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The mechanisms of drug resistance development in the Plasmodium falciparum parasite to lