The Madrid co-infection registry (MADRID-CoRe) is a prospective registry of all co-infected adults (≥18 years) undergoing DAA therapy (Rx) for HCV in hospitals from the Madrid Regional Health Service (SERMAS). We assessed SVR12, viral relapse and failure due to Rx discontinuation. Between November 2014 and May 2016, 2402 co-infected individuals have initiated DAA Rx within MADRID-CoRe. Herein, we present data of co-infected patients with GT4 and compensated liver disease with programmed Rx finalization censored to 31 December 2015.

Results: We evaluated 243 co-infected individuals who met the inclusion criteria. DAA regimens used included (1) sofosbuvir/ledipasvir (SOF/LDV) 190 patients (181 without ribavirin (RBV) (8 weeks 2, 12 weeks 123 and 24 weeks 56) and nine with RBV (12 weeks 8 and 24 weeks 1)); (2) ombitasvir/paritaprevir/ritonavir (OBV/PTV/r) 33 patients (one without RBV for 12 weeks and 32 with RBV (12 weeks 24 and 24 weeks 8)); (3) simprevir/sofosbuvir (SMV/SOF) 10 patients (eight without RBV (12 weeks six and 24 weeks eight) and two with RBV (12 weeks one and 24 weeks one)); (4) daclatasvir/sofosbuvir (DCV/SOF) 10 patients (seven without RBV (12 weeks one and 24 weeks six) and three with RBV (12 weeks two and 24 weeks one)). Patients' characteristics and treatment outcomes categorized by DAA regimens are shown in Table 1.

Conclusions: High effectiveness was found with LDV/SOF and OBV/PTV/r for GT4 in co-infected patients with compensated liver disease. Small sample size and very high liver stiffness preclude any conclusion about the effectiveness of SMV/SOF and DCV/SOF.

Abstract P265 Table 1. Baseline characteristics and outcome in patients coinfected with HIV and HCV genotype 4 treated with all-oral direct-acting antivirals for HCV

<table>
<thead>
<tr>
<th>Baseline variables</th>
<th>LDV/SOF N = 190</th>
<th>OBV/PTV/r N = 33</th>
<th>SMV/SOF N = 10</th>
<th>DCV/SOF N = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (IQR)</td>
<td>51 (47–54)</td>
<td>51 (46–53)</td>
<td>52 (47–54)</td>
<td>50 (48–53)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>146 (76.8)</td>
<td>24 (72.7)</td>
<td>8 (80.0)</td>
<td>6 (60.0)</td>
</tr>
<tr>
<td>Cart, n (%)</td>
<td>183 (96.3)</td>
<td>30 (90.9)</td>
<td>8 (80.0)</td>
<td>8 (80.0)</td>
</tr>
<tr>
<td>Log HCV RNA, median (IQR)</td>
<td>6.3 (5.9–6.7)</td>
<td>6.0 (5.8–6.6)</td>
<td>6.3 (6.0–6.6)</td>
<td>6.0 (5.5–6.5)</td>
</tr>
<tr>
<td>Cirrhosis, n (%)</td>
<td>76 (40.0)</td>
<td>8 (24.2)</td>
<td>9 (90.0)</td>
<td>9 (90.0)</td>
</tr>
<tr>
<td>Liver stiffness, median (IQR)</td>
<td>11.0 (8.1–18.6)</td>
<td>9.5 (8.4–12.3)</td>
<td>48.0 (25.7–66.4)</td>
<td>31.2 (20.9–48.0)</td>
</tr>
<tr>
<td>HCV-naïve, n (%)</td>
<td>108 (56.8)</td>
<td>11 (33.3)</td>
<td>4 (40.0)</td>
<td>6 (60.0)</td>
</tr>
<tr>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVR12, n (%)</td>
<td>177 (93.2)</td>
<td>32 (97.0)</td>
<td>5 (50.0)</td>
<td>6 (60.0)</td>
</tr>
<tr>
<td>% SVR, 95% CI</td>
<td>88.6–96.3</td>
<td>84.2–99.9</td>
<td>18.7–81.3</td>
<td>26.2–87.8</td>
</tr>
<tr>
<td>Relapse, n (%)</td>
<td>10 (5.3)</td>
<td>1 (3.0)</td>
<td>5 (50.0)</td>
<td>2 (20.0)</td>
</tr>
<tr>
<td>Discontinuation, n (%)</td>
<td>3 (1.5)</td>
<td>0</td>
<td>0</td>
<td>2 (20.0)</td>
</tr>
</tbody>
</table>

SOF, sofosbuvir; LDV, ledipasvir; DCV, daclatasvir; SVR, sustained virologic response; OBV, ombitasvir; PTV/r, paritaprevir/ritonavir; SMV, simeprevir.
men who have sex with men (85.7% vs. 78.4%, p = 0.007) and to have recent syphilis (37.1% vs. 11.1%, p < 0.0001). The mean plasma HCV RNA load was 6.07 log_{10} copies/mL. Of the 76 HCV strains submitted for genotyping, genotype 1 accounted for 40.8%.

Conclusions: The increasing trend of recent HCV infection continued in HIV-positive patients seeking HIV care at the university hospital in Taiwan from 2011 to 2015.

P267

Portuguese multicentre report

Cristina Valente1; M Isabel Casella2; Domítilia Faria3; M João Aleixo4; Inês Vaz Pinto5; Margarida Mota6; Amparo Mingo7; Alexandre Carvalho8; Fausto Roxo9; Rita Falsac10; Paula Proença11; José Poças12; Margarida Prata13; Nuno Marques14 and José Saraiva Cunha15

1Infectious Diseases, Centro Hospitalar Universitário Coimbra, Coimbra, Portugal. 2Infectious Diseases, Hospital de São Bernardo, Setúbal, Portugal. 3Immunodeficiency Unit, Centro Hospitalar Algarve, Portimão, Portugal. 4Infectious Diseases, Hospital Garcia de Orta, Almada, Portugal. 5HIV Unit, Hospital Cascais, Cascais, Portugal. 6Immunodeficiency Unit, Centro Hospitalar Gaia, Gaia, Portugal. 7Infectious Diseases, Hospital Faro, Faro, Portugal. 8Immunodeficiency Unit, Hospital Braga, Braga, Portugal. 9Immunodeficiency Unit, Hospital Santarém, Santarém, Portugal. 10Infectious Diseases, Hospital Covia Beira, Covilhã, Portugal

Introduction: Either in clinical trials or in real-life studies, cure rates with oral direct-acting antivirals (DAAs) in the treatment of chronic hepatitis C virus (HCV) are greater than 90%. However, as these drugs become more widely used, clinicians are beginning to report occasional cases of treatment failure.

Materials and methods: GEPCOI is a multicentre group that involves several sites in Portugal. For this study, 10 centres participated, and all cases of DAA failure were collected. Treatment failure was considered in case of relapse, virologic failure during treatment, discontinuation or death. All co-infected HIV/HCV patients that started oral DAA drugs were included in this analysis.

Results: A total of 573 chronic hepatitis C co-infected patients started a course of oral DAAs since the beginning of 2015. All but 23 patients (4%) achieved sustained virologic response: 16 (2.8%) had a relapse or failure during treatment, 2 discontinued treatment and 5 died. All except one were male (95.6%) with an average age of 47 years. They were naïve (65.2%) or null responders (21.7%) and relapers (4%) in previous treatment with pegIFNα + ribavirin (RBV). All patients were under ART, and only two had detectable viremia. Only three patients changed ART schedule due to HCV treatment (pils to lacs and TDF/TTC to A/B/C/3TC). Regarding HCV, genotype 1 was the predominant (60.8%) and the degree of fibrosis was respectively: F0 (21.7%); F2, 21.7%; and F4, 56.5%. Those who have relapse or virologic failure were G1 10, G2 two, G3 three and G4 one. All HCV G1/4 were treated with SOF/LDV + RBV 12 weeks or 24 weeks without RBV. In all, G2/3 SOF + RBV was used, except in one patient classified initially as G1, who completed 12 weeks with asunaprevir + daclatasvir + RBV (G3). Deaths (five) occurred during or after the end of treatment, due to hepatic decompensation or related complications: they were all F4, with a MELD score ranging from 9 to 27. All of these patients had both albumin level < 3.5 gr/dL and platelets < 100,000 mcL.

Conclusions: Failures in this real-life study occurred in 4%, with relapses or virologic failures accounting for 70% of the total. They were mainly patients with advanced fibrosis (F3/F4 74.9%). Those who died were cirrhotic, and all of them had both low level of albumin and platelets. HCV drugs did not have any impact on HIV outcome at the end of treatment. Treatment in co-infected patients with advanced disease should have a very close monitoring.

P268

Seroepidemiology of hepatitis A virus among HIV-positive patients in Taiwan in the setting of acute hepatitis A outbreak from 2015 to 2016

Guang-Hsien Chen; Kuan-Yin Lin; Hsin-Yun Sun; Wang-Huei Sheng; Szu-Min Hsieh; Yu-Chung Chuang; Chien-Ching Hung and Chan-Shwen Chang

Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan

Introduction: Since June 2015, an ongoing outbreak of acute hepatitis A virus (HAV) infection is occurring amongst men who have sex with men (MSM) in Taiwan, with more than 440 cases reported to the Taiwan Centres for Disease Control as of 30 June 2016. This study aimed to describe the seroepidemiology of HAV infection among HIV-positive patients in northern Taiwan, where three-fourths of the patients in the outbreak reside.

Materials and methods: We reviewed the medical records of HIV-positive patients seeking HIV care at the National Taiwan University Hospital. HIV risk factor and similar observation duration.

Results: During the study period, 2093 HIV-positive patients, with a mean age of 38.4 years and 83.3% being MSM, had baseline HAV serologic data and 33.6% (n = 682) tested seropositive for HAV. The HAV prevalence was 15.4% in those aged <35 years. As of June 2016, 52.9% (n = 713) of HAV-seronegative patients were vaccinated with HAV vaccine by following the current recommendations of vaccination for adults, and most of the patients (681; 95.5%) received HAV vaccines only after the outbreak was taking place. Among the unvaccinated individuals, a total of 37 patients, all being MSM, developed acute HAV infection during the follow-up, giving an incidence rate of 4.76 cases per 100 person-years of follow-up as of 30 June 2016. In the case-control study, acute HAV infection was significantly associated with recent syphilis that had occurred within 3 months of acute HAV infection, with an adjusted odds ratio of 2.3 (95% CI 1.3 – 3.2).

Conclusions: With a low HAV seroprevalence among HIV-positive MSM aged <35 years in Taiwan, the adherence to HAV vaccination in this at-risk group was low before this HAV outbreak. In the outbreak, patients with acute HAV infection in our cohort were significantly associated with recent syphilis, suggesting risky sexual behaviour contributing to this acute HAV outbreak in the at-risk group in Taiwan.

P269

Different impact of DAA on innate and adaptive cellular immunity in HIV/HCV co-infected and HCV mono-infected patients

Paola Zuccalà; Miriam Lichtner; Serena Vita; Raffaella Marocco; Claudia Mascia; Stefano Savinelli; Michela Campagna; Fabio Mengoni; Tiziana Tieghi; Irene Pozzetto; Gabriella D’Ettorre; Francesca Paoletti; Claudio Maria Mastroianni and Vincenzo Vullo
Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy

Introduction: HIV/HCV co-infected patients have higher HCV loads and generally more rapid progression to fibrosis, end-stage liver disease and death. HIV and HCV viral infections are both characterized by systemic immune activation that plays an important role in disease progression. In the direct-acting antiviral (DAA) era, little is known about the immune-pathological response in HCV mono-infected and in HCV/HIV co-infected patients. The aim of the study was to analyze activation of T lymphocytes, DCs and Mo subsets in HCV and HCV/HIV patients under effective ART that receiving anti-HCV therapy.

Material and methods: In our study, we assessed 75 samples from 26 patients (13 HCV/HIV patients under effective ART and active HCV replication and 13 HCV patients) undergoing IFN-free regimens DAA based. Samples were collected before starting anti-HCV therapy (TO) and 12 weeks after the end of treatment when they obtained a sustained virologic response (SVR 12). Fourteen healthy donors (HD) were used as controls. We analyzed whole blood samples evaluating mDC, pDC, slanDC and typical, atypical and intermediate monocytes with a cytometric method based on seven fluorochromes. HLA-DR/CD38 CD4 and CD8 lymphocytes were also evaluated. Liver fibrosis was measured using FibroScan and FIB-4 score. ANOVA with Dunn’s test, Mann–Whitney test, Wilcoxon test and Spearman correlation test were used for statistical analysis.

Results: All patients in both groups obtained SVR12. Activation of CD8 T cells was significantly higher in HIV/HCV and HCV patients than control (p = 0.0002 and p = 0.0041, respectively). Interestingly, a decrease in both groups was found (comparing SVR12 to HIV/HCV and HCV patients to HD, p = 0.0186 and p = 0.0479, respectively) up to a normalization after anti-HCV therapy. HLA-DR/CD38 CD4 levels were elevated only in co-infected patients (p = 0.0003) without modification during therapy (comparing SVR to control p = 0.0385).

Intermediate Mo were increased in patients with HCV infection compared to HD (p = 0.0654) and normalized after therapy. Considering the sub-population of DCs, MdC and pDC were reduced only in HCV/HIV patients (p < 0.001 and p < 0.01, respectively), and normalize after therapy, while MDC8 were decreased both in HIV/HCV and HCV patients compared to HD (p < 0.001 and p < 0.01, respectively); this decreases persist after therapy.

Conclusions: A different pattern of immune dysfunction was found in HIV/HCV co-infected and HCV mono-infected subjects. IFN-free treatments seem to reverse some of these alterations that should be monitored with a longer follow-up.

P270

Real-life renal impact of ledipasvir/sofosbuvir on a cohort of HIV-infected patients treated with tenofovir combined with a boosted protease inhibitor

João Cabo; Ana Raquel Garrote; Pedro Simões; Diana Povoas; Rita Gonçalves; Freddy Ramirez; Stephania Betkova; Diana Seixas; Liliana Alves; Maria José Manata; Nidia Garrido; Orlando Cardoso; Sara Cardoso; Sara Lino; Teresa Martins and Fernando Maltez Infectious Diseases Department, Hospital Curry Cabral — Centro Hospitalar Lisboa Central, Lisboa, Portugal

Introduction: Regarding the treatment of HIV/HCV co-infected patients, we still have some concerns about the renal safety of the interaction between ledipasvir (LDV)/sofosbuvir (SOF) and an ARV regimen including tenofovir and a boosted protease inhibitor (PI). Data are lacking from clinical trials to support this co-administration, since these patients were excluded from the main studies in co-infected patients. Increased levels of tenofovir and risk of renal impairment might prompt preventive ARV therapy switch recommodified, not possible in all patients due to their history of previous ARV regimens.

Methods: An observational study was conducted among the co-infected on an ARV regimen including tenofovir and boosted PI, who started HCV treatment with DAAAs, between 1 January 2015 and 20 May 2016. Data on demographic, clinical and virological features were collected by analysis of clinical files.

Results: A total of 149 patients were treated with tenofovir/entecavir, from which 68 with SOF/LDV and an antiretroviral regimen that included a boosted PI: 30 on DRV/r, 22 on LPV/r, 14 on ATV/r, 1 on SQV/r and 1 on FPV/r. Mean age was 47 years, 72% males. Regarding HIV infection, 85% of the patients had undetectable viral load (< 20 copies/mL), ranging below 100 copies/mL in the remaining, with a median of 582 T CD4+ cells/µL (141–1570). Treatment was planned for 24 weeks in 35% (24) of patients, according to liver fibrosis stage. At baseline, four patients had CKD stage III (Mean EgFR 54 mL/min) and by week 8 of these had their FTC/TDF regimen switched (Mean EgFR 44 mL/min). By the end of treatment, these three patients had egfr > 60 mL/min. Only one of the remaining 64 patients presented with an egfr < 60 mL/min during treatment, requiring no switch on ARV regimen. From the 48 patients with available data at week 12 post-treatment, all but one had sustained virological response.

Conclusion: In our study, SOF/LDV did not have a major negative impact in patients on TDF and a boosted PI. In this population, renal function must be carefully monitored, mainly in patients with other risk factors for renal impairment.
Table 1. Baseline characteristics

Age, mean (SD)	50.9 (5.5)
Gender: male/female, n (%)	93 (71.5)/37 (28.5)
Risk group: PWID/heterosexual/MSM, n (%)	113 (86.9)/13 (10.0)/4 (3.1)
CDC (93) classification system’s C stage, n (%)	48 (36.9)
Basal HCV RNA, medIAN (UI/mL) (IQR)	2,047,181.5 (3,879,143.0)
Prior INF-based therapy: none/failure/relapse/intolerance, n (%)	79 (60.8)/35 (26.9)/8 (6.2)/6 (6.2)
Liver fibrosis assessed by transient elastography: F0–1, F2, F3, F4, n (%)	1 (0.8)/54 (41.5)/14 (10.8)/61 (46.9)

MSM, men who have sex with men; PWID, people who inject drugs.

before, during and after HCV therapy. Table 1 shows baseline characteristics. SVR was achieved in 127 patients (97.7%). TC and LDL-c values statistically increased on and after treatment (p < 0.001) versus pre-treatment. There were no significant changes when comparing TC and LDL-c values on versus after-treatment, nor between TG and HDL-c values pre-treatment versus on-treatment or post-treatment (Table 2). Changes in TC and LDL-c values are not influenced by gender (p = 0.55 and p = 0.86, respectively), age (p = 0.07 and p = 0.06), basal HCV RNA (p = 0.21 and p = 0.1), presence of PI in the ART regimen (p = 0.50 and p = 0.46) nor cirrhosis (p = 0.41 and p = 0.19). Moreover, changes between LDL-c values are not influenced by the presence of PI in the DAA regimen (p = 0.18), but DAA regimens including a PI were associated with increased TC values (p = 0.005).

Conclusion: TC and LDL-c values increase during the HCV treatment using DAA, INF-free regimens, and remain increased after stopping the HCV therapy.

References

P272
HIV/hepatitis C co-infection: successfully treating hepatitis C with direct-acting antivirals and managing those who do not access traditional care

P273
Improving of glycaemic control associated with DAAs HCV treatment persists at SVR12
Paolo Pavone1; Gabriella d’Ettorre1; Miriam Lichtner1; Tiziana Tieghi2; Raffaella Marocco2; Ivan Mezzaroma3; Giulia Passavanti1; Claudio Maria Mastroianni2 and Vincenzo Vullo1
1Public Health and Infectious Diseases, Sapienza University, Rome, Italy. 2Infectious Diseases, Sapienza University, Latina, Italy. 3Statistics, Sapienza University, Rome, Italy

Introduction: Association between HCV infection and insulin resistance and type 2 diabetes has been widely postulated. Our group already reported a rapid improving of glycemic control associated with DAAs [1]. Aim of our study was to evaluate if improving of glycemic control persists after the end of DAAs treatment.

Materials and methods: We retrospectively evaluated 39 HCV-infected patients (10 HIV–) with type 2 diabetes who were treated with different IFN-free regimens, including sofosbuvir, simeprevir, ledipasvir, daclatasvir, dasabuvir and ombitasvir/paritaprevir/ritonavir. To evaluate general improving of glycemic control, we investigated for reduction of fasting glucose (FG) or glycated haemoglobin (A1C) or modification of insulin/metformin dosing during and after anti-HCV treatment. Statistical analysis was performed with the paired t-test, Kruskal-Wallis test and Welch one-way ANOVA procedure (R software).

Results: The mean age of the patients was 60 years (32 M, 7 F). The HCV genotypes were different but with type 1 prevalence (n = 24). All the patients had HCV RNA undetectable at end of treatment (< 15 UI/mL, if still on treatment). CD4 were above 14%, and HIV RNA was undetectable in all patients. Pretreatment FG was reported in 38 patients, mean value 168 mg/dL (min. 81, max. 455), pretreatment A1C in 22 patients, mean value 7% (min. 5.1%, max. 11.8%). Nine patients (24%) needed to reduce or stop (n = 2) hypoglycaemic drugs. One patient with basal A1C value of 11.8% needed to stop insulin treatment and is off-therapy with A1C <5% at SVR 12. Three patients needed to increase insulin dosing, one of these patients died after HCV relapse. Their FG and A1C values were excluded from analysis. FG values during treatment were available for 35 patients, and analysis showed a statistically significant reduction (p = 0.01), reduction mean value (mv) was — 27 mg/dL; at SVR12, FG values were available in 18 patients, with a reduction mv of 44.5 mg/dL (p = 0.0031). A1C during treatment was available for 17 patients, and analysis showed a statistically significant reduction (p = 0.01), reduction mv was — 1.14%; at SVR12, A1C values were present in 12 patients, reduction mv was 0.5% (p = 0.09). FG and A1C reductions were not correlated to the drug regimen, HCV genotype, BMI, ALT/ALTI and HIV status. No cases of symptomatic hypoglycaemia were found.

Conclusions: HCV suppression following DAA treatment is often associated with rapid and persisting improving of glycemic control. Patients undergoing DAAs should be closely monitored for eventual modifications of hypoglycaemic drugs. Eradication of HCV might result in diabetes cure in some patients.

Reference

P274
Ledipasvir/sofosbuvir for 12 or 24 weeks in HCV genotype 1 in HIV/HCV co-infected subjects with compensated liver disease: real-world experience from the MADRID-CoRe study
Juan Berenguer1; Ana Moreno2; Luz Martín-Carbonero3; Lourdes Dominguez4; Teresa Aldamiz-Echevarria5; Angela Gil-Martin6; Encarnación Cruz-Martos7; Jorge Vergas8; Ignacio Santos9; Laura Benitez10; Julio De Miguel11; Jesús Troya12; Beatriz Alvarez-Alvarez13; Rafael Torres14; Eduardo Canalejo15; Sari Arponen16; Maria Teresa de Guzmán17; Luis Gotuzzo18; Maria José Calvo19; Marta Alcaraz20; Inmaculada Jarrín21 and Juan González-García22

Abstract P274 – Table 1. Patients’ characteristics and treatment outcomes categorized by subtypes, treatment duration and use of ribavirin

<table>
<thead>
<tr>
<th>G1a No-RBV</th>
<th>G1a RBV</th>
<th>G1a No-RBV</th>
<th>G1a RBV</th>
<th>G1b No-RBV</th>
<th>G1b RBV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age years, median</td>
<td>N = 197</td>
<td>51</td>
<td>50</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td>Male, %</td>
<td>N = 51</td>
<td>82.2</td>
<td>87.9</td>
<td>100</td>
<td>77.2</td>
</tr>
<tr>
<td>cART, %</td>
<td>N = 33</td>
<td>97.5</td>
<td>93.4</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Log HCV RNA, median</td>
<td>N = 57</td>
<td>6.4</td>
<td>6.3</td>
<td>6.7</td>
<td>6.4</td>
</tr>
<tr>
<td>Cirrhosis, %</td>
<td>N = 22</td>
<td>25.4</td>
<td>90.2</td>
<td>66.7</td>
<td>45.6</td>
</tr>
<tr>
<td>Liver stiffness kPa, median</td>
<td>N = 14</td>
<td>10.0</td>
<td>20.0</td>
<td>24.0</td>
<td>11.8</td>
</tr>
<tr>
<td>HCV-naïve, %</td>
<td>N = 197</td>
<td>67.0</td>
<td>36.4</td>
<td>0</td>
<td>50.9</td>
</tr>
<tr>
<td>SVR12, n (%)</td>
<td>N = 51</td>
<td>183 (92.9)</td>
<td>30 (90.9)</td>
<td>0</td>
<td>56 (98.2)</td>
</tr>
<tr>
<td>% SVR, 95% CI</td>
<td>N = 33</td>
<td>88.4—96.1</td>
<td>75.7—98.1</td>
<td>0</td>
<td>70.8—98.9</td>
</tr>
<tr>
<td>Relapse, n (%)</td>
<td>N = 57</td>
<td>7 (3.5)</td>
<td>2 (6.1)</td>
<td>0</td>
<td>1 (4.5)</td>
</tr>
<tr>
<td>Breakthrough, n (%)</td>
<td>N = 22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D/C due to AEs, n (%)</td>
<td>N = 14</td>
<td>1 (0.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D/C other reasons, n (%)</td>
<td>N = 197</td>
<td>6 (3.0)</td>
<td>1 (2.0)</td>
<td>1 (3.0)</td>
<td>0</td>
</tr>
</tbody>
</table>

RBV, ribavirin; SVR, sustained virologic response; D/C, discontinuation; AEs, adverse events.
Introduction: We evaluated therapeutic outcomes LDV/SOF for HCV genotype 1 (GT1) in HIV/HCV co-infected patients with compensated liver disease.

Materials and methods: The Madrid co-infection registry (MADRID-CoRe) is a prospective registry of all co-infected adults (≥18 years) undergoing DAA therapy (Rx) for HCV in hospitals from the Madrid Regional Health Service (SERMAS). We assessed SVR12, viral relapse and failure due to Rx discontinuation. Between November 2014 and May 2016, 2402 co-infected individuals have initiated DAA Rx within MADRID-CoRe. Herein, we present data of co-infected patients with GT1a or GT1b and compensated liver disease that were treated with LDV/SOF with or without ribavirin (RBV) for 12 or 24 weeks, and with programmed Rx finalization censored to 31 December 2015.

Results: We evaluated 377 co-infected individuals who met the inclusion criteria: 284 infected with GT1a and 93 infected with GT1b. Patients characteristics and treatment outcomes categorized by subtypes, treatment duration and use of RBV are shown in Table 1.

Conclusions: High effectiveness and safety were found with LDV/SOF for 12 or 24 weeks in GT1 co-infected patients with compensated liver disease.
higher in those with IL28B-CC compared with IL28B CT/TT (80% vs. 52%; p = 0.044). Mean FibroScan value was 20.1 kPa. At the time of SVR12, a significant regression in liver fibrosis was found in 38.5%. The mean reduction was of 4.81 kPa (p < 0.001). A trend towards higher improvement was seen in patients with baseline F3 to F4 compared with F0 to F2 (47% vs. 22%; p = 0.08, respectively). No relationship was found between significant improvement in liver fibrosis and IL28B-CC, baseline serum HCV RNA, HCV genotype, DAA treatment modality and ribavirin use.

Conclusion: Cure of hepatitis C with DAA in HIV-HCV co-infected patients is associated with significant and rapid improvement in hepatic fibrosis measured by FibroScan. At least 38% of patients experience significant liver fibrosis regression after SVR12. Thus, DAA therapy should be prioritized in the HIV-HCV co-infected population.

P277
Treatment rate for HCV in the DAAs era in HIV co-infected patients: data from an Italian cohort
Gianluca Cuomo1; Cinzia Puzzolante1; Cristina Mussini2 and Vanni Borghi1
1Infectious Diseases, AOU Policlinico di Modena, Modena, Italy. 2Infectious Diseases, AOU Policlinico di Modena, Università di Modena e Reggio Emilia, Modena, Italy

Introduction: New drugs (DAAs) are now effective in HCV infection, and no difference in sustained virological response (SVR) was observed between HCV mono-infected and HIV co-infected patients. Despite major advances in HCV therapy, persons living with HIV (PLHIV) were undertreated. The aim of this study was to describe the management of HCV treatment in an HIV/HCV cohort during a 15-year period.

Methods: An electronic chart review of all HIV patients with >1 observation at our department from the year 2000 was made. Demographic, virological and treatment data were collected.

Results: From 2000 to 2015, 2353 PLHIV were enrolled; 67.8% were males, median age was 48 years and 19.2% were not Italian. HIV transmission due to intravenous drug use (IDU) was reported in 681 people (28.9%), in 573 (24.4%) was in men who had sex with men (MSM), heterosexual transmission in 1007 (42.8%) and other risk in 92 (3.9%). Seven hundred and ninety-five patients’ (33.8%) result was HCVAb positive. HCV+ patients were mostly Italian (94.3%), IDU in 72.0% and MSM in 6.5%. Only 596 HCV+ patients had detectable HCV RNA in the blood (75%); this mostly related to patients that obtained an SVR before the year 2000. HCV genotypes were tested in 516 patients; 55.8% were genotype 1, 31.8% were 3 subtype; 12.4% were genotype 2 or 4. The percentage of HCVAb patients amongst the total of HIV population significantly decreased from the 49.2% of 2000 to the 30.7% of 2015 (p < 0.001). Year-per-year analysis showed the stability of treatment rate for HCV, with a significant increase in 2015 (20.6% vs. 8.5% of 2014, p > 0.001). SVR rate was significantly improved in 2015 (79.9% vs. 50% of 2014, p = 0.02). The number of re-treatments significantly increased in 2014 and 2015 (58.8% and 61.2% of the total of treatments respectively, p > 0.001 vs. 2013). The number of HCVAb+ patients with HCV RNA not relievable (cured) significantly increased during years. At 2015, 50.4% of patients resulted to be HCV RNA negative (18.1% in 2000, p < 0.001) (Figure 1).

Conclusions: In the DAAs era, a significant increase in the number of treatments was observed. SVR rate was significantly higher. Treatment rate remains quite low maybe related to the availability of DAAs only for patients with advanced liver disease (in Italy). More than half of our population of HCV co-infected patients’ results to be cured for HCV.

P278
The elderly and direct antiviral agents (DAAs): constraint or challenge?
Claudia Fabrizio; Giuseppe Bruno; Eugenio Milano; Raffaele Dell’Acqua; Laura Monno; Sergio Lo Caputo; Michele Milella; Annalisa Saracino and Gioacchino Angarano
Clinic of Infectious Diseases, University of Bari, Bari, Italy

Introduction: New IFN-free regimens based on direct antiviral agents (DAAs) in patients with HCV-related chronic hepatitis showed high rates of sustained virological response (SVR) and good safety profile. So far, few data are available about the impact of these therapies on elderly patients, who are often not included in clinical trials. Aim of this study was to evaluate the efficacy and safety profile of DAAs in elderly patients.

Materials and methods: In this prospective, single-centre observational study, all patients aged ≥ 65 years, who initiated a DAA-based regimen, were enrolled from February 2015 to May 2016, then divided according to age (group A: 65–74 years; group B: ≥ 75
Abstract P278–Table 1. Clinical and laboratory baseline features of the 167 enrolled patients

<table>
<thead>
<tr>
<th>Genotype, n (%)</th>
<th>Tot patients (N = 167)</th>
<th>A (65–74 years, N = 90)</th>
<th>B (≥ 75 years, N = 68)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>2 (1.2)</td>
<td>0 (0.0)</td>
<td>2 (2.9)</td>
</tr>
<tr>
<td>1b</td>
<td>95 (56.9)</td>
<td>45 (45.5)</td>
<td>50 (73.5)</td>
</tr>
<tr>
<td>2</td>
<td>37 (22.2)</td>
<td>23 (23.2)</td>
<td>14 (20.6)</td>
</tr>
<tr>
<td>3</td>
<td>1 (0.6)</td>
<td>1 (1.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>4</td>
<td>6 (3.6)</td>
<td>5 (5.1)</td>
<td>1 (1.5)</td>
</tr>
<tr>
<td>Cirrhosis, n (%)</td>
<td>112 (67.1)</td>
<td>62 (62.6)</td>
<td>50 (73.5)</td>
</tr>
<tr>
<td>Previous failure of anti HCV therapy, n (%)</td>
<td>87 (52.1)</td>
<td>57 (57.6)</td>
<td>30 (44.1)</td>
</tr>
<tr>
<td>HCV RNA IU/mL, median (range)</td>
<td>1.296.000 (4.501–27.590.025)</td>
<td>1.302.000 (4.501–17.140.000)</td>
<td>1.150.000 (13.000–27.590.025)</td>
</tr>
<tr>
<td>ALT UI/L, median (range)</td>
<td>72 (18–434)</td>
<td>77 (18–368)</td>
<td>63 (15–434)</td>
</tr>
<tr>
<td>Total bilirubin mg/dL, median (range)</td>
<td>0.8 (0.2–2.9)</td>
<td>0.8 (0.2–2.9)</td>
<td>0.8 (0.4–2.9)</td>
</tr>
<tr>
<td>Serum creatine mg/dL, median (range)</td>
<td>0.83 (0.40–1.66)</td>
<td>0.81 (0.46–1.30)</td>
<td>0.88 (0.40–1.66)</td>
</tr>
<tr>
<td>Platelets (×10^11)/L, median (range)</td>
<td>136 (38–347)</td>
<td>154 (50–347)</td>
<td>123 (38–342)</td>
</tr>
<tr>
<td>Body mass index, median (range)</td>
<td>25.9 (17.8–38.8)</td>
<td>25.3 (19.3–38.8)</td>
<td>26.5 (17.8–31.2)</td>
</tr>
<tr>
<td>Patients with at least 1 comorbidity, n (%)</td>
<td>138 (82.6)</td>
<td>81 (81.8)</td>
<td>57 (83.8)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>101 (60.5)</td>
<td>60 (60.6)</td>
<td>41 (60.3)</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>38 (22.8)</td>
<td>24 (24.2)</td>
<td>14 (20.6)</td>
</tr>
<tr>
<td>Oesophageal varices/portal hypertension, n (%)</td>
<td>16 (9.6)</td>
<td>5 (5.1)</td>
<td>11 (16.2)</td>
</tr>
<tr>
<td>Other comorbidities, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyreopathies</td>
<td>13 (7.8)</td>
<td>14 (14.1)</td>
<td>9 (13.2)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>18 (10.8)</td>
<td>16 (16.1)</td>
<td>2 (2.9)</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>16 (9.6)</td>
<td>10 (10.1)</td>
<td>6 (8.8)</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>10 (6.0)</td>
<td>6 (6.1)</td>
<td>4 (5.9)</td>
</tr>
<tr>
<td>Cardiopathies</td>
<td>24 (14.4)</td>
<td>12 (12.1)</td>
<td>12 (17.6)</td>
</tr>
<tr>
<td>Prostatic hypertrophy</td>
<td>19 (11.4)</td>
<td>8 (8.1)</td>
<td>11 (16.2)</td>
</tr>
<tr>
<td>Others</td>
<td>32 (19.2)</td>
<td>18 (18.2)</td>
<td>14 (20.6)</td>
</tr>
<tr>
<td>Pill burden of comediations, median (range)</td>
<td>3 (0–14)</td>
<td>3 (0–14)</td>
<td>3 (0–13)</td>
</tr>
</tbody>
</table>

years). Baseline clinical, anamnestic and laboratory data were collected (Table 1).

Results: In the study period, 289 patients started a DAA-based regimen, including 167 patients (males: 87, 52.1%) aged ≥65 years (group A: 99 patients, 59.3%; group B: 68 patients, 40.7%). The following regimens were administered: sofosbuvir-based: 38 patients (22.7%), simprevir-based: 25 (15%), ledipasvir-based: 33 (19.8%), daclatasvir-based: three (1.8%), paritaprevir, ombitasvir/ritonavir ± dasabuvir-based: 68 (40.7%). Ribavirin was used in 49 patients (29.3%). In 38 patients (22.8%), an adjustment of comedications was necessary due to drug interactions. Safety was assessed for 134 patients who reached end of treatment (EOT) during the study period (Table 2).

At least one AE occurred in 93 patients (69.4%), of whom seven (5.2%) had serious AEs (World Health Organization grade 3/4). Treatment discontinuation because of AEs occurred in six patients (4.5%), including one death due to oesophageal varices bleeding. The following AEs were observed: neurological/psychiatric symptoms (headache, dizziness, insomnia and mood disorders) (23.9%); skin reactions (23.1%); anaemia with Hb <10 g/dL (12.7%), requiring hospitalization in four patients; gastrointestinal toxicity (12.7%); other AEs (13.4%). The presence of two or more comorbidities and a pill burden of comediations ≥4 were observed in subjects with concurrent AEs, in particular in older patients (group B). A 12-week follow-up after EOT was available for 88 patients, and SVR12 was obtained in all subjects.

Conclusions: The heavy burden of comorbidities and comedications in elderly patients complicates the management of DAA-based therapies. However, despite a considerable amount of AEs, drug-related toxicity did not significantly impair the completion and the effectiveness of treatment. Further studies, based on larger populations and prolonged follow-up, are warranted to assess the optimal real-life management of these peculiar patients.
HCV transmission. For this, treating HCV-positive prisoners could impact on both individual and public health. Though international guidelines have emphasized that prisoners must be treated as well as general population, HCV treatment eligibility in prisons has always been suboptimal due to poor adherence, psychiatric comorbidities, side effects and legal issues. The availability of highly effective, short-course DAAs could increase inmates' treatment opportunities [1,2].

Our study was performed in 2015 in three prisons of Milan (Opera, San Vittore and Bollate) harbouring yearly 3400 prisoners overall. Every new inmate was proposed HIV, HCV, HBV, PPD and syphilis testing. HCV RNA prisoners were submitted to an infectious disease visit, HCV genotyping, ultrasonography and fibroscan. Legal issues and patient's motivation were considered. All motivated prisoners with advanced liver fibrosis (F3/F4) and at least 3 months end of sentence were selected for DAA treatment according to Italian guidelines. Three thousand and fifty-four tests were performed: HCV-Ab positivity was found in 10% (n=314) of inmates. Seventy percent of HCV-Ab inmates were IDUs. HCV RNA was detected in 60% of HCVAb+ inmates. Thirty percent of HCV RNA+ patients had advanced liver fibrosis (F3/F4). Sixty percent of them were treated with first- and second-generation DAAs. The main reasons for treatment deferral were transfer to other prison or release (33%), low compliance (19%) and end of sentence (15%); seven patients (33%) are under evaluation. We treated 25 patients with second-generation DAAs; the higher the fibrosis the higher the rate of treated patients. In Table 1, we report the characteristics of the treated patients. Eighty percent of them were naïve to previous treatments; 16% were HIV co-infected; the main genotypes were 1 (48%) and 3 (44%), Child-Turcotte-Pugh (CTP) score was between A5 and B7. No treatment discontinuations were observed. SVR12 was reached in 83.3% of the treated patients. Two patients relapsed. The relapsers were genotype 3 cirrhotic patients who underwent, in early 2015, a 24-week sofosbuvir + ribavirin regimen that nowadays is considered suboptimal for this category of patients. Our data show high rates of F3/F4 treated patients as compared to previous studies. Inmates showed a strict adherence

| Abstract P278 - Table 2. Safety profile of the 134 patients who reached the end of treatment |
|---|---|---|---|
| Tot pts, N:134 | A (65–74 years), N:78 | B (≥75 years), N:56 |
| Tot pts with any AE, n (%) | 93 (69.4) | 56 (71.8) | 37 (66.1) |
| Tot pts with ≥ 2 AEs | 32 (23.9) | 21 (26.9) | 11 (19.6) |
| Tot pts with serious AE (WHO grade 3/4) | 7 (5.2) | 2 (2.6) | 5 (8.9) |
| Tot pts with serious AE leading to therapy discontinuation* | 6 (4.5) | 2 (2.6) | 4 (7.1) |
| Deaths before EOT | 1 (0.7) | 0 (0.0) | 1 (1.8) |
| AEs according to sex | | | |
| Male sex | 43/65 (66.2) | 26/36 (72.2) | 17/29 (58.6) |
| Female sex | 50/69 (72.5) | 30/42 (71.4) | 20/27 (74.1) |
| AEs according to comorbidities | | | |
| Pts without comorbidities | 19/29 (65.5) | 12/17 (70.6) | 7/12 (58.3) |
| Pts any comorbidity | 74/105 (70.5) | 44/61 (72.1) | 30/44 (68.2) |
| Pts with ≥ 2 comorbidities | 52/72 (72.2) | 32/41 (78.0) | 20/31 (64.5) |
| Pts with cirrhosis | 65/93 (69.9) | 36/51 (70.6) | 29/42 (69.0) |
| Pts with obesity (BMI ≥ 30) | 15/21 (71.4) | 12/18 (66.7) | 3/3 (100.0) |
| AEs according to medications | | | |
| Pts with no comediations | 20/33 (60.6) | 15/22 (68.2) | 5/11 (45.5) |
| Pts with pill burden between 1 and 3 | 29/43 (67.4) | 17/25 (68.0) | 12/18 (66.7) |
| Pts with pill burden ≥ 4 | 44/57 (77.2) | 24/30 (80.0) | 20/27 (74.1) |
| Pts with changes in comediations due to drug interactions | | | |
| AEs according to type of DAA therapy | | | |
| with RBV | 65/89 (73.0) | 41/54 (75.9) | 24/35 (68.6) |
| without RBV | 28/45 (62.2) | 15/24 (62.5) | 13/21 (61.9) |
| of which: | | | |
| SMV based + RBV | 18/25 (72.0) | 14/17 (82.4) | 4/8 (50.0) |
| SOF based + RBV | 21/29 (72.4) | 13/17 (76.5) | 8/12 (66.7) |
| LDV based + RBV | 19/25 (76.0) | 10/13 (76.9) | 9/12 (75.0) |
| DAC based + RBV | 1/1 (100.0) | 1/1 (100.0) | 0/0 (0.0) |
| 3ABT/2ABT based + RBV | 34/54 (63.0) | 18/30 (60.0) | 16/24 (66.7) |

3ABT/2ABT, paritaprevir, ombitasvir/ritonavir ± dasabuvir; AE, adverse event; DAA, direct antiviral agents; DAC, daclatasvir; LDV, ledipasvir; RBV, ribavirin; SMV, sareprevir; SOF, sofosbuvir; EOT, end of treatment. *discontinuations were due to: skin reaction (one patient), cardiological adverse events (AEs) (one patient), diarrhoea (one patient), oesophageal varices bleeding (one patient) and severe anaemia (two patients).
Abstract P279—Table 1. Characteristics of the treated patients and treatment schedule

<table>
<thead>
<tr>
<th>Opera/San Vittore/Bollate correctional houses</th>
<th>Patients, N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated inmates, N</td>
<td>25</td>
</tr>
<tr>
<td>Age, years, median (range)</td>
<td>50 (45–56)</td>
</tr>
<tr>
<td>History of drug addiction, N (%)</td>
<td>15 (60)</td>
</tr>
<tr>
<td>Co-infection with HIV, N (%)</td>
<td>4 (16)</td>
</tr>
<tr>
<td>HCV genotype, N (%)</td>
<td></td>
</tr>
<tr>
<td>1a + 1b</td>
<td>12 (48)</td>
</tr>
<tr>
<td>3</td>
<td>11 (44)</td>
</tr>
<tr>
<td>4</td>
<td>2 (8)</td>
</tr>
<tr>
<td>CTP classification for cirrhotic patients, N (%)</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>14 (56)</td>
</tr>
<tr>
<td>A6</td>
<td>3 (12)</td>
</tr>
<tr>
<td>B7</td>
<td>4 (16)</td>
</tr>
<tr>
<td>MELD, median (range)</td>
<td>8.5 (7–10)</td>
</tr>
<tr>
<td>METAVIR fibrosis score, N (%)</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>21 (84)</td>
</tr>
<tr>
<td>F3</td>
<td>3 (12)</td>
</tr>
<tr>
<td>F2</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Fibrosis 4 score, N (%)</td>
<td></td>
</tr>
<tr>
<td>< 1.45</td>
<td>1 (4)</td>
</tr>
<tr>
<td>1.45–3.25</td>
<td>5 (20)</td>
</tr>
<tr>
<td>> 3.25</td>
<td>19 (76)</td>
</tr>
<tr>
<td>HCC, N (%)</td>
<td>1 (4)</td>
</tr>
<tr>
<td>Previous HCV treatment history, N (%)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>20 (80)</td>
</tr>
<tr>
<td>Yes</td>
<td>5 (20)</td>
</tr>
<tr>
<td>Current HCV treatment duration, N (%)</td>
<td></td>
</tr>
<tr>
<td>12 weeks</td>
<td>11 (44)</td>
</tr>
<tr>
<td>24 weeks</td>
<td>14 (56)</td>
</tr>
<tr>
<td>HCV treatment schedule, N (%)</td>
<td></td>
</tr>
<tr>
<td>SOF + RBV</td>
<td>6 (24)</td>
</tr>
<tr>
<td>SOF + DCV</td>
<td>1 (4)</td>
</tr>
<tr>
<td>SOF + LDV</td>
<td>2 (8)</td>
</tr>
<tr>
<td>SOF + P/R</td>
<td>1 (4)</td>
</tr>
<tr>
<td>SOF + SIM + RBV</td>
<td>4 (16)</td>
</tr>
<tr>
<td>SOF + LDV + RBV</td>
<td>5 (20)</td>
</tr>
<tr>
<td>SOF + DCV + RBV</td>
<td>4 (16)</td>
</tr>
<tr>
<td>3D + RBV</td>
<td>1 (4)</td>
</tr>
<tr>
<td>2D + RBV</td>
<td>1 (4)</td>
</tr>
<tr>
<td>EOTR, N (%)</td>
<td>21 (87)</td>
</tr>
<tr>
<td>SVR12, N (%)</td>
<td>10 (83)</td>
</tr>
<tr>
<td>Relapse, N (%)</td>
<td>2 (8)</td>
</tr>
</tbody>
</table>

2D, ombitasvir-paritaprevir/ritonavir; 3D, ombitasvir-paritaprevir/ritonavir/daclatasvir; DCV, daclatasvir; LDV, ledipasvir; P/R, peg-interferon plus ribavirin; RBV, ribavirin; SIM, simeprevir; SOF, sofosbuvir; EOTR, end-of-treatment response; HCC, hepatocellular carcinoma; CTP, Child-Turcotte-Pugh.

and satisfaction and none of them discontinued treatment. In conclusion, short-course, highly effective and well-tolerated DAAs are a feasible and strongly recommended HCV treatment strategy in prison settings that could improve both individual and public health.

References

P280

Effectiveness of dasabuvir, ombitasvir-paritaprevir/ritonavir (DSV + OBV/PTV/r) for HCV genotype 1 in HIV/HCV co-infected subjects with compensated liver disease: real-world experience from the MADRID-CoRe study

Juan Gonzalez-García1; Maria Luisa Montes-Ramirez2; Lourdes Dominguez-Dominguez2; Teresa Aldamiz-Echevarria3; M Jesus Vivancos3; Angela Gil-Martín3; Encarnacion Cruz-Martos3; Vicente Estrada5; Ana Aries1; Jose Sanz6; Gabriel Gaspar7; Juan Losa8; Carlos Barros11; Jose Ruiz-Giardin12; Alejandra Gimeno-Garcia13; Ana Vegas14; M Teresa Garcia-Benayas15; Regino Serrano16; M Jose Calvo16; Marta Alcaraz16; Inmaculada Jarrin17 and Juan Berenguer3

1Internal Medicine/Infectious Diseases, Hospital Universitario La Paz/IdiPaz, Madrid, Spain. 2Internal Medicine/Infectious Disease, Hospital Doce de Octubre, Madrid, Spain. 3Infectious Diseases, Hospital General Universitario Gregorio Marañon, Madrid, Spain. 4Infectious Diseases, Hospital Ramon y Cajal, Madrid, Spain. 5Pharmacy, Servicio Madrileño de Salud, Madrid, Spain. 6Internal Medicine/Infectious Disease, Hospital Clinico Universitario, Madrid, Spain. 7Internal Medicine/Infectious Disease, Clinica Puerta de Hierro, Madrid, Spain. 8Internal Medicine/Infectious Disease, Hospital Principe de Asturias, Alcalá de Henares (Madrid), Spain. 9Internal Medicine, Hospital de Getafe, Madrid, Spain. 10Internal Medicine/Infectious Disease, Fundacion Hospital de Alcorcon, Madrid, Spain. 11Internal Medicine/Infectious Disease, Hospital de Mostoles, Madrid, Spain. 12Internal Medicine, Hospital de Fuenlabrada, Madrid, Spain. 13Internal Medicine, Hospital de Torrejon, Madrid, Spain. 14Internal Medicine, Hospital Infantia Elena, Madrid, Spain. 15Internal Medicine, Hospital del Sureste, Madrid, Spain. 16Internal Medicine, Hospital del Henares, Madrid, Spain. 17Public Health, Instituto Salud Carlos III, Madrid, Spain

Introduction: We evaluated therapeutic outcomes of DSV + OBV/PTV/r for HCV genotype 1 (GT1) in HIV/HCV co-infected patients with compensated liver disease.

Methods: The Madrid co-infection registry (MADRID-CoRe) is a prospective registry of all co-infected adults (> 18 years) undergoing DAA therapy (Rx) for HCV in hospitals from the Madrid Regional Health Service (SERMAS). We assessed SVR12, viral relapse and failure due to Rx discontinuation. Between November 2014 and May 2016, 2402 co-infected individuals have initiated DAA Rx within MADRID-CoRe. Herein, we present data of co-infected patients with GT1 and compensated liver disease with programmed Rx finalization censored to 31 December 2015, who were treated with DSV + OBV/PTV/r with or without ribavirin (RBV).

Results: We evaluated 132 co-infected individuals who met the inclusion criteria; 72 infected with GT1a and 60 infected with GT1b.

Patient characteristics and treatment outcomes categorized by subtypes, treatment duration and use of RBV are shown in Table 1.

Conclusions: High effectiveness and safety were found with DSV + OBV/PTV/r with or without RBV for GT1 in co-infected patients with compensated liver disease.
Abstract P280–Table 1. Baseline characteristics and outcome in patients coinfected with HIV and HCV genotype 1 treated with dasabuvir and ombitasvir/paritaprevir/ritonavir + ribavirin

<table>
<thead>
<tr>
<th>Genotype</th>
<th>1a</th>
<th>Genotype</th>
<th>1a</th>
<th>Genotype</th>
<th>1a</th>
<th>Genotype</th>
<th>1b</th>
<th>Genotype</th>
<th>1b</th>
<th>Genotype</th>
<th>1b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>No RBV</td>
<td>No RBV</td>
<td>RBV</td>
<td>RBV</td>
<td>Total</td>
<td>No RBV</td>
<td>No RBV</td>
<td>RBV</td>
<td>12 weeks</td>
<td>24 weeks</td>
<td>12 weeks</td>
</tr>
<tr>
<td>Age, years, median</td>
<td>N = 3</td>
<td>N = 1</td>
<td>N = 42</td>
<td>N = 26</td>
<td>N = 72</td>
<td>N = 37</td>
<td>N = 1</td>
<td>N = 22</td>
<td>N = 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male, %</td>
<td>51</td>
<td>47</td>
<td>50</td>
<td>51</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>49</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cART, %</td>
<td>66.7</td>
<td>100</td>
<td>76.2</td>
<td>92.3</td>
<td>81.9</td>
<td>67.6</td>
<td>0</td>
<td>72.7</td>
<td>68.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log HCV RNA, median</td>
<td>6.2</td>
<td>5.5</td>
<td>6.5</td>
<td>6.6</td>
<td>6.5</td>
<td>6.5</td>
<td>5.2</td>
<td>6.1</td>
<td>6.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirrhosis, %</td>
<td>66.7</td>
<td>100</td>
<td>4.8</td>
<td>96.2</td>
<td>41.7</td>
<td>13.5</td>
<td>100</td>
<td>86.4</td>
<td>41.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver stiffness kPa, median</td>
<td>14.4</td>
<td>64.0</td>
<td>8.6</td>
<td>18.0</td>
<td>10.4</td>
<td>9.3</td>
<td>17.5</td>
<td>20.4</td>
<td>11.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV naïve, %</td>
<td>66.7</td>
<td>100</td>
<td>52.4</td>
<td>65.4</td>
<td>58.3</td>
<td>67.6</td>
<td>0</td>
<td>45.4</td>
<td>58.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outcomes</td>
<td>SVR12, n (%)</td>
<td>3 (100)</td>
<td>0</td>
<td>40 (95.2)</td>
<td>24 (92.3)</td>
<td>67 (93.1)</td>
<td>34 (91.9)</td>
<td>1 (100)</td>
<td>21 (95.4)</td>
<td>56 (96.3)</td>
<td></td>
</tr>
<tr>
<td>% SVR, 95% CI</td>
<td>–</td>
<td>–</td>
<td>83.8–99.4</td>
<td>74.9–99.1</td>
<td>845–99.7</td>
<td>78.1–98.3</td>
<td>–</td>
<td>77.2–99.9</td>
<td>83.8–98.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relapse, n (%)</td>
<td>0</td>
<td>1 (100)</td>
<td>1 (2.4)</td>
<td>0</td>
<td>2 (2.8)</td>
<td>1 (2.7)</td>
<td>0</td>
<td>1 (4.5)</td>
<td>2 (3.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breakthrough, n (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (2.7)</td>
<td>0</td>
<td>0</td>
<td>1 (1.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/C due to AEs, n (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (3.8)</td>
<td>1 (1.4)</td>
<td>1 (2.7)</td>
<td>0</td>
<td>0</td>
<td>1 (1.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/C other reasons, n (%)</td>
<td>0</td>
<td>0</td>
<td>1 (2.4)</td>
<td>1 (3.8)</td>
<td>2 (2.8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RBV, ribavirin; SVR, sustained virologic response; D/C, discontinuation; AEs, adverse events.

P281
Response to DAA-based regimens in genotype 4 chronic HCV/HIV co-infected patients in real life: COINFECOVA-2-SeICV study
Carlos Minguez1; Miguel García-Deltoro2; Juan Flores3; Marta Montero4; Jorge Carmena5; María-José Galindo6; Sergio Reus7; Jose-Emilio Ballester2; Jorge Usó2; Enrique Ortega8 and for the COINFECOVA-2 SeICV Study Group
1Internal Medicine/Infectious Diseases Unit, Hospital General Universitario de Castellón, Castellón, Spain. 2Infectious Diseases Unit, Consorcio Hospital General Universitario de Valencia, Valencia, Spain. 3Internal Medicine/Infectious Diseases Unit, Hospital Arnau de Vilanova, Valencia, Spain. 4Infectious Diseases Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain. 5Internal Medicine/Infectious Diseases Unit, Hospital Universitario Dr Peset, Valencia, Spain. 6Infectious Diseases Unit, Hospital Clinico Universitario, Valencia, Spain. 7Infectious Diseases Unit, Hospital General Universitario de Alicante, Alicante, Spain

Introduction and aims: Because genotype 4 (GT-4) HCV/HIV co-infected patients with advanced liver fibrosis are generally under-represented in clinical trials, and their prevalence in developed countries is low, little data are currently available on use of DAA in this setting. The aim of this study was to assess in the clinical practice, the efficacy and safety of interferon-free DAA therapy in GT-4 HCV co-infected patients.

Methods: COINFECOVA-2 is an observational, multicentre study accomplished in hospitals of a region of eastern Spain, including co-infected patients treated with all oral DAA on routine practice. GT-4 HCV/HIV co-infected patients were included in this analysis, if interferon-free DAA therapy was initiated before 1 September 2015 (24-week regimen) or before 1st December 2015 (12-week regimen), allowing a sufficient follow-up to evaluate efficacy. Epidemiologic and clinical data were retrospectively collected by their responsible physicians and investigators.

Results: We included 102 patients in 14 outpatient clinics with a median age of 50 years (IQR 46–54), 74% men and 94% on antiretroviral therapy. HIV viral load was <50 copies/mL in 82%, median CD4+ nadir was 184 cells/mm3 (IQR 99–299) and mean CD4+ at baseline 682 cells/mm3 (95% CI 603–761). Fifty-six percent of the patients were naïve to HCV therapy, 47% were cirrhotic and 22% had an F3 degree of fibrosis (METAIVR). Fifty percent of cirrhotic had a liver stiffness (LS) measured by elastometry ≥21 kPa. The employed combinations of DAA with or without ribavirin (RBV) included: sofosbuvir (SOF)/ledipasvir (LDV) (59%); ombitasvir (OMB)/paritaprevir/ritonavir (PTV/r) (20%); SOF+simprevir (SMV) (14%); and SOF+daclatasvir (DCV) (7%). RBV was employed in 32% of the patients, and therapy was scheduled to 24 weeks in 5%. Efficacy results are displayed in Table 1. There were five patients with treatment failure (four relapses and one breakthrough), and two losses of follow-up. Adverse events (AEs) were reported in 29 patients (28%), three of which were serious (3%), and mainly related
Abstract P281–Table 1. SVR stratified by treatment regimens and degree of fibrosis

<table>
<thead>
<tr>
<th></th>
<th>SOF/LDV ± RBV (N = 60)</th>
<th>OMB/PTV/r ± RBV (N = 20)</th>
<th>SOF + SMV ± RBV (N = 14)</th>
<th>SOF + DCV ± RBV (N = 7)</th>
<th>Overall (N = 102)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>All degrees</td>
<td>56/60 (93)</td>
<td>20/20 (100)</td>
<td>13/14 (93)</td>
<td>5/7 (71)</td>
<td>95/102 (93)</td>
</tr>
<tr>
<td>Fibrosis 3</td>
<td>14/14 (100)</td>
<td>9/9 (100)</td>
<td>3/3 (100)</td>
<td>1/2 (50)</td>
<td>27/28 (96)</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>26/30 (87)</td>
<td>6/6 (100)</td>
<td>7/8 (87)</td>
<td>2/3 (67)</td>
<td>41/47 (87)</td>
</tr>
<tr>
<td>Cirrhosis LS < 21 kPa</td>
<td>15/15 (100)</td>
<td>2/2 (100)</td>
<td>0/1a (0)</td>
<td>2/2 (100)</td>
<td>19/20 (95)</td>
</tr>
<tr>
<td>Cirrhosis LS ≥ 21 kPa</td>
<td>11/15 (73)</td>
<td>4/4 (100)</td>
<td>6/6 (100)</td>
<td>0/1 (0)</td>
<td>21/26 (81)</td>
</tr>
</tbody>
</table>

LDV, ledipasvir; RBV, ribavirin; SMV, simeprevir; SOF, sofosbuvir; OMB, ombitasvir; PTV/r, paritaprevir/ritonavir; LS, liver stiffness.
*aOne patient was treated with SOF + RBV and achieved SVR; 2one patient (not included) had a diagnostic of cirrhosis by clinical criteria and achieved SVR.

Abstract P282

The role of two noninvasive tests to evaluate the liver fibrosis (FIB-4 and transient elastography) and its implications in the different HCV genotypes in a cohort of HIV/HCV co-infected patients

Laura Perez Martínez1; Carlos Lapresta2; María García3; Javier Moreno2; Alvaro Cecilio3; Teresa Rubio3; Carmen Irigoyen1; Gloria Samperio2; Isabel Sanjaquín and Jose Ramon Blanco1

1Infectious Diseases Department, Hospital San Pedro-Center for Biomedical Research of La Rioja (CIBIR), Logroño (La Rioja), Spain.
2Infectious Diseases, Hospital Universitario Miguel Servet, Zaragoza, Spain.
3Infectious Diseases, Complejo Hospitalario de Navarra, Pamplona (Navarra), Spain.

Introduction: End-stage liver disease caused by chronic HCV infection is the leading cause of morbidity and mortality in HIV patients. Several factors such as duration of infection, age, male gender, consumption of alcohol and transmission path have been associated with a faster fibrosis progression rate. The aim of this study was to evaluate the FIB-4 score, a noninvasive test for the assessment of liver fibrosis, and to compare it with transient elastography (TE) in order to predict the fibrosis degree, and its implications in the different genotypes (GTs).

Materials and methods: Observational and multicentre study was conducted in five hospitals of the northern of Spain (2014–2015). HIV/HCV patients ≥ 18 years on stable cART (≥ 6 months) were selected to analyze their liver fibrosis using two noninvasive biomarkers: TE and FIB-4 index calculation.

Results: A total of 584 HIV/HCV patients were included (median age 49.5 years; male 71.2%; 86.9% people who inject drugs). Median CD4 was 620 cells/mL; 82% of them had a VL < 50 copies/mL. HCV GT distribution was as follows: GT1 59.2% (72.3% of them GT1a), GT2 21.1%, GT3 22.1% and GT4 16.5%. Median liver fibrosis was 7.8 kPa; it was F0–F1 in 46.1%, F2 in 15.6%, F3 in 18.1% and F4 in 20.1%. Median FIB-4 was 1.7: < 1.45 in 82.5%, 1.45–3.25 and > 3.25 in 36.5%, 43.4% and 20.1%, respectively. There was a significant correlation between fibrosis degree and FIB-4 score (p < 0.0001). FIB-4 score was significantly lower in GT2 (median 1.3 vs. 1.8; p = 0.04) but higher in GT3 (1.9 vs. 1.7; p = 0.04). Comparing GT1a and GT1b, GT1a had a faster fibrosis degree (p = 0.037).

Conclusions: The prevalence of severe fibrosis is high in these patients (20.1%). Compared with TE, FIB-4 has a good correlation. GT3 has a faster fibrosis grade, so an early therapeutic intervention in these patients is necessary. In the same way, GT1a has a higher fibrosis degree.

Abstract P283

Diversity of hepatitis C virus envelope associated with fibrosis in treatment-naïve patients

Leontina Banica1; Simona Paraschiv2; Emil Neaga3; Valeriu Gheorghita1; Ionelia Batan1; Ovidiu Vlaicu1; Costin Ioan Popescu3 and Dan Otelea1

1Molecular Diagnostic Laboratory, Prof. Dr. Matei Bals National Institute for Infectious Diseases, Bucharest, Romania. 2Clinical Department, Prof. Dr. Matei Bals National Institute for Infectious Diseases, Bucharest, Romania. 3Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania

Introduction: Hepatitis C virus (HCV) continues to be a serious global health problem despite the introduction of direct acting antiretroviral drugs. The limitations in surveillance that contribute to high transmission rates as well as the emergence of drug resistance argue for vaccine development both for prophylactic and therapeutic purposes. High evolution rate of HCV due to high error rates of viral transmission rates as well as the emergence of drug resistance argue for vaccine development both for prophylactic and therapeutic purposes.

Materials and methods: Blood samples from nine treatment-naïve HCV genotype 1b infected patients, five with no/low fibrosis (F0, F1) and four with high fibrosis (F4) were collected. HCV full length E1E2 sequences were amplified by PCR and cloned into a mammalian expression vector pcDNA3.1/V5-His TOPO TA and 10 clones were sequenced using 3500 ABI instrument. BioEdit, Mega 7 and FastTree software tools
were used to analyze the genetic evolution and the intra- and inter-host viral diversity.

Results: Intra-host variability was relatively low in patients with high fibrosis (F4), while for those with no/low fibrosis (F0, F1) the viral diversity varied, being high in those with older infection and low in acute infection. The impact of positive (immune-mediated) or negative (virus adaptation) selection on viral diversity was evaluated based on non-synonymous to synonymous substitution rates per site (dN/dS ratio). dN/dS ratio showed a reduced immune pressure on E1E2 glycoprotein of HCV-infected patients with high fibrosis, while those with chronic infection and low fibrosis showed a strong positive selection pressure in hypervariable region 1 of E2 glycoprotein.

Conclusion: Advanced fibrosis was associated with low intra-host viral diversity and reduced selection pressure; apparently viral populations that are structurally conserved and tolerated by the immune system are being stably selected during late stages of disease.

Acknowledgments: This work was supported by ANCSI; grant EEA-JRP-RO-NO-2013-1-0022, GreenVac Project.

P284

Ledipasvir/sofosbuvir for 8 or 12 weeks in GT1 HCV-infected, treatment-naive and non-cirrhotic patients with HIV infection: real-world experience from the MADRID-CoRe study

Juan Berenguer1; Ángela Gil-Martín2; Ana Moreno3; Francisco Moreno4; Lourdes Dominguez5; Teresa Aldámez-Echevarría6; Encarnación Cruz-Martos7; Vicente Estrada8; Ignacio Santos4; Laura Benítez9; José Sanz10; Pablo Ryan11; Gabriel Gaspar12; Beatriz Álvarez-Alvarez13; Laura Benítez14; Carlos Barros15; Eduardo Malmierca16; Maríα Jose Calvo1; Marta Alcaraz17 and Inmaculada Jarrín17 and Juan González-García18

1Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain. 2Pharmacy, Servicio Madrileño de Salud, Madrid, Spain. 3Infectious Diseases, Hospital Ramón y Cajal, Madrid, Spain. 4Internal Medicine, Hospital Universitario La Paz, Madrid, Spain. 5Internal Medicine, Hospital Doctor de Octubre, Madrid, Spain. 6Infectious Diseases, Hospital Clínico de San Carlos, Madrid, Spain. 7Infectious Diseases, Hospital Universitario de La Princesa, Madrid, Spain. 8Internal Medicine, Hospital Universitario Puerta de Hierro, Madrid, Spain. 9Internal Medicine, Hospital Princesa de Asturias, Alcalá de Henares, Spain. 10Internal Medicine, Hospital Infantita Leonor, Madrid, Spain. 11Internal Medicine, Hospital Universitario de Getafe, Madrid, Spain. 12Infectious Diseases, Fundación Jiménez Díaz, Madrid, Spain. 13Infectious Diseases, Fundación Hospital de Alcorcón, Madrid, Spain. 14Internal Medicine, Hospital Severo Ochoa, Madrid, Spain. 15Infectious Diseases, Hospital de Móstoles, Madrid, Spain. 16Internal Medicine, Hospital Infanta Sofia, Madrid, Spain. 17Public Health, Instituto de Salud Carlos III, Madrid, Spain

Introduction: We evaluated therapeutic outcomes of LDV/SOF for 8 or 12 weeks in GT1 HCV-infected, treatment-naive (TN) and non-cirrhotic patients with HIV infection.

Materials and methods: The Madrid co-infection registry (MADRID-CoRe) is a prospective registry of all co-infected adults (≥18 years) undergoing DAA therapy (Rx) for HCV in hospitals from the Madrid Regional Health Service (SERMAS). We assessed SVR12, viral relapse and failure due to Rx discontinuation. Between November 2014 and May 2016, 2402 co-infected individuals have initiated DAA Rx within MADRID-CoRe. Herein, we present data of co-infected patients with GT1, TN and non-cirrhotic that were treated with LDV/SOF for 8 or 12 weeks without ribavirin, and with programmed Rx finalization censored to 31 December 2015.

Results: We evaluated 192 co-infected individuals who met the inclusion criteria: 134 treated with LDV/SOF for 12 weeks and 58 treated for LDV/SOF for 8 weeks. Patients’ characteristics and treatment outcomes are shown in Table 1.

Conclusions: In real-life clinical practice, no significant differences were found in effectiveness and safety with LDV/SOF for 8 or 12 weeks for GT1 in TN, non-cirrhotic co-infected patients.

P285

Effect of mono/dual antiretroviral therapy on HCV and HIV suppression during HCV treatment in HIV/HCV co-infected patients

Luz Martín-Carbonero1; Lourdes Dominguez2; Lucía Baílón1; Rafael Torres3; Rafael Rubio3; Raquel Ron4; Mikel Rico5; Inmaculada Jiménez-Nacher4; Francisco Moreno6; Juan González7; Federico Pulido8 and Marisa Montes1

1HIV Unit, Internal Medicine, Hospital Universitario La Paz, IDIAPAZ, Madrid, Spain. 2HIV Unit, Internal Medicine, Hospital Universitario Doce de Octubre, IMAS12, Madrid, Spain. 3HIV Unit, Internal Medicine, Hospital Universitario de La Princesa, Madrid, Spain. 4Internal Medicine, Hospital Universitario La Paz, Madrid, Spain. 5Internal Medicine, Hospital Universitario Puerta de Hierro, Madrid, Spain. 6Infectious Diseases, Hospital Universitario Princesa de Asturias, Alcalá de Henares, Spain. 7Internal Medicine, Hospital Infantita Leonor, Madrid, Spain. 8Internal Medicine, Hospital Princesa de Asturias, Alcalá de Henares, Spain. 9Internal Medicine, Hospital Infantita Leonor, Madrid, Spain. 10Internal Medicine, Hospital Universitario de Getafe, Madrid, Spain. 11Infectious Diseases, Fundación Jiménez Díaz, Madrid, Spain. 12Infectious Diseases, Fundación Hospital de Alcorcón, Madrid, Spain. 13Internal Medicine, Hospital Severo Ochoa, Madrid, Spain. 14Infectious Diseases, Hospital de Móstoles, Madrid, Spain. 15Infectious Diseases, Hospital de Móstoles, Madrid, Spain. 16Internal Medicine, Hospital Infanta Sofia, Madrid, Spain. 17Public Health, Instituto de Salud Carlos III, Madrid, Spain

Introduction: We evaluated therapeutic outcomes of LDV/SOF for 8 or 12 weeks in GT1 HCV-infected, treatment-naive (TN) and non-cirrhotic patients with HIV infection.

Materials and methods: We evaluated therapeutic outcomes of LDV/SOF for 8 or 12 weeks in GT1 HCV-infected, treatment-naive (TN) and non-cirrhotic patients with HIV infection.

Results: We evaluated 192 co-infected individuals who met the inclusion criteria: 134 treated with LDV/SOF for 12 weeks and 58 treated for LDV/SOF for 8 weeks. Patients’ characteristics and treatment outcomes are shown in Table 1.

Conclusions: In real-life clinical practice, no significant differences were found in effectiveness and safety with LDV/SOF for 8 or 12 weeks for GT1 in TN, non-cirrhotic co-infected patients.
Abstract P285—Table 1. Baseline characteristics of patients with triple versus mono/dual ATR

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Triple Therapy</th>
<th>Mono-Dual therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 596</td>
<td>N = 393</td>
<td>N = 149</td>
</tr>
<tr>
<td>Male gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male gender</td>
<td>450 (75.4)</td>
<td>300 (76.3)</td>
<td>109 (73.2)</td>
</tr>
<tr>
<td>Age</td>
<td>51 (48–54.2)</td>
<td>50.5 (47.4–54.3)</td>
<td>52 (49.3–54.3)</td>
</tr>
<tr>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>240 (44.1)</td>
<td>167 (46.9)</td>
<td>73 (35.1)</td>
</tr>
<tr>
<td>1b</td>
<td>90 (16.5)</td>
<td>56 (15.7)</td>
<td>30 (22.4)</td>
</tr>
<tr>
<td>3</td>
<td>78 (14.3)</td>
<td>48 (13.4)</td>
<td>30 (21.2)</td>
</tr>
<tr>
<td>4</td>
<td>133 (24.4)</td>
<td>84 (23.5)</td>
<td>49 (32.6)</td>
</tr>
<tr>
<td>RNA-HCV</td>
<td>6.2 (5.8–6.6)</td>
<td>6.2 (5.8–6.6)</td>
<td>6.3 (5.9–6.7)</td>
</tr>
<tr>
<td>Liver Stiffness (kPa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver Stiffness (kPa)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><7</td>
<td>62 (10.4)</td>
<td>43 (11.1)</td>
<td>19 (13.2)</td>
</tr>
<tr>
<td>7.1–9.5</td>
<td>181 (30.4)</td>
<td>118 (30.2)</td>
<td>63 (43.9)</td>
</tr>
<tr>
<td>9.6–14</td>
<td>124 (20.8)</td>
<td>77 (19.7)</td>
<td>47 (32.9)</td>
</tr>
<tr>
<td>>14</td>
<td>228 (38.3)</td>
<td>153 (39.1)</td>
<td>75 (52.8)</td>
</tr>
<tr>
<td>Previous HCV treatment</td>
<td>248 (41.5)</td>
<td>174 (44.3)</td>
<td>74 (50.8)</td>
</tr>
<tr>
<td>HCV treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sofosbuvir/Ledipasvir</td>
<td>410 (68.8)</td>
<td>261 (66.4)</td>
<td>149 (75.6)</td>
</tr>
<tr>
<td>Ombitasvir/Paritaprevir/r +/–DasabuvirAbbvie</td>
<td>87 (14.6)</td>
<td>64 (16.3)</td>
<td>21 (14.1)</td>
</tr>
<tr>
<td>Sofosbuvir/Dadatasvir</td>
<td>76 (12.7)</td>
<td>48 (12.3)</td>
<td>21 (14.1)</td>
</tr>
<tr>
<td>Ribavirin</td>
<td>168 (28.2)</td>
<td>38 (25.5)</td>
<td>121 (80.8)</td>
</tr>
<tr>
<td>Treatment duration</td>
<td>8 weeks</td>
<td>22 (3.7)</td>
<td>10 (2.5)</td>
</tr>
<tr>
<td>Treatment duration</td>
<td>12 weeks</td>
<td>367 (61.6)</td>
<td>240 (61.1)</td>
</tr>
<tr>
<td>Treatment duration</td>
<td>24 weeks</td>
<td>207 (34.7)</td>
<td>143 (36.4)</td>
</tr>
<tr>
<td>Baseline HIV-RNA <50 copies/mL</td>
<td>554 (94.5)</td>
<td>367 (94.6)</td>
<td>146 (98)</td>
</tr>
<tr>
<td>Baseline CD4 cell count</td>
<td>593 (399–832)</td>
<td>582 (379–829)</td>
<td>613 (433–895)</td>
</tr>
</tbody>
</table>

Introduction: New HCV treatment combinations have been studied only with few HIV drugs and always in triple therapy. In the clinical setting, many times we have to use non-conventional combinations, such as mono- or dual therapy, due to resistance or toxicity. The effect of non-conventional ART combinations on both HCV and HIV suppression needs to be assessed.

Material and methods: Retrospective review of HIV/HCV co-infected patients who initiated DAA-based HCV treatment from November 2014 to 2015 in three different hospitals in Madrid. HIV viral suppression was assessed at the beginning and at the end of HCV treatment and compared between groups that have received triple ART or non-conventional combinations. Values are given as percentage and median (interquartile range) for qualitative and quantitative variables, respectively. Chi-square and non-parametric (U de Mann-Whitney) test were used for comparisons.

Results: Overall, 596 patients initiated HCV treatment. Of them, 393 were receiving a triple antiretroviral combination, 66 PI/r mono-therapy, 51 PI/r + 3TC, 32 other dual therapies and 40 other combinations. Mono-/dual therapy groups were older than patients on triple therapy. However, the rest of baseline characteristics were similar between groups (Table 1).

HCV sustained virologic response (SVR) 12 weeks after the end of therapy were 93.2% (520/560) and 94.6% (522/552) in intention-to-treat (ITT) and on-treatment analysis, respectively. No differences in SVR were seen in patients on triple therapy or mono-/dual therapy: ITT (92.9% vs. 95.3%; Δ = −2.4; 95% CI −6.3 to 1.5; p = 0.3), OTT (93.6% vs. 96.1%; Δ = −2.5; 95% CI −6.6 to 1.6; p = 0.2). HIV viral load <50 copies/mL rate at the end of HCV treatment was 96% and 97.6% with conventional and non-conventional HAART (Δ = 1.6; 95% CI −1.4 to 5.36; p = 0.4). Neither were differences seen 12 weeks after (94.5% vs. 95%; Δ = −0.1; 95% CI −4.9 to 5.5; p = 0.9). CD4 cell count did not significantly change during HCV treatment: 16 (95% CI −8 to 104) versus −18 (95% CI −138 to 100) in triple versus mono-/dual groups, respectively; p = 0.1.

Conclusion: Mono- and dual ART maintain HIV suppression during DAA-based HCV treatment. HCV SVR at week 12 is very high in HIV/HCV co-infected patients independently of using triple ART or non-conventional combinations.

P286

Health resources use in patients with HIV: evidence from Italian administrative databases

Valentina Perrone; Diego Sangiorgi; Elisa Crovato; Stefano Buda and Luca Degli Esposti

CiCon S.r.l. Health, Economics and Outcomes Research, Ravenna, Italy

Introduction: The success of ART has changed HIV from a life-threatening disease to a manageable lifelong disease. Today HIV-infected patients have a life expectancy approaching that of the general population, but are exposed to a higher risk of developing comorbidities as a consequence of ageing and exposure to highly toxic regimens. At the same time, HIV-infected patients are increasingly affected by conditions typical of older adults, such as diabetes, cardiovascular disease, and osteoporosis. This situation changes the role of Health professionals: besides the clinical management of HIV, a particular attention should be paid to the treatment and prevention strategies for these additional diseases.
active ART. Currently, scarce evidence is available on comorbidities in HIV+ patients and the related burden on the healthcare systems. This study aimed to evaluate the prevalence of comorbidities among HIV patients and estimate the associated healthcare costs.

Materials and methods: An observational retrospective cohort analysis, using administrative and laboratory test outcomes databases from seven local health units (LHUs) in Italy, was designed. Currently, data from one LHU are presented in this analysis. Records of patients diagnosed with HIV (identified through hospitalizations, specific treatments or blood test results) between 1 January 2013 and 31 December 2015 were extracted. The date of the first HIV-related healthcare consumption was used as the index date. Clinical characteristics of patients were investigated in the year before the index date. All patients were followed up for one year after the index date (only patients with one year follow-up were included).

Results: The preliminary analyses from one LHU included 366 HIV+ patients. Mean age was 53.6 years, 66% were male and 5% had AIDS. Twenty-five percent of patients had one comorbidity, 11% had two and 6% had three or more. Thirty-two percent of patients had rheumatologic diseases (anti-inflammatory/anti-rheumatic drugs prescribed), 7% had chronic kidney disease (CKD; defined as GFR <60 mL/min, from laboratory outcomes database). Seventeen percent of patients were prescribed statins and 2% of patients were prescribed osteoporosis drugs. Three percent were hospitalized for cardiovascular disease (heart failure, myocardial infarction, cerebrovascular event) and 1% experienced a hospitalization for fracture. On average, the annual healthcare cost of a patient without comorbidities was 8400€, the cost of a patient with one comorbidity 9400€, and the cost of a patient with two comorbidities or three or more were 9700€ and 10,600€, respectively.

Conclusions: In this cohort, 42% of HIV+ patients were shown to have at least one comorbidity. In addition, healthcare costs were also shown to increase with the number of comorbidities. Evidence from this study suggests that a multidisciplinary approach to HIV+ patients is required to optimize care and healthcare consumption.

P287

HCV+ and HIV/HCV+ patients treated with direct antiviral agents (DAAs): to what extent do they differ?

Giuseppe Bruno; Claudia Fabrizio; Raffaele Dell’Acqua; Eugenio Milano; Michele Milella; Annalisa Saracino; Laura Monno and Gioacchino Angaran

Clinic of Infectious Diseases, University of Bari, Bari, Italy

Introduction: DAA treatment has been associated with high rates of sustained virological response (SVR) and a good safety profile both in HCV+ and HIV/HCV+ individuals. We aimed to assess the efficacy and safety of DAAs in HIV/HCV+ compared with HCV+ patients in a large single-centre.

Methods: All HCV-infected patients, with or without HIV infection, who received an IFN-free regimen with DAAs from February 2015 throughout June 2016, were enrolled. Clinical, virological and laboratory data were collected.

Results: A total of 449 patients received DAAs, and 339 (54 HIV/ HCV+ and 285 HCV+) completed their treatment. A follow-up ≥ 3 months after the end of treatment (EOT) was available for 184 HCV+ and 40 HIV/HCV+ subjects. HIV/HCV+ individuals were younger (median age 52 vs. 68 years), mostly male (90.9% vs. 57.2%) and more commonly infected with genotypes 1a (52.7% vs. 6.4%), 3 (25.5% vs. 6.8%) and 4 (14.5% vs. 3.1%). Two hundred and twenty-four (63.4%) patients were cirrhotic and 188 (53.7%) had a previous therapy failure. HCV+ patients were more likely to have ≥ 2 comorbidities (27.8% vs. 9%; p = 0.003).

Type of therapy, effectiveness data and safety were analyzed for 350 patients, including 11 subjects who discontinued treatment (Table 1).

Table 1. Type of DAAs therapy, effectiveness data and safety profile of the 350 patients

<table>
<thead>
<tr>
<th>Total number of patients evaluated</th>
<th>350</th>
<th>295</th>
<th>55</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOF + RBV</td>
<td>78</td>
<td>22.3</td>
<td>66</td>
<td>22.4</td>
</tr>
<tr>
<td>SOF + SIM ± RBV</td>
<td>56</td>
<td>16.0</td>
<td>39</td>
<td>13.2</td>
</tr>
<tr>
<td>SOF + LDV ± RBV</td>
<td>56</td>
<td>16.0</td>
<td>46</td>
<td>15.6</td>
</tr>
<tr>
<td>SOF + DCV ± RBV</td>
<td>25</td>
<td>7.1</td>
<td>21</td>
<td>7.1</td>
</tr>
<tr>
<td>OMB + PTV/</td>
<td>129</td>
<td>36.9</td>
<td>118</td>
<td>40.0</td>
</tr>
<tr>
<td>R + DAS ± RBV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMB + PTV/R + RBV</td>
<td>6</td>
<td>1.7</td>
<td>5</td>
<td>1.7</td>
</tr>
<tr>
<td>Use of ribavirin</td>
<td>234</td>
<td>66.8</td>
<td>204</td>
<td>69.2</td>
</tr>
<tr>
<td>Effectiveness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients with EOT</td>
<td>339</td>
<td>96.8</td>
<td>285</td>
<td>96.6</td>
</tr>
<tr>
<td>Drop-out</td>
<td>11</td>
<td>3.1</td>
<td>10</td>
<td>3.3</td>
</tr>
<tr>
<td>Patients with at least 3 months of follow-up post EOT</td>
<td>224</td>
<td>49.8</td>
<td>184</td>
<td>62.3</td>
</tr>
<tr>
<td>SVR12</td>
<td>207</td>
<td>92.4</td>
<td>171</td>
<td>92.9</td>
</tr>
<tr>
<td>Most common side effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>30</td>
<td>8.6</td>
<td>26</td>
<td>8.8</td>
</tr>
<tr>
<td>Insomnia</td>
<td>13</td>
<td>3.7</td>
<td>11</td>
<td>3.7</td>
</tr>
<tr>
<td>Fatigue</td>
<td>44</td>
<td>12.6</td>
<td>34</td>
<td>11.5</td>
</tr>
<tr>
<td>Dizziness</td>
<td>14</td>
<td>4.0</td>
<td>12</td>
<td>4.1</td>
</tr>
<tr>
<td>Mood disorders</td>
<td>13</td>
<td>3.7</td>
<td>11</td>
<td>3.7</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>22</td>
<td>6.3</td>
<td>20</td>
<td>6.8</td>
</tr>
<tr>
<td>Jaundice</td>
<td>8</td>
<td>2.3</td>
<td>4</td>
<td>1.4</td>
</tr>
<tr>
<td>Rash, pruritus or photosensitivity</td>
<td>59</td>
<td>16.9</td>
<td>53</td>
<td>18.0</td>
</tr>
<tr>
<td>Haematological abnormalities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaemia</td>
<td>46</td>
<td>13.1</td>
<td>40</td>
<td>13.6</td>
</tr>
<tr>
<td>Haemoglobin <10 g/dl</td>
<td>29</td>
<td>8.3</td>
<td>23</td>
<td>7.8</td>
</tr>
<tr>
<td>Haemoglobin <8 g/dl</td>
<td>5</td>
<td>1.4</td>
<td>5</td>
<td>1.7</td>
</tr>
<tr>
<td>Blood transfusion</td>
<td>5</td>
<td>1.4</td>
<td>5</td>
<td>1.7</td>
</tr>
<tr>
<td>Reduction RBV</td>
<td>27</td>
<td>7.7</td>
<td>26</td>
<td>8.8</td>
</tr>
<tr>
<td>EPO use</td>
<td>17</td>
<td>4.9</td>
<td>14</td>
<td>4.7</td>
</tr>
<tr>
<td>At least two adverse events</td>
<td>73</td>
<td>20.9</td>
<td>68</td>
<td>23.1</td>
</tr>
<tr>
<td>Severe adverse events</td>
<td>9</td>
<td>2.6</td>
<td>8</td>
<td>2.7</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>5</td>
<td>1.4</td>
<td>4</td>
<td>1.4</td>
</tr>
<tr>
<td>haemorrhage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe anaemia</td>
<td>1</td>
<td>0.3</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Encephalopathy</td>
<td>2</td>
<td>0.6</td>
<td>2</td>
<td>0.7</td>
</tr>
<tr>
<td>Ascites</td>
<td>1</td>
<td>0.3</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Results are presented as frequencies (%) for qualitative variables. DAS, dasabuvir; DCV, daclatasvir; EOT, end of treatment; LDV, ledipasvir; OMB, omibitasvir; PTV/r, paritaprevir/r; RBV, ribavirin; SIM, simprevir; SOF, sofosbuvir; SVR, sustained virological response. *p < 0.05.
Most common adverse events were rash (16.9%), fatigue (12.6%), anaemia (13.1%) and headache (8.6%). Severe adverse events (SAE) occurred in eight HCV+ (2.3%) and in one HIV/HCV+ patient (1.8%). HCV+ patients experienced more frequently ≥2 adverse events (23.1% vs. 9.1%, p = 0.02) and underwent a larger ribavirin use (69.2% vs. 54.5%, p = 0.03). Therapy was discontinued due to liver transplantation (one patient), SAE (nine patients, including one death because of oesophageal varices bleeding), breakthrough (one HIV/HCV+ genotype 4 patient). SVR12 was achieved in 92.4% patients overall, 92.9% HCV+ overall, 92.9% HCV+ because of oesophageal varices bleeding), breakthrough (one HIV/HCV co-infected patient switched from TDF to entecavir (ETV) due to renal or bone toxicity with maintenance of LAM.

Conclusion: A worse safety profile pertained HCV+ patients with a higher burden of comorbidities. However, an overall high rate of SVR12 was obtained independent of HIV infection.

P288

Renal safety of boosted PI in HIV/HCV patients on SOF/LDV

Maria J Vivancos-Gallego; Ana Moreno; Maria J Perez Elias; Carmen Queveda; Jose Luis Casado; Matilde Sanchez-Conde; Enrique Navas; Santos Del Campo and Santiago Moreno

Infectious Diseases, Hospital Ramon y Cajal, Instituto Ramon y Cajal de Investigacion Sanitaria, Madrid, Spain

Objectives: To better describe safety of PI-boosted (ritonavir/cobicistat) plus ledipasvir/sofosbuvir (LDV/SOF) in routine clinical care.

Methods: A retrospective HIV/HCV cohort study of patients from a tertiary centre in Madrid, Spain, starting LDV/SOF with PI-boosted with complete renal function and overall safety follow-up data during therapy. Paired baseline and at the end of treatment eGFR (CKD-EPI) comparisons were made regarding cobicistat or ritonavir boosted PI use (plus TDF or not).

Results: From a DAA cohort of 424 co-infected patients, 83 were on protease inhibitor-based regimen for HIV. Of these, 47 patients on LDV/SOF (57%) were included (83% men, age 51 years (47–51)). HCV genotypes: 1 (68.1%); 3 (10.6%); 4 (21.3%). DAA duration was: 8 weeks (five patients); 12 weeks (33 patients); 24 weeks (nine patients). Twenty-eight patients without cirrhosis (59.6%), 19 with cirrhosis (40.4%). PI distribution was: darunavir/ritonavir (25 patients); darunavir/cobicistat (11 patients); lopinavir/ritonavir (six patients); and atazanavir/ritonavir (five patients). Anti retrovirals associated with PI were: Kivexa (six patients) and Truvada (nine patients); lamivudine (16 patients) and PI monotherapy (16 patients). Median time between the baseline and the last eGFR was 24 weeks (22–26). Mean baseline eGFR (CKD-EPI) in darunavir/cobicistat group was 94.4 mL/min meanwhile in the others boosted PI was 91.2 mL/min (p = 0.06). After the end of LDV/SOF mean eGFR was 94.2 mL/min versus 83.4 mL/min, respectively (p = 0.2). In the boosted TDF group mean baseline eGFR was 95.4 ± 11.5 mL/min versus 74.5 ± 32.2 mL/min in the last observation (p = 0.15). The observed changes in eGFR were not statistically significant, of small magnitude and non-clinically relevant. No adverse events were reported during treatment.

Conclusion: In a population of HCV/HIV co-infected patients no impact on kidney function or safety considerations was observed during the short 8 to 24 weeks DAA treatment duration no cobicistat/ritonavir boosted PI and LDV/SOF therapy.

P289

Entecavir plus lamivudine as an alternative treatment for co-infected HBV/HIV patients with toxicity on tenofovir therapy

Maria Fontecha-Ortega1; Vanesa Muñoz-Mendoza2; Marta Monsalvo1; Marisa Mateos3; Miguel Angel Rodriguez-Sagrado3; Cristina Gómez2 and Jose Luis Casado1

1Infectious Diseases, Hospital Ramón y Cajal, Madrid, Spain. 2Microbiology, Hospital Ramón y Cajal, Madrid, Spain. 3Pharmacology, Hospital Ramón y Cajal, Madrid, Spain

Introduction: Combination of lamivudine (LAM) or emtricitabine with tenofovir disoproxil fumarate (TDF) is the recommended first-line regime for treatment in chronic hepatitis B virus (HBV)/HCV co-infection. However, little is known about the best strategy in patients who developed tenofovir toxicity. We report the outcome of HBV co-infected patients who switched from TDF to entecavir (ETV) due to renal or bone toxicity with maintenance of LAM.

Materials and methods: Retrospective case series (2009–2015) of HBV/HCV co-infected patients who developed TDF toxicity and switched to ETV together with LAM. HBV suppression (HBV DNA) and renal and bone toxicity were evaluated during follow-up.

Results: Overall, 12 patients switched to ETV + LAM because TDF toxicity. Mean age was 54.9 years, and 83% male. Patients showed chronic replicative HBV co-infection (Ag-HBe positive in four cases, Ac-HBe in six cases; median HBV DNA level at baseline was 104.146 IU/mL suppressed while receiving HBV therapy with LAM for a median of 122 months (49.6–170.3), along with TDF for 67 months (34–136.2). Thus, at the time of change, HBV DNA was undetectable in all the cases except one patient with lack of adherence (1,700,000 UI/L). Patients showed additional cases of renal or bone toxicity (two HTA, two DM, two liver transplantation, one renal transplant, one patient on dialysis, four patients receiving antineoplastic chemotherapy and one patient with Fanconi syndrome suspicion). At the time of switch, mean estimated glomerular filtration rate (eGFR) was 87.3 mL/min (49–103.3) and six patients were below 60 mL/min. Urine analysis showed a protein-creatinine ratio (PCR) of 112 mg/gCr (40–189) and fractional excretion of phosphate was 35.4% (13.5–79.9%). Also, two patients showed severe osteoporosis and three patients had vertebral fractures. During a median follow-up of 29.4 months on ETV (3.9–81; 7.3 patient-years), HBV remained suppressed in all the patients, with normalization of transaminases. In addition, there was improvement in eGFR (from 75.6 to 90.6 mL/min; 0.16), serum phosphate (from 2.7 to 3.11; p = 0.06) and FE of phosphate in urine (from 59.2 to 74.3; p = 0.21).

Conclusions: The switch to entecavir together with lamivudine could be an alternative to TDF in HBV/HIV co-infected patients in case of toxicity or intolerance.

P290

Direct-acting antiviral drugs (DAAs) for the treatment of chronic HCV infection in HIV co-infected patients: a monocentric experience in real life

Ilaria Izzo1; Salvatore Casarì1; Andrea Vavassori1; Paola Nasta1; Silvia Odolini1; Filippo Castelnuovo2; Alberto Bergamasco2; Issa El Hamad3; Giuseppe Paninifo2; Angiola Spinetti2; Serena Zaltron1; Lucia Urbiniti1; Luciano Biasi1; Emanuele Foca2; Elena Festa2; Graziella Cristini2 and Francesco Castelli3

1Department of Infectious and Tropical Diseases, University of Brescia and Spedali Civili General Hospital, Brescia, Italy. 2Department of Infectious Diseases, Spedali Civili General Hospital, Brescia, Italy

Introduction: There are few data on the real-world experience of hepatitis C virus (HCV) direct-acting antivirals (DAAs) in HIV/HCV co-infected patients. The aim of the study was to evaluate the efficacy of DAA therapies in a cohort of HIV/HCV patients in the Infectious Diseases Department in Brescia, Northern Italy.
Materials and methods: We retrospectively analyzed data of all HIV/HCV patients who started treatment with DAAs from February 2015 to March 2016. The primary outcome was to evaluate sustained virologic response at 12 weeks after DAAs completion (SVR12).

Results: Hundred and thirty-five HIV/HCV co-infected patients started treatment in the study period. Most patients were male (121, 79.1%) and HCV genotypes 1a, 3 and 4 were the most represented (55, 36.0%; 37, 24.2% and 33, 21.6%, respectively). CART was modified before starting DAA in 35/153 patients (22.9%), to avoid PK interactions. Sixty-four (41.8%) patients had received prior treatment with an IFN-containing regimen; 126 (82.4%) of patients presented with cirrhosis, 25 (16.3%) presented with moderate fibrosis at transient elastography (F3) and one (0.65%) was treated according to Agenzia Italiana del Farmaco (AIFA) inclusion criteria no. 3 (extra-hepatic HCV manifestations). Ribavirin was included in the vast majority of regimens (109 patients, 71.2%). The following regimens were prescribed: sofosbuvir/ledipasvir (+ ribavirin) 68 (44.5%), sofosbuvir/daclatasvir (+ ribavirin) 52 (34%), sofosbuvir/ribavirin nine (5.9%), sofosbuvir/simeprevir (+ ribavirin) eight (5.2%), ombitasvir/paritaprevir/ritonavir/dasabuvir (+ ribavirin) eight (5.2%) and ombitasvir/paritaprevir/ritonavir (+ ribavirin) eight (5.2%). Among the 72 patients who completed therapy and had a 12-week follow-up by the end of the study, the overall SVR12 rate was 95.8% and 3/72 (4.2%) patients faced virologic failure. No significant differences in SVR12 rate were observed according to gender, age, fibrosis grade and baseline HCV viral load. Anyway the three failed patients were males with cirrhosis.

Conclusions: Treatment with DAAs was highly effective (cure rate of 95.8%) in our cohort of co-infected patients, the majority of whom (82.4%) presented with cirrhosis. Neither HIV co-infection nor advanced liver disease should be considered as a barrier to HCV treatment. However, DAAs-CART interactions are a real challenge during therapy and in some cases (22.9% in our experience) CART needs to be modified before DAA treatment.

Poster Abstracts

P291

Daclatasvir (DCV) pharmacokinetics in HCV/HIV co-infected patients co-administered with ribavirine and other antiretroviral drugs

Ambra Barco1; Letizia Marinaro1; Marco Merli2; Chiara Alcantarini2; Chiara Montrucchio1; Giulia Vendemiati1; Maurizio Milesi2; Francesca Patti4; Fabio Favata1; Alessandra Araujo3; Hamid Hasson4; Antonio D’Avolio2; Caterina Uberti-Foppa5; Giovanni Di Perri6; and Stefano Bonora1

1Unit of Infectious Diseases, Ospedale Amedeo di Savoia, Torino, Italy. 2Infectious Diseases Clinic, San Raffaele Hospital, Milano, Italy. 3Infectious Diseases, Spedali Civili, Brescia, Italy. 4Infectious Diseases, Institute of Infectious Diseases, University of Porto, Portugal. 5Infectious Diseases, University of Cagliari, Italy. 6Experimental Pathology, University of Bari, Italy.

Introduction: Due to potential drug-drug interaction, DCV dose reduction to 30 mg is required when co-administered with atazanavir/ritonavir (ATV/r), while no data are available for unboosted atazanavir (ATV). Moreover, no data on ribavirine (RPV) and DCV interaction are currently available. The aim of our study was to describe DCV pharmacokinetics when co-administered with different protease inhibitors (Pis) and RPV in a real-life cohort of HIV/HCV-positive patients.

Materials and methods: HIV/HCV co-infected patients treated with DCV plus sofosbuvir (SOF) for at least 4 weeks and receiving ART were enrolled. Assuming a comparable effect of ATV and ATV/r, patients treated with ATV received a reduced DCV dose of 30 mg/DCV plasmatic levels (DCVpl) (22±2 hours after last intake) were evaluated using UPLC-MS/MS validated method and reported as ng/mL. Data are expressed as numbers (percentage) and median (IQR).

Results: Twenty-nine patients were enrolled: 86.2% males, age 52 (IQR 49–54), BMI 25 kg/m2 (22.5–27.7). Metavir score was 4, 3 and 1 in 22 (76%), 6 (21%) and 1 (3%), respectively. Child-Pugh score was A and B in 93% and 7%, respectively. Twenty-four patients had HCV genotype 3 and five had genotype 1. ART was PI-based in 13 (48%) patients (six ATV/r, two ATV, five DRV/r), RPV-containing in eight (26%) and INI-containing in eight (26%). Twenty-seven DCV determinations were obtained at week 4. Median DCVpl in study population was 212 ng/mL (103–299). In patients co-administered with RPV, DCVpl was 216 ng/mL (61–383) and no significant statistical difference was found in DCVpl of patients receiving other ARVs (p = 1). Patients receiving PI showed a DCVpl of 280 ng/mL (224.5–369.7), with no statistical difference compared with DCVpl of RPV group (p = 0.36). DCVpl of subjects in ATV/r (280 ng/mL, 212–283) and DRV/r (315 ng/mL, 277–315) showed no significant difference (p = 0.29), as well as DCVpl of those in ATV/r or ATV (237 ng/mL, 212–237) (p = 0.37).

Conclusions: DCV plasmatic concentrations in our cohort of patients administered with different ARV regimens resulted comparable to values reported from literature. This is the first report on DCV exposures in HIV/HCV patients co-administered with RPV. Results show that standard DCV dose of 60 mg provides adequate DCV levels, comparable to those reported with other regimens. Moreover our findings confirm the appropriatedness of reduced DCV dose of 30 mg both in individuals treated with ATV/r and in patients receiving unboosted ATV.

P292

Chronic HCV genotype 4 infection in a Portuguese cohort of co-infected HIV patients: treatment with sofosbuvir-based regimens

Pedro Brogueira; Virginia Moneti; Ana Miranda; Fernando Ventura; Teresa Baptista; Fernando Borges; Jaime Nina; Susana Peres; Isabel Aldir; Maria Campos; Isabel Antunes; João Pereira and Kamal Mansinho

Infectious Diseases, Hospital Egas Moniz, Lisbon, Portugal

Introduction: HCV genotype 4 infection has an estimated prevalence of 10 to 20% worldwide. In Europe the number of infections has risen during 10 years due to some epidemiologic variations. In Portugal its incidence reaches 7% [1]. The high rates of cure seen with oral-based regimens brought the need to well characterize genotype 4 infection in terms of its epidemiology, natural history and response to treatment in a real-life experience basis.

Materials and methods: At our Infectious Disease Center, since 1 January 2015 until 31 March 2016, 416 patients were eligible to engage HCV treatment with DAA regimens.

Inclusion criteria: Included all chronically HCV-infected patients, with or without HIV infection, followed at our service, and proposed to DAA treatment. Epidemiologic, demographic, clinical, laboratory and therapeutic data were collected.

Data analysis: This was performed by using Microsoft Excel and SPSS version 15.0.

Results: Of the 416 patients proposed for DAA treatment, 281 patients were HIV co-infected (68%) and 135 were HCV mono-infected (32%). The global prevalence of HCV genotype 4 was 17% (n = 72), 20% in co-infected (HIV/HCV) versus 11% in HCV mono-infected patients. The 72 patients with genotype 4 infection included 57 (79%) patients co-infected with HIV, 77% with TCDA cell count > 500 cells/µL, all of them under CART with viral suppression. The demographic analysis of co-infected versus HCV mono-infected patients revealed: male gender 80% versus 82%, mean age 48 years versus 56 years, injectable drug use being the most frequent route of transmission 78% versus 45%, mean time since diagnosis 15 years versus 11 years. Chronic liver disease stage was Child-Pugh A in 91% versus 100%; MELD < 9 in 87% versus 100%. Serum markers of
fibrosis: FIB-4 \(>3.25\) in 10% versus 36% and APRI \(>0.7\) in 20% versus 36%. Real-time elastography was performed and revealed fibrosis stage \(\leq F2\) in 39% versus 20%. Stage F4 was detected in four patients (7%) versus one (7%). The proposed treatment was SOF/LED in 97% of patients (\(n=70\)); SOF/LED + RBV (\(n=1\)); SOF + PEG + RBV (\(n=1\)). At the present date, 64 patients started treatment, 80% (\(n=51\)) H1V/HCV versus 20% (\(n=13\)) HCV mono-infected. The preliminary sustained virologic response rate was 95%. There was one death due to hepatocellular carcinoma.

Conclusions: Our cohort reveals a genotype 4 prevalence above that estimated for general population, especially in the HIV co-infected patients reaching 20%. This analysis suggests that co-infected patients have an earlier diagnosis of HCV infection, as they were younger and presented earlier in disease.

Reference

P293

Mortality during direct-acting antiviral therapy in HIV/HCV patients with cirrhosis

Maria J Vivancos-Gallego; Ana Moreno; Maria J Perez Elias; Carmen Quereda; Jose Luis Casado; Cristina Gomez Ayerbe; Matilde Sanchez-Condé; Santos Del Campo and Santiago Moreno

Hospital Ramon y Cajal, Instituto Ramon y Cajal de Investigación Sanitaria, Infectious Diseases, Madrid, Spain

Introduction: Direct antiviral agents (DAAs)-based therapy has dramatically changed outcomes among patients with cirrhosis, but the benefits in advanced liver disease are unclear.

Materials and methods: From April 2013, we consecutively included 181 HIV/HCV cirrhotics patients treated with DAAs. Baseline characteristics, sustained virologic response (SVR12) and discontinuations for any reason were recorded.

Results: The baseline characteristics are in Table 1. Most were GT1 (61%) and treatment experienced (58%). The rate of SVR12 obtained for our cohort was 85% (149/175). There was a statistically significant difference in the SVR12 rate in non-GT4-infected patients compared with GT4-infected patients (88.9% vs. 67.7%, \(p=0.009\)). Simeprevir (SMV)-including DAA therapy was associated with treatment failure \(p=0.009\). The premature discontinuation rate was 4.4% (8/181) in our study, of whom five patients (62.5%) died. Reasons for discontinuation in the remaining three patients included intracranial haemorrhage (\(n=1\)), upper gastrointestinal bleeding (\(n=1\)) and liver transplantation (\(n=1\)). On-treatment mortality rate was 2.76% and the baseline demographics and HCV characteristics of these five patients are described. The median age was 52 years and received treatment with DCV/SOF in three patients and LDV/SOF in two patients. Genotypes distribution was 1a (two patients), 1b (one patient) and 3 (two patients). The mean model for end-stage liver disease (MELD) score, platelet counts, bilirubin and albumin levels were not statistically different from those patients who survived treatment. The causes of death for the five patients were hepatocarcinoma (\(n=3\)), upper gastrointestinal bleeding (\(n=1\)) and sepsis (\(n=1\)). Two of these patients with hepatocarcinoma developed a multicentric HCC “de novo” with rapid progression (Table 2). Of note, while there were five on-treatment deaths there

<table>
<thead>
<tr>
<th>Table 1. Baseline characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline demographics</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Died on treatment</td>
</tr>
<tr>
<td>n = 181</td>
</tr>
<tr>
<td>n = 5</td>
</tr>
<tr>
<td>Median age (range), years</td>
</tr>
<tr>
<td>Male, n (%)</td>
</tr>
<tr>
<td>History of decomposition, n (%)</td>
</tr>
<tr>
<td>MELD score (range)</td>
</tr>
<tr>
<td>0–9, n (%)</td>
</tr>
<tr>
<td>10–15, n (%)</td>
</tr>
<tr>
<td>16–21, n (%)</td>
</tr>
<tr>
<td>21+, n (%)</td>
</tr>
<tr>
<td>HCV genotype</td>
</tr>
<tr>
<td>1a, n (%)</td>
</tr>
<tr>
<td>1b, n (%)</td>
</tr>
<tr>
<td>1 (nosubtype), n (%)</td>
</tr>
<tr>
<td>2, n (%)</td>
</tr>
<tr>
<td>3, n (%)</td>
</tr>
<tr>
<td>4, n (%)</td>
</tr>
<tr>
<td>Treatment experienced</td>
</tr>
<tr>
<td>Dual therapy, n (%)</td>
</tr>
<tr>
<td>PI/PR, n (%)</td>
</tr>
<tr>
<td>Child-Pugh score</td>
</tr>
<tr>
<td>A, n (%)</td>
</tr>
<tr>
<td>B, n (%)</td>
</tr>
<tr>
<td>C, n (%)</td>
</tr>
<tr>
<td>Median baseline HCV RNA</td>
</tr>
<tr>
<td>IU/l/ml Treatment duration (weeks)</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>48</td>
</tr>
<tr>
<td>Others</td>
</tr>
<tr>
<td>RBV use, n (%)</td>
</tr>
</tbody>
</table>

Case P293—Table 2. Cases of multicentric and fatal HCC

<table>
<thead>
<tr>
<th>HCV</th>
<th>FBS (kPa)</th>
<th>Compensated cirrhosis</th>
<th>Previous Tx</th>
<th>DAAs</th>
<th>AFP</th>
<th>Clinical presentation</th>
<th>Exitus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>GT 3a</td>
<td>36</td>
<td>Yes</td>
<td>PI/PR (1)</td>
<td>04/22/2015 LDV/SOF + RBV</td>
<td>6,48</td>
<td>Multicentric HCC. Portal vein thrombosis and ascites</td>
</tr>
<tr>
<td>ILB28 CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 2</td>
<td>GT 1b</td>
<td>45</td>
<td>Yes</td>
<td>PI/PR (2) Dual therapy</td>
<td>01/27/15 SOF/DCV</td>
<td>63751</td>
<td>Multicentric HCC. Portal vein thrombosis and ascites</td>
</tr>
<tr>
<td>ILB28 CT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
was no mortality in the 12 weeks post-treatment. Three patients with premature discontinuation reached SVR12.

Conclusions: We did not find a high mortality rate although close monitoring on direct-acting antiviral therapy is essential. DAAAs effectively cured HCV in patients with advanced liver disease. The longer-term impact of HCV treatment in patients with cirrhosis remains to be determined.

P294
Characteristics and effectiveness in HCV mono-infected and HIV–HCV co-infected cirrhotic patients receiving oral direct-acting antiviral (DAA) regimens interferon-free therapies in southern Spain
Begoña Alcaraz1; Francisco Vera1; Paloma Escrivano1; Rocío Rojano1; Amaya Jimeno1; Elena Ruiz1; Ana García1; Javier Trujillo1; Nazaret Cobos1; Enrique Bermúdez1; Mar Alcalde1; Josefina García1; Onofre Martinez2; María Carolina Capozzi1 and Lorenza Martínez3
1Medicina Interna, Hospital General Universitario Santa Lucía, Cartagena, Spain. 2Medicina Interna, Hospital General Universitario Reina Sofia, Murcia, Spain.

Introduction: Patients with liver cirrhosis due to hepatitis C virus (HCV) are a priority treatment group due to the risk of developing clinical decomposition and hepatocellular carcinoma. Oral direct-acting antiviral (DAA) interferon (IFN)-free therapies have simplified regimens and reduced adverse effects (AE), not being exempt from drug interactions. Cirrhotic patients, with more comorbidities and polymedication, could have higher risk of AE during the treatment with DAA, with compromised effectiveness.

Objectives: 1) To describe and analyze clinical, virologic and elastographic characteristics in cirrhotic HCV mono-infected and HIV–HCV co-infected patients who receive treatment with DAA, and 2) to describe and analyze the effectiveness and safety of DAA in the patients included.

Methods: Retrospective descriptive observational study of a cohort of cirrhotic HCV mono-infected and HIV–HCV co-infected patients on DAA IFN-free therapies in the Infectious Diseases Unit of the General Hospital Universitario Santa Lucía (Cartagena), from 1 January 2015 to 30 April 2016. The variables analyzed were: clinical and elastographic characteristics, comorbidities, routine treatment, efficacy rate, AE and therapeutic failures.

Results: From 116 patients with HCV chronic infection who initiated treatment with DAA, 31 (26.7%) were cirrhotic. Twenty-three patients were male (74%), and the mean age was 53.8 ± 8 years. Nineteen patients (61.3%) were co-infected with HIV. The most frequent HCV genotype was 1a. The elastography median result was 20.4 kPa (p25–p75: 17–33 kPa). The mean HCV viral load (log) was 6.18 ± 0.73 (3.75–7.19). Eighty-four percent had at least three comorbidities. Twenty-two patients consumed three or more drugs (71%), and most frequently: benzodiazepines (61%), antihypertensives (50%), proton pump inhibitors (50%), antidepressants (32%) and antipsychotics (29%). Thirteen percent of patients were on methadone program. Effectiveness analysis: 23 patients (74.2%) reached week 12 post-treatment; intention-to-treat analysis: 21 patients (91%) achieved SVR; observed data: 17 patients (74%) with SVR. Six patients presented AE (19%), of which two (33%) resulted in failure due to toxicity/intolerance. One patient had severe hepatic decomposition and deceased. Four patients failed treatment, due to virologic failure (two) and lack of adherence (two).

Conclusions: Patients with liver cirrhosis receiving DAA IFN-free therapies present high comorbidity and use of polypharmacy. A higher rate of severe AE was observed without a significant reduction in the virologic efficacy.

P295
Chronic hepatitis C treatment with direct antiviral drugs in mono- and HIV co-infected patients: a real-life experience in an infectious diseases department at a hospital in Portugal
João Cabo; Teresa Martins; Nidia Garrido; Stepanka Betkova; Maria Jose Manata; Liliana Alves; Sara Cardoso; Orlando Cardoso; Rita Gonçalves; Ana Raquel Garrote; Pedro Simões; Freddy Ramirez; Diana Seixas; Sara Lino; Fernando Maltez and Diana Povoas
Infectious Diseases Department, Hospital Curry Cabral – Centro Hospitalar Lisboa Central, Lisboa, Portugal.

Background and aims: Hepatitis C (HCV) treatment with direct antiviral agents (DAAs) showed high rates of sustained virological response in clinical trials. The aim of this study is to evaluate the efficacy and safety of DAAs in a real-world setting, and compare the results in HCV mono-infected and HCV/HIV co-infected patients.

Methods: Observational study including all HCV-infected patients starting treatment with DAAs between January 2015 and May 2016. Data were collected by review of clinical files. Liver fibrosis was evaluated by indirect methods (real time elastography, ultrasonography and biochemical markers).

Results: Three hundred and eighty-five patients were included, 295 (78%) HCV co-infected, 76% male and 69% aged 40 to 59 years. Mode of transmission was intravenous drugs use in 76%. Genotype (Gt) distribution was: Gt1 244 (63%); Gt2 seven (2%); Gt3a 66 (17%); and Gt4 68 (18%). Liver cirrhosis was present in 10% (38/385). Regimens used were: SOF/LDV in 298 (77%); SOF + RBV in 50 (13%); SOF/LDV + RBV in 26 (7%); other in 11 (3%). Duration of treatment was 8, 12, 16 or 24 weeks, depending on genotype, fibrosis stage and history of previous treatment, according to EASL guidelines. At the time of this analysis, 295 (76%) patients had completed treatment and data for SVR12 were available for 248 (64%). Overall SVR12 was 96%. SVR12 with SOF-based regimens was: Gt1 99% (164/166), Gt2 86% (6/7), Gt3 85% (23/27) and Gt4 91% (40/44). Regimens without SOF, used in haemodialysis patients, had 100% (4/4) SVR12. Cirrhotic patients (32/248) had 94% SVR12; average variation on MELD score for Child-Pugh A and B/C patients with SVR12 was, respectively, -0.9 and -1.4. Eleven patients experienced treatment failure: six treatment experienced; one F4; no relation with HIV infection status – 4% (8/189) in HIV versus 5% (3/59) non-HIV patients. Treatment was well tolerated. Thirty-six percent reported at least one adverse event (AE), the most common being asthenia (12%) and headache (9%). None discontinued. ART was changed in 10 patients before or during HCV treatment, in seven due to renal AEs. Tenofivir-based regimens were used in 149 HIV-infected patients starting SOF or SOF/LDV therapy, prompting changes on ART in six (4%).

Conclusions: HCV treatment with DAAs showed high efficacy and good tolerability. SVR12 rate (96%) was consistent with data from clinical trials. High rate of SVR12 and improvement in liver function was observed in cirrhotic patients. Failure was not related with HIV co-infection. Regular monitoring of renal function is needed in patients on tenofovir starting SOF or SOF/LDV.

P296
Chronic HCV treatment with DAA: what changes when treating cirrhotic patients – a Portuguese cohort real-life experience
Ana Claudia Miranda1; Telma Azevedo1; Inês Cruz2; Fernando Ventura1; Teresa Baptista1; Fernando Borges1; Susana Peres1; Isabel Aldir1; Jaime Nina1; Isabel Antunes1; Maria José Campos2; João Pereira1 and Kamal Mansinho1
1Serviço de Infectologia e Medicina Tropical, Hospital Egas Moniz – Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal. 2Serviço de...
Medicina Interna 2, Hospital Egas Moniz – Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal. 1Serviço de Medicina Interna 1, Hospital Egas Moniz – Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal

Introduction: Cirrhosis and hepatic carcinoma represents the ultimate stage of HCV infection implying a negative impact on patients’ quality of life, increase morbidity and mortality. Hepatic cirrhosis present as a wide histopathologic findings and early HCV infection diagnosis and treatment are major objectives in order to treat infection before hepatic severe fibrosis establishment. Since early 2015, Portugal is living a favourable scenario that allows the prescription of reimbursed DAA regimens, including sofosbuvir (SOF), sofosbuvir/ledipasvir (SOF/LDP) coformulation, and most recently, ombitasvir/paritaprevir/ritonavir plus dasabuvir combination (3D), with or without ribavirin (RBV) association.

Material and methods: Demographic, epidemiologic, clinical, virologic and treatment response data of HCV chronic infected cirrhotic patients, who were eligible to start treatment with DAA regimens, were collected, during the period between 1 January 2015 and 30 June 2016. Hepatic fibrosis was assessed by real-time elastography together with APRI and FIB-4 serum biomarkers determination. Cirrhosis was considered for those with METAVIR F4 and for those with F3 plus high APRI or FIB-4 scores.

Results: During the inclusion period, 153 chronically HCV-infected cirrhotic patients started treatment with DAAAs: 100 (65%) HCV/HIV co-infected and 53 (35%) HCV mono-infected. Demographic and epidemiologic characterization of both groups (HCV/HIV vs. HCV) revealed: male predominance in 80% versus 64%, mean age of 49 years versus 55 years, parenteral HCV transmission in 74% versus 56% and mean time since HCV diagnosis of 15 years versus 9.8 years. HCV infection staging evidenced (HCV/HIV vs. HCV): genotype 1 was 56% and mean time since HCV diagnosis of 15 years versus 9.8 years.

Impact of HCV RNA kinetics in SVR12 in a cohort of HIV/HCV co-infected patients treated with DAs in a “real-life” setting
Silvia Cavinato; Silvia Zuin; Giulia Marinì; Francesco Barbaro; Saverio Parisi and Annamaria Cattelan

Infectious and Tropical Diseases Unit, Azienda Ospedaliero-Universitaria di Padova, Padua, Italy. 2Department of Molecular Medicine, University of Padua, Padua, Italy

Introduction: Direct-acting antiviral (DAA) drugs created a major paradigm shift in the treatment of chronic hepatitis C in HIV/HCV co-infected patients. The aim of this study was to evaluate the effectiveness and safety of DAA therapy and the role of on-treatment HCV RNA kinetics on virological outcome in a “real-life” setting.

Materials and methods: All consecutive HIV/HCV co-infected patients starting DAs from May 2015 to March 2016 at our HIV Outpatient Clinic were evaluated. Baseline characteristics, safety data, sustained virological response at 12 weeks after end of treatment (SVR12) and HCV RNA at 8 hours/48 hours/week 1/week 2/week 4/week 8 and monthly thereafter were assessed.

Results: Forty-nine patients were treated. Demographic, clinical/virological characteristics at baseline and DAA regimens are shown in Table 1.

To date, 31 patients completed 12 weeks of follow-up after end of treatment. Thirty patients (97%) achieved SVR12 and one patient (3%) failed to obtain HCV RNA undetectability at 12 weeks after end
Demographic, clinical and virological characteristics of patients at baseline and DAAs regimens

<table>
<thead>
<tr>
<th>Demographic characteristics</th>
<th>Total number of 49 patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>35 (72%)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>52 (range 26–64)</td>
</tr>
<tr>
<td>HIV/HCV risk factor</td>
<td></td>
</tr>
<tr>
<td>PWIDs</td>
<td>39 (80%)</td>
</tr>
<tr>
<td>Transfusion</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>MSM</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Vertical transmission</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>4 (8%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HIV characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC stage</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>Under antiretroviral treatment</td>
</tr>
<tr>
<td>HIV RNA < 20 copies/mL</td>
</tr>
<tr>
<td>CD4 count (mean, cells/µL)</td>
</tr>
<tr>
<td>Change of antiretroviral treatment before start of DAAs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antiretroviral regimens during DAAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raltegravir based</td>
</tr>
<tr>
<td>PI based</td>
</tr>
<tr>
<td>Tenofovir/emtricitabine/rilpivirine</td>
</tr>
<tr>
<td>Dolutegravir based</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCV characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV treatment-experienced</td>
</tr>
<tr>
<td>Liver fibrosis (FibroScan)</td>
</tr>
<tr>
<td>F0–F1</td>
</tr>
<tr>
<td>F2</td>
</tr>
<tr>
<td>F3</td>
</tr>
<tr>
<td>F4</td>
</tr>
<tr>
<td>HCV genotype</td>
</tr>
<tr>
<td>GT1a</td>
</tr>
<tr>
<td>GT1b</td>
</tr>
<tr>
<td>GT1</td>
</tr>
<tr>
<td>GT2</td>
</tr>
<tr>
<td>GT3</td>
</tr>
<tr>
<td>GT4</td>
</tr>
<tr>
<td>HCV RNA (mean, UI/mL)</td>
</tr>
<tr>
<td>DAA regimens</td>
</tr>
<tr>
<td>Ombitasvir/paritaprevir/ritonavir + dasabuvir (3D) + ribavirin</td>
</tr>
<tr>
<td>Ledipasvir/sofosbuvir (± ribavirin)</td>
</tr>
<tr>
<td>Daclatasvir + sofosbuvir + ribavirin</td>
</tr>
<tr>
<td>Ombitasvir/paritaprevir/ritonavir (2D) + ribavirin</td>
</tr>
<tr>
<td>Sofosbuvir + ribavirin</td>
</tr>
<tr>
<td>Use of ribavirin in DAA regimens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration of DAA therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 weeks</td>
</tr>
<tr>
<td>24 weeks</td>
</tr>
</tbody>
</table>
of treatment. Thirteen patients achieved HCV RNA < 12 UI/mL at the end of treatment and are still waiting for SVR12. Three patients died during treatment; one patient died for recurrence of hepatocellular carcinoma after end of treatment, one patient discontinued therapy at week 3 for a severe adverse event (psychotic syndrome). The other most common side effects were asthenia 28%, insomnia 26% and anaemia 10%. HCV RNA declined rapidly after the initiation of DAAs with significant decay at 8 and 48 hours from first dose of therapy; mean HCV RNA at 8 hours was 370.039 UI/mL (−80.6% from baseline), at 48 hours was 2.592 UI/mL (−99.6% from baseline; p < 0.05). No significant correlation was found between viral load decay during first hours of therapy and time of first HCV RNA undetectability (r: −0.095 at 8 hours, −0.18 at 48 hours). Different patterns of viral response were observed: (a) rapid response: HCV RNA < 12 UI/mL at week 4: 10 patients (21%), (b) HCV RNA > 12 UI/mL at week 4 and HCV RNA < 12 UI/mL at week 8: 7 patients (15%), (c) slow response: HCV RNA > 12 UI/mL at week 8 and HCV RNA < 12 UI/mL at week 12 or end of treatment: 27 patients (60%).

Conclusions: In our HIV–HCV co-infected patients, DAAs confirmed to be highly effective and well tolerated both in treatment-naïve and treatment-experienced, including those with cirrhosis. A significant decay of HCV RNA during first hours of therapy did not correlate with time of HCV RNA undetectability as well as different patterns of HCV RNA kinetics did not show a relation with subsequent achievement of SVR12.

P299

CD4 cell count before chronic hepatitis C (HCV) treatment with direct-acting antivirals (DAAs) and at the end of follow-up in HIV/HCV co-infected patients
Josefin Mendez; Cristina Soeiro; Marta Marques; Celina Gonçalves; Ana Paula Tavares; Ana Horta; Olga Vasconcelos; João Seabra; Miguel Abreu and Rui Sarmento e Castro
Infectious Diseases, Centro Hospitalar do Porto, Porto, Portugal

Introduction: Treatment of chronic hepatitis C (HCV) with interferon-based regimens was associated with a decrease in the CD4 cell count in HIV–HCV co-infected patients, which returned to baseline after the end of treatment. HCV cure with those regimens was associated with a progressive increase in CD4 cell count.

Aim: To assess the impact of HCV treatment with DAAs on CD4 cell count.

Methods: Prospective study of HCV/HIV co-infected patients treated with DAAs for chronic hepatitis C. CD4 cell counts at baseline, at the end of treatment and 12 weeks after treatment were compared. The patients were randomized based on CD4 count at baseline lower or equal and higher than 350 CD4/mm³.

Results: We included 133 patients: 88.7% were male, the mean age was 46 years old and the acquisition of HCV was by intravenous drug use in 94%. The most frequent genotype was G1 (79.7%), followed by G4 (11.3%), G3 (8.3%) and G2 (0.8%). Overall, 41.4% were treatment-experienced, including those with cirrhosis. A significant decay of HCV RNA during first hours of therapy did not correlate with time of HCV RNA undetectability as well as different patterns of HCV RNA kinetics did not show a relation with subsequent achievement of SVR12.

P300

Testing for HCV and HIV at baseline visit due to post-exposure prophylaxis
Justyna Kowalska1; Ewa Pietraszkiewicz2; Ewa Firlag-Burkacka2
1Hospital for Infectious Diseases in Warsaw, Medical University of Warsaw, Warsaw, Warsaw, Poland. 2HIV Outpatient Clinic, Hospital for Infectious Diseases in Warsaw, Warsaw, Poland

Introduction: People consulted for post-exposure prophylaxis (PEP) can be at higher risk for HCV and/or HIV infection due to earlier exposures, lifestyle or occupation. Here, we evaluate the positivity rate of anti-HCV and anti-HIV/p24 in this population, as well as factors related to it.

Methods: We performed retrospective analyzes of consultations due to PEP in HIV Outpatient Clinic in Warsaw. Data were obtained from electronic database, which collects all medical information since 2007. Logistic regression models were used to identify factors related to positive anti-HCV test (all with p < 0.01 in univariate included in final model). Due to low positivity rate, HIV was not included in the model.

Results: In total, 3928 persons were tested for both HIV and HCV in 2008 to 2016, 2231 (56.8%) women, median age 33.4 (26.3–43.4)
Abstract P300–Table 1. Logistic regression odds ratios for having anti-HCV positive test at baseline screening

<table>
<thead>
<tr>
<th>Effect</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>p</td>
</tr>
<tr>
<td>Female gender</td>
<td>0.44 (0.28–0.69)</td>
<td>0.0004</td>
</tr>
<tr>
<td>AST > ULL</td>
<td>9.18 (4.85–17.4)</td>
<td><0.0001</td>
</tr>
<tr>
<td>ALT > ULL</td>
<td>8.62 (4.52–16.4)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Age of first visit per each 10 years older</td>
<td>1.19 (1.01–1.42)</td>
<td>0.039</td>
</tr>
<tr>
<td>Year 2011–2013 versus 2008–2010</td>
<td>0.93 (0.46–1.90)</td>
<td>0.131</td>
</tr>
<tr>
<td>Year of test 2014–2016 versus 2008–2010</td>
<td>1.98 (1.04–3.76)</td>
<td>0.002</td>
</tr>
<tr>
<td>HBsAg positive versus negative</td>
<td>3.17 (0.74–13.5)</td>
<td>0.173</td>
</tr>
<tr>
<td>HBsAg unknown versus negative</td>
<td>1.31 (0.75–2.29)</td>
<td>0.497</td>
</tr>
</tbody>
</table>

All with p < 0.01 in univariate included in final model. HIV test not included due to low number of events.

years. Hundred and fifty (4.9%) persons had elevated ALT level (of 3032 measured at baseline), 161 (5.4%) had elevated AST (of 2961 measured), median PLT was 248 (213–296) 10^3/μL (for 484 measured). Eighty-one (2.1%) persons were anti-HCV positive, 34 (1.0%) HBsAg positive and 4 (0.1%) anti-HIV/p24 positive. Two persons were both HCV and HBsAg positive, one both anti-HIV/p24 and HCV positive. The final multivariate model included 3912 patients (80 HCV positive) and is presented in Table 1.

Conclusions: The rate of positive anti-HCV tests at baseline PEP visit was comparable with the one observed in general Polish population, despite higher baseline risks in this group of patients. Positive HCV test was associated with traditional factors, namely age and elevated liver enzymes. The next step in the project is to review possible risk behaviours described at baseline visit in order to optimize HCV testing patterns.

CLINICAL PHARMACOLOGY

P301

Interactions between HIV and HCV therapies: how common and who wins?

Adèle Torkington1; Justine Barnes2; Sarah Cripps3; Karen Lee4; Neal Marshall5; Helen Morgan6; Anthony Pratt7; Ian Sayers2; Jackie Swabe8; Leonie Swaden9; Paul Selby9; Tina Vaghjiani10; Matthew Zimmer5; Sanja Bhagani5; Jane Collier11; Douglas Macdonald12; Mark Nelson13; Martin Prince14; Mark Wright15 and Andrew Ustianowski16

1Pharmacy, North West ID Unit, North Manchester General Hospital, Manchester, Manchester, UK. 2Pharmacy, North West ID Unit, North Manchester General Hospital, Manchester, UK. 3Pharmacy, Heartlands Hospital, Birmingham, UK. 4Pharmacy, Oxford University Hospitals NHS Foundation Trust, Oxford, UK. 5Pharmacy, Central Manchester University Hospitals, Manchester, UK. 6Pharmacy, North West ID Unit, North Manchester General Hospital, Manchester, UK. 7Pharmacy, Oxford University Hospitals NHS Foundation Trust, Oxford, UK. 8Pharmacy, Central Manchester University Hospitals, Manchester, UK. 9Pharmacy, North West ID Unit, North Manchester General Hospital, Manchester, UK. 10Pharmacy, University Hospital Southampton NHS Foundation Trust, Southampton, UK. 11Infectious Diseases, North West ID Unit, North Manchester General Hospital, Manchester, UK

Introduction: The current era of HCV direct-acting antivirals (DAAs) has allowed HIV–HCV co-infected patients to achieve similar rates of response to HCV mono-infected patients [1]. Managing HIV–HCV therapy is complex, often involving drug–drug interactions (DDIs) between the DAAs, ARVs and other medicines. We evaluated the incidence of DDIs in co-infected patients and its impact on choice of preferred HCV therapy as recommended by NHS England.

Material and methods: Retrospective evaluation of all HIV–HCV co-infected patients receiving DAAs seen across nine UK centres from June 2015 till May 2016. Data were collected on demographics, HCV genotype, choice of DAAs and ARVs and any changes made to these or additional monitoring required. The Liverpool hep-druginteractions.org website [2] was used to evaluate the presence and severity of potential drug interactions.

Results: Hundred and eighty-three patients were identified of which 163/183 (89%) were male and median 49 years old. Hundred and forty-eight of 183 (81%) were HCV genotype 1, 17 (9%) genotype 4, 15 (8%) genotype 3 and two with genotype 2, with 78/183 (43%) reporting cirrhosis. Eighty-eight of 183 (48%) were non-responders or relapses to prior HCV therapy. The HIV and HCV regimens are listed in Tables 1 and Table 2, respectively. Twenty-nine of 183 (16%) required alteration to their HIV regimen prior to DAA therapy (Table 3). Twenty-two of 29 (76%) of which received Abbvie 2D/3D (ritonavir)-based DAA. Six of 183 (3%) required adaptation of HCV therapy to current ART regimen. Six hundred and ninety-four comedicines were identified in 146/183 (80%) patients (median 3.5 patient). Hundred and seventy-two of 29 (76%) of which received Abbvie 2D/3D (ritonavir)-based DAA. Six of 183 (3%) required adaptation of HCV therapy to current ART regimen. Six hundred and ninety-four comedicines were identified in 146/183 (80%) patients (median 3.5 patient). Hundred and seventy-two of 29 (76%) of which received Abbvie 2D/3D (ritonavir)-based DAA. Six of 183 (3%) required adaptation of HCV therapy to current ART regimen. Six hundred and ninety-four comedicines were identified in 146/183 (80%) patients (median 3.5 patient). Hundred and seventy-two of 29 (76%) of which received Abbvie 2D/3D (ritonavir)-based DAA. Six of 183 (3%) required adaptation of HCV therapy to current ART regimen. Six hundred and ninety-four comedicines were identified in 146/183 (80%) patients (median 3.5 patient). Hundred and seventy-two of 29 (76%) of which received Abbvie 2D/3D (ritonavir)-based DAA. Six of 183 (3%) required adaptation of HCV therapy to current ART regimen. Six hundred and ninety-four comedicines were identified in 146/183 (80%) patients (median 3.5 patient). Hundred and seventy-two of 29 (76%) of which received Abbvie 2D/3D (ritonavir)-based DAA. Six of 183 (3%) required adaptation of HCV therapy to current ART regimen. Six hundred and ninety-four comedicines were identified in 146/183 (80%) patients (median 3.5 patient). Hundred and seventy-two of 29 (76%) of which received Abbvie 2D/3D (ritonavir)-based DAA. Six of 183 (3%) required adaptation of HCV therapy to current ART regimen. Six hundred and ninety-four comedicines were identified in 146/183 (80%) patients (median 3.5 patient). Hundred and seventy-two of 29 (76%) of which received Abbvie 2D/3D (ritonavir)-based DAA. Six of 183 (3%) required adaptation of HCV therapy to current ART regimen.

Table 1. HIV regimens

<table>
<thead>
<tr>
<th>HIV regimen</th>
<th>Number (%) patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrase inhibitor</td>
<td>72 (39)</td>
</tr>
<tr>
<td>Protease inhibitor (PI)</td>
<td>55 (30)</td>
</tr>
<tr>
<td>Non-nucleoside reverse transcriptase inhibitor (NNRTI)</td>
<td>39 (21)</td>
</tr>
<tr>
<td>Complex regimens</td>
<td>15 (8)</td>
</tr>
<tr>
<td>Not on treatment</td>
<td>2 (1)</td>
</tr>
</tbody>
</table>
P032
Efavirenz significantly decreases etonogestrel exposure: results of a bidirectional pharmacokinetic evaluation of efavirenz- and nevirapine-based antiretroviral therapy plus etonogestrel contraceptive implants

Catherine Chappell1; Kimberly Scarsi2; Shadia Nakalema3; Beatrice Chen4; Sharon Riddler4; Susan Cohn4; Kristin Darin4; Sharon Achilles1 and Mohammed Lamorde1

1Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA. 2Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE, USA. 3Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda. 4Medicine, University of Pittsburgh, Pittsburgh, PA, USA. 5Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

Introduction: Increasingly, women in Sub-Saharan Africa are choosing etonogestrel (ENG) contraceptive implants because they are highly effective and well tolerated. However, implantable contra-
ceptive failures are reported in HIV-positive women due to drug-contraceptive interactions with efavirenz (EFV)-based ART [1–3]. We characterized ENG pharmacokinetics in HIV-positive Ugandan women receiving ENG implants plus EFV- or nevirapine (NVP)-based ART compared with ART-naïve women. To explore the potential for a bidirectional interaction, we compared EFV and NVP concentrations before and after ENG implant insertion.

Material and methods: This non-randomized, parallel-group study included three arms: ART-naïve, EFV- or NVP-based ART (N = 20 per group). Participants in the ART groups were on stable ART with an undetectable HIV RNA at entry. Sparse pharmacokinetic sampling of ENG, EFV and NVP were performed at screening, entry and then 1, 4, 12 and 24 weeks post-implant insertion. In the ART groups, plasma was collected 12 to 14 hours post-EFV or 11 to 13 hours post-NVP dose. Participants on EFV-based ART had copper intrauterine devices in place at entry. ART and ENG concentrations were quantitated using validated HPLC and HPLC-MS/MS methods, respectively. Data are compared as geometric mean ratio (GMR), with 90% CI.

Results: At entry, study groups were similar in age, weight and CD4 count. Data from 58 participants are included; one participant each was excluded from the EFV (ART non-adherence) and NVP (processing error) groups. Geometric mean (GM) ENG area under the curve (AUC) from 0 to 24 weeks (AUC0–24) were 11.12, 1.80 and 10.47ng*wk/mL in the ART-naïve, EFV and NVP groups, respectively (AUC0–24: GMF: ART-naïve 0.162 (0.160–0.163); NVP: ART-naïve 0.941 (0.938–0.944)). EFV and NVP concentrations were lower at week 4 compared with pre-implant (EFV: GM 3.6 vs. 4.7 mg/L, respectively, GMR 0.76 (0.71–0.80), p = 0.009; NVP: GM 5.7 vs. 6.9 mg/L, respectively, GMR 0.83 (0.78–0.88), p = 0.227). No participant in the EFV group and one participant in the NVP group had concentrations below the suggested threshold for virologic suppression at week 24 (EFV <1 mg/L and NVP < 3 mg/L).

Conclusions: Over 24 weeks of combined use, ENG exposure was 84% lower in women using EFV-based ART compared with ART-naïve women. In contrast, NVP did not significantly impact ENG exposure. Similar to findings with the levonorgestrel implant [1], decreased ENG exposure in combination with EFV raises concerns about reduced implantable contraceptive effectiveness for women on EFV-based ART. Although statistically lower EFV concentrations were observed after ENG insertion, all participants in the EFV group had therapeutic concentrations at week 24.

References

P033
Dolutegravir plasma concentrations according to companion antiretroviral drug: unwanted drug interaction or desirable boosting effect?
Determinants of dolutegravir plasma concentrations in the clinical setting
Chiara Alcantarini; Andrea Calcagno; Letizia Marinaro; Micol Ferrara; Maurizio Miesi; Alice Trentalange; Ambra Barco; Chiara Montrucchio; Amedeo De Nicolo; Alessandra Ariaudo; Fabio Favata; Antonio D’Avolio; Giovanni Di Perri and Stefano Bonora
Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Torino, Italy

Introduction: Dolutegravir (DTG) is the latest available integrase strand transfer inhibitor. It is primarily metabolized via UGT1A1 with CYP 3A4 as a minor pathway and it is substrate of p-glycoprotein. Few drug-to-drug interactions have been observed but data on DTG pharmacokinetics (PK) in the clinical setting are limited.

Materials and methods: The Torino Therapeutic Drug Monitoring (TDM) registry was used and patients on DTG, with fully available data (demographic, time after dose and concomitant medications), were included; patients on rifampin were excluded. Data are

Conclusions: Here we have documented that co-administration of atazanavir resulted in highly significant increased dolutegravir concentrations compared with other antiretroviral drugs. These results partially challenge previous findings in healthy volunteers which showed that concomitant atazanavir/ritonavir intake produced only modest, non-clinically significant increase in dolutegravir exposure. This drug-to-drug interaction (related to the atazanavir-mediated inhibition of UDP-glucuronosyltransferase 1A1, the main enzyme involved in the metabolism of dolutegravir) could become relevant in all clinical conditions which require higher than conventional dolutegravir exposure. Moreover, the administration of dolutegravir with atazanavir/ritonavir might also improve the exposure of poorly compliant patients to antiretroviral therapy. No association between high dolutegravir concentrations and the development of drug-related adverse events or toxicity has been reported to date. Therefore, it remains to be established whether the increased dolutegravir exposure observed in HIV-infected patients might eventually translate in late tolerability to treatment.
described as medians (interquartile ranges) and analyzed through non-parametric tests. A multivariate linear regression analysis was performed including variables with p-values below 0.10 at univariate tests.

Results: Three hundred and sixty-three samples were available from 149 patients (median 1, range 1–19 per patient). Median age and body mass index were 49.3 years (46.4–54.5) and 24.2 kg/m² (20.8–27.7); 102 patients (68.4%) were male and 50 (33.5%) were HCV positive. Samples were withdrawn 22.5 hours (10.8–24.2) after drug intake (198 [54.5%] were trough values) and DTG median concentrations were 1107 ng/mL (399–2549). Three hundred and twenty-four (91.3%) and 31 (8.7%) samples were from patients on once-daily or twice-daily DTG; respective trough values were 660 ng/mL (255–1237) and 2674 ng/mL (1000–3474). Inter-patient variability was high (102%) and lower in patients on twice-daily DTG (56.9% vs. 108%); intra-patient variability (calculated in 10 patients with >4 trough samples, all on once-daily DTG) was 64.7%. A moderate significant correlation was observed between DTG concentrations and age (r = 0.21 and p < 0.001). A moderate linear regression analysis age, post-dose time, atazanavir use (r = 0.21 and p < 0.001) while borderline lower in those on valproic acid (n = 7, 829 vs. 1132 ng/mL, p = 0.08). At multivariate linear regression analysis age, post-dose time, atazanavir use (p < 0.001) and, borderline, valproic acid use (p = 0.06) were independent predictors of DTG concentrations explaining approxi-

Conclusions: DTG PK in the clinical setting showed significant variability although resulted in the range of efficacy. Significant higher exposure was confirmed with atazanavir, while unexpected higher drug exposure in older patients and lower concentrations in valproic acid intakers need to be confirmed in further studies.

P305
Pharmacokinetics (PK) of darunavir/ritonavir (DRV/RTV) with tenofovir DF/emtricitabine (TDF/FTC) or raltegravir (RAL) in HIV-infected adults enrolled in the NEAT001/ANRS143 study and relationship with virological response

Stefano Bonora1; Wolfgang Stohr2; Antonio D’Avolio2; Adam Cursley2; Jean-Michel Molina3; Gerd Faetkenheuer4; Linos Vandekerckhove5; Giovanni Di Perri1; Anton Pozniak6; Laura Richert7; Francois Raffi8 and Marta Bottino9

1Unit of Infectious Diseases, University of Turin, Turin, Italy. 2Medical Research Council, University College London, London, UK. 3Infectious Diseases, University of Paris Diderot, Paris, France. 4Unit of Internal Medicine, University Köl, Köln, Germany. 5HIV Translational Research Unit, Ghent University and Ghent University Hospital, Ghent, Belgium. 6St Stephen’s Centre, Chelsea and Westminster NHS Trust, London, UK. 7INSERIM ISPED, University of Bordeaux, Bordeaux, France. 8Infectious and Tropical Diseases, Nantes University Hospital, Nantes, France

Introduction: Limited prospective PK data are available on DRV/RTV once daily (OD) and RAL twice daily (BD) in ARV-naïve HIV-infected individuals. We here present the PK analysis performed in the NEAT001/ANRS143 study.

Materials and methods: NEAT 001/ANRS143 96-week randomized study demonstrated non-inferiority of first-line ART with DRV/RTV (800/100 mg OD) plus RAL (400 mg BD) compared with DRV/RTV plus TDF/FTC (245/200 mg OD). However, higher failure rates in the RAL arm were seen in those with low CD4 counts and high viral load (VL) at baseline. Blood for PK analysis of study drugs (TFV, FTC, DRV, RTV, and RAL) was collected 4 and 24 weeks after ARV initiation. Only samples drawn between 5 and 30 hours post-dose were included in this analysis. Drug concentrations were log-transformed, and linear regression analysis was used to examine possible determinants of DRV concentrations (age, gender, weight, ethnicity, RTV, RAL), adjusted for time post-dose. We also examined if DRV concentration was lower in patients with CD4 < 200 cells/µL or VL ≥ 100,000 copies/mL at baseline. Cox regression was used to associate week 4 drug levels with virological failure at or after week 32 (defined as confirmed VL ≥ 50 copies/mL) adjusting for baseline VL.

Results: Six hundred and sixty participants provided 1146 plasma samples with DRV concentrations (317 on RAL plus DRV/RTV, 343 on TDF/FTC plus DRV/RTV). Eighty-nine percent were males, 83% white; median (IQR) age and weight were 37 (31–46) years and 72 (65–80) kg, respectively. Two hundred and ninety-nine participants provided 483 RAL measurements, 658 provided 1138 RTV measurements. No associations were observed between DRV concentration and sex, age, ethnicity or weight. We did not see lower DRV concentrations in the subgroups with baseline CD4 < 200 cells/µL or VL ≥ 100,000 copies/mL. Higher DRV concentrations were associated with both higher RTV and (in RAL arm) higher RAL concentration (p < 0.001). No association was found between DRV concentration at week 4 and virological failure at or after week 32 in analyses of both arms together or separately for each arm. RAL concentration at week 4 was also not associated with VL failure.

Conclusion: DRV exposure was not affected by age, gender, weight or ethnicity but showed a positive association with RTV and RAL concentrations. There was no evidence of an association between DRV concentrations and virological failure at or after week 32.

P306
Evaluation of the drug-drug interaction (DDI) potential between elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide and atorvastatin

Joseph Custodio1; Steve West2; Devi Sengupta3; Arian Zar1; Rita Humeniuk1; Kah Hiing Ling1; Marshall Fordyce4 and Brian Kearney5

1Clinical Pharmacology, Gilead Sciences, Foster City, CA, USA. 2Biometrics, Gilead Sciences, Foster City, CA, USA. 3Clinical Research, Gilead Sciences, Foster City, CA, USA. 4Clinical Operations, Gilead Sciences, Foster City, CA, USA. 5Clinical Pharmacology, Gilead Sciences, Foster City, CA, USA

Introduction: Elvitegravir/cobicistat/emtricitabine/tenofovir alafenamide (E/V/CB/FTC/TAF (150/150/200/10 mg), E/C/F/TAF; Gen-
voya) is a single-tablet regimen approved for HIV treatment. Atorvastatin (AVA; Lipitor), a HMG-CoA reductase inhibitor, is a commonly prescribed medication for lipid lowering in HIV-infected individuals. AVA is metabolized by CYP3A and is a substrate of Pgp and OATP1B1/3B. COBI, a pharmacokinetic (PK) enhancer in E/C/F/ TAF, is an inhibitor of CYP3A, Pgp and OATP1B1/3B. This study evaluated the DDI potential between E/C/F/TAF and AVA.

Materials and methods: This was a randomized, three-period and open-label study. Healthy subjects (n = 16) received the following treatments in a fixed sequence: AVA 10 mg on day 1; E/C/F/TAF on days 4 to 13; E/C/F/TAF + AVA 10 mg on day 14. PK assessments were performed on the last day of each period (days 1, 13 and 14). Statistical comparisons of EVG, COBI, TAF, TFV and AVA exposures were made using geometric mean ratios (GMRs) and associated 90% CI bounds of 70 to 143% (EVG, COBI, TAF, TFV AUC, Cmax, and t1/2; AVA AUC) and 50 to 200% (AVA Cmax), with E/C/F/TAF + AVA serving as the test (day 14) and E/C/F/TAF or AVA alone serving as the reference (day 13 or 1, respectively).

Results: All subjects completed the study and treatments were generally well tolerated. The majority of adverse events (AEs) were mild in severity and no grade 3 or 4 AEs were observed. Following co-administration of E/C/F/TAF + AVA, relative to AVA alone, the GMRs of the PK parameters of AVA were 2.3- to 2.9-fold higher.
Hospital, Liverpool, UK. 3HIV/GUM Directorate, Chelsea and St Stephens AIDS Trust, Chelsea and Westminster Hospital, London, the PK of darunavir (DRV) boosting are unavailable. The object of this study was to investigate are limited to ritonavir (RTV)-boosting, and data with cobicistat-C27

Introduction

Medicine, Royal Liverpool University Hospital, Liverpool, UK 2Liverpool Bioanalytical Facility, Royal Liverpool University Hospital, Liverpool, UK. 3Unit of Infectious Diseases, University of Torino, Turin, France. 4Inserm U1219 Epidemiologie-Biostatistique, University of Bordeaux, Bordeaux, France. 5Infectious Diseases Department, Bichat Hospital, Paris, France. 6Servico de Doencas Infecciosas, Hospital de Santa Maria, Lisboa, Portugal. 7Department of Medical Sciences, University of Torino, Turin, Italy. 8Infectious Diseases Department, University of Liverpool, Liverpool, UK. 9Department of Medical Sciences, University of Torino, Torino, Italy. 10Cancer Research and Prevention Unit, Southampton University Hospital, Southampton, UK. 11Clinical Pharmacology, Imperial College London, London, UK. 12Unit of Infectious Diseases, University of Torino, Turin, Italy. 13Inserm U1219 Epidemiologie-Biostatistique, University of Bordeaux, Bordeaux, France. 14Infectious Diseases Department, Bichat Hospital, Paris, France. 15Servicio de Doencas Infecciosas, Hospital de Santa Maria, Lisboa, Portugal. 16Department of Medical Sciences, University of Torino, Turin, Italy. 17Infectious Diseases Department, Chelsea and Westminster NHS Foundation Trust, London, UK. 18Infectious and Tropical Diseases Department, Nantes University Hospital, Nantes, France.

Introduction: Data on protease inhibitors (PI) persistence in plasma are limited to ritonavir (RTV)-boosting, and data with cobicistat-boosting are unavailable. The object of this study was to investigate the PK of darunavir (DRV) – cobicistat and atazanavir (ATV) – cobicistat once-daily dosing over 72 hours following drug intake cessation.

Materials and methods: Healthy volunteers received a fixed-dose combination of atazanavir 300 mg + cobicistat 150 mg once daily for 10 days, followed by a 10-day washout period and then a fixed-dose combination of darunavir 800 mg + cobicistat 150 mg once daily for 10 days. Full PK profiles were assessed for each phase for the 72 hours following day 10. PK parameters were determined over 24 hours in plasma and to the last measurable concentration in plasma and urine (24–72 hours post-dose) by non-compartmental methods.

Results: Sixteen subjects completed the study. Geometric mean (GM) terminal elimination half-life to 72 hours of darunavir was 6.35 hours, lower than the 0 to 24 hours half-life (10.41 hours). The terminal elimination half-life of atazanavir was 6.77 hours, lower than the 0 to 24 hours half-life (9.69 hours). These values did not remarkably differ from those measured with RTV [1]. Thirteen of 16 subjects had darunavir concentrations higher than the target of 550 ng/mL for protease-resistant HIV isolates (equivalent to 10 times the protein binding corrected minimum inhibitory concentration (IC50) for wild-type virus) [2] at 24 hours post-dose, and 5/16 subjects had concentrations higher than the target at 30 hours post-dose (GM of 759 and 407 ng/mL). At 48 hours post-dose, no subject had concentrations above targets with darunavir-cobicistat whilst 3/16 subjects did for atazanavir-cobicistat. Cobicistat half-life to 72 hours was 3.62 hours with darunavir and 4.21 hours with atazanavir (both were shorter than RTV) [1]. GM urine C24 darunavir and atazanavir concentrations were 11,878 ng/mL and 24,857 ng/mL respectively. Urine concentrations decay mirrored plasma. 7/16 subjects had therapeutic concentrations above the suggested minimum effective concentration of 150 ng/mL (equivalent to 10 times the protein binding corrected IC50 for wild-type virus) [2] 24 hours post-dose and 14/16 subjects had concentrations higher than the target at 30 hours post-dose (GM of 1033 and 381 ng/mL). All subjects had atazanavir concentrations above the suggested minimum effective concentration of 150 ng/mL (equivalent to 10 times the protein binding corrected IC50 for wild-type virus) [2] 24 hours post-dose and 14/16 subjects had concentrations higher than the target at 30 hours post-dose (GM of 759 and 407 ng/mL). At 48 hours post-dose, no subject had concentrations above targets with darunavir-cobicistat whilst 3/16 subjects did for atazanavir-cobicistat. Cobicistat half-life to 72 hours was 3.62 hours with darunavir and 4.21 hours with atazanavir (both were shorter than RTV) [1]. GM urine C24 darunavir and atazanavir concentrations were 11,878 ng/mL and 24,857 ng/mL respectively. Urine concentrations decay mirrored plasma. 7/16 subjects had therapeutic concentrations above the suggested minimum effective concentration of 150 ng/mL (equivalent to 10 times the protein binding corrected IC50 for wild-type virus) [2] 24 hours post-dose and 14/16 subjects had concentrations higher than the target at 30 hours post-dose (GM of 1033 and 381 ng/mL). All subjects had atazanavir concentrations above the suggested minimum effective concentration of 150 ng/mL (equivalent to 10 times the protein binding corrected IC50 for wild-type virus) [2] 24 hours post-dose and 14/16 subjects had concentrations higher than the target at 30 hours post-dose (GM of 759 and 407 ng/mL). At 48 hours post-dose, no subject had concentrations above targets with darunavir-cobicistat whilst 3/16 subjects did for atazanavir-cobicistat. Cobicistat half-life to 72 hours was 3.62 hours with darunavir and 4.21 hours with atazanavir (both were shorter than RTV) [1]. GM urine C24 darunavir and atazanavir concentrations were 11,878 ng/mL and 24,857 ng/mL respectively. Urine concentrations decay mirrored plasma. 7/16 subjects had therapeutic concentrations above the suggested minimum effective concentration of 150 ng/mL (equivalent to 10 times the protein binding corrected IC50 for wild-type virus) [2] 24 hours post-dose and 14/16 subjects had concentrations higher than the target at 30 hours post-dose (GM of 759 and 407 ng/mL). At 48 hours post-dose, no subject had concentrations above targets with darunavir-cobicistat whilst 3/16 subjects did for atazanavir-cobicistat. Cobicistat half-life to 72 hours was 3.62 hours with darunavir and 4.21 hours with atazanavir (both were shorter than RTV) [1]. GM urine C24 darunavir and atazanavir concentrations were 11,878 ng/mL and 24,857 ng/mL respectively. Urine concentrations decay mirrored plasma. 7/16 subjects had therapeutic concentrations above the suggested minimum effective concentration of 150 ng/mL (equivalent to 10 times the protein binding corrected IC50 for wild-type virus) [2] 24 hours post-dose and 14/16 subjects had concentrations higher than the target at 30 hours post-dose (GM of 759 and 407 ng/mL). At 48 hours post-dose, no subject had concentrations above targets with darunavir-cobicistat whilst 3/16 subjects did for atazanavir-cobicistat. Cobicistat half-life to 72 hours was 3.62 hours with darunavir and 4.21 hours with atazanavir (both were shorter than RTV) [1]. GM urine C24 darunavir and atazanavir concentrations were 11,878 ng/mL and 24,857 ng/mL respectively. Urine concentrations...
NR1I3) play important roles in transcriptional regulation of enzymes and transporters. The effect of polymorphisms within these genes on the pharmacokinetics of DRV was investigated in participants from the NEAT 001/ANRS 143 study.

Methods: NEAT 001/ANRS 143 was a randomized study that demonstrated non-inferiority of first-line ART with DRV/ritonavir (DRV/r; 800/100 mg once daily) plus raltegravir (RAL; 400 mg twice daily) compared with DRV/r plus tenofovir/emtricitabine (TDF/FTC; 245/200 mg once daily). Blood samples were collected at week 4 post-therapy initiation at any time >5 hours post-dose. DNA was extracted from whole blood and genotyping for CYP3A4 (rs35599367), CYP3A5 (rs776746), SLCO1B1 (rs4149056; 521T>C), CAR (rs2307424) and PXR (rs2472677) polymorphisms was conducted. Plasma drug concentrations were log transformed and genetic associations were assessed using linear regression. Analysis was conducted in the entire cohort (pooled), as well as independently in each arm.

Results: A total of 1278 plasma concentrations were available from 653 participants. In week 4 pooled analysis, SLCO1B1 rs4149056 was associated with DRV plasma concentrations in the TDF/FTC arm (p = 0.025). SLCO1B1 rs4149056 was significantly associated with DRV plasma concentrations in the TDF/FTC arm (p = 0.036), but not the RAL arm (p = 0.38). In the TDF/FTC arm, plasma DRV concentrations were 2936 ± 5256 ng/mL, 3121 ± 2160 ng/mL and 2520 ± 1296 ng/mL, in TT, TC and CC genotype groups, respectively. NR1I3 rs2307424 was significantly associated with raltegravir plasma concentrations in TDF/FTC arm (p = 0.001) but not the RAL arm (p = 0.57). Plasma concentrations for ritonavir in the TDF/FTC arm at week 4 were 207 ± 256 ng/mL, 192 ± 333 ng/mL and 111 ± 117 ng/mL for GG, AG and AA, respectively. No other associations were observed.

Conclusions: Lower DRV plasma concentrations were observed in C homozygotes for SLCO1B1 521T>C in patients receiving a TDF/FTC backbone but not those receiving RAL. This association is different to that previously reported for lopinavir and statins, where concentrations were higher in C homozygotes. This may indicate an indirect effect of this polymorphism on DRV concentrations (e.g. mediated by an interacting drug) but confirmatory studies are required and the underlying mechanism needs to be elucidated.

P309

When food can make the difference: the case of elvitegravir-based coformulation

Cristina Gervasoni1; Sara Baldelli2; Davide Minisci1; Paola Meraviglia1; Emilio Clementi1; Massimo Galli1 and Dario Cattaneo2

1Infectious Diseases, Luigi Sacco University Hospital, Milano, Italy.
2Unit of Clinical Pharmacology, Luigi Sacco University Hospital, Milano, Italy

Introduction: In the product monograph of Stribild, it is recommended that the formulation should be administered under fed conditions to optimize drug exposure. Here we assessed to what extent this advice is applied in the real-life scenario by measuring drugs plasma trough concentrations in HIV-infected patients given Stribild alone or as part of antiretroviral therapy as per their daily routine practice.

Materials and methods: Consecutive HIV-infected patients treated with Stribild for at least one month, with no clinical evidence of gastrointestinal impairment and not given drugs known to affect elvitegravir or tenofovir pharmacokinetics, were considered. Drug concentrations were assessed by a validated LC-MS/MS method (lower limit of quantification (LOQ): 25, 10, 5 and 100 ng/mL for elvitegravir, tenofovir, cobicistat and darunavir, respectively).

Results: Thirty-six percent of our patients (n = 65) took Stribild in the evening with food, and the remaining were distributed as follows: 23% in the morning with breakfast, 9% middle in the morning, 17% at lunchtime and 15% late in the evening. Nine out of the 65 patients had elvitegravir concentrations below the LOQ of the method, whereas in the remaining the levels were largely distributed (Figure 1). All patients with suboptimal elvitegravir exposure took Stribild under fasting conditions. Wide inter-individual variability in the tenofovir and cobicistat levels was also observed, with 13 out of the 65 patients having cobicistat concentrations < LOQ. Of these, patients given Stribild with darunavir had drug concentration significantly lower compared with values measured in patients with quantifiable cobicistat levels (402 ± 547 vs. 3215 ± 2435; p < 0.001).

Conclusions: In a real-life context a significant proportion of patients took Stribild in fasting conditions. This resulted in a wide inter-individual variability of elvitegravir and tenofovir plasma trough concentrations. It is likely that suboptimal tablet disintegration and poor drug absorption may have taken place in these patients. Conversely, the intake of Stribild with food increases the resident time of the drug in the stomach, the disintegration of the pharmaceutical formulation, the increased dissolution of the components and their higher systemic absorption. Food-related altered

Figure 1. Distribution of elvitegravir (right panel), tenofovir (middle panel) and cobicistat (left panel) trough concentrations in 65 HIV-infected patients given Stribild as maintenance antiretroviral therapy.
Impact of food on the bioavailability of darunavir, cobicistat, emtricitabine and tenofovir alafenamide (DCFTAF), the first protease inhibitor-based complete HIV-1 regimen

Herta Crauwels1; Bryan Baugh2; Erika Van Landuyt1; Simon Vanveggel1; Anja Hijzen3 and Magda Opsomer1
1Janssen Infectious Diseases BVBA, Beerse, Belgium. 2Janssen Research & Development LLC, Raritan, NJ, USA

Introduction: DCFTAF is the first single-tablet, once-daily protease inhibitor-based complete HIV-1 regimen containing darunavir (DRV, D 800 mg), cobicistat (COBI, C 150 mg), emtricitabine (FTC, F 200 mg) and the novel prodrug of tenofovir, tenofovir alafenamide (TAF, 10 mg). TAF has an improved renal and bone safety profile compared with tenofovir disoproxyl fumarate. The efficacy and safety of DCFTAF is under investigation in two international, fully randomized phase 3 studies, AMBER (NCT02431247) and EMERALD (NCT02269917). This study evaluated the impact of food on the pharmacokinetics of the DCFTAF components.

Methods: This was a phase 1, open-label, randomized, two-period, single-centre, crossover study in 24 HIV-negative, healthy volunteers (NCT02475135). In two treatment sessions, participants received a single oral dose of DCFTAF under fasted conditions or 30 minutes after a standardized high-fat breakfast, with a ≥7-day washout period in between. Pharmacokinetic profiles were determined over 72 hours for DRV and COBI, 48 hours for FTC and 12 hours for TAF. Plasma concentrations of DRV, COBI, FTC and TAF were determined using validated LC-MS/MS assays. Pharmacokinetic parameters were determined using non-compartmental analysis (WinNonlin) and evaluated using least square (LS) means ratios and 90% CIs. Safety and tolerability were assessed throughout the study.

Results: When administered as DCFTAF, DRV exposure was 30 to 45% lower and COBI exposure was 16 to 30% lower, in fasted (test) compared with fed conditions (reference) (Table 1). For FTC, Cmax was 26% higher in fasted compared with fed conditions, while AUClast was comparable under both conditions (Table 1). For TAF, the Cmax was 82% higher, while AUCinf was 20% lower, in fasted than in fed conditions. The TAF AUClast was comparable under both conditions (90% CI of the LS mean ratio was within the 80 to 125% boundaries of no effect) (Table 1). Administration of DCFTAF was generally well tolerated under fed and fasted conditions. No new safety issues, grade 3/4 or serious adverse events or deaths occurred. There were no discontinuations due to adverse events.

Table 1. DRV, COBI, FTC and TAF pharmacokinetic parameters and statistical analysis

<table>
<thead>
<tr>
<th>Parameter, mean (SD)</th>
<th>DCFTAF fasted (test) n = 24</th>
<th>DCFTAF fed (high-fat breakfast) (reference) n = 24</th>
<th>LS means ratio, %</th>
<th>90% CI, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmax, ng/mLb</td>
<td>4089 (1846)</td>
<td>6629 (1543)</td>
<td>54.99</td>
<td>46.73–64.71</td>
</tr>
<tr>
<td>Tmax, hoursb</td>
<td>3.00 (1.00–8.02)</td>
<td>5.00 (1.50–8.00)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>AUClast, ng.h/mLb</td>
<td>67,504 (35,642)</td>
<td>93,541 (39,730)</td>
<td>65.65</td>
<td>56.76–75.92</td>
</tr>
<tr>
<td>AUCinf, ng.h/mLb</td>
<td>72,147 (36,009)</td>
<td>94,686 (40,882)</td>
<td>70.25</td>
<td>59.49–82.95</td>
</tr>
<tr>
<td>t1/2term, hoursb</td>
<td>7.0 (2.3)</td>
<td>7.8 (3.5)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>COBI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmax, ng/mLb</td>
<td>704 (368)</td>
<td>711 (164)</td>
<td>76.96</td>
<td>55.70–106.33</td>
</tr>
<tr>
<td>Tmax, hoursb</td>
<td>3.00 (1.00–6.00)</td>
<td>5.00 (2.00–6.10)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>AUCmax, ng.h/mLb</td>
<td>5771 (3206)</td>
<td>6168 (2260)</td>
<td>70.90</td>
<td>51.13–98.30</td>
</tr>
<tr>
<td>AUCinf, ng.h/mLb</td>
<td>6136 (3064)</td>
<td>6258 (2286)</td>
<td>84.39</td>
<td>68.52–103.95</td>
</tr>
<tr>
<td>t1/2term, hoursb</td>
<td>4.1 (0.9)</td>
<td>3.9 (0.6)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>FTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmax, ng/mL</td>
<td>2247 (573)</td>
<td>1785 (486)</td>
<td>125.99</td>
<td>112.85–140.65</td>
</tr>
<tr>
<td>Tmax, hours</td>
<td>1.00 (0.50–2.00)</td>
<td>2.00 (0.75–5.00)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>AUCmax, ng.h/mL</td>
<td>11,593 (2573)</td>
<td>11,499 (2055)</td>
<td>100.12</td>
<td>96.29–104.10</td>
</tr>
<tr>
<td>AUCinf, ng.h/mL</td>
<td>12,286 (2729)</td>
<td>10,029 (1079)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>t1/2term, hours</td>
<td>10.8 (1.2)</td>
<td>10.7 (1.2)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>TAF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cmax, ng/mL</td>
<td>180 (90.6)</td>
<td>107 (65.2)</td>
<td>182.29</td>
<td>140.50–236.50</td>
</tr>
<tr>
<td>Tmax, hours</td>
<td>0.50 (0.25–0.75)</td>
<td>0.88 (0.25–5.00)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>AUCmax, ng.h/mL</td>
<td>106 (44.7)</td>
<td>117 (51.5)</td>
<td>89.54</td>
<td>81.20–98.72</td>
</tr>
<tr>
<td>AUCinf, ng.h/mL</td>
<td>109 (47.7)</td>
<td>125 (57.3)</td>
<td>80.38</td>
<td>73.04–88.45</td>
</tr>
<tr>
<td>t1/2term, hours</td>
<td>0.3 (0.2)</td>
<td>0.5 (0.1)</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

*Except Tmax = median (range); b n = 23 for test and n = 24 for reference; c n = 20 for test and reference; d n = 22 for test and n = 24 for reference; e n = 16 for test and n = 7 for reference; f n = 21 for test and n = 16 for reference; g Accurate determination not possible for more than 50% of participants; interpret with caution.
Conclusions: When administered as the DCFTAF tablet, DRV exposure was decreased in fasted conditions versus fed conditions, similar to other (co)formulations of DRV. Differences in the exposures to COBI, FTC and TAF in fasted conditions versus fed conditions are not considered to be clinically relevant. Consistent with other DRV formulations, it is recommended the DCFTAF tablet be taken with food, which is also the recommendation in the ongoing phase 3 AMBER and EMERALD trials in HIV-1-infected adults.

SD, standard deviation; LS, least square; CI, confidence interval; Cmax, maximum plasma concentration; t1/2, time to Cmax; AUCCmax, area under the plasma concentration-time curve (AUC, calculated by linear trapezoidal summation) from time of administration up to the last timepoint with a measurable concentration post-dose; AUC last, area under the plasma concentration-time curve (AUC, calculated by linear trapezoidal summation) from time of administration up to infinity; t1/2, terminal elimination half-life; ND, not determined.

P311
Prevalence of drug-drug interactions (DDI) and its impact on durability among patients receiving elvitegravir/cobicistat/emtricitabine/tenofovir (EVG/C/F/T) and concomitant medication

Christina Gomez-Ayerbe; Santos Del Campo; Maria Jesus Vivancos; Gabriel Gaspar;3 Ana Moreno;3 Andres Martin;4 Alberto Romero; Patricia Jimenez;2 Miguel Cervero;2 Miguel Angel Rodriguez-Sagrado;2 Regina Serrano;2 Alfonso Muriel and Maria Jesus Perez Elías

1Infectious Diseases, Instituto Ramon y Cajal de Investigación Sanitaria, Hospital Ramon y Cajal, Madrid, Spain. 2Internal Medicine, Hospital de Getafe, Getafe, Spain. 3Internal Medicine, Hospital Universitario Puerta del Mar, Cádiz, Spain. 4Internal Medicine, Hospital Universitario de Puerto Real, Cádiz, Spain. 5Internal Medicine, Hospital Severo Ochoa, Leganés, Spain. 6Pharmacy Department, Instituto Ramon y Cajal de Investigación Sanitaria, Hospital Ramon y Cajal, Madrid, Spain. 7Internal Medicine, Hospital del Henares, Coslada, Spain. 8Statistics Department, Instituto Ramon y Cajal de Investigación Sanitaria, Hospital Ramon y Cajal, Madrid, Spain

Introduction: Cobicistat, a component of single-treatment regimen EVG/C/F/T, is a potent cytochrome P450 inhibitor [1], so many DDI are expected. From the real practice perspective, we evaluated the clinical impact of DDI associated with the use of EVG/C/F/T and concomitant medication (CM).

Methods: From July 2014 to January 2016, we retrospectively reviewed all patients starting a new EVG/C/F/T regimen, both in the hospital and in primary care. The patient’s demographic data, laboratory parameters, HIV medication, and reasons for starting EVG/C/F/T were collected. Time and reasons to change EVG/C/F/T were compared according to DDI status, neither in the univariate log rank test p (0.69) nor in the Cox regression analysis p (0.64).

Results: Of the 243 patients, 226 were observed in median time to change EVG/C/F/T according to DDI status, neither in the univariate log rank test p (0.69) nor in the Cox regression analysis p (0.64).

References

P312
Relationships between dolutegravir plasma-trough concentrations, UGT1A1 genetic polymorphisms and side-effects of central nervous system in Japanese HIV-1-infected patients

Hiroki Yagura;2 Dai Watanabe;2 Misa Ashida;1 Takao Nakauchi;1 Kosuke Tomishima; Hiroaki Togami;1 Atsushi Hirano;1 Rumi Sako;1 Toshiyuki Doi;1 Munehiro Yoshino;1 Masaaki Takahashi;1 Kunio Yamazaki;1 Tomoko Uehrira2 and Takuma Shirasaka

1Department of Pharmacy, Osaka National Hospital, Osaka, Japan. 2AIDS Medical Center, Osaka National Hospital, Osaka, Japan.

Introduction: Dolutegravir (DTG) is a second-generation integrase inhibitor used for the treatment of HIV-1-infected patients. DTG has shown anti-HIV effects non-inferior to those of other drugs in phase 3 trials and can be conveniently taken once daily. The characteristic side effects of DTG include central nervous system side-effects (CNSSEs) leading to drug discontinuation in cases. Furthermore, DTG is primarily metabolized by UGT1A1, and there is a weak correlation between DTG plasma-trough concentrations and UGT1A1 genetic polymorphisms. The principal aim of the study was to explore DTG plasma-trough concentrations association with CNSSEs. Moreover, we considered whether UGT1A1 genetic polymorphisms could predict of DTG CNSSEs.

Materials and methods: We included 101 Japanese HIV-1-infected patients given DTG at Osaka National Hospital from June 2014 to March 2016. Their DTG trough levels were measured by liquid chromatography-mass spectrometry. UGT1A1 was genotyped using the sequence method. We compared the frequency of CNSSEs among three groups: A (with homozygous mutations in UGT1A1*6/*28 or compound heterozygous mutations in *6/*28); B (patients with heterozygous mutations in *6/*28); and C (wild-type).

Results: Side-effects developed in 37 of 101 patients (37%), and of these, CNSSEs were evident in 21 patients (21%): headache in eight (38%); insomnia in six (29%); irritability in three (14%); light-headedness in two (9%); depression in one (1%); and dizziness in one (1%). The median DTG plasma-trough concentration was significantly higher in patients with CNSSEs (1.34 μg/ml) than in those without CNSSEs (1.06 μg/ml) (p < 0.05). The frequencies of CNSSEs in the three groups were: A, 23%; B, 25% and C, 18%. No significant difference in the frequency of CNSSEs was evident in terms of UGT1A1 genetic polymorphisms.

Conclusion: Although UGT1A1 genetic polymorphisms are not predictive of DTG CNSSEs, the data suggest that a relationship may exist between DTG plasma trough concentrations and CNSSEs.
P313
S-protein thiol-omics to assess the redox-modulation effects of antiretroviral drugs
Maria Correia1; Clara Dias1; Umbelina Caixas2; Nadia Grilo2; Ana Lemos2; Diva Trigo3; Patrícia Pacheco2; Emília Monteiro2; Karina Soto2; Lucília Diogo3 and Sofia Pereira4
1Translational Pharmacology, CEDOC-NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Lisboa, Portugal. 2Translational Pharmacology, Centro Hospitalar de Lisboa Central, CEDOC-NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Lisboa, Portugal. 3Infectious Diseases, Hospital Fernando Fonseca, Lisboa, Portugal. 4Translational Pharmacology/Nephrology, Hospital Fernando Fonseca, CEDOC-NOVA Medical School/Faculdade de Ciências Médicas (NMS/FCM), Lisboa, Portugal

Introduction: There is expanding evidence that redox-imbalance plays a role in viral, inflammatory and immunological response of HIV infection [1]. Albumin circulates as S-thiolated form (RSSP) in near of 25%, and S-thiolation by disulfide bond with low molecular weight thiols, such as glutathione (GSH) generating glutathionylated proteins (GSSP), cysteine (cysSH; CysSSP), homocysteine (HCysSH; HCysSSP) and cysteinylglycine (CysGlySH; CysGlySSP) is a common reversible oxidative modification. This process protects protein thiols from irreversible oxidation, is a relevant redox-buffer in blood and has a regulatory function [2]. The RSSP-profile might represent a profile, which is influenced by age and cART. EFV-cART increases GSSP and decreased CysSSP, whereas NVP-cART influenced GSSP and CysSSP in opposite way (Table 1). This work is aimed to investigate the RSSP-profiling in a cohort of HIV-infected patients and additionally the redox-modulating response to EFV and NVP.

Methods: The study protocol received prior approval from hospitals ethics committee. Patients gave their written informed consent. A cross-sectional analysis was performed. Patients were stratified according to cART use: naïve, on NVP-cART and EFV-cART. Anthropometric and clinical data (age, CD4 cell count, viral load, kidney and liver function parameters, hepatitis B and C co-infection) were recorded for each patient. Exclusion criteria included kidney and hepatic dysfunction. Patients with detectable viral load in cART groups were also excluded. Thiols were quantified by an HPLC-FD method and the RSSP-profiles were obtained.

Results: A total of 135 patients were included (70% male, 44±11 years old; CD4 cell count 606±22 cells/µL). Patients’ characteristics and data obtained from thiol-omics analyses are summarized in Table 1. Among naïve patients, there was no association between viral load and any type of RSSP. Conversely, CD4 cell count was associated with CysSSP (r = 0.3390, p = 0.014), GSSP (r = 0.4930, p = 0.044) and CysGlySSP (r = 0.4508, p = 0.046). Multivariable analysis of the entire cohort showed that GSSP levels were associated with age (B: –0.04; 95% CI: –0.06—0.02, p = 0.001) and cART (B: 1.7; 95% CI: 1.1–2.2; p < 0.001). CysSSP levels were only influenced by age (B: 1.3; 95% CI 0.8–1.9; p < 0.001). When compared with naïve patients, EFV-cART increases GSSP and decreased CysSSP, whereas NVP-cART influenced GSSP and CysSSP in opposite way (Table 1).

Conclusions: Immunological status of patients is related to their RSSP-profile, which is influenced by age and cART. EFV-cART and NVP-cART showed an inverted GSSP and CysSSP profile. This data support the use of RSSP-profile for the assessment of redox-modulating effects of antiretroviral drugs.

References

Table 1. Patient characteristics and data attended from thiol-omics analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Healthy volunteers*</th>
<th>Naïve</th>
<th>NVP</th>
<th>EFV</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>63</td>
<td>22</td>
<td>30</td>
<td>83</td>
<td>–</td>
</tr>
<tr>
<td>Age (years)</td>
<td>NA</td>
<td>41.6±9.9</td>
<td>47.9±10.1</td>
<td>43.30±11.1</td>
<td>ns</td>
</tr>
<tr>
<td>CD4 cell count (cell/µL)</td>
<td>NA</td>
<td>478.6±192.2</td>
<td>600.2±300.5</td>
<td>641.7±239.0</td>
<td>0.025b</td>
</tr>
<tr>
<td>Viral load (copies/mL)</td>
<td>–</td>
<td>43,096±55,670</td>
<td>BQL</td>
<td>BQL</td>
<td>–</td>
</tr>
<tr>
<td>Total Hcys (µM)</td>
<td>11.3±4.4</td>
<td>10.5±3.7</td>
<td>11.4±3.6</td>
<td>12.6±4.9</td>
<td>ns</td>
</tr>
<tr>
<td>HcysSSP (µM)</td>
<td>9.3±3.6</td>
<td>8.2±3.4</td>
<td>9.9±3.4</td>
<td>10.5±4.5</td>
<td>0.039c</td>
</tr>
<tr>
<td>Total Cys (µM)</td>
<td>237.1±36.6</td>
<td>215.7±38.7</td>
<td>223.9±35.0</td>
<td>193.3±38.4</td>
<td><0.001b</td>
</tr>
<tr>
<td>CysSSP (µM)</td>
<td>156.8±28.4</td>
<td>166.9±29.2</td>
<td>180.6±31.6</td>
<td>145.9±36.3</td>
<td><0.001b</td>
</tr>
<tr>
<td>Total GSH (µM)</td>
<td>5.8±1.8</td>
<td>2.4±1.2</td>
<td>1.7±0.5</td>
<td>3.9±1.9</td>
<td><0.001c</td>
</tr>
<tr>
<td>GSSP (µM)</td>
<td>2.3±1.2</td>
<td>1.5±0.8</td>
<td>0.9±0.4</td>
<td>2.7±1.5</td>
<td><0.001c</td>
</tr>
<tr>
<td>Total CysGly (µM)</td>
<td>19.7±3.9</td>
<td>24.6±5.6</td>
<td>27.4±5.9</td>
<td>32.9±6.3</td>
<td><0.001b</td>
</tr>
<tr>
<td>CysGlySSP (µM)</td>
<td>11.9±3.0</td>
<td>17.8±4.9</td>
<td>21.4±5.0</td>
<td>24.7±5.0</td>
<td><0.001b</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SD. BQL, below quantification limit; NA, not available; ns, not significant. *Data from Rossi et al., 2009 [4]; bone-way ANOVA; cKruskal–Wallis test.
P314
Utilizing phase 3 clinical trial data to assess adverse event (AE) frequency of a potentially interacting medication (PIM) amlodipine with elvitegravir/cobicistat (EVG/CObI)
Daniel Podzamczer7; Karen Tashima3; Eric Daar3; Joseph McGowan9; Thomas Campbellb; Jihad Slim8; Melanie Thompson7; Susan Guo8; Peter Borg6; Richard Haubrich10; Moupalai Dais11; Ian McNicholl11 and Scott McAllister11
1Servicio de Enfermedades Infecciosas, Hospital Universitari de Bellvitge, Barcelona, Spain. 2Infectious Diseases, Miriam Hospital, Providence, RI, USA. 3Internal Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA. 4Internal Medicine, North Shore University Hospital, Manhasset, NY, USA. 5Internal Medicine, University of Colorado, Denver, CO, USA. 6Internal Medicine, Saint Michael’s Medical Center, Newark, NJ, USA. 7Internal Medicine, AIDS Research Consortium of Atlanta, Atlanta, GA, USA. 8Biometrics, Gilead Sciences, Foster City, CA, USA. 9Medical Affairs, Gilead Sciences, Stockley Park, UK. 10Medical Affairs, Gilead Sciences, Foster City, CA, USA. 11Clinical Research, Gilead Sciences, Foster City, CA, USA.

Introduction: EVG/CObI has shown high rates of efficacy and when combined in the single-tablet regimen (STR) with emtricitabine/tenofovir-alfenamide (F/TAF) improved bone and renal safety in treatment-naive and treatment-experienced participants compared with F/tenofovir disoproxil fumarate (F/TDF). We evaluated the clinical consequences of use of the PIM amlodipine, a medication which has a caution and recommendation for clinical monitoring when administered with EVG/CObI/F/TAF or with either TDF or TAF, in nine large phase 3 clinical trials.

Materials and methods: We retrospectively pooled data from five treatment-naive studies (GS-US-292-0104, GS-US-292-0111, GS-US-236-0102, GS-US-236-0103, GS-US-236-0128) and four treatment-experienced studies (GS-US-292-0109, GS-US-292-0112, GS-US-236-0115, GS-US-236-0112) to assess AEs associated with concomitant use of amlodipine. All participants received EVG/CObI/emtricitabine combined in an STR with either TDF or TAF. Drug-specific AEs were obtained from Micromedex and Lexi-Comp. We evaluated the following: (1) AEs occurring in >10% of participants, (2) AEs leading to premature discontinuation and (3) drug-specific grade 2–4 AEs. Statistical comparisons between users and non-users of the PIM were conducted using two-sided Fisher exact tests.

Results: Of the 4667 participants, there were 153 who received amlodipine (mean age 50 years, 75% male and 46% Caucasian). See Table 1. Although there was no difference in all-grade adverse events between amlodipine users and non-users, amlodipine users had higher rates of drug-specific AEs: (1) peripheral edema (4.6% with and 0.4% without amlodipine, p < 0.001) and (2) nervous system disorders (2.6% vs. 0.8% with and without amlodipine, p = 0.035). Although participants on amlodipine had a higher overall STR discontinuation rate than non-users, only one discontinuation event could be considered due to an amlodipine-specific AE (local swelling).

Conclusions: Overall AEs and discontinuations due to drug-specific AEs were similar in participants who did or did not use concomitant amlodipine. Amlodipine-specific AEs were higher for participants using amlodipine, but only one participant discontinued EVG/CObI/F/TAF due to an amlodipine AE. Because EVG/CObI/F/TAF or EVG/CObI/F/TAF can increase the level of amlodipine when co-administered, clinical monitoring is recommended.

P315
Real-world antiretroviral plasma levels in HIV-positive patients treated with sofosbuvir-containing DAA for hepatitis C infection
Massimo Tempestelli1; Gabriele Fabbrini1; Laura Timelli2; Mauro Zaccarelli2; Rita Bellagamba1; Stefania Cicalini2; Federico Lupi2; Anna Gallo3; Raffaella Libetonne3; Simone Fazio4; Andrea Antinori3 and Adriana Ammassari3
1Clinical Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases, Rome, Italy. 2Clinical Department, National Institute for Infectious Diseases, Rome, Italy.

Introduction: Drug–drug interactions (DDI) between hepatitis C direct-acting antiviral agents (DAA) and HIV ARVs are frequent. To date, most information has been obtained from phase 1 DDI studies in healthy volunteers and drug combinations permitted in phase 2 and 3 HIV/HCV co-infection trials [1,2]. Aim of this study was to investigate ARV plasma trough levels before and during sofosbuvir (SOF)-based treatment in HCV/HIV co-infected patients treated in the real-world setting.

Material and methods: This study is a monocentre, prospective, open-label, observational cohort study. HIV/HCV co-infected persons undergoing HCV treatment with standard dose of DAA and antiretrovirals are enrolled. Patients also need to receive the same ARVs for at least 2 weeks before starting DAA treatment and to have HIV RNA <40 copies/mL at baseline. Antiretroviral regimen is prescribed by clinical care providers based on antiretroviral treatment history, previous HIV genotypic resistance testing, tolerability and recommendations for management of HCV/HIV co-infected persons in need of HCV treatment. The C_{trough} of ARVs is measured using a validated high-performance liquid chromatography (HPLC). Blood samples are collected before and after 2 months of DAA treatment. For the purpose of this analysis, estimated change of C_{trough} from before to during DAA was obtained by using a random effect linear regression. A minimum of seven C_{trough} coupled values for each ARV were required for final statistical analysis.

Results: To date, 66 out of 91 enrolled patients were analyzed: 27 received SOF + LDV (40.9%), 16 SOF + dactasvir (24.4%), 6 SOF + simprevir (9.1%) and 17 SOF + ribavirin (25.8%). Concurrent ARVs included atazanavir (n = 8), darunavir (n = 19), raltegravir (n = 19), efavirenz (n = 7), etravirine (n = 8) and rilpivirine (n = 8). No statistically significant difference in C_{trough} of considered ARVs was found in samples obtained before and during SOF-based treatment (Figure 1). In 2/66 patients (3.0%), at least one HIV RNA detectable >40 copies/mL during SOF-based treatment was observed. Consequences of loss of virological suppression, such as resistance development or treatment change, are still under observation.

Conclusions: In this large HIV/HCV co-infected patient population observed in the real-world setting, no significant modifications in
ARV concentrations during SOF-based DAA treatment were observed for the most commonly used antiretrovirals. Nonetheless, loss of virological suppression does occur during DAA treatment and thus monitoring of plasma drug levels and viral load is advisable.

References

Figure 1. Median C_{trough}, plasma concentration of atazanavir, darunavir, efavirenz, rilpivirine, etravirine and raltegravir before and during SOF-based treatment.

<table>
<thead>
<tr>
<th>Medicine</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atazanavir</td>
<td>0.991</td>
</tr>
<tr>
<td>Darunavir</td>
<td>0.203</td>
</tr>
<tr>
<td>Raltegravir</td>
<td>0.560</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>0.548</td>
</tr>
<tr>
<td>Rilpivirine</td>
<td>0.283</td>
</tr>
<tr>
<td>Etravirine</td>
<td>0.830</td>
</tr>
</tbody>
</table>

P316
Detection and analysis of antiretroviral medication errors by a clinical pharmacist in hospitalized HIV patients

Siria Pablos Bravo 1, Carmen García Muñoz 1, Federico Pulido 2, Andrea Lázaro Cebas 1 and Jose Miguel Ferrari Piquero 2
1Pharmacy Department, Hospital Universitario 12 de Octubre, Madrid, Spain. 2HIV Unit, Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain

Introduction: Regarding the published data, the overall medication error rate in HIV patients admitted to a hospital varies between 5.8% and 86% [1], depending on the methodology and study duration. Admission of an HIV-infected patient by a physician not specialized in infectious diseases could be a risk factor for drug-related problems. Most of the described errors are prescribing errors [2,3],
highlighting the need for a detailed and accurate medication reconciliation on admission.

Materials and methods: Descriptive observational study. HIV-infected patients with any ART admitted to a hospital ward were included. The study lasted 5 months (March–July 2015). The primary outcome was the ART error rate. Secondary outcomes included the following: type of ART error; omission of treatment, wrong schedule, wrong dose, wrong drug, pharmacologic interaction (classified as potential interaction or forbidden co-administration according to the University of Liverpool classification of interactions); error rate in each type of ward (medical or surgical); number of times error reach to patient; time until correction of medication errors. A clinical pharmacist reviewed prescriptions of all hospitalized HIV patients with ART on a daily basis. Medication reconciliation was made comparing outpatient medication records with the treatment prescribed to the patient at admission. The pharmaceutical intervention was carried out through a text message associated with the electronic prescription and a phone call to the physician in charge of the patient. Subsequently, the degree of acceptance of interventions was evaluated.

Results: In total, 105 HIV patients were admitted to our hospital during follow-up period, with a total of 124 admissions. Patients had a mean (SD) age of 49 years (± 8.48) and 73.4% were male. A total of 32 patients (30.5%) had at least one error. We detected a total of 41 errors (Table 1). A total of 13 forbidden co-administration and 505 potential interactions were detected. However, pharmacist intervention was necessary only in two patients with contraindicated combinations (protease inhibitor + statins), the rest was controlled by HIV physicians. Error rate was similar in both surgical and medical wards (34% and 33%, respectively). A total of 29% of errors reached to patients. Patients were exposed to a median time of 54 hours. In total, 46.3% of pharmaceutical interventions were accepted.

Conclusions: Error rate was as high as in other studies. Medication reconciliation on admission by a pharmacist helps to correct these errors. Collaboration between hospital pharmacists and HIV unit with physicians not specialized in infectious diseases, and the development of strategies are needed to prevent medication errors in HIV patients at admission.

References

Abstract P316 – Table 1. Medication errors detected during the study

<table>
<thead>
<tr>
<th>Type of errors (%)</th>
<th>Description</th>
<th>Example of drugs affected (ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong dose (34)</td>
<td>It was prescribed to be taken one tablet instead of two. Or it was prescribed to be taken 300 mg/24h in patients with CrCl <50 mL/min</td>
<td>LPV/r (4/14) or 3TC (3/14)</td>
</tr>
<tr>
<td>Wrong schedule (29)</td>
<td>It was prescribed to be taken once daily instead of twice daily, or vice versa</td>
<td>ETR (5/12); RAL (2/12)</td>
</tr>
<tr>
<td>Omission (22)</td>
<td>The rest had partial omission of treatment</td>
<td>All treatment (4/9)</td>
</tr>
<tr>
<td>Wrong drug (15)</td>
<td>It was prescribed TDF + FTC</td>
<td>ABC + 3TC (4/6)</td>
</tr>
</tbody>
</table>

3TC, lamivudine; ABC, abacavir; CrCl, creatinine clearance; ETR, etravirine; FTC, emtricitabine; LPV, lopinavir; r, ritonavir; RAL, raltegravir; TDF, tenofovir.
P318

Prevalence of drug–drug interactions involving antiretroviral treatment: impact of the integrase inhibitor class

Peter Messiaen; Charlotte Baecke and Jeroen van der Hilst
Department of Infectious Diseases & Immunity, Jessa Hospital, Hasselt, Belgium

Introduction: ARV agents pose a high risk for drug–drug interactions (DDIs) with other ARV and non-ARV drugs. Induction or inhibition of different cytochrome P450 enzymes by protease inhibitors (PI) or non-nucleoside reverse transcriptase inhibitors (NNRTI) is one of the major but not exclusive metabolic pathways potentially leading to an increased risk of toxicity or loss of efficacy of ARV and non-ARV drugs. Partly metabolized by other pathways, the integrase inhibitor (INI) class might show a more favourable profile. The aim of this study was to investigate the prevalence of potential DDIs in patients who recently started ARV and to evaluate the effect of INI introduction.

Materials and methods: The study population comprised all patients starting ART in our centre from 2009 till April 2016. All prescribed concomications since start of ARV were recorded retrospectively from the medical files. The complete treatment was screened for DDIs using the most recent version of the University of Liverpool HIV Drug Interactions database (www.hiv-druginteractions.org). DDIs were scored as absent, potential, contra-indicated or not assessable due to lack of data.

Results: Of the 145 patients included, 28% (n = 41) were treated on an NNRTI-based regimen, 30% (n = 44) on a PI-based regimen and 42% (n = 61) on an INI-based regimen. Dolutegravir (69%, n = 42) and elvitegravir (30%, n = 18) were the most prescribed INIs. A total of 78% (n = 113) of the patients took comedication. Polypharmacy (≥5 comediations) was seen in 26% of patients, significantly correlated with age (p = 0.024). Potential DDI was seen in 63% (n = 71) of the patients with comedication and in 32% (160/503) of all non-ARV prescriptions. These involved mainly antimicrobial drugs (33%), cardiovascular drugs (19%) and central nervous system drugs (19%). Contra-indicated prescriptions were detected in 1% (n = 6), disproportionately more involving gastro-intestinal drugs (66%). PI-based ART was an independent risk factor for potential or contra-indicated DDI (odds ratio (OR) 2.36; 95% CI 1.14–4.90; p = 0.030). There was no higher risk associated with NNRTI-based ART (OR 0.66; 95% CI 0.32–1.36) as well as for INI-based regimens (OR 0.64; 95% CI 0.33–1.25). A significantly lower risk for drug interaction was seen with dolutegravir-based treatment (OR 0.47; 95% CI 0.22–0.98; p = 0.046), though not for elvitegravir-based ART (OR 1.76; 95% CI 0.64–4.82).

Conclusions: Integrase inhibitor use did not result in lower or higher risk for drug–drug interactions in our patient cohort. However, dolutegravir-based treatment showed a significantly lower risk for DDIs, which was not the case for elvitegravir.

P319

Temporal trend of the plasma level of efavirenz: comparison between CYP2B6-516 GG and GT genotype

Chun Kwan Bonnie Wong1; Pui Chun Denise Chan2 and Shui Shan Lee3
1Special Preventive Programme, Department of Health, Hong Kong Special Administrative Region, Hong Kong. 2Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong

Introduction: Efavirenz (EFV) is primarily metabolized by hepatic cytochrome P450 (CYP) 2B6, which is genetically polymorphic. Genotype 516TT is associated with decreased plasma clearance of EFV and a higher incidence of neurologic complications. The pharmacokinetic difference between 516GG and 516GT after long-term use of EFV has however received less attention.

Methods: Therapeutic drug monitoring (TDM) is available as a supplemental clinical service to HIV patients receiving HAART in Hong Kong. A high-performance liquid chromatography system has been in operation for about 10 years. Mid-dose plasma level of EFV of patients started on an EFV-based treatment regimen at year 1 (defined as more than 2 months and less than 2 years) were evaluated. As a sub-study, EFV-treated patients of Integrated Treatment Centre with blood tests done at two or more time points were analyzed.

Results: TDM results of 95 patients were examined in the first part of the study. The mean age at diagnosis of these patients was 40.0 years (SD 11.7), of which, 93 (97.9%) were male. Their CYP2B6-516 genotypes were as follows: GG 48 (50.5%), GT 37 (38.9%) and TT 10 (10.5%), the distribution of which was in Hardy Weinberg equilibrium. At year 1, the mean EFV level of GT was high at 8.78 mg/L (SD 2.66). The difference between GG and GT was statistically significant [2.89 ± 1.26 mg/L vs. 3.65 ± 1.26 mg/L, t test p < 0.01]. No significant difference in EFV level between GG and GT could be seen over time when exploring data from 62 patients in the sub-study.

Conclusion: EFV level in patients with GT genotype of CYP2B6-516 is generally higher than those with GG genotype in the first 2 years after initiation of EFV regimen. Nevertheless, the difference of EFV level between two genotypes is not significant when temporal changes were evaluated. Differential pattern of auto-induction may explain the results elicited in this study. Extrapolation of the results is however cautioned in view of the small number of patient samples tested, which may also be compounded by the high inter- and intra-individual variation of plasma EFV levels.

COMMUNITY INITIATIVES

P320

European survey on doctor-patient relationship

226
with their doctors. Even much less frequently social or psychological topics.

Results

Continuum from across the region.

Method: A pan-European online survey consisting of 37 questions from 34 countries were received (74% male, 23% female, 1% trans, all age groups 18–80 were represented in the responses).

Results: While there generally is a high level of trust – 88% of the survey participants have answered “yes” to the question “do you trust your HIV doctor?” – the survey results reveal areas where further efforts on the European level are necessary. Figure 1 shows what topics are being addressed during patients’ appointments with their doctors. In this light, “Treatment Options” (73%), “Side Effects” (65%) and “Diagnostics” (62%) are the most frequently addressed topics.

Given the high importance of the topics of “Adherence” and “Sexual Health,” it is particularly surprising that only 35% and 39% of the participants, respectively, indicated that they discuss these topics with their doctors. Even much less frequently social or psychological issues such as “Recreational Drug Use,” “Legal Rights,” “Reproductive Choices,” “Social Concerns” or “Mental Health” are being discussed. Almost all the topics are addressed less when patients do not trust their HIV doctor. When asked if test results are being explained to them, 57% of participants replied that test results are explained to them very well, 30% replied that this is only sometimes the case and 13% either never receive an explanation or do not understand it. With regard to treatment options, only 56% of the survey participants indicated that they are given a choice between treatment options while this was not the case with 44%.

Conclusion: Understanding test results and having a voice in the choice of treatment and care options are central elements for an empowered patient. Whilst the outcome shows that in general patients trust their doctors, there appears to be missed opportunities to identify what really matters to patients and the long-term management of good health. Whilst limited time is a pressure, a broader conversation is needed by both doctors and patients to address the medical, social and psychological aspects of living with HIV.

P321

HIV testing in the community: responding to the Glasgow outbreak

Lee Middleton

NHS Greater Glasgow and Clyde Addiction Service, South West Community Addiction Team, Glasgow, UK

Introduction: In 2015, an outbreak of HIV was noted in the population of people who inject drugs (PWID) in Glasgow [1]. By August 2015, over 40 individuals had been identified, where previous years had an annual average of 10 [2]. Dry blood spot testing (DBST) is a non-invasive way to diagnose HIV which can be quickly completed in a community setting. Aims: Increase access to HIV testing for opiate replacement therapy (ORT) patients linked to the South West Community Addiction Team (SWCAT), via DBST, improve acceptability and uptake of HIV testing among target group; increase awareness amongst staff and patients of the outbreak and importance of prevention and testing.

Materials and methods: This project used a two-pronged approach. Awareness campaign. Briefing delivered to SWCAT integrated staff team (NHS Greater Glasgow and Clyde and Glasgow City Council); this encompassed both raising awareness of the outbreak and the importance of increasing testing rates. Poster campaign in clinic premises in conjunction with European HIV-Hepatitis Testing Week; a dialogue began with patients regarding the benefits of screening and to begin to move away from focusing on risk-taking behaviour and any sense of stigma. DBST. Testing period identified (initially 1 week – extended to 4 due to high uptake rate). Targeted approach by staff to promote testing to patients. Identified medical officer available throughout testing period at each ORT clinic. Instant access to DBST for those accepting the test.

Results: A total of 148 ORT patients were identified attending clinics at SWCAT in November/December 2015. All 148 were offered HIV tests at their clinic appointments. Of this group, 146 (98.6%) accepted the tests, which were completed at the same appointment.

Conclusions: The uptake of HIV tests in SWCAT significantly exceeded all expectations. The results show that HIV testing in a community setting, when offered instantly with a “no-wait” approach during an awareness campaign, can be made both highly accessible and acceptable to a population engaged with an ORT programme. By switching the focus of the test away from risk-taking behaviour towards health promotion, it allowed patients to actively make decisions about their health and fully engage with the process.

References

1. Health Protection Scotland. HPS weekly report. 2015; 19 (Suppl 7)
2. Health Protection Scotland. HPS weekly report. 2015; 19 (Suppl 7)

P322 Factors influencing and associated with the decision to join in Thailand’s first online supervised HIV self-testing and counselling initiative
Taradeep Anand1; Chattiya Nitiploprasert2; Stephen Kerr2; Tanakorn Apornpong2; Jintanat Anawarani3; Praphan Phanuphak4 and Nittaya Phanuphak5
1Adam’s Love, Thai Red Cross AIDS Research Centre, Bangkok, Thailand. 2Biostatistics, HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Centre, Bangkok, Thailand. 3Thai Red Cross AIDS Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA. 4Thai Red Cross AIDS Research Centre, Bangkok, Thailand. 5HIV Prevention, Thai Red Cross AIDS Research Centre, Bangkok, Thailand

Introduction: HIV testing rates are low among men who have sex with men (MSM) and transgender (TG) individuals who contribute >50% of new HIV infections in Thailand [1,2]. Online supervised, finger-prick, HIV self-testing and counselling (eHTC) is an innovative strategy to expand early testing among Thai MSM and TG. We studied acceptability and uptake of this strategy.

Methods: In December 2015, the Thai Red Cross AIDS Research Centre (TRCARC) launched an Online Test and Treat implementation research project to explore approaches to engage and retain “hard-to-reach” MSM and TG in HIV testing and care. Participants recruited and enrolled online via TRCARC’s Adam’s Love (www.adamslove.org) could choose between (1) eHTC with real-time guidance from counsellors or (2) online counselling followed by private clinic-based testing. Questionnaires assessed reasons for choosing eHTC over clinic-based testing, and feelings post-eHTC utilization.

Results: Between December 2015 and May 2016, 99,110 MSM and TG were reached via online study promotions, 264 were screened, 153 (53.9%) passed the eligibility criteria and 97 (36.7%) were successfully enrolled. Among 97 individuals, 25 (25.8%) selected eHTC while 72 (74.2%) opted for online counselling followed by clinic-based testing. Younger MSM/TG, (median age 25 vs. 29 years, p = 0.006), less frequent (previous test > 1 year) and first time testers (47.37% vs. 17.74%, p = 0.001) and those having previous STIs (20% vs. 11.11%, p = 0.015) were more likely to prefer eHTC than clinic-based testing. High-risk behaviours were similar in both groups, with high social media sex-seeking >80% and consistent condom use in the past 6 months <28%. HIV prevalence was significantly higher among eHTC than clinic-based testing participants (16% vs. 1.4%, p = 0.02). Preference for eHTC was guided by logistical convenience (79%), scheduling flexibility (7%), confidentiality (7%) and altruism (7%). Reasons for declining eHTC included stigma of receiving self-testing kit at home (40%), fear of one’s own lack of understanding of self-testing and receiving results alone (28%), fear of finger-prick (24%) and fear of internet glitches while video chatting with counsellors during guidance (8%). Positive perceptions ("It’s good and convenient," “It’s amazing,” "HIV testing is normal now") increased pre- and post-HIV self-testing from 38% to 85% and negative perceptions ("I feel anxious," “I am scared”) decreased from 38% to 8%.

Conclusions: eHTC is feasible to reach high-risk Thai MSM and TG who never or infrequently previously tested for HIV. eHTC has high potential to be scaled up to reach harder-to-reach populations for the first target of UNAIDS 90–90–90 target [3,4].

References

P323 Ways in which legal and regulatory barriers hinder the HIV care continuum and 90/90/90 target across Europe
Lisa Power1; Julian Hows2; Dorthe Raben3; Stine Finne Jakobsen4 and Sara Croxford5
1Optimising Testing and Linkage to Care for HIV across Europe (OptTEST), Cardiff, UK. 2OptTEST, Global Network of People Living with HIV, Amsterdam, Netherlands. 3OptTEST, CHIP, University of Copenhagen, Copenhagen, Denmark. 4OptTEST, Centre for Research in Infectious Diseases (CHIP), University of Copenhagen, Copenhagen, Denmark. 5OptTEST, Public Health England, London, UK

Introduction: Recent HIV continuum of care data from the European Centre for Disease Prevention and Control [1] shows 78% of responding countries had significant break points relating to diagnosis, 41% in linkage to care and 48% in subsequently accessing treatment. Break points involving care/treatment are far greater in non-EEA countries but exist across Europe. Two-thirds of countries identified legal or policy issues contributory to such gaps.

Methods: A literature review done between January and October 2015 for Optimising Testing and Linkage to Care for HIV across Europe (OptTEST) [2] included 54 documents, including academic and grey literature, identifying a wide range of legal and regulatory barriers.

Results: Legal barriers identified included criminalization of HIV transmission and perceived exposure; criminalization of key populations, for example, drug users and sex workers; failure to provide legal protections for these and others, for example, MSM and transgender people. These acted to deter access to HIV services and to impede disclosure of risk activities which might otherwise trigger TasP. Immigration law deterred official access to healthcare for many undocumented migrants and denial of poor access to ART existed in a number of prison and immigration detention systems. Drug laws in particular were shown to act to increase HIV and decrease access to care, while their reform can directly act to reduce HIV transmission [e.g. in Portugal] [3]. Regulatory barriers were less well documented but there was extensive coverage of testing. Outdated guidelines alongside restrictive practices and regulations acted to hinder proven new testing technologies and settings, including restrictions on who can administer tests; requirement of extensive pre/post-test counselling; refusal to accept referrals from community testing into care; limited testing sites and restricted types of tests. Wider barriers to improving the continuum of care included separation of healthcare into vertical specialities [e.g. drugs care separate from HIV and from TB]; lack of case management systems; failure to integrate healthcare and social support; disruption of care between civil and detention authorities. Complex entitlement
regulations and charging systems deterred migrants, including even those entitled to healthcare sometimes.

Conclusion: Findings suggest a need for consistent, updated evidence-based guidelines for testing and care across Europe and guideline implementation; for reform of laws based on stigma rather than evidence and practices based on custom rather than current knowledge; for better dialogue between policymakers, clinicians, NGOs and people with HIV in key populations about the actual legal and regulatory barriers which hinder achievement of 90/90/90.

References

2. Forthcoming online publication from Optimising Testing and Linkage to Care for HIV across Europe (OptTEST). Health Information Exchange/Centre for Research in Infectious Diseases (CHIP). Copenhagen, Denmark; 2017.

P324

Integrated HIV, hepatitis B and hepatitis C testing during the 2015 European Testing Week

Ida Sperle1; Brian West2; Valerie Delpech3; Teymur Noori4; Anna Zakowicz5; Ann-Isabelle Von Lingen6; Nikos Dedes7; Jason Farrel8; Caroline Daamen9; Josip Begovac10; Lisa Power11; Cary James12; Ben Collins13; Tudor Kovacs13; Ricardo Fernandes14; Zoran Dominikovic13 and Dorthe Raben1

1Department of Infectious Diseases, Rigshospitalet, University of Copenhagen CHIP, Copenhagen, Denmark.
2Goverance, AIDS Action Europe, Berlin, Germany.
3HIV and STI Department, Public Health England, London, UK.
4Unit of Surveillance and Response Support (SRS), European Centre for Disease Prevention and Control, Stockholm, Sweden.
5Europe Bureau, AIDS Healthcare Foundation, Amsterdam, Netherlands.
6Policy Working Group, European AIDS Treatment Group, Brussels, Belgium.
7OptTEST, Positive Voice, Athens, Greece.
8European HCV and Drug Use Initiative, Correlation Network, Amsterdam, Netherlands.
10Department of Infectious Diseases, University of Zagreb School of Medicine, Croatia.
11Health Improvement, Terrence Higgins Trust, London, UK.
12Programmes Department, International Lesbian, Gay, Bisexual, Transgender and Queer Youth and Student Organisation (IGLYO), Brussels, Belgium.
13Portuguese Community Advisory Board, Grupo de Ativistas em Tratamentos (GAT), Lisbon, Portugal.
14Iskorak, LGBT Health, Zagreb, Croatia

Introduction

In the World Health Organization European Region, it is estimated that approximately 2.5 million people are living with HIV (PLHIV) [1] and around 13 and 15 million are living with hepatitis B (HBV) and C viruses (HCV), respectively [2]. Around one in three is unaware that they are living with HIV [3,4] and one in three people has been exposed to either HBV or HCV [2]. European HIV-Hepatitis Testing Week (ETW) is a partnership between civil society, healthcare professionals, governmental and other policy organizations. A dedicated website (www.testingweek.eu) provides a hub for interested organizations to sign up and download materials to support planned activities.

Results

- Of the 417 organizations that signed up, 194 from 39 countries submitted the evaluation survey (46.5%). The majority of respondents were NGOs (65.5%) followed by healthcare professionals/hospitals/clinics (18.0%) and governmental and other policy organizations (9.3%). The majority of respondents carried out testing activities (Figure 1) and awareness-raising activities.

Materials and methods: ETW 2015 took place from 20 to 27 November 2015. All participating organizations were invited to complete an online evaluation survey with questions about their carried out ETW activities. Data were entered into the Research Electronic Data Capture system (REDCap) hosted at CHIP, Rigshospitalet, University of Copenhagen. Five electronic survey reminder were sent prior to the survey deadline, 15 January 2016. Data were extracted in Excel format from REDCap and descriptive statistics were produced as frequencies and respective proportions in Excel.

Results: Of the 417 organizations that signed up, 194 from 39 countries submitted the evaluation survey (46.5%). The majority of respondents were NGOs (65.5%) followed by healthcare professionals/hospitals/clinics (18.0%) and governmental and other policy organizations (9.3%). The majority of respondents carried out testing activities (Figure 1) and awareness-raising activities.

Several respondents reported testing for more than one of the three conditions during ETW (Table 1).

The percentage of respondents reporting increase in testing during ETW compared to an average week was 78% for HIV, 74% for HBV and 70% for HCV. ETW has brought forward many innovative best practice examples from all over Europe of how testing and awareness raising can be done. Examples include designing of coffee cup sleeves promoting HIV testing distributed to coffee shops throughout Dublin, dissemination sessions in the streets, use of rapid tests, for example, via a mobile clinic in Kiev doing outreach testing to MSM and collaboration across sectors and between organizations and institutions.

Conclusions: Several organizations tested for HIV, HBV and HCV [35] and reported significant increases in testing during ETW. ETW has proven to be an efficient initiative in uniting Europe in promoting testing and in increasing testing for HIV, HBV and HCV through innovative activities carried out by ETW participants.

References

MODELS OF CARE: COST EFFECTIVENESS

P327
Modelling the cost effectiveness of HIV care in Poland shows clear benefit while transmission risk is considered in the calculations

Justyna Kowalska1; Grzegorz Wójcik1; Jakub Rutkowski2; Magdalena Ankiersztejn-Bartczak3 and Ewa Siewaszewicz4
1Hospital for Infectious Diseases, Medical University of Warsaw, Warsaw, Poland. 2HTA Consulting, Krakow, Poland. 3FES, Foundation of Social Education, Warsaw, Poland. 4Gilead Sciences, Poland, Warsaw, Poland

Introduction: The HIV epidemic remains a major global health issue. Data from cost-effectiveness analyses are usually based on CD4+ counts and morbidity. Here, we evaluate the impact of sexual HIV transmission due to delayed cART on the cost effectiveness of care.

Methods: A lifetime Markov model (1-month cycle) was developed to estimate lifetime costs, clinical outcomes and cost per quality-adjusted life years (QALY) gained for 1- and 3-year delay in starting cART (as compared to starting immediately at linkage to care). Health states included into the model were asymptomatic HIV, AIDS defining condition (mild, moderate, severe) (1), Hodgkin's Lymphoma and non-AIDS defining condition (> 20 illnesses/events in total). Morbidity rates and utility values were obtained from published literature. The number of new infected persons was estimated based on sexual orientation, number of sexual partners per year, number of sex acts per month, frequency of condom use and use of cART (2).

We assumed that patients had HIV RNA <50 copies/ml immediately since starting cART and for a lifetime. Transmission risk was presented for three scenarios: low, medium and high (Table 1). For the input data Test and Keep in Care (TAK) project, cohort preclinical and clinical information was used (3). Costs of care, cART and potential life-years lost were based on estimated total costs and the difference in expected QALY gained between HIV positive and negative patients. The cost-effectiveness analysis was performed using TreeAge Pro software. The discount rate for costs and QALYs was applied using different discount rates: 3.5%, 5% and 7%, depending on the scenario (Table 1).

Results: The incremental cost-effectiveness ratio (ICER) was calculated. The results are presented in Table 2. The ICER per new HIV diagnosis was calculated. The ICER per new HIV diagnosis was calculated.

Conclusions: Accounting for HIV transmission in cost-effectiveness analysis provides further evidence supporting immediate-initiation of HIV treatment from a public payer perspective.

References

P328
Targeting HIV testing at a population level: cost-effectiveness of three approaches

Cristina Gomez Ayerbe1; Alfonso Muriel2; Carlos Reverte1; Pilar Perez Elías3; Santos Del Campo1; Maria Jesus Vivancos3; Cristina Santos4; Maria Eugenia Calonge5; Almudena Uranga5; Ana Moreno6; Santiago Moreno7; Jose Luis Casado8 and Maria Jesus Perez Elias3
1Infectious Diseases, Hospital Ramon y Cajal, Madrid, Spain. 2Hospital for Infectious Diseases, Medical University of Warsaw, Warsaw, Poland. 3FES, Foundation of Social Education, Warsaw, Poland. 4Gilead Sciences, Poland, Warsaw, Poland.

Introduction: Targeted HIV testing has been proposed as the most efficient strategy for HIV diagnosis in low prevalence populations. We aimed to compare cost effectiveness of three HIV testing targeted approaches, previously validated, to predict HIV infection.

Methods: All participants in DRIVE study (non-targeted HIV testing program in emergency department and primary care centre (PCC)) were tested for HIV and filled out a self-administered HIV Risk Exposure and Clinical Conditions Questionnaire (RE&CI-Q). The Denver HIV Risk Score (DHRS) with a cut-off 30 and HIV-associated clinical indicators (from HIV Indicator Diseases Exposure and Clinical Conditions Questionnaire (RE&CI-Q)). The percentages of population identified at risk for HIV infection was detected in 22 (0.41%) with this non-targeted strategy. The percentages of population identified at risk for HIV infection was detected in 22 (0.41%) with this non-targeted strategy. The percentages of population identified at risk for HIV infection was detected in 22 (0.41%) with this non-targeted strategy.

Results: A total of 5329 participants of age 18–60 years completed R&EB-Q and rapid HIV test in the DRIVE study (89.3% in PCC). In total, 504 women and median age 37 years (28–47). Confirmed new HIV infection was detected in 22 (0.41%) with this non-targeted strategy. The percentages of population identified at risk for HIV infection was detected in 22 (0.41%) with this non-targeted strategy. The percentages of population identified at risk for HIV infection was detected in 22 (0.41%) with this non-targeted strategy. The percentages of population identified at risk for HIV infection was detected in 22 (0.41%) with this non-targeted strategy.

Conclusions: All approaches avoided HIV tests compared with routine strategy, but only R&EB-Q captured all HIV-infected subjects detected by the non-targeted strategy. Cost of each NHIVD obtained
Abstract P327 - Table 1. Lifetime Markov model results for the cost per quality adjusted life years (QALY) for 1- and 3-year delay in starting cART

<table>
<thead>
<tr>
<th>Delay treatment</th>
<th>Category</th>
<th>Without transmission</th>
<th>Low risk</th>
<th>Medium risk</th>
<th>High risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Immediate cART</td>
<td>Delayed cART</td>
<td>Difference</td>
<td>Immediate cART</td>
</tr>
<tr>
<td>1 year</td>
<td>Sexual HIV transmission</td>
<td>0.00</td>
<td>473,560</td>
<td>42,773</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Total treatment costs</td>
<td>PLN 516,333</td>
<td>473,560</td>
<td>42,773</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>Cost of treatment new infections</td>
<td>PLN 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total costs (total treatment costs + cost of new infections)</td>
<td>PLN 516,333</td>
<td>473,560</td>
<td>42,773</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>QALY lost</td>
<td>QALY 11.29</td>
<td>11.15</td>
<td>0.14</td>
<td>11.29</td>
</tr>
<tr>
<td></td>
<td>QALY (adj)</td>
<td>PLN per QALY 313,484</td>
<td>dominates</td>
<td>dominates</td>
<td>dominates</td>
</tr>
<tr>
<td>3 year</td>
<td>Sexual HIV transmission</td>
<td>0.00</td>
<td>369,129</td>
<td>147,204</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Total treatment costs</td>
<td>PLN 516,333</td>
<td>369,129</td>
<td>147,204</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>Cost of treatment new infections</td>
<td>PLN 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total costs (total treatment costs + cost of new infections)</td>
<td>PLN 516,333</td>
<td>369,129</td>
<td>147,204</td>
<td>0.82</td>
</tr>
</tbody>
</table>

ICUR PLN per QALY
- 1 year: PLN 313,484 dominates, PLN 156,335 dominates, PLN 313,484 dominates
- 3 year: PLN 156,335 dominates, PLN 156,335 dominates, PLN 156,335 dominates

Dominates = cheaper and more effective.
using RE&Co-Q compared to HIDES list is low with respect to the benefit obtained.

Reference

P329
HIV linkage to care: impact of a proactive intervention in a health area of Spain

Santos del Campo1; Cristina Gómez Ayerbe1; María Jesus Vivancos Gallego2; Ana María Moreno Zamora3; Jose Luis Casado Osorio1; Elena Loza de Bobadilla4; Juan Carlos Galán Montemayor2; Mario Rodríguez Dominguez2; Fernando Dronda Nunez4; Matilde Sanchez Conde2; Santiago Moreno Guillén1 and María Jesús Pérez Elibis2

1Infectious Diseases IRYCIS, Hospital Ramón y Cajal, Madrid, Spain. 2Microbiology, Hospital Ramón y Cajal, Madrid, Spain

Introduction: Linkage to care is one of the essential steps in HIV cascade of care. To evaluate the impact of an active intervention aimed to shorten time from first HIV EIA result to first HIV outpatient clinic visit.

Methods: From 1 January to 30 June 2015 (first period) and 2016 (second period), we identified all first positive HIV EIA (HIV) results obtained in the Microbiology Laboratory Department of Ramón y Cajal Hospital (RyC). All samples came from two main settings: hospital departments (HD) or primary health area (PHA). In 2015 period, HIV+ results were electronically informed and when possible prescriber physician was alerted by phone, that a second sample needs to be sent to confirm serology. In the 2016 period addition to the above mentioned, all HIV+ results were weekly identified, and we phoned the requesting physician informing the HIV+ result and recommending that the confirmation and the first HIV visit should be done as soon as possible at the HIV RyC outpatient clinic. Number and result of HIV tests, linkage to care at RyC HIV clinic or other clinic (rate and time to first visit) were compared between the two periods.

Results: Overall 21,049 first tests were requested (9969 and 11,072 in first and second period). Absolute number and rate of new HIV diagnoses (NHIVD) were 111 (0.53%) (60 (0.61%) and 51 (0.46%); p = 0.16). No differences were observed in NHIVD in first and second period according to sex (women 20% vs. 12%; p = 0.3), age (38 vs. 37 mean years; p = 0.6) or setting (HA 35% vs. 35%; p = 1) between first and second periods. From patients with at least 1 month of follow-up (108), unadjusted rate of linkage to care was 50/60 (83.3%) versus 46/48 (95.8%); p = 0.04, for first and second period. Mean time to linkage to care was (82 ± 157 and 27 ± 31 days; p = 0.019). In an unadjusted analysis, age and setting (HD or PHA) presented same rate of linkage to care, while women had lower rates. In an estimative model, only a trend towards a higher probability to linkage to care was observed for second period (OR 4.6 (90;22.3); p = 0.07), when it was adjusted by sex.

Conclusions: A higher rate of linkage to care was observed in the intervention period, but the effect was attenuated by sex.

P331
Retention of mother–baby pairs in care and treatment through mother–baby care point initiative in Eastern Uganda

Mary Abwola Olwedo; Noah Lukoda and Bud Crandall

STAR-E, Management Sciences for Health, Mbale, Uganda

Introduction: The Ugandan Ministry of Health adopted Option B+ in 2013 for the elimination of mother-to-child transmission of HIV. This required the mother to attend multiple services delivery points for eMTCT program and ART clinic for her care and treatment as well as the baby’s EID services after birth. The mothers didn’t want to visit the ART clinic after birth because of stigma. The MoH became concerned over high loss-to-follow-up rates and introduced mother–baby care point within the MCH department.

Methods: In 2014, the MoH recommended the establishment of mother–baby care points within MCH departments, where midwives provide daily one-stop services to mothers receiving Option B+ with their HIV-exposed infants until child is 18 months old, when mother and child, if HIV positive, are transferred to the ART clinic. Strengthening TB and HIV & AIDS Responses in Eastern Uganda (STAR-E), a USAID project funded by PEPFAR and implemented by Management Sciences for Health, supported the MoH to establish mother–baby care points at MCH departments in 154 health facilities in Eastern Uganda from October 2014 to February 2015 and also did an operational research to understand the impact of MBCP as compared to the old model of implementation.

Lessons learned: STAR-E assessed for retention among 496 mother–baby pairs enrolled into Option B+ program during when the MBCP had not been established in 34 health facilities and found the following: 52% were retained at 3 months and 44% at 6 months. And at 3 months, post-delivery period when they were transferred and receiving services at the ART clinic, only 20% were retained. After MBCP were established, the project reviewed records in the same facilities from October 2014 to March 2016 and found higher retention after delivery than earlier research. Of the 277 mother–baby pairs enrolled, 72% were retained at 3 months post-partum, 64% at 6 months, 55% at 9 months and 41% by 12 months, as most of the babies are weaned by then, second DNA PCR done to determine if baby has been protected.

Conclusion: Mother–baby care points, where HIV and MCH services are integrated, improved retention of mother–baby pairs in Option B+ during the post-delivery period. This enabled more of the HIV-exposed infants to access DNA PCR twice, nutritional assessment, cotrimoxazole prophylaxis and nevirapine prophylaxis. More HIV-positive infants into care and treatment since they were in contact with the health system more often and mothers were retained on ART.

MODELS OF CARE: EVALUATION OF ARV DELIVERY AND COVERAGE

P332
Efficiency of antiretroviral therapy in Russia

Anastasia Pokrovskaya1; Nadezhda Kozyrina2; Uliya Guschina3; Zoya Suvorova1; Oleg Yurin1 and Vadim Pokrovskiy1

1Russian Federal AIDS Centre, Central Research Institute of Epidemiology, Moscow, Russian Federation. 2Department of General and Clinical Pharmacology, Peoples’ Friendship University of Russia, Moscow, Russian Federation

Introduction: Free ART is available in Russia for PLH, who visit special AIDS centres. According to current guidelines, ART is eligible for patients with CD4 < 350 cells/ml. At the beginning of the year 2015, more than 200,000 PLH were on ART. The aim of this study was to characterize the basic aspects of antiretroviral therapy among PLH who visited AIDS centres in Russia in order to develop recommendations for new treatment guidelines.
Methods: Multicentre, open-label study with the inclusion of a retrospective model. We analyzed medical records and questionnaires of 7000 adult patients, who visited AIDS centres and signed an informed consent form in 27 regions of Russia in April to July 2014. Funding support for this study was provided by Bristol-Myers Squibb.

Results: A total of 3406 (49%) of all recruited participants were females, one was transgender. A total of 4445 (60%) of all participants were on ART which was initiated at mean CD4 224.6 ± 138.9; median – 216 (1-1400) cells/mL. Termination of therapy in the time of the study was recorded in 10.1% of patients. Brand name ART drugs were mainly used in the period of the study. The most commonly prescribed ART combinations for naïve patients were as follows: ZDV + 3TC + EFV (26.6%), ZDV + 3TC + LPV/r (21.7%), ZDV + 3TC + ATV/r (9.9%). The average duration of ART was 34 months (max. – 16 years), 18.7% of study participants were on ART over 5 years. A total of 52.3% of patients received the first ART combination, 29.1% – the second (max. – nine ART regimens in patient). The main causes of treatment regimens change were adverse events – 43.3%, simplification (reduction of the number of pills and multiplicity) – 27%, pregnancy – 11.2%. Virologic failure was the cause of ART change only in 3% of patients. A total of 83.9% of patients in the study reached HIV RNA <1000 copies/mL and 69.1% – less 400 copies/mL at the end of the first year of treatment. Among patients, who have a serodiscordant regular sexual partner, only 66.7% were on ART.

Conclusions: The majority of patients receiving ART in Russia have not yet a very long treatment experience. CD4 level at the moment of ART initiation was low. Though old-fashioned ART combinations were effective and tolerable in a part of the patients, the number of adverse effects were significant. Measures are needed to encourage earlier ART initiation and use drugs with lower toxicity.

P334

"The first 90": how close can we get with home-based HIV testing? First results from recruitment for the CASCADE trial in rural Lesotho

Niklaus Daniel Labhardt1; Isaac Ringer2; Thabo Ishmael Lejone3; Josephine Muhairwe4; Christiane Fritz4; Thomas Klinkhart5 and Tracy Renee Glass6

1Medical Services and Diagnostic, Swiss Tropical and Public Health Institute, Basel, Switzerland. 2Towards 90–90–90 Project, SolidarMed, Swiss Organization for Health in Africa, Butha-Buthe, Lesotho. 3Towards 90–90–90 Project, SolidarMed, Swiss Organization for Health in Africa, Maseru, Lesotho. 4SolidarMed, Swiss Organization for Health in Africa, SolidarMed Headquarters, Lucerne, Switzerland. 5Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland. 6Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland

Introduction: The first of the UNAIDS 90–90–90 targets aims at 90% coverage of HIV testing and counselling (HTC) [1]. Studies on HTC at the homes of individuals report HTC uptake (individuals tested/ individuals encountered at home) of >90% [2]. However, HTC coverage (individuals knowing their status/individuals living in targeted area) remains below 90% because of persons absent during home-based HTC [3]. This study assesses the HTC coverage achieved in Lesotho after two consecutive home visits in order to achieve maximal coverage and to cover presence during the week and on weekends.

Materials and methods: The study was conducted in Lesotho, Southern Africa. Data were derived from home-based HTC campaigns serving to recruit HIV-infected individuals for the CASCADE trial (NCT02692027). Assessment of HTC coverage after two home campaigns was conducted to study the uptake of offered HTC to all household members. Each area was visited twice, once during the week and once over the weekend. Household members were defined as spending at least one night at least twice a month in that household. The duration of the HTC campaigns was from 22 February to 3 July 2016. Data were captured on tablet computers and synchronised daily [5].

Results: Counsellors visited randomly selected villages or urban areas moving door to door and offering HTC to all household members. Each area was visited twice, once during the week and once over the weekend. Household members were defined as spending at least one night at least twice a month in that household. The duration of the HTC campaigns was from 22 February to 3 July 2016. Data were captured on tablet computers and synchronised daily [5].

P333

Closing the gap of perinatal HIV infection in Hong Kong

Chun Kwan Bonnie Wong; Wai Chi Ada Lin and Ka Hing Wong

Special Preventive Programme, Department of Health, HK SAR, Hong Kong

Introduction: To achieve the ultimate goal of eliminating perinatal transmission, we reviewed and identified gaps of the current public health programme for the prevention of mother-to-child transmission (PMTCT) of HIV in Hong Kong, a region with low HIV seroprevalence of <0.01% in the antenatal population. The Universal Antenatal HIV Testing Programme (UATP) was introduced in 2001, with an aim to interrupt MTCT through timely diagnosis and management of infected expectant mothers. The programme was strengthened with implementation of rapid HIV testing component in 2008 to offer rapid HIV test in labour wards for women who did not receive testing in early antenatal period.

Materials and methods: We reviewed the programme performance, and matched with perinatal infections reported.

Results: UATP has high coverage rate of >98% in recent years. From 2001 to 2014, 3 perinatal infections were identified out of 72 infants born to HIV-infected mothers. All were detected before 2007, two of which were due to late presentation to antenatal care without participation in UATP. The other was due to failure of intra-partum and post-partum intervention when the mother presented 6 days prior to her preterm delivery. The incorporation of rapid HIV testing in 2008 had filled the gap for late-presenting pregnant women so that interventions could be offered to HIV-infected women not identified by UATP. Since 2008, the percentage of women with HIV test results known prior to delivery remained above 98.6%; and 97% of HIV-positive mothers and their babies had received either three-part or two-part ART. However, five cases of HIV-infected children born to their infected mother who were tested negative by UATP in the early antenatal period were reported in 2009–2015. Unprotected sex during pregnancy was the common risk factor. All five mothers and all but one of the spouses/partners were either non-Hong Kong residents or originated from Asian or African countries where the HIV prevalence was higher than Hong Kong, highlighting its unique epidemiological pattern.

Conclusions: The gap in PMTCT in Hong Kong lies in the HIV-infected women who seroconverted after they were tested negative in the early antenatal period. Partner counselling and testing, enhancement of safer sex, targeted HIV retesting at third trimester for pregnant women based on their epidemiological and behavioural risks are options to close the gap.
Figure 1. HTC coverage after first (weekday) and second visit (weekend). Individuals with missing data on HIV status were excluded (n = 157).

Table 1. Proportion of individuals encountered at home, HTC uptake and HTC coverage stratified by age and gender. Individuals with missing data on age, gender were excluded (n = 170)

<table>
<thead>
<tr>
<th>Encountered at</th>
<th>Total n (%)</th>
<th>Odds ratio (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encountered at home</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women ≥15 years</td>
<td>7211 (88.9)</td>
<td>8115</td>
<td>1</td>
</tr>
<tr>
<td>Men ≥15 years</td>
<td>3668 (70.4)</td>
<td>5209</td>
<td>0.30 (0.27–0.33)</td>
</tr>
<tr>
<td>Children <15 years</td>
<td>3534 (80.5)</td>
<td>4393</td>
<td>0.52 (0.47–0.57)</td>
</tr>
<tr>
<td>HTC uptake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women ≥15 years</td>
<td>6204 (86.0)</td>
<td>7211</td>
<td>1</td>
</tr>
<tr>
<td>Men ≥15 years</td>
<td>3116 (85.0)</td>
<td>3668</td>
<td>0.92 (0.82–1.03)</td>
</tr>
<tr>
<td>Children <15 years</td>
<td>3048 (86.3)</td>
<td>3534</td>
<td>1.02 (0.91–1.14)</td>
</tr>
<tr>
<td>HTC coverage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women ≥15 years</td>
<td>6204 (76.5)</td>
<td>8115</td>
<td>1</td>
</tr>
<tr>
<td>Men ≥15 years</td>
<td>3116 (59.8)</td>
<td>5209</td>
<td>0.46 (0.43–0.49)</td>
</tr>
<tr>
<td>Children <15 years</td>
<td>3048 (69.4)</td>
<td>4393</td>
<td>0.70 (0.64–0.76)</td>
</tr>
</tbody>
</table>

among men and women, but coverage was lower among men due to a lower proportion encountered at home.

Conclusions: A second catch-up visit on a weekend increased the proportion of persons knowing their HIV status by 8%, but home-based HTC still fell short of the targeted 90% coverage. Future strategies need to combine home-based HTC with approaches specifically tailored to frequently absent household members, such as testing at the workplace or school-based HTC or self-testing.

References

for HCV is approximately the same as in general population. National data on HIV and HCV prevalence in prison facilities are essential to implement prevention interventions and to improve screening and treatment for these two chronic conditions, as well as to implement measures to increase adherence to follow-up.

P336

Rationales for indicator conditions-based HIV testing data from the Emergency Department in the Hospital for Infectious Diseases in Warsaw

Karolina Pyziak-Kowalska; Justyna Kowalska and Andrzej Horban

1Emergency Department, Hospital for Infectious Diseases, Warsaw, Poland. 2Division for Adults Infectious Diseases, Medical University of Warsaw, Warsaw, Warsaw, Poland

Introduction: HIDES study has shown that indicator conditions-based HIV testing may offer better results than standard approach. It has also been proven that populations with the HIV prevalence of >0.1% should be routinely screened for HIV. Currently, routine HIV testing for indicator conditions is not covered by public healthcare in Poland, which may delay or miss the opportunity for HIV diagnosis. The aim of this study was to evaluate HIV testing patterns among patients presenting with specific indicator condition, that is, ongoing mononucleosis-like illness in the Emergency Department (ED) and referred for further diagnostics to hospital.

Materials and methods: We conducted retrospective analysis of medical records of patients referred from the ED with ongoing mononucleosis-like illness to the Hospital for Infectious Diseases in Warsaw for further diagnosis within past 12 months (1 May 2014 – 30 April 2015). Patients were eligible if being 18 years up.

Results: In total, 173 patients were consulted at the ED with a mononucleosis-like illness, 94 men and 79 women, with a median age of 26 years; 72 (41.6%) were admitted to hospital; 54 (75%) were offered HIV test and all expressed consent; 4 (5.5%) patients were diagnosed with HIV infection, referred to HIV clinic and linked to care. The continuum of care for mononucleosis-like illness is presented in Figure 1.

Conclusion: The rate of HIV diagnosis among patients hospitalized due to mononucleosis-like illness was high (5.5%), confirming clear benefit in routine testing of this group of patients. According to our analyses, 58% patients missed the opportunity for HIV testing in ED due to the lack of such healthcare program. With presented rate, this translated to six HIV patients who may still remain unaware of HIV infection. Standards of care for mononucleosis-like illness should include routine HIV testing, which needs additional financing and attention from public healthcare representatives and other stakeholders.

P337

The changing epidemiology of newly diagnosed HIV-infected adults in New York City

Benjamin Patterson; Jason Zucker; Tanya Ellman; Ellen Morrison and Magdalena Sobiesczyk

Division of Infectious Diseases, Columbia University Medical Center, New York, NY, USA

Introduction: In keeping with the US National HIV/AIDS strategy, New York City has attained a >90% rate of persons living with HIV who know their serostatus over the years 2008 to 2012. To maintain this high standard, it is imperative to target HIV testing and linkage to care to the highest risk groups. We investigated a cohort of newly diagnosed individuals at an academic hospital in Northern Manhattan to evaluate changes in the epidemiology and clinical characteristics with a focus on men who have sex with men (MSM) and those over the age of 50 years.

Materials and methods: This was a retrospective review of all new HIV diagnoses between 1 January 2006 and 1 August 2015. Eligible patients were >18 years old, had a new positive HIV test and a CD4 cell count within 90 days of diagnosis. Univariate and multivariate analyses were performed to compare clinical and demographic characteristics of individuals diagnosed in 2006 to 2010 (early) and 2011 to 2015 (late) periods.

Results: There were a total of 578 new HIV diagnoses: 294 in 2006 to 2010 with mean age 38 years and mean CD4 254 cells/μL; 284 in 2011 to 2015 with mean age 37 years, mean CD4 286 cells/μL. The proportion of HIV diagnoses made in the ED increased from 9% to 34% in the early compared to late period with a concomitant decrease in inpatient diagnoses from 44% to 19% (p < 0.0005). There were more diagnoses among individuals self-reporting as MSM in 2011 to 2015 compared to earlier (46.5% vs. 29.6%, p < 0.0005); overall MSM tended to be younger with higher mean CD4 cell count than non-MSM (384 vs. 284 cells/μL, p = 0.0025). Individuals ≥50 years were more likely to have CD4 <200 cells/μL compared to their younger counterparts and this persisted in 2011 to 2015 (45.3% vs. 29.0%, p = 0.009).

Conclusion: We noticed a shift in the epidemiology and setting of new HIV diagnoses in an academic medical centre. Increasing new diagnoses among MSM may reflect local and city-wide public health campaigns focused on HIV testing and pre-exposure prophylaxis awareness. Also notable are individuals aged ≥50 years who continue to be diagnosed with advanced disease. This group needs to be a focus of HIV prevention and testing campaigns.

P338

Reasons for transferring HIV care in London

Nadia Ahmed; Duncan Scott; Laura Waters; Nashaba Matin and Gary Whitlock

1HIV/GU, Mortimer Market Centre, London, UK. 2HIV, Barts Health NHS Trust, London, UK. 3HIV/GU Medicine, 56 Dean Street, London, UK

Introduction: In England, people living with HIV (PLHIV) can access care at any centre, regardless of geographical location. Non-UK born and individuals without residency are also entitled to free HIV care at any service. There are no data currently available on reasons patients transfer their HIV management and care from one service to another. We aimed to investigate reasons for transfer amongst PLHIV.
transferring their care to one of three London HIV units in London, UK.

Materials and methods: Patients transferring their HIV care to one of three London clinics between December 2015 and June 2016 were asked to fill in a questionnaire. The questionnaire was designed to explore reasons for leaving their previous centre and reasons for choosing the new service.

Results: A total of 111 patients completed the questionnaire; 47% (n = 52) transferred from services abroad, 37% (n = 41) within London and 16% (n = 18) transferred from outside of London. Reasons for leaving the previous HIV clinic included location (75%, n = 83), problems at the clinic (10%, n = 11) and confidentiality (5%, n = 5). Other reasons (n = 12) included services offered (e.g. specialist services for HCV treatment), finance and employment. Reasons for choosing the service patients transferred to included location (31%, n = 34), good reputation (20%, n = 22), friend/partner attending the service (14%, n = 6). A total of 21% (n = 22) gave a combination of these reasons and 15% (n = 17) gave other reasons including previously attending the service, recommendation by a doctor. Only one patient mentioned using the internet to find their clinic. Current BHIVA guidelines recommend a medical summary should be received within 2 weeks of transferring to a new service. And 27% (26 of 95) of patients were aware of the summary being received at the time of their first appointment of whom 11/26 had transferred their care within the United Kingdom; 36 stated it had not been received and 33 did not know.

Conclusions: Most patients transferred their care to another HIV service for geographical reasons. Reasons for choosing their new clinic included a combination of location, reputation or a friend/partner already attending the service. Reassuringly, a minority cited problems at their old clinic as a reason to transfer care. However, this could have been due to sampling bias, patients with problems may have been less likely to complete the questionnaire. In the age of digital media, it is also interesting that only one patient found their chosen clinic via the internet. Patients seem to base their choice on recommendation.

P339
Atmosphere of risk or family-like support? Alternative patient experiences of decentralized care in North Central Nigeria
Grace Kolawole1; Hannah Gilbert2; Nancin Dadem3; Patricia Agaba4; Becky Genberg5; Oche Agbaiber6; Prosper Okonkwo6 and Norma Ware7
1AIDS Prevention Initiative in Nigeria, Jos University Teaching Hospital, Jos, Nigeria. 2Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA. 3Family Medicine, Jos University Teaching Hospital, Jos, Nigeria. 4Health Services, Brown University, Providence, RI, USA. 5Internal Medicine, Jos University Teaching Hospital, Jos, Nigeria. 6AIDS Prevention Initiative in Nigeria, Abuja, Nigeria

Introduction: Decentralization of HIV care and treatment has played a critical role in scaling up services across sub-Saharan Africa [1,2]. However, little is understood about the implications for people living with HIV (PLHIV) in having care closer to their communities. This qualitative study examined patient experiences of challenges and advantages of receiving care at decentralized clinics.

Materials and methods: Four decentralized clinics in small community hospitals in Plateau State, North Central Nigeria, served as study sites. In total, 39 patients took part in individual open-ended interviews; 23 participated in four focus groups. All participants had transferred from a large, urban HIV clinic. Interview topics addressed access to and preferences for care, services received, perceived impact of decentralization and experiences of decentralization. Data were analyzed to identify recurrent themes and develop descriptive categories.

Results: Receiving care at clinics located in local communities shapes the experience of care for patients. Because decentralized sites have fewer HIV patients, HIV clinics take place on specific days of the week. This creates a situation of predictable clinic attendance for PLHIV that can alternately lead to unwanted disclosure of HIV status or promote a “family-like” atmosphere of support within the clinic. Underlying factors determine whether a decentralized HIV clinic creates an atmosphere of risk or family-like support. These include the following: physical layout of the clinic, whether “ground rules” for confidentiality are established and enforced by staff and whether staff foster social interaction among patients by offering patient-centred care and organizing activities such as group meetings and positive living discussions.

Conclusion: Decentralized clinics embedded within communities can pose the risk of unwanted disclosure. However, with patient-specific provider management, clinics can use local positioning to promote family-like relationships. These relationships may positively impact patient interpretations of quality of care, thereby improving retention rates in decentralized clinics.

Funding: US National Institute of Mental Health (K24MH090884, NC Ware, PI)

References

LATE PRESENTERS

P340
High mortality attributable to late presentation and delayed ART initiation in HIV-infected adults receiving care in Latin America
Pablo Belaunzarán-Zamudio1; Bryan Shepherd2; Yanink Caro-Vega3; Claudia Cortés3; Brenda Crabtree-Ramírez4; Beatriz Grinsztejn5; Eduardo Gotuzzo6; Fernando Mejía7; Denis Padgett8; Jean Pape7; Peter Rebeiro9; Vanessa Rouzier7; Valdilea Veloso10; Sandra Wagner-Cardoso4; Catherine McGowan8 and Juan Sierra-Madero1
1Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico. 2Department of Biostatistics, Vanderbilt University, Nashville, TN, USA. 3Fundación Arrián, Universidad de Chile, Santiago, Chile. 4Fundación Oswaldo Cruz, Instituto de Pesquisa Clínica Evandro Chagas, Rio de Janeiro, Brazil. 5Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru. 6Instituto Hondureño de Seguridad Social and Hospital Escuela, Tegucigalpa, Honduras. 7Le Groupe Hâtien d’Étude du Sarcome de Kaposi et des Infections Opportunistes, Port-au-Prince, Haiti. 8Department of Medicine, Vanderbilt University, Nashville, TN, USA

Introduction: Late presentation and late ART initiation for HIV infection is common in Latin America. Here, we estimated the proportion of deaths among HIV-infected adults receiving care at CCASanet sites that could be attributed to late presentation (LP) to
care, late ART initiation (LI) and no-ART initiation (NI) to highlight the potential impact of implementing strategies that reduce the time between HIV infection and diagnosis, linkage to care, and ART initiation.

Methods: In this observational, multicentre, cohort study including adults enrolled at six centres in Latin America from 2001 to 2014, we estimated the population attributable fraction (PAF) for mortality due to LP, LI and NI. LP was defined as CD4 < 200 cells/μL or AIDS at clinic enrolment. LI was defined as failing to start ART before CD4 < 200 cells/μL or AIDS. The primary endpoint was all-cause mortality. We compared mortality in LP versus non-LP; LI versus non-LI among non-LP; and ART initiation versus NI among LP. We used weighted Cox regression and marginal structural models to estimate survival probabilities used in calculating the PAF.

Results: Of 9,229 patients, 5,162 (56%) were LP (Figure 1). Median CD4 at enrolment was 198 cells/μL (IQR, 68–381); 32% had an AIDS defining illness. Survival probability at 10 years was 84% (95% CI = 0.78–0.89), 58% (95% CI = 0.52–0.65) and 43% (95% CI = 0.36–0.51) at 1, 5 and 10 years after enrolment, respectively, meaning 78% of deaths during the first year after enrolment would have been prevented if individuals had been non-LP (Figure 2). Of 4,067 patients who were non-LP, 77% started ART after a median of 8 months. The proportion of deaths among these non-LPs that would have been prevented by initiating ART before CD4 < 200 or AIDS was 46% (95% CI = 0.77–0.85), 55% (95% CI = 0.67–0.86), and 47% (95% CI = 0.80–0.83) at 1, 5 and 10 years after enrolment (Figure 3). Among LP, starting ART decreased the hazard of death by 63% (95% CI = 0.43–0.72%). However, 93% of LP started ART, so universal and immediate initiation of ART among LP would only result in an estimated 12% (95% CI = 0.6–0.26%) decrease in mortality after 1 year.

Conclusion: Earlier presentation to care and earlier initiation of ART would substantially reduce mortality among HIV-infected subjects in Latin America, mainly during the first year after enrolment. Interventions to improve early diagnosis and linkage to care are particularly needed.

Figure 1. Progression of all HIV-infected patients included in the analysis (N = 9,229) from status at enrolment (late presentation vs. non-late presentation) to early (non-LI) versus late antiretroviral therapy initiation (LI) among late presenters, and ART initiation (non-NI) versus no ART initiation (NI) among late presenters and total deaths by treatment group.

Figure 2. Attributable risk of death (left) and population attributable fraction (right) of death due to late presentation (CD4 < 200 or AIDS) over time (and 95% confidence intervals).

Figure 3. Estimated survival probabilities and 95% confidence intervals for patients entering care in not advanced stages of disease (non-LP) and starting ART before progression to AIDS in comparison to those who started after advancing to late stages of disease.
P341
Insights into missed opportunities for earlier testing in newly diagnosed patients referred for HIV care to a Swiss teaching hospital between 2010 and 2015
Loïc Hospitaller; Estelle Moulin; Matthias Cavassini and Katharine Darling
Infectious Diseases, Centre Hospitalier Vaudois, Lausanne, Switzerland

Introduction: Missed opportunities (MOs) for HIV testing occur when a patient with undiagnosed HIV infection presents to a healthcare provider and is not offered an HIV test. Some late presenters (LPs), defined as patients first presenting for care with a CD4 count below 350 cells/mm³, have presented several MOs before an HIV test is performed. The aim of this study was to examine the characteristics of newly diagnosed patients presenting for care to our clinic and the extent to which MOs for HIV testing occur in our hospital.

Materials and methods: Medical records of all patients newly presenting to our infectious diseases outpatient clinic for HIV care between 2010 and 2015 were examined. Demographic characteristics, HIV stage at diagnosis and reasons for HIV testing were recorded. For each patient, inpatient and outpatient visits to our teaching hospital during the 5 years preceding the HIV diagnosis were reviewed to determine whether HIV testing had been indicated according to the 2015 Swiss HIV testing recommendations. MOs were defined as visits at which HIV testing was indicated but not performed.

Table 1. Patient demographic characteristics and mode of HIV acquisition

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Number of patients (%) without MOs</th>
<th>Number of patients (%) with MOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>18–29</td>
<td>23 (41)</td>
<td>33 (59)</td>
</tr>
<tr>
<td>30–49</td>
<td>59 (53)</td>
<td>53 (47)</td>
</tr>
<tr>
<td>>50</td>
<td>25 (76)</td>
<td>8 (24)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>41 (54)</td>
<td>34 (46)</td>
</tr>
<tr>
<td>Male</td>
<td>66 (52)</td>
<td>60 (48)</td>
</tr>
<tr>
<td>Geographical origin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe, North America, Australasia</td>
<td>58 (55)</td>
<td>48 (45)</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>32 (48)</td>
<td>34 (52)</td>
</tr>
<tr>
<td>Other</td>
<td>17 (59)</td>
<td>12 (41)</td>
</tr>
<tr>
<td>Mode of HIV acquisition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterosexual</td>
<td>67 (59)</td>
<td>47 (41)</td>
</tr>
<tr>
<td>Men who have sex with men (MSM)</td>
<td>29 (43)</td>
<td>39 (57)</td>
</tr>
<tr>
<td>Injecting drug users (IVDU)</td>
<td>3 (33)</td>
<td>6 (67)</td>
</tr>
<tr>
<td>Other</td>
<td>8 (80)</td>
<td>2 (20)</td>
</tr>
<tr>
<td>Time since previous HIV test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>72 (61)</td>
<td>47 (39)</td>
</tr>
<tr>
<td>≤1 year</td>
<td>12 (43)</td>
<td>16 (57)</td>
</tr>
<tr>
<td>>1 year ago</td>
<td>23 (43)</td>
<td>31 (57)</td>
</tr>
</tbody>
</table>

Results: In total, 201 patients were included. Patient characteristics are summarized in Table 1. A total of 106 patients (53%) were late presenters, and 94 patients (47%) had presented at least one MO (range 1–17) at our teaching hospital during the 5 years preceding diagnosis. Figure 1 shows the distribution of the type of MOs. Multivariate analysis revealed that MOs occurred more frequently among patients from sub-Saharan Africa (SSA) (aOR 3.5, 95% CI 1.4–8.6), men who have sex with men (MSM) (aOR 3.3, 95% CI 1.2–9.4) and patients with chronic disease (aOR 4.5, 95% CI 1.8–11.1). In multivariate analysis, MOs were not associated with increased risk of late presentation (aOR 0.6, 95% CI 0.3–1.4). Median CD4 count (cells/mm³) at HIV diagnosis was significantly higher among patients presenting at least one MO (351 vs. 244, p < 0.01).

Conclusions: Almost half our patients presented at least one MO before HIV diagnosis. The increased MO frequency among patients from SSA and MSM suggests that rates of HIV testing should be improved in key groups at higher risk of HIV acquisition. LPs had fewer MOs than non-LPs. As our data on MOs relate to hospital visits, it remains to be determined whether LPs in our population have reduced access to healthcare if they present MOs in the primary care sector.

P342
Is it acceptable to ignore national testing guidelines?
Current testing practice in Lothian 8 years after BHIVA national testing guidelines were published
Muge Cevik1; Durba Raha2; Callum Mutch2 and Clifford Leen1
1Infectious Diseases, Western General Hospital, Edinburgh, UK.
2GUM, Chalmers Sexual Health Centre, Edinburgh, UK.

Introduction: In the United Kingdom, almost 90% of patients diagnosed with HIV had initiated ART, with 93% of those on ART having a suppressed viral load. However, approximately one-third of all HIV infections in adults still remain undiagnosed and one-fourth of newly diagnosed individuals are late presenters. We aim to assess the newly diagnosed individuals in Lothian where prevalence is over 0.2% with no agreed policy to screen for HIV in order to understand current testing practice.

Methods: Using our dedicated HIV database, we included all new presenters to our services between April 2015 and April 2016. Data were retrospectively collated through electronic patient records. Descriptive statistics were performed to examine demographics, baseline characteristics and treatments.

Results: We identified 51 individuals (3 females) who were newly diagnosed with HIV. Median age was 35 years (20–73) with three individuals >65 years. A total of 17 individuals were diagnosed in
Abstract P342 – Table 1. Demographics and baseline characteristics of individuals diagnosed with HIV in various settings

<table>
<thead>
<tr>
<th></th>
<th>Outreach</th>
<th>GUM</th>
<th>GP</th>
<th>Home testing</th>
<th>Secondary care</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (years)</td>
<td>35 (27–47)</td>
<td>28 (22–50)</td>
<td>36 (25–73)</td>
<td>31 (26–46)</td>
<td>45 (20–64)</td>
<td>35 (20–73)</td>
</tr>
<tr>
<td>MSM:HSM</td>
<td>5:1</td>
<td>17:0</td>
<td>9:2</td>
<td>3:0</td>
<td>11:0</td>
<td>45:3</td>
</tr>
<tr>
<td>Female</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Median CD4 count (cells/mL)</td>
<td>490 (275–659)</td>
<td>386 (234–1166)</td>
<td>385 (40–885)</td>
<td>114 (68–659)</td>
<td>81 (6–570)</td>
<td>326 (6–1166)</td>
</tr>
<tr>
<td>CD4 count <350 (n)</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>8</td>
<td>28 (55%)</td>
</tr>
<tr>
<td>CD4 count <200 (n)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>13 (25%)</td>
</tr>
<tr>
<td>Survival at 1 year</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>63%</td>
<td>92%</td>
</tr>
<tr>
<td>Number/percentage</td>
<td>6 (12%)</td>
<td>17 (33%)</td>
<td>14 (27%)</td>
<td>3 (6%)</td>
<td>11 (22%)</td>
<td>51 (100%)</td>
</tr>
</tbody>
</table>

GUM clinic, 14 in GP practice, 10 in secondary care, 6 through outreach services and 3 using self-testing kit. A total of 21 individuals diagnosed through routine screening, 5 contact tracing and 24 individuals presented with clinical symptoms. Median nadir CD4 cell count was 326 cells/mL. However, we observed significant differences in those diagnosed in various settings (Table 1).

Individuals diagnosed in secondary care and those who used home testing kit had significantly lower median CD4 counts, 81 and 114 cells/mL, respectively. More than half of our cohort (28) had CD4 count < 350 cells/mL, 10 (36%) of those presented with AIDS-defining illness and 11 individuals (39%) presented to a healthcare facility in the past year before the diagnosis with a clinical indicator of HIV infection. Overall 13 (25%) individuals had CD4 < 200 cells/mL, 4 (8%) out of those died within 3 months after diagnosis due to an AIDS-defining illness.

Results: A total of 347 newly HIV-infected patients were admitted to our outpatient clinic, 149 (42.9%) meet the criteria for late presenters (LP) and 88 (25.4%) were late presenters with advanced disease (LPWAD). The majority of LP were male (68.5%), with a median age of 41 (62.5% were aged between 31 and 50 years), Caucasians (71.1%) and 66.4% were Portuguese. Heterosexual transmission was the main route of infection (57.7%). The main trigger of HIV infection diagnosis on the LP group was clinical investigation due to symptoms (55%) followed in 18.1% by screening due to behaviour risk mainly in the MSM and IVDU groups. A total of 52 (34.9%) patients were asymptomatic and 95 (63.8%) fulfilled AIDS criteria according to the CDC classification. The median CD4 count was 195 cells/mm³ (4.2–724 cells/mm³); the median viral load was 159,200 copies/mL (303–7,578,000 copies/mL) and 55.7% patients had viral load higher than 5 log₁₀. Almost half of the new HIV diagnosed patients were foreign (48.5%) and 53.2% of the patients of African origin were LP. There was a higher number of heterosexual males who were LP than men who have sex with men (49.1% vs. 30.3%). Although only 4.6% of newly diagnosed patients were IVDU, 75% of these were LP.

Conclusions: There was a high percentage of late diagnosis of HIV infection in our cohort. These results emphasize the need to promote a better access to care not only to the classic behavioural risk groups like MSM and IVDU but mainly to the foreign population and heterosexual males.

Reference

P343
HIV late presenters: a retrospective cohort study on an outpatient clinic in Lisbon, 2010 – 2014
Fábio Cota-Medeiros; Cláudia Afonso; Alexandra Zagalo and Luis Caldeira
Infectious Diseases, Centro Hospitalar Lisboa Norte – Hospital Santa Maria, Lisbon, Portugal

Introduction: The diagnosis of HIV late presenter is associated with a worse clinical condition, increased rate of HIV transmission and higher healthcare cost burden. Recognition of this population could improve healthcare prior to HIV diagnosis representing missed opportunities for earlier diagnosis. We believe routine testing in all relevant settings should be offered as per national guidelines in order to reduce undiagnosed HIV infection at late diagnosis.

Results: A total of 347 newly HIV-infected patients were admitted to our outpatient clinic, 149 (42.9%) meet the criteria for late presenters (LP) and 88 (25.4%) were late presenters with advanced disease (LPWAD). The majority of LP were male (68.5%), with a median age of 41 (62.5% were aged between 31 and 50 years), Caucasians (71.1%) and 66.4% were Portuguese. Heterosexual transmission was the main route of infection (57.7%). The main trigger of HIV infection diagnosis on the LP group was clinical investigation due to symptoms (55%) followed in 18.1% by screening due to behaviour risk mainly in the MSM and IVDU groups. A total of 52 (34.9%) patients were asymptomatic and 95 (63.8%) fulfilled AIDS criteria according to the CDC classification. The median CD4 count was 195 cells/mm³ (4.2–724 cells/mm³); the median viral load was 159,200 copies/mL (303–7,578,000 copies/mL) and 55.7% patients had viral load higher than 5 log₁₀. Almost half of the new HIV diagnosed patients were foreign (48.5%) and 53.2% of the patients of African origin were LP. There was a higher number of heterosexual males who were LP than men who have sex with men (49.1% vs. 30.3%). Although only 4.6% of newly diagnosed patients were IVDU, 75% of these were LP.

Conclusions: There was a high percentage of late diagnosis of HIV infection in our cohort. These results emphasize the need to promote a better access to care not only to the classic behavioural risk groups like MSM and IVDU but mainly to the foreign population and heterosexual males.

Reference

P344
Clinical characteristics of newly diagnosed HIV-infected patients and risk factors for late presentation: a Portuguese cohort
Rita Veiga Ferraz; Francisco Almeida; Raquel Duro; Nuno Pereira; Carmela Piñero; Cátia Caldas; Rosário Serrão and António Sarmento
Infectious Diseases, Centro Hospitalar de São João, Porto, Portugal

Introduction: The epidemiology of HIV infection changed dramatically in the last few years; however, late diagnosis, associated with increased disease burden and risk of transmission as well as a reduction of the benefits of antiretroviral therapy, continues to be a major issue. The main objectives of this study were to identify risk factors related to late presentation and describe the evolution of clinical characteristics of newly diagnosed HIV-infected patients.
Abstracts of the HIV Glasgow supplement
Journal of the International AIDS Society 2016, 19 (Suppl 7)
Poster Abstracts

Table 1. Clinical characteristics of newly diagnosed HIV patients: temporal trend analysis

<table>
<thead>
<tr>
<th>Clinical characteristics</th>
<th>Total</th>
<th>2006-2007 (n = 226)</th>
<th>2008-2009 (n = 239)</th>
<th>2010-2011 (n = 182)</th>
<th>2012-2013 (n = 179)</th>
<th>2014-2015 (n = 146)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>715 (73.6%)</td>
<td>164 (72.6%)</td>
<td>158 (66.1%)</td>
<td>138 (75.8%)</td>
<td>133 (74.3%)</td>
<td>122 (83.6%)</td>
<td>0.005</td>
</tr>
<tr>
<td>Female</td>
<td>257 (26.4%)</td>
<td>62 (27.4%)</td>
<td>81 (33.9%)</td>
<td>44 (24.2%)</td>
<td>46 (25.7%)</td>
<td>24 (16.4%)</td>
<td></td>
</tr>
<tr>
<td>Age (mean ± SD)</td>
<td>40.78 (13.4)</td>
<td>40.90 (13.3)</td>
<td>42.48 (14.3)</td>
<td>40.74 (13.9)</td>
<td>39.56 (12.3)</td>
<td>39.19 (12.6)</td>
<td>0.101</td>
</tr>
<tr>
<td>Risk for HIV acquisition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MSM, heterosexual, IDU, other)</td>
<td>284 (29.2%)</td>
<td>41 (18.1%)</td>
<td>51 (21.3%)</td>
<td>53 (29.1%)</td>
<td>76 (42.5%)</td>
<td>63 (43.2%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Site of referral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>374 (38.5%)</td>
<td>88 (38.9%)</td>
<td>173 (72.4%)</td>
<td>118 (64.8%)</td>
<td>95 (53.1%)</td>
<td>71 (48.6%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood donation/pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 (1.5%)</td>
<td>6 (2.5%)</td>
<td>9 (3.8%)</td>
<td>11 (6.0%)</td>
<td>7 (3.9%)</td>
<td>4 (2.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD4 cell count (mean ± SD)</td>
<td>322 (252.0)</td>
<td>342.33 (305.1)</td>
<td>306.82 (269.8)</td>
<td>308.33 (225.2)</td>
<td>306.10 (199.7)</td>
<td>355.18 (258.5)</td>
<td>0.208</td>
</tr>
<tr>
<td>< 350</td>
<td>405 (41.7%)</td>
<td>94 (41.6%)</td>
<td>89 (37.2%)</td>
<td>80 (44%)</td>
<td>70 (39.1%)</td>
<td>72 (49.3%)</td>
<td></td>
</tr>
<tr>
<td>> 350</td>
<td>357 (38.3%)</td>
<td>248 (58.4%)</td>
<td>217 (62.8%)</td>
<td>228 (56%)</td>
<td>236 (60.9%)</td>
<td>283 (50.7%)</td>
<td></td>
</tr>
<tr>
<td>Clinical stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIDS</td>
<td>406 (41.8%)</td>
<td>100 (44.2%)</td>
<td>118 (49.4%)</td>
<td>72 (39.6%)</td>
<td>64 (35.8%)</td>
<td>52 (35.2%)</td>
<td>0.021</td>
</tr>
<tr>
<td>Non-AIDS</td>
<td>566 (58.2%)</td>
<td>126 (55.8%)</td>
<td>121 (50.6%)</td>
<td>110 (60.4%)</td>
<td>115 (64.2%)</td>
<td>94 (64.4%)</td>
<td></td>
</tr>
</tbody>
</table>

Methods: Retrospective observational cohort study of all newly diagnosed HIV-infected patients admitted to our Infectious Diseases Department between 2006 and 2015. Data were collected after chart review. For a temporal trend analysis patients were categorized into five time periods: 2006 to 2007; 2008 to 2009; 2010 to 2011; 2012 to 2013; 2014 to 2015. Continuous variables were expressed as median and standard deviation, and categorical variables were expressed as number (percentage). Patient characteristics were compared using chi-square test, independent samples t-test or ANOVA, as appropriate. Risk factors for immunity depression were initially investigated using univariate analysis; with the factors identified, a multiple logistic regression model was performed. The level of significance considered was p < 0.05. Analyses were carried out using SPSS version 22.0.

Results: We identified 972 newly diagnosed HIV-infected people between 2006 and 2015. The majority of the patients were male (73.6%) and the mean age was 41 ± 13 years. The main mode of transmission was unprotected heterosexual sex (62.0%). Late presenters represented more than half of the patients (58.3%) and 41.8% already had an opportunistic infection when first observed in HIV clinic. Clinical characteristics and its temporal analysis are summarized in Table 1.

In univariate analysis, the risk factors for late presentation identified were older age, risk of acquisition, site of referral to HIV clinic and previous opportunistic infection. In multivariate analysis, the risk factors identified were age (OR 1.021; 95% CI 1.009–1.034) and referral from infectious diseases ward/emergency room/other hospital wards/other hospitals.

Conclusion: This study reveals that despite the changing epidemiology of HIV infection late presentation is still a major issue in HIV patients. These data put in question the efficacy of campaigns targeting specific groups to improve early diagnosis and raise the question of universal testing of HIV infection.

VIROLOGY AND IMMUNOLOGY: BIOMARKERS/TROPISM

P345

Immune recovery in acute and chronic HIV infection and the impact of thymic stromal lymphopoietin

Marco Gelpi1; Hans Jakob Hartling1; Kristina Thorsteinsson2; Jan Gerstoft3; Henrik Ullum4 and Susanne Dam Nielsen4

1Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.
2Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark.
3Clinical Immunology, Rigshospitalet, Copenhagen, Denmark

Introduction: Symptomatic primary HIV infection is associated with faster decline in CD4+ T cells count and progression to AIDS, and immediate initiation of combination antiretroviral therapy (cART) is recommended. However, little is known about immunological predictors of immune recovery. Thymic stromal lymphopoietin (TSLP) is a cytokine that promotes homeostatic polyclonal proliferation of CD4+ T cells and participates in regulating Th17/regulatory T-cell balance, immunological functions known to be affected during primary HIV infection. The aim of this study was to describe immune recovery in primary and chronic HIV infection and possible impact of TSLP.

Materials and methods: Prospective study including 100 HIV-infected individuals (primary HIV infection (N = 14), early presenters (< 350 CD4+ T cells/µL, N = 42), late presenters without advanced
disease (200–350 CD4+ T cells/μL, N = 24) and late presenters with advanced disease (<200 CD4+ T cells/μL, N = 20). Plasma TSLP was determined using ELISA and CD4+ T cell subpopulations (recent thymic emigrants, naive and memory cells) were measured using flow cytometry at baseline and after 6, 12 and 24 months of cART.

Results: Immune recovery was comparable in all groups, and no differences in immune homeostasis were found between primary HIV infection and early presenters (Figure 1b). In primary HIV infection group, lower thymic output compared to late presenters without advanced disease was found. However, lower proportion of effector memory and higher proportion of late differentiated CD4+ T cell were found in primary HIV infection compared to late presenters without advanced disease was found. TSLP was elevated in primary HIV infection at baseline and after 24 months of cART (Figure 1c and Table 1). Interestingly, TSLP was negatively associated with proportion of recent thymic emigrants (correlation coefficient ρ = 0.60, p = 0.030). However, TSLP was not associated with immune recovery in primary HIV infection. Finally, higher plasma TSLP was associated with lower CD4+ T cell recovery in the late presenters non-advanced disease group (correlation coefficient ρ = 0.50, p = 0.034).

Conclusions: Immune recovery was comparable in primary and chronic HIV infection whereas differences in absolute counts and proportions of CD4+ T cell subpopulations were found between primary HIV infection and late presenters supporting early initiation of cART. Higher plasma TSLP was found in primary HIV infection. Association between TSLP and a lower thymic output, but not with immune recovery was found in primary HIV infection. These findings indicate a possible role of TSLP in immune homeostasis in HIV infection but do not support TSLP to affect immune recovery in primary HIV infection.

P346

Neuroasymptomatic cerebrospinal fluid (CSF) viral escape (aCVE) is associated with increased intrathecal immune activation but not with CSF signs of neuronal injury and alteration of CSF/serum albumin ratio

Carmela Pinnetti1; Valentina Fedele2; Stefania Carta2; Patrizia Lorenzinib; Valentina Mazzotta2; Veronica Bordoni2; Francesco Baldini1; Susanna Grisetti1; Maria Rosaria Capobianchi3; Federico Martinib; Francesca Ceccherini-Silbersteinb; Adriana Ammassari1; Carlo Federico Perno2 and Andrea Antinori1

1Clinical Department, National Institute for Infectious Diseases, Rome, Italy. 2Antiretroviral Drug Monitoring Unit, National Institute for Infectious Diseases, Rome, Italy. 3Laboratory of Virology, National Institute for Infectious Diseases, Rome, Italy. 4Laboratory of Immunology, National Institute for Infectious Diseases, Rome, Italy. 5Laboratory of Immunology, National Institute for Infectious Diseases, Rome, Italy.

Introduction: aCVE is of rising interest in the HIV setting, although preliminary data described it as an uncommon finding. CSF viral escape (CVE) predictors are not definitively assessed. Pathogenesis
and clinical significance of aCVE remain uncertain, particularly regarding intrathecal immune activation/inflammation and neuroinjury markers during aCVE.

Materials and methods: Single-center retrospective study on CSF/plasma paired samples collected on neurologically asymptomatic HIV-positive patients undergoing lumbar puncture (LP) for CNS staging of lymphoma during ART exposure. aCVE was defined: a) detectable CSF HIV RNA with concurrent plasma levels < 50 copies/mL, or b) CSF HIV RNA > 1.0 log higher than concomitant plasma HIV RNA level. CSF neopterin, and neurofilament light chain (NFL) concentrations were determined by ELISA assays. aCVE adjusted ORs were calculated by fitting a logistic multivariate regression model.

Results: Two hundred and ninety-one CSF/plasma pairs from 92 patients were included: 88% male, median age 42 years, heterosexual 47%, MSM 26%, IDU 21%. CD4 cells/mm³ was < 200 in 48% and > 500 in 22%, 98% CDC stage C. CSF was collected in 44% during 2004 to 2008, in 56% during 2009 to 2014. At LP, all patients were

Abstract P345 - Table 1. Proportion of CD4+ T cell subsets in HIV-infected individuals with either primary HIV infection or chronic HIV infection according to CD4+ T cell count before initiation of cART

<table>
<thead>
<tr>
<th>Gender, males/females (% males)</th>
<th>LP-AD < 200 cells/µL, N = 14</th>
<th>LP-nonAD 200-350 cells/µL, N = 20</th>
<th>EP > 350 cells/µL, N = 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, median (IQR)</td>
<td>47 (12)</td>
<td>42 (16)</td>
<td>38 (16)</td>
</tr>
<tr>
<td>Time since diagnosis, days, median (IQR)</td>
<td>2 (3)</td>
<td>3 (9)</td>
<td>18 (269)</td>
</tr>
<tr>
<td>CD4+ nadir, cells/µL, median (IQR)</td>
<td>540 (335)</td>
<td>45 (113)</td>
<td>290 (95)</td>
</tr>
<tr>
<td>CD4+ at baseline, cells/µL, median (IQR)</td>
<td>550 (327)</td>
<td>55 (110)</td>
<td>290 (97)</td>
</tr>
<tr>
<td>CD4+ at 24 months of cART, cells/µL, median (IQR)</td>
<td>680 (240)*</td>
<td>269 (160)*</td>
<td>695 (290)</td>
</tr>
</tbody>
</table>

Abstract P346 - Figure 1. Cerebrospinal fluid (CSF) neurofilament light protein (NFL) and neopterin concentration by the presence of an asymptomatic CSF viral escape (CVE).
Abstracts of the HIV Glasgow supplement
Journal of the International AIDS Society 2016, 19 (Suppl 7)
Poster Abstracts

receiving cART: 67.7% TDF/FTC, 11% ABC/3TC, 2.8% ZDV/3TC, 40% EFV, 33% LPV/r, 9% ATV/r and 6.5% DRV/r. Hundred and forty-nine (51.2%) had HIV RNA <50 copies/mL, 206 (70.8%) <200 copies/mL. CVE was detected in 24/291 samples (8.2%): 62.5% diagnosed with criterion a); 37.5% with criterion b). Mean CSF HIV RNA log was 1.95. At multivariable analysis, male gender (OR 0.20; 95% CI 0.04–0.90 vs. female), CD4 > 350 (0.11; 0.02–0.82 vs. CD4 < 200) and 2009 to 2014 period (0.10; 0.03–0.38 vs. 2004–2008) were all independently associated with a decreased risk of CVE. Using TDF/FTC as reference, receiving ABC/3TC at LP (OR 4.38; 1.13–16.96) was independently related to an increased CVE risk. Age, nadir CD4 < 200, duration of cART, 2010 CSF CNS penetration effectiveness score, third ARV drug received, and CSF/serum albumin ratio were not associated with CVE. Patients with CVE showed a higher concentration of CSF neopterin (p = 0.015) comparing to patients without, while no significant difference for CSF NFL level (Figure 1). No difference was found in CSF/plasma albumin ratio.

Results: Subjects with a CVE had a lower count of CD4+ (Spearman r = 0.5; p = 0.005) and CD8+ (Spearman r = 0.2; p = 0.005) T-lymphocytes and CD4 recovery after 1 year of ART (Spearman r = 0.5; p = 0.005). Kaplan-Meier analysis with endpoint of viral load <50 copies/mL over a period of 150 days (log-rank test p = 0.03).

Conclusions: The decrease in CD4+ expression in T-lymphocytes could be considered an early marker of immune activation during HIV infection. Furthermore, integrin-alpha4 could represent a potential therapeutic target for the immune system modulation in the context of HIV infection aiming to reduce non-AIDS-related comorbidities, especially cardiovascular diseases.

P348

Baseline myeloid and lymphoid activation markers can predict time to viral load reduction under 50 copies/mL and CD4 recovery, respectively, after highly active antiretroviral therapy initiation

Marco Iannetta; Miriam Lichtner; Raffaella Rossi; Stefano Savinelli; Serena Vita; Claudia Mascia; Paola Zuccalà; Raffaella Marocco; Maria Antonella Zingaropoli; Maria Rosa Ciardi; Gabriella d’Ettorre; Claudio Maria Mastroianni and Vincenzo Vullo

Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy

Introduction: It is well known that HIV-positive subjects have a higher risk of non-AIDS-related comorbidities than general population. Chronic immune activation of T-cells plays an important role in HIV pathogenesis and related comorbidities. In this context, the integrin-alpha4 (CD49d), a transmembrane co-stimulatory molecule, is involved in the lymphocyte homing from peripheral compartment to the gut (alpha4beta7) and to the central nervous system (alpha4beta1). The aim of the study was to evaluate CD49d expression in T-lymphocyte subsets and the relationship with cardiovascular damage in HIV+ individuals on effective cART.

Materials and methods: Thirty HIV+ subjects (6 females and 24 males) with a mean age (± standard deviation (SD)) of 52 ± 10.1 years on effective cART and 15 age- and sex-matched healthy donors (HD) were enrolled. T-lymphocyte immunophenotype and CD49d expression, measured as median fluorescence intensity (MFI), were assessed by flow cytometry. Carotid intima-media thickness (c-IMT) was measured with ultrasonography. Normal and pathological c-IMT were defined as IMT <0.9 mm and >0.9 mm, respectively.

Results: HIV+ subjects showed a lower count of CD4+ T-lymphocytes (p = 0.04) and increased levels of immune activation (CD4+ and CD8+ HLA-DR + CD38+B) compared to HD. In HIV+ subjects with normal c-IMT and 15 (50%) a pathological c-IMT showed higher levels of CD4+ and CD8+ naive (N) (p = 0.02 and p = 0.01) and an increase in CD8+ effector memory (EM) (p = 0.007) percentages were observed in HIV+ subjects, compared to HD. In HIV+ subjects, CD49d expression was increased on CD4+ (N: p = 0.01; central memory (CM): p < 0.001; EM: p < 0.001; effector (E): p = 0.05) and CD8+ (N: p = 0.0006; CM: p < 0.001; EM: p < 0.001; E: p = 0.003; and intermediate (I): p < 0.001) T-lymphocyte subsets, compared to HD. A positive correlation between CD49d expression in CD4+ T-cells and CD4+ HLA-DR + CD38+B (p = 0.0012) was observed in HIV+ subjects. c-IMT was higher in the HIV+ group than HD (mean ± SD: 0.85 ± 0.17 vs. 0.28 ± 0.24 mm, p < 0.001). Among HIV+ patients, 15 (50%) had a normal c-IMT and 15 (50%) a pathological c-IMT. CD4+ T-cell CD49d expression and CD4+ HLA-DR + CD38+B positively correlated with c-IMT (p = 0.04, p = 0.085, respectively). Moreover, HIV+ subjects with pathological c-IMT showed higher levels of CD4+ CM CD49d expression (p = 0.02) than HIV+ subjects with normal c-IMT.

Conclusions: The increase of CD49d expression in T-lymphocytes could be considered an early marker of immune activation during HIV infection. Furthermore, integrin-alpha4 could represent a potential therapeutic target for the immune system modulation in the context of HIV infection aiming to reduce non-AIDS-related comorbidities, especially cardiovascular diseases.
P349
Impact of oestrogen plasma levels in modulation of immune activation among HIV-infected women and men undergoing successful antiretroviral therapy

Raffaella Marocco1; Miriam Lichtner1; Tiziana Tieghi1; Valeria Belvisi1; Irene Pozzetto2; Claudia Mascia2; Paola Zuccala2; Raffaella Rossi2; Fabio Mengoni2 and Claudio Maria Mastroianii3

1Department of Public Health and Infectious Diseases Santa Maria Goretti Hospital, Sapienza University, Latina, Italy. 2Department of Public Health and Infectious Diseases Santa Maria Goretti Hospital, Sapienza University, Rome, Italy.

Introduction: Several sex differences have been described in the natural course of HIV-1 disease [1]. Higher levels of TLR 7-mediated IFN-alpha production together with greater levels of activated CD8-T cells were described in women compared with men for a given HIV viral load [2]. The role of sexual hormones in antiretroviral treatment (ART)-treated women is not completely understood and seems to be crucial to individualize possible eradication strategy in women that could be different than in men [3]. The aim of this study was to investigate the role of sexual hormones in determining innate immunity and immune activation in a cohort of HIV-infected subjects undergoing effective ART.

Materials and methods: Seventy-four HIV-infected (41 F, 33 M) subjects receiving stable ART were studied. Immunological test including plasmacytoid and myeloid dendritic cells (DC) count, slan DC and T lymphocyte immune-activation were higher in HIV infected patients in TNFα overproduction in response to microbial products. Blood. 2012;120:2259

References:

P350
Active TGF-β1 may be involved in viral suppression during ART in HIV-1 infected patients
Edward Maina1; Elizabeth Bukusi2; Martha Sedegah3; Margaret Lartey4 and William Ampofo1

1Virology, Noguchi Memorial Institute for Medical Research, Accra, Ghana. 2Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya. 3Malaria Program, Naval Medical Research Center, Silver Spring, MD, USA. 4Medicine, University of Ghana, Accra, Ghana

Introduction: Studies have demonstrated that cytokine-mediated non-cytopathic suppression of viral replication may provide an alternative therapeutic strategy for the treatment of viral infection. We hypothesized that active transforming growth factor (TGF)-β cytokine response is involved in HIV-1 suppression during ART.

Methods: Fifty-nine HIV-1 infected individual categorized according to virologic and immunologic outcomes after ART as, virologic responder (VR), immune-virologic failure (IVF) and viral suppressed (VS) were included in this cross-sectional study. For comparison, 12 responder (VR), immune-virologic failure (IVF) and viral suppressed (VS) were also included in the study. CD4+ T cell counts and plasma HIV-1 RNA were measured using flow cytometry and HIV-1 TaqMan assays, respectively. Plasma levels of active TGF-β1 were determined using MILLIPLEX® MAP TGF-β1 single plex magnetic bead kit on LumineXMAP® 200 system.

Results: Whereas LTNP had high HIV-1 RNA and CD4+ cell counts, plasma TGF-β1 was low. In patients on ART, VR had high CD4+ cell counts and low HIV-1 RNA contrasted with high TGF-β1 while IVF exhibited high HIV-1 RNA with low CD4+ cell count and TGF-β1. Of note, VS had undetectable HIV-1 RNA with high CD4+ cell counts and plasma concentration of TGF-β1. Furthermore, a negative correlation was observed between HIV-1 RNA and TGF-β1 in patients on ART.

Conclusions: Overall, plasma concentration of active TGF-β1 was not significantly different between healthy controls and LTNP. However, VR and VS displayed a significantly high TGF-β1 and a significantly low and undetectable HIV-1 RNA, respectively. Compared to VR, IVF had low TGF-β1 and higher HIV-1 RNA. This suggests immunoregulatory mechanisms to be involved in suppressing HIV-1 in HIV-infected patients on ART.

P351

Geno2pheno (coreceptor-hiv2): a new diagnostic tool for the genotypic determination of HIV-2 coreceptor usage

Matthias Dörring1; Pedro Borrego2; Joachim Bäch1; Andrea Martins2; Georg Friedrich3; Ricardo Jorge Camacho2; Josef Eberle2; Rolf Kaiser2; Thomas Lengauer1; Nuno Taveira1 and Nico Pfeifer1

1Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany. 2Research Institute for Medicines (IMed.Lisboa), University of Lisbon, Lisbon, Portugal. 3Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium. 4Department of Virology, Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany. 5Institute for Virology, University of Cologne, Cologne, Germany

Introduction: Maraviroc is a coreceptor antagonist that prevents HIV cell entry by blocking the CCR5-coreceptor. Before initiating treatment with maraviroc, viral coreceptor usage should be determined to ensure that HIV can use only the CCR5 coreceptor (R5) and cannot evade the drug by using the CXCR4 coreceptor (X4-capable). Although maraviroc is a treatment option for individuals infected with HIV-2, no online tool for the genotypic identification of HIV-2 coreceptor usage was available until now. Therefore, our research was concerned with developing, validating and implementing a data-driven web service for the prediction of HIV-2 coreceptor usage from the V3 loop of the HIV-2 glycoprotein.

Methods: Several support vector machines (SVMs) were trained and validated on a data set of 73 R5 and 52 X4-capable V3 amino acid samples with known phenotypic coreceptor usage. We compared the nested cross-validation predictions from SVMs with the results from the rules-based method developed by Visseaux et al. [1] using McNemar’s test and investigated the predictive performance of individual discriminatory features in the V3 loop using Fisher’s exact test with multiple hypothesis correction (Benjamini-Hochberg method at a false discovery rate of 5%).

Results: After comparing the predictive performance of all trained SVMs using 10 runs of 10-fold cross-validation, we selected a linear SVM as the model for geno2pheno (coreceptor-hiv2), because it performed best (area under the ROC curve of 0.95). In our evaluations of predictive performance using 10-fold nested cross-validation, SVMs had a sensitivity of 73.5% and a specificity of 96% for identifying X4-capable variants. We found that the predictive performance of SVMs was not significantly different (p = 0.37) from the rules-based approach developed by Visseaux et al. Moreover, on a test set containing nine new V3 sequences together with the corresponding coreceptor usage phenotypes, geno2pheno (coreceptor-hiv2) achieved a predictive accuracy of 100% and outperformed the rules-based approach. Using SVMs, we could not only reproduce the established markers of CXCR4-usage but could also identify novel markers: the substitutions 27K, 15G and 8S were significantly predictive of CXCR4-usage.

Conclusions: In this study, we developed geno2pheno (coreceptor-hiv2), the first online tool for the prediction of HIV-2 coreceptor usage from the V3 loop. The tool can aid clinicians in deciding whether maraviroc is a treatment option and allows for broader epidemiological studies on HIV-2 coreceptor usage. Moreover, our research indicates that HIV-2 coreceptor usage is not only influenced by the V3 loop but also by the V1/V2 regions. Geno2pheno (coreceptor-hiv2) is available at www.coreceptor-hiv2.geno2pheno.org.

Reference

VIROLOGY AND IMMUNOLOGY: RESISTANCE

P352

High rates of multi-class drug resistance in HIV-1 infected individuals monitored with CD4 count in Uganda

Anrei von Braun1; Alexandra Scherrer2; Christine Sekagya3; Joseph Kirangwa3; Deogratius Ssemwanga3; Pontiano Kaleebu3; Huldrych Günthard4; Andrew Kambugu5; Barbara Castelnuovo1 and Jan Fehr7

1Infectious Diseases Institute, College of Health Sciences, Makerere University, Research, Kampala, Uganda. 2Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland. 3Research, MRC/UVRI Uganda Research Unit on AIDS, Research, Entebbe, Uganda

Introduction: Until a recent change in guidelines, HIV-infected patients on antiretroviral therapy (ART) in Uganda were monitored using CD4 cell counts only. So far, little is known about prevalence of drug resistance among HIV-infected patients with virological failure (VF) after immunological treatment monitoring in Uganda.
assess the impact on antiretroviral treatment according to the currently recommended first-line regimens (European AIDS Clinical Society (EACS) HIV Guidelines version 8.0[1]).

Materials and methods: Diagnostic laboratories provided dried serum spots (DSS) of ~60% of all newly diagnosed HIV infections in Germany reported to the Robert Koch Institute (2013–2015). HIV-1 genotyping was performed from “recent infections” (<155 days) as classified by the commercial BED HIV-1 Incidence EIA (Sedia Biosciences Corporation, Oregon USA); exclusive cases with CD4 < 100 cells/L, CDC C) to identify resistance-associated mutations according to the WHO surveillance drug resistance mutations [2].

Results: Between 2013 and 2015, 3,114/9 and 799 DSS were classified as recent infection and 1460 were sequenced. Overall prevalence of TDR was 10.8% (102/1460), comprising 3.8% NRTI-, 2.8% NNRTI-, 2.9% PI-mono-resistance and 1.2% multi-class-resistance. 80% (82/102) of NRTI mutations were thymidine analogue resistance mutations (TAMs) and T215 revertants, namely M46I (1.4%, 20/1460), K219NQR (1.0%, 15/1460), D67E/GN (0.7%, 10/1460), T215Y, K70R, L100W (each 1/1460) and T215C/SDEIS (2.3%, 34/1460), conferring intermediate resistance to zidovudine and stavudine. 60% of NNRTI-resistance was caused by K103NS (38/1460) conferring resistance to efavirenz and nevirapine. The most frequent PI mutations M46I (1.5%; 22/1460) and V82F (0.8%; 12/1460) are associated with low/intermediate resistance to tipranavir, nelfinavir and/or fosamprenavir. Considering only primary resistance mutations which impact to drugs currently recommended in first-line regimens [1], the prevalence of TDR was only 5.4% (0.8% NRTI; 3.1% NNRTI; 0.6% PI; 0.9% multi-drug-resistance).

Conclusions: TDR prevalence in recent HIV-1 infections in Germany (2013–2015) remained stably high (>10%) and is comparable to other European countries. TDR was mainly caused by the first-generation NNRTI-selected K103N, by long-term persisting TAMs and the PI-selected M46I and V82F. While the K103N is associated with failure of current efavirenz-containing first-line regimens, the impact of TAMs and frequent PI-mutations on the success of current first-line therapies is predicted to be low and halves the TDR prevalence (10.8% to 5.4%). However, to allow an optimal therapeutic sequencing genotypic resistance testing prior to treatment initiation is important and should also include the HIV-integrase.

References

P353

Prevalence and impact of transmitted drug resistance in recent HIV-1 infections, Germany 2013 to 2015

Andrea Hauser;1, Alexandra Hofmann;2, Kirsten Hanke;1, Viviane Bremer;2, Barbara Bartmeyer;2, Claudia Kücherer;1 and Norbert Bannert1

1HIV and Other Retroviruses, Robert Koch Institute, Berlin, Germany.
2HIV/AIDS, STI and Blood-borne Infections, Robert Koch Institute, Berlin, Germany

Introduction: Transmitted drug resistance (TDR) in new HIV infections has significant clinical consequences for the treatment success. Therefore, monitoring of TDR in currently circulating HIV strains is an important public health issue. We aim to estimate the prevalence of TDR to protease and reverse transcriptase inhibitors (PIs; RTIs) and to

Methods: From 4 June to 30 September 2015, viral load measurements were done in HIV-infected adults (18 years) on ART for at least 6 months presenting to the infectious diseases institute (IDI) in Kampala. In case of VF (>1000 copies/mL) HIV genotyping was requested. Sequencing of partial polymerase gene was conducted using in-house protocol. All sequences were submitted to the Stanford University HIV Drug Resistance database, and the surveillance drug resistance mutations were identified using the 2009 World Health Organization mutations list. HIV-1 subtypes were assigned using REGA version 3.0.

Results: Viral load measurements were done in 2511 patients, who had been on ART for a median time of 4.7 years (interquartile range (IQR) 2.5–8.7). A total of 199 patients (7.9%) had VF with a median viral load of 4.4 log10 copies/mL (IQR 3.9–4.9). The majority of patients with VF (140, 70.4%) were on first-line ART, 138 patients (69.3%) were female and the median age was 37 years (IQR 30–43). HIV genotyping tests were available in 163 (81.9%). HIV-1 subtypes A (46%) and D (34%) were most common. Relevant drug resistance mutations were observed in 135 (82.8%), of which 103 (63.2%) had resistance to two drug classes, and 11 (6.8%) had resistance to all three drug classes available in Uganda (Figure 1).

Conclusions: With 92% of all patients virologically suppressed, the overall prevalence of VF was low and is in line with the third of the 90–90–90 UNAIDS targets. However, the majority of failing patients had developed resistance to more than one drug class, suggesting that failing regimens - not identified as such by CD4 monitoring - had been in place for a prolonged period of time.

Figure 1. Type and frequency of most prevalent resistance-associated mutations observed.

NRTI, non-nucleoside/nucleotide reverse transcriptase inhibitors; NRTI, nucleoside/nucleotide reverse transcriptase inhibitors; PI, protease inhibitors; TAM, thymidine analogue mutation
Materials and methods: We have previously found that the most prevalent NNRTI-resistant mutations among HIV-1 drug-naive individuals in Southern Greece were E138A and K103N. Our aim was to estimate the transmission dynamics of E138A- and K103N-resistant strains and to investigate for potential differences in these dynamics between subtypes A and B.

Results: The distributions of transmission risk groups were similar for subtypes A and B for both E138A and K103N. Men who have sex with men (MSM) represented 69% (N = 124) and 63% (N = 43) of infections with E138A in subtypes A and B, respectively (p = 0.586). Similarly, MSM comprised 68% (N = 38) and 61% (N = 11) of individuals with K103N in subtypes A and B, respectively (p = 0.355). The time of the most recent common ancestor (tMRCA) for E138A was estimated in 1992.0 (95% HPD 1987.6–1995.6) and 1982.6 (95% HPD 1973.7–1990.6) for subtypes A and B, respectively. For K103N, the tMRCA was in 1999.0 (95% HPD 1994.7–2002.5) and 1991.8 (95% HPD 1979.1–2000.8) for subtypes A and B, respectively. Notably, the slope of the number of lineages (transmissions) over time estimated at the exponential phase of the BDM skyline for E138A sequences of subtype A (10.13, 95% CI 9.30–10.90) was 10 times that of subtype B (1.04, 95% CI 0.96–1.11) (Figure 1a). For K103N, the slope for subtype A transmissions was approximately 2.5 times (6.16, 95% CI 5.80–6.52) that for subtype B (2.50, 95% CI 2.45–2.55) (Figure 1b).

Conclusions: Our study suggests that E138A and K103N HIV-1 resistant mutations are transmitted at higher rates in subtype A than in subtype B strains. Given that the distributions of transmission risk groups were similar between the two clades, observed differences in transmission dynamics could be due to higher transmissibility of subtype A or different risk behaviour of the individuals infected with this subtype. This is one of the few studies highlighting differences in transmission dynamics of resistant strains belonging to different subtypes.

Figure 1. Transmission dynamics of resistant strains with E138A for subtypes A and B. (b) Transmission dynamics of resistant strains with K103N for subtypes A and B.

P355

The absence of drug resistance against dolutegravir in first-line therapy is attributable to reduced viral replicative fitness and durable anti-HIV immune responsiveness

Mark Wainberg and Thibault Mesplede
McGill University AIDS Centre, Jewish General Hospital, Montreal, Canada

Introduction: Dolutegravir (DTG) is an integrase strand transfer inhibitor (INSTI) against which drug resistance in first-line therapy has never been observed. However, a R263K mutation that confers low-level resistance (1–4-fold) to DTG was selected by us in culture and also developed in several patients who received DTG as an INSTI after having failed other drugs. The absence of resistance to DTG is due to a high fitness cost that is exacted by the R263K mutation, and the fact that compensatory mutations for R263K have not occurred.

Methods: We measured levels of integrated HIV DNA in cells infected by HIV containing R263K and other INSTI and non-INSTI resistance mutations. We also monitored immune responsiveness to HIV in patients receiving DTG-based therapy.

Results: The R263K substitution alone conferred an approximate 3-fold level of resistance to DTG, a 40% loss in viral replicative capacity and a 40% drop in recombinant integrase activity. A continuation of DTG drug pressure led to secondary mutations at positions H51Y, E138K or T66I that did not individually affect DTG resistance or enzyme activity. However, the combination of R263K with H51Y or E138K slightly increased DTG resistance but also caused a 90% loss in each of viral replication capacity and integrase activity as measured both biochemically and by PCR. Most importantly, the continued propagation in culture of viruses containing both R263K and H51Y yielded progressively less integrated viral DNA in successive infections, beginning at 30% of wild-type and dramatically decreasing to non-detectability thereafter. In addition, our data show that HIV that is subjected to DTG pressure is unable to evolve and remains durable.
susceptible to anti-HIV neutralizing antibodies and T cell immune responses. **Conclusions:** Our findings explain why drug resistance to DTG has not been observed after first-line therapy for more than 3 years since its approval by regulatory agencies. The use of DTG in first-line therapy may be compatible with treatment interruption strategies aimed at attaining a functional HIV cure because of the non-development of drug resistance.

P356

Low prevalence of pre-treatment HIV-1 drug resistance in Ugandan adults

Amrei von Braun1; Christine Sekaggya1; Alexandra Scherrer2; Brian Magambo3; Deogratius Ssemwanga3; Pontiano Kaleebu3; Huldrych Günthard3; Andrew Kambugu1; Jan Fehr3 and Barbara Castelnuvo2

1Infectious Diseases Institute, College of Health Sciences, Makerere University, Research, Kampala, Uganda. 2Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland. 3MRC/UVRI Uganda Research Unit on AIDS, Research, Entebbe, Uganda

Introduction: Previous studies on pre-treatment drug resistance from sub-Saharan Africa have shown the highest prevalence in Uganda, particularly in Kampala, with a prevalence of 12.3%. Antiretroviral therapy (ART) has been publicly available in Uganda since 2000, with initial use - although limited - of mono/dual thymidine analogues. This study aims to describe type and frequency of pre-treatment resistance in HIV-infected Ugandan adults seeking care at one of the largest public-sector providers in Kampala, Uganda.

Methods: From 4 June to 30 September 2015, ART-naive adults (18 years) presenting to the Infectious Diseases Institute (IDI) in Kampala and willing to participate in this study were asked to give a plasma sample for pre-treatment HIV genotyping. Sequencing of partial polymerase gene was conducted using an in-house protocol. All sequences were submitted to the Stanford University HIV Drug Resistance database, and the surveillance drug resistance mutations were identified using the 2009 World Health Organization resistance list.

Results: Pre-treatment drug resistance testing was available from 152 ART-naive HIV-infected adults, of which 96 (63.2%) were female with a median age of 33 years (interquartile range (IQR) 26–41), and a median CD4 cell count of 511 cells/μL (IQR 284–713). Mutations associated with HIV drug resistance were found in 9/152 (5.9%) patients. Five patients (5/152, 3.3%) harboured nucleoside reverse transcriptase inhibitors (NRTI) mutations, and 8/152 (5.3%) had non-nucleoside reverse transcriptase inhibitors (NNRTI) mutations. Five (3.3%) patients had one-class mutations, and four (2.6%) showed double class resistance. Protease inhibitor mutations were not observed (for specific mutations see Table 1).

Conclusions: Contrary to previous reports we found a low prevalence of pre-treatment drug resistance among Ugandan adults in Kampala. We hypothesize that the use of mono/dual thymidine analogues in the past contributed to a higher circulation of thymidine analogue mutations (TAMs), as observed in developed settings. The subsequent swift scale-up of triple ART in the region may have reduced pre-treatment resistance over time.

Table 1. Observed pre-treatment drug resistance mutations

<table>
<thead>
<tr>
<th>Drug class and mutations</th>
<th>Total N = 152 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any NRTI mutation</td>
<td>5 (3.3)</td>
</tr>
<tr>
<td>K65R</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>M184V</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Other (M41L, T215I)</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Any NNRTI mutation</td>
<td>8 (5.3)</td>
</tr>
<tr>
<td>K101E</td>
<td>3 (2.0)</td>
</tr>
<tr>
<td>Y181C</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>K103N</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Other (M230L, G190A/S, Y188L)</td>
<td>4 (2.6)</td>
</tr>
</tbody>
</table>

P357

Prevalence of resistance mutations to rilpivirine and etravirine in people starting antiretrovirals in Argentina

Emiliano Bissio2; María Gabriela Barbás2; María Belén Bouzas2; Anaíla Cuñó6; Carlos Falistocco2 and Horacio Salomón3

1Clinical Research, Fundación Centro de Estudios Infecciológicos, Buenos Aires, Argentina. 2Biología Molecular, Laboratorio Central de Córdoba, Córdoba, Argentina. 3División Análisis Clínicos, Hospital Muñiz, Buenos Aires, Argentina. 4Dirección de Sida, Ministerio de Salud de la Nación, Buenos Aires, Argentina. 5Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INIBIRS), Buenos Aires, Argentina

Introduction: According to many reports, the prevalence of resistance mutations to non-nucleoside reverse transcriptase inhibitors (NNRTIs) in antiretroviral-naïve patients is increasing; and reaches or exceeds 10% in some regions. Recently, a surveillance study performed in Argentina determined that the prevalence of resistance to first-generation NNRTIs among people starting ART and no history of previous exposure was 10%. However, some mutations conferring resistance to newer-generation NNRTIs were not considered since these are not yet recommended as first-line therapy in this country. Rilpivirine-based regimens are now preferred or alternative first-line regimens according to many guidelines. The aim of this study was to analyze the prevalence of resistance mutations to newer-generation NNRTIs (rilpivirine and etravirine) in the population starting ART in Argentina.

Methods: We analyzed the prevalence of resistance mutations obtained through a nationally representative pretreatment HIV-drug resistance (PDR) surveillance study performed in Argentina from 2014 to 2015. Briefly, 30 ART-dispensing sites throughout the country were randomly chosen to enrol 330 adults starting ART (without prior exposure or re-starting ART); to generate a point prevalence estimate of resistance-associated mutations (RAMs) with a maximum 5% confidence interval (for both the total population and for those without ARV exposure). Samples were processed with Trugene (Siemens®), and analyzed using the Stanford algorithm HIVdb Program, Genotype Resistance Interpretation, version 6.3.1. This report incorporated in the analysis the mutations that, according to the IAS list [1], confer resistance to rilpivirine or etravirine (and were not considered for the original analysis).

Results: Between August 2014 and March 2015, we obtained 330 samples from people starting ART in the selected sites. Mean (SD) age was 35 (11.0) years; 63.4% were male; median (IQR) CD4 count was 272/mm^3 (106–461) and 16.6% had prior ARV exposure. For the population without prior exposure, the prevalence of RAMs was 13% (±4%), and prevalence of first-generation NNRTI RAMs was 10% (±4%). The prevalence of resistance mutations for second-generation NNRTIs was 7% (±3%) (17 samples with mutations out of 239 successfully sequenced samples). The most frequent mutations
PCR followed by NGS (Illumina MiSeq, sequences reported with All HIV-1 resistance tests (RTI and PI) laboratory testing.

Materials and methods: We here report the frequency of additional mutations in the low percentage range in NGS for resistance testing would be necessary before prescription of ART even if the person would start a second-generation NNRTI-based regimen.

Reference

P358 Frequency of additional resistance relevant mutations in 2% and 1% population proportions in next-generation sequencing (NGS) in routine HIV-1 resistance diagnostics

Robert Ehret; Andrew Moritz; Marcel Schuetze and Martin Obermeier Laboratory, Medical Center for Infectious Diseases Berlin, Berlin, Germany

Introduction: NGS technologies have made their way into routine diagnostics in HIV-1 resistance testing. The report of mutations of at least 10% of the viral population is chosen by many laboratories due to its equivalency to Sanger sequencing minority detection. The relevance of mutation detected in lower frequencies is still a subject of debate. We here report the frequency of additional mutations in population proportions of greater than 2% and 1% in routine laboratory testing.

Materials and methods: All HIV-1 resistance tests (RTI and PI) performed between October 2014 and April 2016 with an in-house PCR followed by NGS (Illumina MiSeq, sequences reported with >100 reads only) were analyzed. Sequences were interpreted by HIV-GRADE (www.hiv-grade.de) for resistance mutations using 10%, 2% and 1% minority cut-offs. Besides the subtype and the overall increase in mutations, a specific focus were differences in reported resistance-associated mutations. We analyzed potential increase in resistance levels (e.g. additional drug class or further drugs in the same class).

Results: We performed 645 NGS resistance tests for HIV-1 reverse transcriptase/protease. Four hundred and eighty-three (74.9%) were identified as subtype B. No drug resistance-associated mutations were reported by HIV-GRADE for 44% with a 10% cut-off, 29.5% and 19.7% with 2% and 1%, respectively. With a cut-off of 10% in 148 samples (105 non-B subtype), only PI resistance mutations were detected. We found mutations only relevant for NRTIs in 21 samples and for NNRTIs in 100 samples. At a cut-off of 2%, we detected mutations in 94 more samples increasing to 157 samples when utilizing a cut-off of 1%. A relevant increase in resistance levels compared with a 10% cut-off was observed for 102 samples at a cut-off of 2% and for 229 samples in the 1% cut-off group. The increase in resistance when lowering the cut-off could be shown for all drug classes with the highest proportions in the NNRTI drug class.

Conclusions: A relative high portion (56%) of investigated sequences showed resistance mutations at a minority cut-off of 10%. Even removing the non-B subtype sequences, containing only secondary or subtype specific mutations, still left 50% with resistance-associated mutations. This high percentage of resistance increases substantially lowering the cut-off range to 2 or 1%. That’s true not only for the numbers of mutations but also regarding resistance levels. There is a clear need for clinical evaluation of the relevance of mutations in the low percentage range in NGS for resistance interpretation due to its broader use in clinical routine.

P359 Impact of baseline NNRTI resistance in antiretroviral-naïve patients in a large urban clinic

Samantha Steinberg1; Fred Crouzet1; Ina Sandler1; Brenda Varriano2; Graham Smith3; Colin Kovacs4; Jason Brunetta5; Benny Chang5; Barry Merkley2; David Tilley2; David Fletcher2; Megan Acsai5; David Knox6; Malika Sharma7 and Mona Loutfy1
1Biomedical Sciences, University of Guelph, Toronto, Canada. 2Family medicine, Maple Leaf Medical Clinic, Toronto, Canada. 3Statistics, Maple Leaf Medical Clinic, Toronto, Canada. 4Institute of Medical Science, University of Toronto, Toronto, Canada. 5Department of Medicine, University of Toronto, Toronto, Canada. 6Infectious Diseases, Maple Leaf Medical Clinic, Toronto, Canada

Introduction: NNRTIs are prone to baseline resistance and potential treatment failure. We investigated the NNRTI resistance profiles of antiretroviral– naïve patients in a large urban clinic setting and assessed their response to initial ART.

Materials and methods: This was a retrospective clinical chart review of ART-naïve patients with baseline genotypes available. We assessed the frequency of NNRTI mutations. Of those who started ART, we conducted Cox regression to determine correlates of virologic suppression (defined as viral load (VL) ≤40 or 50 copies/ml by 6 months) with presence of baseline NNRTI resistance as the primary correlate. Of those with virologic suppression, we conducted Cox regression to determine correlates of virologic rebound (defined as VL ≥200 copies/ml). Censoring occurred for those who did not have any follow-up VLs and at last VL or visit date for those without evidence of viral suppression.

Results: Of the 1338 that fit the inclusion criteria, 90 (8.4%) had baseline NNRTI resistance (39 with 103N, 20 with 138A/G/K, 17 with 181C and 8 with 101E/H/P). Of the 90, nine (10%) had 184V, 23 (26%) had NRTI mutations and six (7%) had PI mutations. One thousand two hundred and eighteen (91%) of the ART-naïve patients were started on ART. Patients without NNRTI mutations were most commonly started on NNRTI-based regimens (41%), followed by PI-based (30%) and integrase inhibitor (INI)-based regimens (11%). Patients with baseline NNRTI resistance (n = 83) were most commonly started on PI-based regimens (41%), followed by INI-based regimens (19%). Virologic suppression was observed for 963 out of 1218 individuals (79%) that started ART. Eighty-five percent and 90% of patients with and without NNRTI mutations achieved suppression, respectively. In univariate Cox regression, the presence of baseline NNRTI resistance did not impact virologic suppression (HR 0.98; 95% CI 0.76–1.24). In multivariable analysis, adjusting for age, gender, baseline VL and CD4 count, duration of HIV and baseline PI mutations, the presence of NNRTI mutations still did not impact virologic suppression (aHR 0.96; 95% CI 0.74–1.24). For virologic rebound, the presence of baseline NNRTI resistance also did not impact its occurrence (HR 1.11; 95% CI 0.68–1.81). In multivariable analysis, after adjusting for age, gender, baseline VL and CD4 count, duration of HIV and baseline PI mutations, the presence of NNRTI mutations also did not impact virologic rebound (aHR 1.09; 95% CI 0.66–1.78).

Conclusions: Baseline NNRTI mutations were present in 8.4% of our antiretroviral-naïve patients. Despite having baseline NNRTI mutations, the majority of the patients reached virologic suppression and did not experience changes in virologic rebound.

P360 Enhanced surveillance to study HIV-1 drug resistance among naïve individuals in Southern Greece: the added value of molecular epidemiology to public health
Introduction: The prevalence of resistance to NNRTI was previously estimated to be 16.9% among drug-naive individuals in Greece. Our aim was to investigate the dispersal patterns of HIV-1 resistant strains and to estimate the effective reproductive number (Re) and transmission dynamics for locally transmitted resistance.

Materials and methods: We analyzed sequences from 3428 HIV-1 treatment-naive individuals sampled in Southern Greece during 1 January 2003 to 31 June 2015. Phylogenetic analysis was performed on subtype A (N = 235) and B (N = 86) sequences with NNRTI resistance (K103N and E138A), along with sequences isolated from seropositives without resistance from Greece sampled during 1998 to 2013 (subtype A: N = 904; subtype B: N = 1615) and a randomly selected global dataset (subtype A: N = 5907; subtype B: N = 3984). Phylogenetic trees were inferred by maximum likelihood method as implemented in RAxML. Phylogenetic analyses were performed using birth-death models (BDM) as implemented in BEAST2.

Results: Phylogenetic analyses revealed that for subtype A, the major clusters were transmitted through local transmission networks (LTNs). Notably, phylodynamic analysis allows estimating the critical epidemiologic parameters and therefore the priority population for prevention (TasP). Our study highlights the added value of the latest advances in molecular epidemiology to public health since these allow us to estimate critical epidemiologic parameters and therefore the priority population to intervene.
Introduction: The prevalence of mutations conferring resistance to NNRTIs was previously reported to be higher than 15% among drug-naive individuals both in Northern and Southern Greece. The most prevalent resistance mutations were E138A, K103N and Y181C associated mostly with subtype A1. Our aim was to investigate the dispersal patterns of HIV-1 resistant strains across Greece.

Materials and methods: We analyzed sample of subtype A1 sequences (N=1104) obtained between 1999 and middle-2015 from both areas in Greece. We included sequences only from Greece since we have shown previously that subtype A1 sequences have been mostly found within a single monophyletic cluster. Phylogenetic trees were inferred by maximum likelihood method as implemented in RAxML using the GTR+G as nucleotide substitution model with bootstrapping.

Results: Phylogenetic analyses revealed that E138A and K103N resistant strains have spread through large monophyletic clusters spanning both Northern and Southern Greece, suggesting that all transmissions within these clusters occurred regionally. Conversely, Y181C formed a subnetwork (monophyletic cluster) limited in Northern Greece with only a single spill over to Southern Greece. Y181C formed a subnetwork (monophyletic cluster) limited in Northern Greece with only a single spill over to Southern Greece. Y181C formed a subnetwork (monophyletic cluster) limited in Northern Greece with only a single spill over to Southern Greece. Y181C formed a subnetwork (monophyletic cluster) limited in Northern Greece with only a single spill over to Southern Greece. Y181C formed a subnetwork (monophyletic cluster) limited in Northern Greece with only a single spill over to Southern Greece. Y181C formed a subnetwork (monophyletic cluster) limited in Northern Greece with only a single spill over to Southern Greece.

Discussion: Major primary IRAM are rarely found despite increasing use of INSTI in Austria but there is potential for reduced susceptibility to raltegravir and elvitegravir. Two patients carried the major accessory mutations E138K and G140A, respectively, which both lie on the Q148 pathway. No temporal trend was observed (p = 0.16). Presence of any IRAM was not significantly associated with male sex (OR 0.78, 95% CI 0.14–0.43), older age (OR 0.98, 95% CI 0.91–1.05), calendar year (OR 1.28, 95% CI 0.80–2.03) or occurrence of any other drug resistance mutations (OR 1.41, 95% CI 0.16–12.23) in a multivariable logistic regression.

Conclusions: High prevalence of NNRTI resistance mutations was previously reported for the subtype A1 strains circulating in Greece and especially in Northern Greece. Our study provides evidence that the majority of these resistant viruses were transmitted within common transmission networks. Notably, significant clustering of sequences from Northern Greece as well as the existence of a regional cluster suggest high transmission networking of the population in this area; a finding that might explain the higher prevalence of transmitted drug resistance (TDR) in Northern Greece. Our study highlights the priority population to prevent TDR in the future.
Transmission of HIV-1 drug resistance in Tel Aviv, Israel, 2010–2015

Dan Turner1; Shirley Girshengorn1; Adi Braun1; Luba Tau1; Ari Leshno1; Danny Alon2; Tal Pupko1; Irena Zeldis1; Natasha Matus1; Heribert Knechten1; Patrick Braun1 and Jörg-Andres Rump3

Abstracts of the HIV Glasgow supplement

Journal of the International AIDS Society 2016, 19 (Suppl 7)

Poster Abstracts

P363

Transmission of HIV-1 drug resistance in Tel Aviv, Israel, 2010–2015

Introduction: The HIV-1 infected population in Israel is unique in its diversity. Until recently, the rate of transmitted drug-resistant mutations (TDRs) was relatively high mainly to NNRTIs. The prevalence of TDRs is regularly evaluated in treatment-naïve patients in Tel Aviv.

Methods: All blood samples obtained from treatment-naïve patients between 2010 and 2015 were analyzed for reverse transcriptase (RT) and protease resistance-associated mutations. Phylogeny on 614 sequences of subtypes A, B and C viruses (the main subtypes represented) was inferred by pol sequences.

Results: Viral sequences from 672 patients were tested. Men who have sex with men (MSM) was the major risk category (n = 375), 76% among them were born in Israel, and 88% harbor subtype B viruses. Other groups include intravenous drug users (IVUs) (n = 99); 78% of them were born in the former Soviet Union countries and 86% harbour subtype A viruses. The heterosexuals group is very heterogeneous and includes patients born in Israel, Israeli immigrants, former Soviet Union and worker immigrants or refugees mainly from Africa. The resistance rate decreased from 15.9% in 2010 to 5.9% in 2013 (p < 0.05). In 2014 and 2015, it increased to 13.8% and 14.2% respectively. Same pattern was observed among MSM. Phylogenetic analysis of subtype B viruses supported clustered transmission among MSM. In 2010 to 2011 a cluster represented by the protease inhibitor mutation L90M was observed, and in 2014 to 2015 a cluster represented by NNRTIs (K103N)-associated mutations. In subtype A, a cluster among IVUs was found at 2012 during an outbreak, without resistance-associated mutations. However, a cluster harboring mutation at position 103 in RT was observed in four MSM with subtype A virus. Subtype C viruses were not represented by specific clusters.

Conclusions: TDRs among patients followed in Tel Aviv were represented by clusters in MSM. These clusters were containing resistance-associated mutations to drugs less prescribed in recent years in Israel. Although the integrase inhibitor (INI) region is not analyzed routinely in treatment-naïve patients low rate of INI TDRs is reported in other studies. Regular assessment of genotyping in treatment-naïve populations including the integrase region is essential in order to understand the potential epidemiologic transmission of HIV clusters and effect of resistance on current ARV strategies.

Development of T66I-mediated integrase inhibitor cross-resistance against elvitegravir under dolutegravir-containing first-line therapy

Frank Wiesmann1; Martin Däumer1; Gudrun Naeth1; Heribert Knechten1; Patrick Braun1 and Jörg-Andres Rump4

1HIV & Hepatitis Research, PraxenZentrum Blondelstrasse Aachen, Aachen, Germany. 2Medical Diagnostics, Institute for Immunology and Genetics, Kaiserslautern, Germany. 3Specialist in Internal Medicine, Medical Center Freiburg, Freiburg, Germany

Introduction: As second-generation integrase inhibitor (INI), dolutegravir (DTG) has shown a superior barrier to resistance as compared with profiles of raltegravir (RAL) or elvitegravir (EVG). Current findings suggest that resistance mutations against INIs extremely rarely occur under DTG-containing first-line ART. However, this case report unveils a possible development of a T66I-mediated cross-resistance against EVG under DTG first-line regimen.

Methods: A first-line treatment with lamivudine/abacavir, lopinavir and dolutegravir was initiated by a 44-year-old man with a diagnosis of HIV in November 2015 (CD4 status 82, CD4 nadir 219/µL, HIV-1 RNA 350,000 copies/mL). Ultra-deep sequencing was performed by using population sequencing and ultra-deep sequencing (UDS, Illumina MiSeq) at baseline and at time of therapy failure. Resistance interpretation was estimated by using the HIV-Grade 12/2015, Stanford HIVdb version 7.0.1, Rega version 9.1.0 and the ANRS 25_09/2015 database. Viral load was quantified with Abbott Realtime.

Results: Before start of therapy, no resistance-associated variants could be detected neither by population nor by UDS in HIV protease, reverse transcriptase and integrase. After start of DTG first-line therapy, HIV viral load dropped from 300,000 copies/mL to 2400 copies/mL within 4 weeks of follow-up and was undetectable at week 8. CD4 cell counts increased from 219/µL to 479/µL (13.4%). However, 20 weeks after initiation of ART, HIV viral load increased to 105 copies/mL and maintained low viremic 4 weeks later at 112 copies/mL most likely due to inadequate adherence although plasma drug levels turned out to be above critical limits. More importantly, the development of the INI resistance mutation T66I was then verified by UDS showing a minority population of 36.1%. The variant T66I is a non-polymorphic mutation and reduces EVG susceptibility by ~15-fold while susceptibility to RAL or DTG is reported to be unaffected. There was no evidence for protease or reverse transcriptase resistance mutations at this time. Twenty-eight weeks after start of therapy the viral load decreased to undetectable levels without any changes.

Conclusion: Although being extreme rarely observed, INI-resistant HIV variants may also occur under DTG first-line treatment. The T66I alone does not necessarily limit the susceptibility to DTG itself but could be a first step of resistance development against DTG. It is reported that T66I confers high-level resistance against EVG and may also putatively lower the resistance barrier against RAL.

Patterns of emergent resistance-associated mutations after initiation of non-nucleoside reverse-transcriptase inhibitor-containing regimens in Taiwan: a multicentre cohort study

Chien-Yu Cheng1; Yi-Ching Su2; Mao-Song Tsai3; Chia-Jui Yang3; Wen-Chun Liu2; Shu-Hsing Cheng3; Hsin-Yun Sun2; Chien-Ching Hung2 and Sui-Yuan Chang3

1Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan. 2Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. 3Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei, Taiwan. 4Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan

Introduction: Non-nucleoside reverse-transcriptase inhibitor (NNRTI)-containing ART remains the recommended first-line regimen for adults infected with HIV in many resource-limited countries. Increasing trends of resistance-associated mutations (RAMs) to NNRTIs have caused concerns about the effectiveness of the regimens in national programs in these regions. In this multicentre study, we aimed to investigate the incidence of emergent RAMs of HIV-1 to ARVs in HIV-positive adults who developed virologic failure to first-line NNRTI-containing ART in Taiwan.
During the 3.5-year study period, 1642 patients initiated ARV-naive HIV-positive adults who initiated two NRTIs plus NNRTI at participating hospitals were included for analysis. Plasma HIV RNA load (PVL) was determined at baseline, and week 4 to 6 and subsequently every 12 to 16 weeks after ART initiation. Virologic failure was defined as a decrease of PVL <1.0 log10 copies/mL in 4 to 6 weeks of ART initiation; or PVL >200 copies/mL at 6 months of ART initiation; or confirmed HIV RNA ≥200 copies/mL after viral suppression (PVL <50 copies/mL). Population sequencing was used to detect RAMs. Detection of RAMs at baseline was performed retrospectively. RAMs were interpreted using the IAS-USA 2015 mutations list.

Results: During the 3.5-year study period, 1642 patients initiated NNRTI-containing regimens, and 454 (27.4%) had to switch first-line NNRTI-containing regimens due to adverse effects, intolerance (n = 323, 19.7%), and any ARV RAMs, respectively, and 21 (11.3%) with resistance to two or more classes of ARV. The common emergent RAMs to NNRTIs were K65R (25%), M184I (10.3%) and M184V (36.8%), and RAMs to NNRTIs included V90I (5.9%), K101E (5.9%), K103N (19.1%), V108I (7.4%), Y181C (11.8%) and G190A (5.9%) (Figure 1).

Conclusions: While a substantial proportion of the patients discontinued first-line NNRTI-containing regimens due to adverse effects, virologic response to NNRTI-containing regimens remained good in patients who were able to tolerate the regimens in Taiwan. Most common RAMs in those with virologic failure were related to exposure to tenofovir disoproxil fumarate, lamivudine, nevirapine and efavirenz.

P366 Association of therapeutic failure with low-level viremia in HIV-infected patients in the Arevir/RESINA cohort in Germany

Nadine Lübke1; Alejandro Pironti2; Elena Knops1; Eugene Schüller3; Björn Jensen1; Mark Oette4; Thomas Lengauer5 and Rolf Kaiser3

1Institute of Virology, Heinrich-Heine-University, Düsseldorf, Germany. 2Department of Computational Biology and Applied AI, Max Planck Institute for Informatics, Saarbrücken, Germany. 3Institute of Virology, University of Cologne, Cologne, Germany. 4Department of Gastroenterology, Heinrich-Heine-University, Hepatology and Inf, Düsseldorf, Germany. 5Department of Inner Medicine, Hospital of the Augustinerinnen, Gastroenterology and, Cologne, Germany. 6Department of Dermatology, University of Duisburg-Essen, Essen, Germany

Introduction: The German-Austrian guidelines for the treatment of HIV infection define therapeutic success as the reduction of the HIV-1 viral load (VL) below 50 copies/mL. Low-level viremia (LLV) is defined as repeated VL measurements between 50 and 200 copies/mL after initial therapeutic success. LLV has been previously associated with virologic failure (VF). Here, we provide an independent analysis of the association of LLV and other factors with VF.

Materials and methods: The Arevir database comprises clinical and virologic data of therapy-naive and therapy-experienced HIV-1-infected patients in North Rhine-Westphalia, Germany, including the data of the RESINA cohort. We queried the Arevir database for patients who attained confirmed therapeutic success under ART and who experienced confirmed LLV thereafter. We constrained our query to therapies in which the VL was measured at least once every 24 weeks. We define VF as a confirmed VL greater than 200 copies/mL following therapeutic success. P-values were calculated with Fisher’s exact and Wilcoxon rank sum test.

Results: The database query resulted in 2485 first-line and 3657 further-line therapies. LLV occurred in 294 (4.8%) of these therapies, specifically in 47 (1.9%) first-line and in 247 (6.8%) further-line therapies. The mean time to LLV was 27 months (±20.7), with no significant differences between first- or further-line therapies (p = 0.4597). The majority of patients showing LLV were treated with PI-based therapies (165/294; 56%), followed by NNRTI-based regimes (76/294; 26%). Fifty-three out of 294 (18%) patients experienced VF after LLV with a median VL at failure of 472 copies/mL (range 203–116,590 copies/mL) after a mean LLV episode of 77.4 weeks (±68.0). The failure rate was increased in therapy-experienced patients (48/247; 19.4%), as compared with therapy-naive patients (5/47; 10.4%; p = 0.2129). There was no difference in VF between PI-based and NNRTI-based therapies regardless of the backbone (33/165; 20% and 13/76; 17.1%, respectively; p = 0.6049). Among all drug classes, VF was never related to entry inhibitors, integrase inhibitors or the more recently approved compounds DRV, TPV and RPV (45/204 vs 0/83, respectively; p < 0.0001).

Conclusions: The prevalence of LLV in patients on suppressive ART is low (4.8%). Nevertheless, 18% of patients with LLV experienced VF thereafter. The strongest predictor for VF after LLV was a treatment regimen exclusively containing drugs of the older generations. Therefore, episodes of LLV in patients treated with drugs with high potency and a high barrier to resistance are not predictive of VF.
Drug resistance mutations (DRM) among pregnant HIV-positive women in the Duesseldorf University Hospital, Germany, 2009 to 2016

Ulrike Elisabeth Haars; Nadine Luebke; Bjorn Erik OIe Jensen; and Dieter Hauesinger

1Department of Dermatology and Venerology, University Hospital Essen, Essen, Germany. 2Institute for Virology, Heinrich-Heine-University, Duesseldorf, Germany. 3Department of Gastroenterology, Hepatology and ID, Heinrich-Heine-University, Duesseldorf, Germany

Introduction: CART has resulted in significant reduction of mother-to-child-transmission (MTCT) from 40% to 1 to 2% in the last 2 decades. Choosing an individualized cART is one key factor for successful suppression of viral load until delivery. Thus, drug resistance testing during pregnancy before cART initiation or in case of increasing viral load is recommended. The prevalence of drug resistance mutations (DRM) in pregnant women in Germany has not been characterized yet.

Materials and methods: Between January 2009 and March 2016, HIV drug resistance of all HIV-positive pregnant women was analyzed. Resistance testing was performed by using Sanger sequencing and next-generation sequencing (NGS) by means of Illumina MiSeq technology. Resistance interpretation was performed by the HIV-GRIDE-HIV-1-Tool (www.hiv-grade.de).

Results: Data of 85 HIV-positive pregnant women and 103 live births were analyzed. In 64/85 cases (75%), resistance testing was requested, with 61/64 successful analyses. The majority of patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to ART history whereas five patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to immunological mechanisms like APOBEC3G/F (e.g. M184I, M230I) [1]. Five of 14 patients contained a two-class resistance pattern of increasing viral load is recommended. The prevalence of drug resistance mutations (DRM) in pregnant women in Germany has not been characterized yet.

Materials and methods: Between January 2009 and March 2016, HIV drug resistance of all HIV-positive pregnant women was analyzed. Resistance testing was performed by using Sanger sequencing and next-generation sequencing (NGS) by means of Illumina MiSeq technology. Resistance interpretation was performed by the HIV-GRIDE-HIV-1-Tool (www.hiv-grade.de).

Results: Data of 85 HIV-positive pregnant women and 103 live births were analyzed. In 64/85 cases (75%), resistance testing was requested, with 61/64 successful analyses. The majority of patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to ART history whereas five patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to immunological mechanisms like APOBEC3G/F (e.g. M184I, M230I) [1]. Five of 14 patients contained a two-class resistance pattern of increasing viral load is recommended. The prevalence of drug resistance mutations (DRM) in pregnant women in Germany has not been characterized yet.

Materials and methods: Between January 2009 and March 2016, HIV drug resistance of all HIV-positive pregnant women was analyzed. Resistance testing was performed by using Sanger sequencing and next-generation sequencing (NGS) by means of Illumina MiSeq technology. Resistance interpretation was performed by the HIV-GRIDE-HIV-1-Tool (www.hiv-grade.de).

Results: Data of 85 HIV-positive pregnant women and 103 live births were analyzed. In 64/85 cases (75%), resistance testing was requested, with 61/64 successful analyses. The majority of patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to ART history whereas five patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to immunological mechanisms like APOBEC3G/F (e.g. M184I, M230I) [1]. Five of 14 patients contained a two-class resistance pattern of increasing viral load is recommended. The prevalence of drug resistance mutations (DRM) in pregnant women in Germany has not been characterized yet.

Materials and methods: Between January 2009 and March 2016, HIV drug resistance of all HIV-positive pregnant women was analyzed. Resistance testing was performed by using Sanger sequencing and next-generation sequencing (NGS) by means of Illumina MiSeq technology. Resistance interpretation was performed by the HIV-GRIDE-HIV-1-Tool (www.hiv-grade.de).

Results: Data of 85 HIV-positive pregnant women and 103 live births were analyzed. In 64/85 cases (75%), resistance testing was requested, with 61/64 successful analyses. The majority of patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to ART history whereas five patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to immunological mechanisms like APOBEC3G/F (e.g. M184I, M230I) [1]. Five of 14 patients contained a two-class resistance pattern of increasing viral load is recommended. The prevalence of drug resistance mutations (DRM) in pregnant women in Germany has not been characterized yet.

Materials and methods: Between January 2009 and March 2016, HIV drug resistance of all HIV-positive pregnant women was analyzed. Resistance testing was performed by using Sanger sequencing and next-generation sequencing (NGS) by means of Illumina MiSeq technology. Resistance interpretation was performed by the HIV-GRIDE-HIV-1-Tool (www.hiv-grade.de).

Results: Data of 85 HIV-positive pregnant women and 103 live births were analyzed. In 64/85 cases (75%), resistance testing was requested, with 61/64 successful analyses. The majority of patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to ART history whereas five patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to immunological mechanisms like APOBEC3G/F (e.g. M184I, M230I) [1]. Five of 14 patients contained a two-class resistance pattern of increasing viral load is recommended. The prevalence of drug resistance mutations (DRM) in pregnant women in Germany has not been characterized yet.

Materials and methods: Between January 2009 and March 2016, HIV drug resistance of all HIV-positive pregnant women was analyzed. Resistance testing was performed by using Sanger sequencing and next-generation sequencing (NGS) by means of Illumina MiSeq technology. Resistance interpretation was performed by the HIV-GRIDE-HIV-1-Tool (www.hiv-grade.de).

Results: Data of 85 HIV-positive pregnant women and 103 live births were analyzed. In 64/85 cases (75%), resistance testing was requested, with 61/64 successful analyses. The majority of patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to ART history whereas five patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to immunological mechanisms like APOBEC3G/F (e.g. M184I, M230I) [1]. Five of 14 patients contained a two-class resistance pattern of increasing viral load is recommended. The prevalence of drug resistance mutations (DRM) in pregnant women in Germany has not been characterized yet.

Materials and methods: Between January 2009 and March 2016, HIV drug resistance of all HIV-positive pregnant women was analyzed. Resistance testing was performed by using Sanger sequencing and next-generation sequencing (NGS) by means of Illumina MiSeq technology. Resistance interpretation was performed by the HIV-GRIDE-HIV-1-Tool (www.hiv-grade.de).

Results: Data of 85 HIV-positive pregnant women and 103 live births were analyzed. In 64/85 cases (75%), resistance testing was requested, with 61/64 successful analyses. The majority of patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to ART history whereas five patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to immunological mechanisms like APOBEC3G/F (e.g. M184I, M230I) [1]. Five of 14 patients contained a two-class resistance pattern of increasing viral load is recommended. The prevalence of drug resistance mutations (DRM) in pregnant women in Germany has not been characterized yet.

Materials and methods: Between January 2009 and March 2016, HIV drug resistance of all HIV-positive pregnant women was analyzed. Resistance testing was performed by using Sanger sequencing and next-generation sequencing (NGS) by means of Illumina MiSeq technology. Resistance interpretation was performed by the HIV-GRIDE-HIV-1-Tool (www.hiv-grade.de).

Results: Data of 85 HIV-positive pregnant women and 103 live births were analyzed. In 64/85 cases (75%), resistance testing was requested, with 61/64 successful analyses. The majority of patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to ART history whereas five patients were therapy-naïve with presumably transmitted DRM (tDRM) or DRM due to immunological mechanisms like APOBEC3G/F (e.g. M184I, M230I) [1]. Five of 14 patients contained a two-class resistance pattern of increasing viral load is recommended. The prevalence of drug resistance mutations (DRM) in pregnant women in Germany has not been characterized yet.
sequences were analyzed following the IAS-USA 2014 Drug Resistance Mutations Panel [2]. Genotypic assays performed at screening visit were: PhenoSense HIV assay (Monogram Biosciences, San Francisco, CA, USA), ViroSeq HIV-1 (ViroSeq HIV-1 Genotyping System version 2.0, Celera, Alameda, CA, USA) and TRUGENE® HIV-1 Genotyping Assay (Siemens Healthcare Diagnostics, Munich, Germany), according to availability at each site.

Results: Of the 534 patients screened, 74% were Hispanic/Latino. Median time of infection at SCR was 10.5 months. CDC stage A: 82%. Of 450 viral subtypes available, the most frequent was subtype B in all three regions (Latin America (LA): 72% B, 17.6% BF; US/Mexico: 92% B; Spain: 91.2% B). A total of 113 samples (21.2%) had major resistance mutations; 22 samples (4.1%) had major protease mutations (M46I was the most common mutation: 1.5%); 85 samples (15.9%) had NNRTI mutations (K103N/S was the most common mutation: 4.9%) and 17 samples had mutations to NRTIs (3.2%) and M41L (1.3%) was the most common mutation. Pis: only two patients had more than one major mutation (2/22). The more frequent minor mutations were: M36I/L/V (216/534), L63P (120/534), L10I/F/V/R (115/534) and K20R/M/I: 59/534. The global resistance analysis by regions showed 21% for LA, 22.8% for US/Mexico and 14.7% for Spain, being NNRTI resistance by regions 16.4%, 15.4% and 11.8% respectively. Pi resistance was 3.1% for LA and Mexico/US and NRTI resistance was 3.1% for LA, 3.4% for US/Mexico and 2.9% for Spain. No Q151M, 69ss or K65R were identified.

Conclusions: In our study, we found a primary resistance rate of 21.2%, similar in LA and US/Mexico. Levels of NNRTI resistance are similar in the three analyzed regions, as previously reported in naive populations, and reinforce the need of performing genotypic testing in ARV-naive patients, especially in LA where the first-line therapy is still based on NNRTI drugs.

References

P369
High prevalence of transmitted antiretroviral drug resistance in newly HIV-1 diagnosed Cuban patients
Lissette Perez Santos1; Luzer Yan Machado2; Vivian Kouri Cardellos3; Hector Diaz4; Carlos Aragonés5; Yoan Aleman6; Eladio Silva7; Consuelo Correa8; Madelin Blanco de Armas9; Jorge Perez4; Marta Dubez10; Yudria Soto11; Nancy Ruiz12; Celia Limia13; Carmen Nibo13; Neysi Valdés14; María Ortega15; Dania Romay16; Yohana Baños17; Barbara Rivera17 and Jorge Campos1

Introduction: The highly effective antiretroviral therapies have changed the natural history of HIV/AIDS, delaying the disease progression and improving the quality of life of the infected individuals. In treated HIV-1 population in Cuba, several factors might have contributed to high drug resistance levels such as prescription of suboptimal regimens containing non-boosted PI, prolonged exposure to failing therapies due to limited access to laboratory monitoring and limited options for antiviral drug substitutions if required. This might also result in the subsequent spread of drug-resistant strains. The performed studies in untreated population have shown high levels of HIV resistance to the antiretroviral therapy ranging from 12 to 21%. The aim of this study is to determine the levels of primary HIV drug resistance in newly diagnosed Cuban patients on a representative sample of the country.

Materials and methods: Demographic, clinical and laboratory data were collected from 263 recently HIV-1 diagnostic patients from April 2013 to April 2014. The HIV-1 pol gene was sequenced using Sanger sequencing and drug resistance was interpreted according to the World Health Organization surveillance drug-resistance mutations (SDRM) list, version 2009. HIV-1 subtyping was performed using the Rega subtyping tool, version 3.

Results: Experiments were successful for 189. The mean age at sampling was 33.5 years (17–74), 80.9% of the patients were men and the major transmission route was MSM (80.3%). 72.4% had recent infection and 38.6% were from Havana. The median viral load was 58,000 RNA copies/mL and CD4 count value was 371 cells/mm3. In 17.4% (33/189) of the studied viruses, transmitted resistance mutations were detected, 22 (66.6%) were HSH, 26 (78.8%) were a recent HIV-1 infection, 13 (39.4%) were from Havana and 9 (27.2%) were infected with CRF19_cpx. Simple non-nucleoside mutants contributed the highest amount (45.5%), followed by double class resistance against NNRTI and NNRTI (27.3%) and single mutants to the IP (12.1%). The most common mutation associated with resistance to NNRTI was M184V (24.2%), for NNRTI was K103N (45.4%) and Y181C (30.3%) and for PI was D30N (6%).

Conclusions: This study confirms the high levels of resistance in untreated population, it demonstrates the commitment of first-line therapies used in the country and could put at risk future therapies. It highlights the need for studies to elucidate the factors that are influencing detected high levels of resistance in newly diagnosed population. It also shows the need for resistance testing in patients who are starting the therapy.

P370
Viroseq protocol optimized for the detection of HIV-1 drug mutations in patients with low viral load
Fátima Monteiro1; Gilberto Tavares1; Marina Ferreira2; Ana Amorim1; Pedro Bastos3; Carolina Rocha1; Dina Hortelão2; Claudia Vaz2; Carmo Koch1; Fernando Araújo1; Rosário Serrão2 and António Sarmento1

Introduction: Genotypic resistance testing is paramount for the monitoring of the emergence of antiretroviral drug-resistant virus. The Viroseq HIV-1 genotyping system version 2.0 is an IVD assay for sequencing of HIV-1 from plasma but only feasible if the viral load is at least 1000 copies/mL. However, some patients have a persistent low HIV-1 viremia inferior to 1000 copies/mL, being resistance testing and antiretroviral therapy hampered by this. So, for their clinical management, resistance testing solutions must be made available [1]. With this regard, we developed an in-house assay adapting the Viroseq version 2.0 with a nested-PCR protocol.

Materials and methods: Blood samples from 36 patients on HAART with a viral load between 20 copies/mL and 1000 copies/mL (range 36–934 copies/mL; mean 357 copies/mL) were collected in K3EDTA and the plasma separated 6 hours after sampling and stored at −80°C. HIV-1 was concentrated by centrifugation of 1 mL of plasma at 24,000 g for 1 hour at 4°C. After removal of the supernatant, 1 mL...
of plasma was added and the sample thoroughly homogenized. RNA extraction was performed in the QIASymphonySP equipment from QIAGEN (Hilden, Germany) using the QIAasyphony Virus/Pathogen Mini Kit and an in-house protocol, rendering a final volume of 30 μL. The Virosq protocol was performed according to the manufacturer instructions, followed by a nested-PCR protocol previously described by Mackie et al. [2]. The 50 μL PCR mix contained 0.5 μM of each primer, 1X Incomplete NfxL, Reaction Buffer (DFS-Taq DNA Polymerase, Bioron Life Science), 0.2 mM of deoxyribonucleotide, 2.5 units of DFS-Taq DNA Polymerase and 5 μL from the products of the first PCR. The PCR was performed on a Perkin Elmer PE9700 thermocycler and consisted on an initial denaturation for 5 minutes at 95°C, followed by 40 cycles of 95°C for 30 seconds; 55°C for 30 seconds, 72°C for 120 seconds and a extension at 72°C for 7 minutes. PCR products were sequenced on the 3130xl DNA Analyzer (Applied Biosystems) and analyzed in Virosq version 2.8.

Results: Sequencing and drug resistance testing was successful in 70% (9/13) of the samples with a viral load 36 to 200 copies/mL; in 93% (13/14) of the samples comprising 200 to 500 copies/mL and in 100% (9/9) of the samples with 500 to 1000 copies/mL.

Conclusion: Genotypic resistance testing is essential for the monitoring of the emergence of antiretroviral drug-resistant virus being necessary for the development of assays for patients with low viral loads.

References

Virology and Immunology: Other

P371
The role of presepsin (sCD14-ST) as an indirect marker of microbial translocation and immune activation
Paola Columpsi; Valentina Zuccaro; Serena Cima; Paolo Sacchi and Raffaele Bruno
Infectious Diseases, IRCCS Policlinico San Matteo Pavia, Pavia, Italy

Introduction: Presepsin, a newly discovered soluble fragment of CD14, has been studied as a sepsis biomarker. The mechanism of its secretion is involved in the TLR4 activation cascade and it is related to mCD14 and sCD14, which are monocyte activation markers, indirectly representing the presence of bacterial translocation. Therefore presepsin could be employed as an immune activation marker, and it could allow for the estimation of bacterial translocation rates [1]. The aim of this study was to assess the correlations between presepsin serum concentration and bacterial translocation, immune activation and fibrosis markers in subjects with HIV and hepatitis C virus (HCV) mono-infections and in HIV/HCV co-infection, compared to healthy controls.

Materials and methods: This cross-sectional study included patients with HIV and HCV mono-infections, HIV/HCV co-infection and healthy controls (20 subjects/group). Peripheral blood was analyzed to determine the levels of presepsin, Forkhead box 3 (Foxp3+) T cells, TGF-β1, CD14 (soluble and surface isoforms), IL-17 and bacterial translocation products. These measurements were correlated to the severity of liver fibrosis, measured with the FIB-4 score and transient elastography.

Results: Presepsin concentration was significantly higher in the HIV patients (HIV mono-infected and HIV/HCV co-infected). The same group showed increased levels of sCD14 and mCD14, expression of immune activation. Statistical analysis shows a significant correlation between presepsin and both forms of CD14 only in HIV/HCV group, where the percentage of bacterial translocation and chronic inflammation is high, as shown by the significant increase in bacterial DNA levels, sCD14, mCD14 and IL-17. Presepsin is associated with FIB-4 values in the HCV group.

Conclusions: Presepsin is a biomarker of chronic immune activation, as demonstrated by its correlations with sCD14, mCD14 and CD4+CD25+Foxp3+ lymphocytes, particularly in HIV infection. Its concentration is correlated to liver fibrosis markers, such as FIB-4, particularly in HCV mono-infected patients. Considering presepsin and a direct correlation between the levels of fibrosis and an inverse correlation with Treg cells in this group, the low levels of Treg cells may be involved in increasing the state fibrosis in chronic HCV patients.

Reference

P372
CRF19_cpx variant emergence in a cluster in naïve patients of southern Spain: clinical and phylogenetic characterization
Carmen-Maria González-Domenech1; Isabel Viciana1; Marisa Mayorga2; Rosario Palacios3; Javier de la Torre4; Francisco Jarilla5; Manuel Castaño5; Alfonso del Arco5; Manuel Márquez2; Encarnación Clavijo1 and Jesús Santos1
1UGC Enfermedades Infecciosas y Microbiología, Hospital Virgen de la Victoria, Málaga, Spain. 2UGC Enfermedades Infecciosas, Hospital Virgen de la Victoria, Málaga, Spain. 3Medicina Interna, Hospital Costa del Sol, Marbella, Spain. 4Medicina Interna, Hospital Antequera, Antequera, Spain

Introduction: HIV CRF19_cpx has been described as a highly pathogenic recombinant from Cuba [1]. Furthermore, these infections are typically associated to higher viral load (VL) at diagnosis and rapid progression to AIDS [2]. Here, we describe the emergence of this CRF19_cpx variant in southern Spain, clustering in men having sex with men (MSM).

Materials and methods: The study was undertaken at the Virgen de la Victoria Hospital, a reference centre for the analysis of HIV-1 genotypic drug resistance in Malaga (Spain). The subtype for each FASTA sequence provided was assigned through REGA version 3.0. Sequences consigned as a CRF19_cpx variant were confirmed by phylogenetic analysis with other 195 reference sequences retrieved from LANL. Protease and reverse transcriptase (RT) genes were aligned by ClustalX and the phylogenetic reconstruction inferred by maximum likelihood method (RAxML). The reliability of the clades may be involved in increasing the state fibrosis in chronic HCV patients.

Reference
with different number of patients were also found: A, D, F and G (n = 2); B and E (n = 8); and C (n = 3) (Figure 1). Non-nucleoside RT inhibitor G190A resistance mutation was found in 24 patients (48.9%), among them, clades C, D, E and F. All the patients were MSM, 21 of them (42.8%) had a prior negative HIV test, with a median time of seroconversion of 15 months (IQR 10.7–22.8). All were Spanish, except for two patients from Argentina and one from France. The mean age was 35.0 years (26.3–41.5), the initial CD4 count was 361/mL (254–416) and VL 4.9 log (4.5–5.4), being lower in patients with G190A mutation (4.6 vs 5.1, p = 0.02). Three cases of AIDS (6.1%) and one death occurred (acute myocardial infarction). All the patients treated with first-line combination ART responded.

Conclusions: CRF19_cpx variant has emerged affecting MSM naïve patients from southern Spain; all cases but one are related to a local cluster. Half of patients showed the G190A resistance mutation. Unlike previous studies, the variant from Malaga seems less pathogenic, with few cases of AIDS and excellent response to ARV.

References

P373
One-step real-time PCR for HIV-2 group A and B RNA plasma viral load in LightCycler 2.0
Pedro Bastos1; Fátima Monteiro1; Gilberto Tavares1; Ana Amorim1; Marina Ferreira1; Dina Horta1; Carolina Rocha1; Claudia Vaz1; Carmo Koch2; Fernando Araujo1; Rosário Serrão2 and António Sarmento2
1Immunohemotherapy, Molecular Biology Center, São João Hospital, Porto, Portugal. 2Infectious Diseases, São João Hospital, Porto, Portugal

Introduction: Although with a lower prevalence than HIV-1, HIV-2 is responsible for localized epidemics, being Portugal the non-African country with the greatest expression of the infection. Clinical management of the infection is hampered by the lack of validated commercial RNA viral load assays, thus there an in-house development using the available equipment is mandatory.

Materials and methods: HIV-2 was confirmed by Innolia1 (Innogenetics, Gent, Belgium). Blood samples were collected in K3EDTA and the plasma separated 6 hours after sampling and stored at −80°C. The BioQ HIV-2 RNA group A quantification panel (Biocentric) was used as an external standard. RNA extraction was performed from 1000 μL of plasma in the QIASymphonySP equipment from QIAGEN (Hilden, Germany) using the QIASymphony Virus/Pathogen Mini Kit and an in-house protocol, rendering a final volume of 60 μL. RNA from the samples and standards was isolated under the same conditions. The protocol was based on the previously described by Avettand-Fenoel et al. [1]. The forward and reverse primers for the LTR region were 5’TCTTTAAGCAAGCAAGCGTG-3 and 5’-AGCAGG-TAGAGCCTGGGTGTT-3 and for the gag region F3 5’-GCGCGA-GAAACTCCGTCTTG-3 and R1 5’-TTCGCTGCCCACACAATATGTT-3. The probe for the LTR region was 5’FAM-CTTGGCCGGYRCTGGGCAGA-BHQ1-3 and for the gag region S65GAG2 5’FAM-TAGGTTACGGCCCGGAGAATTGTT-3. The one-step RT-PCR was performed on the LightCycler 2.0 (Roche Diagnostics, Mannheim, Germany). The LightCycler RNA Virus Master Kit from Roche (Roche Molecular Biochemicals) was used. The 20 μL reaction mixture contained 0.5 μM of each primer, 0.25 μM of each probe, 0.4 μL of Enzyme Blend and 7.5 μL of the isolated RNA. The thermocycling consisted of 10 minutes at 60°C.
and 60 seconds at 95°C, followed by 50 cycles of 95°C for 5 seconds, 60°C for 50 seconds and 72°C for 10 seconds.

Results: The standard curve generated by the LightCycler software (version 4.05) presented an efficiency of 2.079 and an error of 0.0657. This RT-PCR provides an increment in sensibility to 50 copies/mL and the detection of HIV-2 B subtypes. In comparison to the RT-PCR previously used in routine, no deviation higher than 0.5 log was found in the testing of 21 clinical samples and several dilutions of the NIBSC HIV-2 NIH-Z strain.

Conclusions: This assay allows us to quantify HIV-2 A and B subtypes with satisfactory sensibility and linearity, supporting the clinical management of the infection.

Reference

P374
The association between high pre-HAART CD8 counts and poorer immunological outcome following antiretroviral therapy

Chun Kwan Bonnie Wong\(^1\); Ngar Sze Wong\(^2\) and Shui Shan Lee\(^2\)

\(^1\)Special Preventive Programme, Department of Health, Hong Kong Special Administrative Region, Hong Kong, Hong Kong. \(^2\)Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong

Introduction: Nadir CD4 counts, advanced age and hepatitis C co-infections are known predictors of poorer immune recovery following HAART. As a high CD8 count was associated with inflammatory non-AIDS-related clinical events, it could be another useful marker for prognostic monitoring.

Methods: Anonymous clinical data from Integrated Treatment Centre, the largest HIV service in Hong Kong, were accessed. Adult HIV+ patients with available negative HIV testing result within 3 years before HIV diagnosis were targeted for the collection of the following data: (a) CD4, CD8 and viral loads at all time points of testing, (b) timing of AIDS diagnosis, as appropriate, (c) antiretroviral treatment date and regimens. Cumulative viral load was estimated. All eligible patients were divided into two groups by their pre-HAART CD8 counts, that is, either >800/L or ≤800/L, followed by multivariable logistic regression.

Results: As of the end of 2012, records of 199 treatment-naïve patients (median age 36) who had been on HAART continuously for ≥4 years were analyzed. A majority (90%) were male with men who have sex with men (MSM) accounting for 58% of the study population. Their median interval from diagnosis to the latest assessment was 12.7 years. Either a protease inhibitor-based (70%) or non-nucleoside reverse transcriptase inhibitor-based (30%) regimen was prescribed. The pre-HAART median CD4 and CD8 counts were 158/L and 790/L, which were positively correlated (r = 0.51, p < 0.001). The median treatment duration was 78 months (IQR 57–112). At the end of a 4-year observation period, about half (56%) had CD4 reaching 500/L or above, of which 45 (40.5%) gave a CD4:CD8 ratio of ≥0.8. After adjusting for baseline CD4, patients with low pre-HAART CD8 (≥800/L) had a higher chance of achieving a higher CD4 count (aOR 1.002, 95% CI 1.00–1.004). A low pre-HAART CD8 was also associated with optimal immune outcome defined as a CD4 count ≥500/L in conjunction with a CD4:CD8 ratio ≥0.8, with an increased odds (aOR 6.64, 95% CI 2.53–17.40) after adjusting for pre-HAART CD4. Cumulative viral load from the time of estimated seroconversion was not associated with pre-HAART CD8 count.

Conclusion: A pre-HAART CD8 count of >800/L gave a high odds of poorer immune outcome. Pre-HAART CD8 count is an independent predictor of an outcome measure comprising CD4 count and CD4: CD8 ratio. While CD4 is a useful prognostic marker, the strength of prediction increased with the addition of baseline CD8 count using a cutoff of 800/mL.
Abstract P258 - Figure 1. Molecular clock analysis of the 193 sequences from the Group 1 maximum likelihood phylogenetic tree. Produced using a Bayesian Markov Chain Monte Carlo (MCMC) approach. Branches are coloured by location: AT – Austria, CN – China, DE – Germany, ES – Spain, FR – France, GB – United Kingdom, IT – Italy, NL – Netherlands, PT – Portugal, US – United States of America. The MSM and IDU clusters identified from this analysis are labelled on the figure. The sequences obtained from a Dutch MSM who also reports injecting drug use is indicated by a red arrow.
AUTHOR INDEX

A
Abbate, I P053
Abe, E P081
Abeli, C P235
Aboromman, M P236
Aboud, M P035, P210
Afram, M P043, P093
Abram, ME O125
Abrescia, N P021
Abreu, I P297
Abreu, M P299
Abreu, RC P041
Achilles, S P302
Acsai, M P359
Adams, T P209
Adepoju, A P019*
Adland, E P002
Aebi-Popp, K P001*, P254*
Afdhal, N P259
Afonina, L O335B
Afonso, C P343
Agaba, P P339
Agarwal, K P259
Aghokeng, A O122
Aguero, F P050, P051
Agurto, C P242
Ahmed, N P364
Ahsanov, S P363
Alba, L P216, P190
Alcarde, M P086, P190
Alcaraz, A P178
Alcaraz, B P294
Alcaraz, M P265, P274, P280, P284
Aldamiz-Echevarria, T P265, P274, P280, P284
Aldir, I P029, P122, P292, P296
Alejandro, MJ P267
Alejos, B O331, P165
Aleman, Y P369
Al-Harbi, M P006
Alimohammadi, A P027, P061*, P065, P067, P238
Allegreni, F P089
Almeida, F P132, P344
Alon, D P108, P363
Altice, F P139
Alvarez, JC P081*
Alvarez, M P196
Alvarez-Alvarez, B P265, P274, P284
Alves, J P122
Alves, L P270, P295
Alves, S P096
Amaria, A P307
Amaral, DC P222
Amat, K P081
Ambaraghassi, G P134*
Ambrosioni, J P050, P051*
Amendola, A P053
Amiel, C O332
Ammassari, A P053, P216, P315, P232, P237*, P346
Amorim, A P370, P373
Amposo, W P350
Anand, T P014*, P322*
Ananworanich, J P014, P322
Ancona, G P100
Anderson, J O215
Andrade-Villanueva, J P368
Andreoni, M P253
Andreatti, M P110
Andreu-Crespo, A P070
Andrinospolou, E O333
Angaran, G P156, P278, P287
Angel, G P235
Angioni, G P141
Ankersztejn-Bartczak, M P020, P327
Antalis, E P040
Antoniaci, C P360
Antoniadou, A P040, P162, P172, P227, P354, P360, P361
Antoniadou, A P040, P162, P172, P227, P354, P360, P361
Antunes, A P215
Antunes, I P029, P292, P296
Anza-makou, J-B P182
Apornpong, T P014, P322
Appiah, LT P059, P219
Aragion, F P154
Aramo, C P369
Araujo, F P370, P373
Arazo, P P088
Arend, L P007, P042
Argenteri, B P099
Argyropolou, M P040
Arias, A P276*, P280
Ariauo, A P291, P304
Arda, K P179
Arluck, J P245
Arnberg, C P123
Arnould, B P138
Arponen, S P126*, P274
Arribas, J P033*, P368
Arribas, JR P198
Arruda, EAG P003, P206
Artigues, F P051
Ascià, M P174
Ascenção, B P187*, P335
Asensi, V P165
Asher, I P135
Ashida, M P312
Assoumou, L P081
Atiori, C P213
Atiori, C P317
Audagnotto, S P213
Avidor, B P108, P363
Avhingsiano, A O334
Avramovic, G P006*
Ayarza, R P242
Ayerbe, CG P116, P203, P293, P329, P328*
Aylott, A P035
Azevedo, F P007
Azevedo, T P296
B
Back, D P094
Bado, G O122
Baede, C P318
Baggott, A P148*
Bai, F P156, P279
Baliron, L P285
Baiocchini, A P237
Bakker, J P229
Baldelli, F P021, P235
Baldelli, S P309
Baldin, G P097, P106*
Baldin, GM P190
Baldini, F P346
Balestra, P P216, P232
Ballester, JE P281
Balogh, A P060, P117
Bandera, A P086, P190
Bancila, L P283*
Bannert, N P353
Baños, Y P369
Baptista, P P183
Baptista, T P029, P292, P296
Baraiasi-Exaburuz, JM P128
Barbarini, G P099
Barbaro, F P298
Barbók, MG P357
Barber, M P251
Barco, A P291*, P304
Barnes, J P301
Barros, C P265, P280, P284
Barros, H P017
Barrufet, P O331
Bartmeyer, B P353
Bastos, P P370, P373
Batan, I P283
Battegay, E O211*
Battegay, M O224
Bauer, S P177*
260
De Francesco, D O215*, P155*
De Guzmán, MT P274
De Jesús, SE P088*
De Jesús, SE P082*
De Jesus, S P196
De la Fuente Moral, S P081, P166
De la Fuente, B P274
De la Peña, M P128
De la Torre, J P054, P088, P372
De Lacerda, AP P183*
De Lazzari, E O213, P050, P051, P228
De Leuw, P P036
De Leuw, P P039
De Luca, A O121, P048, P086, P105, P106, P250, P263
De Magalhaes, FB P222*
De Marco, R P106
De Mendoza Fernandez, C P102
De Mendoza, C P276
De Miguel Buckley, R P087
De Miguel, J P274
De Munain, JL P128
De Nicolò, A P304
De Queiroga, MF P206
De Sales, CY P003
De Santiago, AD P102
De Socio, G P158, P163, P230, P234*
De Socio, GV P235*, P097, P099
De Truchis, P P081, P217
De Vries-Slujs, D O333
De Wet, J O124
De Wit, S O224
De Wit, S P131*, P137*, P100, P167
Dedes, N P324
Deeks, SG O321*
Defferriere, H P217
Dejesus, E O124
Del Arco, A P372
Del Campo, S P139*
Del Campo, S P111, P288, P293, P311, P328
Del forge, M P167
Del Nonno, F P237
Del Pin, B O121
Del Pino, GF P084
Delaporte, E O122
Delauergerre, C O332, P044, P217
Dell’Acqua, R P278, P287
Dell’Omo, M P235
Delpech, V P324
Demeester, R P131, P137
Denarie, M P245
Dennan, J P181*
Derksen, M O333
Descamps, D O332, P095
Dessler, S P320
Detoc, M P151
Deulina, M P199
Di Biagio, A P048, P099, P105, P230, P234, P243
di Carlo, P P173*
Di Cristo, V P107
Di Filippo, E P068, P186
Di Giambenedetto, S O121, P086, P099, P105, P106
Di Matteo, S P068
Di Perri, G P141, P158, P163, P213, P291, P304, P305, P308
Di Sora, F P136
Diallo, M O122
Diamantis, S P044
Dias, C P226, P313
Diaz, H P369
Dickinson, L P209, P094*
Dieterich, D P260*
Digaeta, M P083
Dimas, D P184
Dimirić, B P188
Dina, J P032
Ding, W P259
Diniz, A P114*
Dilogo, L P215, P226, P313
Doering, M P249
Doi, T P312
Dolci, G P056, P155, P158, P163, P164
Domingo, P O331, P166
Domínguez, L P274
Domínguez, L P284, P285
Domínguez, MR P329
Domínguez-Dominguez, L P271*
Domínguez-Dominguez, L P280
Domínguez-Dominguez, L P265
Domínikovic, Z P324
Dorey, D P118
Döring, M P351*
Dorona, M P030
dos Santos Arajuo, AC P026
Downs, J P200
Dragovic, G P188
Dragunova, J P261
Dravil, A P195*, P214*
Drimis, S P360, P361
Dronda, F P116
Duarte, F P041
Dubb, M P309
Dudoit, Y P035
Duffau, P O212
Dukun, EE P050*
Dunay, G P077
Duncan, A P202, P204, P205
Duppenthaler, A P001
Duransky, M P236*, P240*, P081, P140
Duro, R P344
Duvivier, C P154

E

Eaton, E P195*
Eberhard, N P142
Eberle, J P351
Echeverria, P P180*
Edwards, P P154
Egesemma, G P019
Egesimba, G P113
Egger, M P177
Ehloe, SP P182
Ehret, R P358*
Ehrlich, H P078
El Hamad, I P290
Elbirt, D P135*
Elias, PP P328
Elivan, H P014
Elliot, E P094, P307*
Ellman, T P337
Ello, NF P182*
Else, L P094, P307
Emiliozzi, A P106
Enge, L P150
Engler, K P069
Eriksen, J P031
Ernst, J O335A
Erscoiu, S P150
Escribano, P P294*
Esker, S P170
Espinoza-Armenta, B P171
Esposti, LD P286
Esquível, J P193, P196
Esser, S P049, P104*, P252, P366
Esteva, V P126
Estrada, V P166, P280, P284
Ett, E P057*
Eymard-Duverny, S O122

F

Fabbiani, M O121, P086
Fabbrì, G P053, P315*
Fabrizio, C P278*, P287
Faetkenheuer, G P049, P305
Faf-Kremer, S O332
Falca, R P267
Falcas, F P160
Falcas, K P230
Faisst, C P357
Fallentín, E P123
Falvela, FS P317
Faruat, B P240
Farfouil, E P140
Faria, D P007, P042, P267
Farrel, J P324
Fauci, A K1*
Favata, F P291, P304
Fazio, S P315
Fedele, V P216, P346
Fels, J P142, P254, P352, P356
Fernandes, C P211
Fernandes, R P324
Fernandez, C P212*
Fernandez, E P050
Ferrara, M P090, P304
Ferrara, SM P092*
Ferraz, RV P344*
Ferreira, M P370, P373
Ferrer, A P052
Ferrer, OL P128*
Festa, E P290
Figuereido, C P297
Figueroa, MI P368*
Finn, T P108
Firago, S P020, P220, P247, P300
Fischer, B P123
Fischer, J P077
Fischer, S P038
Fischer, T P001
Fisher, M P161
Fitzgerald, D P200
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xu, X</td>
<td>O334</td>
</tr>
<tr>
<td>Xylomenos, G</td>
<td>P354, P360, P361</td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Yagura, H</td>
<td>P312</td>
</tr>
<tr>
<td>Yakovlev, A</td>
<td>O335B</td>
</tr>
<tr>
<td>Yamazaki, K</td>
<td>P312</td>
</tr>
<tr>
<td>Yan, M</td>
<td>O125</td>
</tr>
<tr>
<td>Yan, M</td>
<td>P093</td>
</tr>
<tr>
<td>Yang, C-J</td>
<td>P207*</td>
</tr>
<tr>
<td>Yang, C-J</td>
<td>P246*</td>
</tr>
<tr>
<td>Yang, C-J</td>
<td>P047</td>
</tr>
<tr>
<td>Yang, C-J</td>
<td>P365</td>
</tr>
<tr>
<td>Yang, S-P</td>
<td>P266</td>
</tr>
<tr>
<td>Yang, S-P</td>
<td>P047, P112, P201, P275</td>
</tr>
<tr>
<td>Yao, C</td>
<td>O336</td>
</tr>
<tr>
<td>Yazdanpanah, Y</td>
<td>P093, P095, P308</td>
</tr>
<tr>
<td>Ye, M</td>
<td>P191, P192</td>
</tr>
<tr>
<td>Yllescas, M</td>
<td>O331</td>
</tr>
<tr>
<td>Yoshino, M</td>
<td>P312</td>
</tr>
<tr>
<td>Youssef, E</td>
<td>P161*</td>
</tr>
<tr>
<td>Yu, J</td>
<td>O336</td>
</tr>
<tr>
<td>Yurin, O</td>
<td>P332</td>
</tr>
<tr>
<td>Yust, I</td>
<td>P108, P189</td>
</tr>
<tr>
<td>Yvonne, S</td>
<td>P047, P112, P201, P275</td>
</tr>
<tr>
<td>Yvonne, S</td>
<td>P360, P361</td>
</tr>
<tr>
<td>Yzak, S</td>
<td>P124*</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Zaccarelli, M</td>
<td>P086, P101*, P232, P253, P315</td>
</tr>
<tr>
<td>Zagal, A</td>
<td>P343</td>
</tr>
<tr>
<td>Zakowicz, A</td>
<td>P324</td>
</tr>
<tr>
<td>Zaltron, S</td>
<td>P290</td>
</tr>
<tr>
<td>Zamora, AMM</td>
<td>P329</td>
</tr>
<tr>
<td>Zamudio, FB</td>
<td>P185</td>
</tr>
<tr>
<td>Zangerle, R</td>
<td>O114, P018, P121</td>
</tr>
<tr>
<td>Zari, A</td>
<td>P306</td>
</tr>
<tr>
<td>Zavitsanou, A</td>
<td>P360, P361</td>
</tr>
<tr>
<td>Zekan, Š</td>
<td>P124*</td>
</tr>
<tr>
<td>Zelidís, I</td>
<td>P363</td>
</tr>
<tr>
<td>Zelt, S</td>
<td>P260</td>
</tr>
<tr>
<td>Zempekeakis, P</td>
<td>P076</td>
</tr>
<tr>
<td>Zhang, D</td>
<td>P233</td>
</tr>
<tr>
<td>Zhang, J-Y</td>
<td>P047, P112, P201, P266</td>
</tr>
<tr>
<td>Zhang, S</td>
<td>P022</td>
</tr>
<tr>
<td>Zhang, T</td>
<td>O336</td>
</tr>
<tr>
<td>Zhang, W</td>
<td>P016</td>
</tr>
<tr>
<td>Zhao, M</td>
<td>O336</td>
</tr>
<tr>
<td>Zhao, Q</td>
<td>O336</td>
</tr>
<tr>
<td>Zheng, Q</td>
<td>O336</td>
</tr>
<tr>
<td>Zheng, Y</td>
<td>O336</td>
</tr>
<tr>
<td>Zhu, B</td>
<td>P062*</td>
</tr>
<tr>
<td>Zhyvysia, D</td>
<td>P347*, P348</td>
</tr>
<tr>
<td>Zimmer, K</td>
<td>P197</td>
</tr>
<tr>
<td>Zimmermann, S</td>
<td>P301</td>
</tr>
<tr>
<td>Zingaropolis, MA</td>
<td>P197</td>
</tr>
<tr>
<td>Zink, A</td>
<td>P060</td>
</tr>
<tr>
<td>Ziv-Baran, T</td>
<td>P108</td>
</tr>
<tr>
<td>Zona, S</td>
<td>O114</td>
</tr>
<tr>
<td>Zoulia, E</td>
<td>P124</td>
</tr>
<tr>
<td>Zouzula, V</td>
<td>P371</td>
</tr>
<tr>
<td>Zucker, J</td>
<td>O337</td>
</tr>
<tr>
<td>Zucman, D</td>
<td>P140*</td>
</tr>
<tr>
<td>Zuin, S</td>
<td>P298</td>
</tr>
<tr>
<td>Zymbo, Z</td>
<td>P177</td>
</tr>
</tbody>
</table>

273
About the journal

The Journal of the International AIDS Society, an official journal of the Society, provides a peer-reviewed, open access forum for essential and innovative HIV research, across all disciplines.

All articles published by the Journal of the International AIDS Society are freely accessible online. The editorial decisions are made independently by the journal’s editors-in-chief.

Email: editorial@jiasociety.org
Website: http://www.jiasociety.org
eISSN: 1758-2652

Editors

Editors-in-Chief:
Susan Kippax (Australia)
Papa Sall Sow (Senegal)
Mark Wainberg (Canada)

Deputy Editors:
Morna Cornell (South Africa)
Anna Grimsrud (South Africa)
Martin Holt (Australia)
Kayvon Modjarrad (United States)
Luis Soto-Ramírez (Mexico)
Iryna Zablotska (Australia)

Managing Editor: Marlène Bras (Switzerland)
Editorial Assistant: Helen Etya’ale (Switzerland)

Editorial Board:
Laith J Abu-Raddad (Qatar)
Joseph Amon (United States)
Jintanat Ananworanich (Thailand)
Judith Auerbach (United States)
Françoise Barré-Sinoussi (France)
Linda-Gail Bekker (South Africa)
Chris Beyrer (United States)
Andrew Boule (South Africa)
Carlos Cáceres (Peru)
Pedro Cahn (Argentina)
Elizabeth Connick (United States)
Mark Cotton (South Africa)
Jocelyn DeJong (Lebanon)
Diana Dickinson (Botswana)
Sergii Dvoriak (Ukraine)
Paul Flowers (United Kingdom)
Nathan Ford (Switzerland)
Omar Galárraga (United States)
Beatriz Grinsztejn (Brazil)
Huldrych Gunthard (Switzerland)
Diane Havlir (United States)
Adeeba Kamarulzaman (Malaysia)
Rami Kantor (United States)
Sukhontha Kongins (Thailand)
Kathleen MacQueen (United States)
Navid Madani (United States)
Kenneth Mayer (United States)
Nelly Mugo (Kenya)
Paula Munderi (Uganda)
Christy Newman (Australia)
Richard Parker (United States)
Linda Richter (South Africa)
Jürgen Rockstroh (Germany)
Sean Rourke (Canada)
Naomi Rutenberg (United States)
Gabriella Scarlatti (Italy)
Mauro Schechter (Brazil)
Lorraine Sherr (United Kingdom)
Colette Smith (United Kingdom)
Tim Spelman (Australia)
Ndèye Coumba Touré-Kane (Senegal)
Sten Vermund (United States)
Ian Weller (United Kingdom)
Alan Wilson (Australia)
Iryna Zablotska (Australia)

Publisher

International AIDS Society
Avenue de France 23
1202 Geneva, Switzerland
Tel: +41 (0) 22 710 0800
Email: info@iasociety.org
Website: http://www.iasociety.org

Indexing/abstracting

The Journal of the International AIDS Society is indexed in a variety of databases including PubMed, PubMed Central, MEDLINE, Science Citation Index Expanded and Google Scholar. The journal’s impact factor is 6.256 (*2015 Journal Citation Reports® Science Edition - a Thomson Reuters product).

Advertising, sponsorship and donations

Please contact the editorial office if you are interested in advertising on our journal’s website. We also gladly receive inquiries on sponsorship and donations to support open access publications from authors in low- and middle-income countries.

Supplements

The Journal of the International AIDS Society publishes supplements, special issues and thematic series on own initiative or based on proposals by external organizations or authors. Inquiries can be sent to the editorial office at editorial@jiasociety.org. All articles submitted for publication in supplements are subject to peer review. Published supplements are fully searchable and freely accessible online and can also be produced in print.

Disclaimer

The authors of the articles in this supplement carry the responsibility for the content and opinions expressed therein. The editors have made every effort to ensure that no inaccurate or misleading content or statements appear in this supplement. However, in all cases, the publisher, the editors and editorial board, and employees involved accept no liability for the consequences of any inaccurate or misleading content or statement.

Copyright

The content in this supplement is published under the Creative Commons Attribution 3.0 Unported Licence (http://creativecommons.org/licenses/by/3.0/). The license allows third parties to share the published work (copy, distribute, transmit) and to adapt it, under the condition that the authors are given credit, and that in the event of reuse or distribution, the terms of this license are made clear. Authors retain the copyright of their articles, with first publication rights granted to the Journal of the International AIDS Society.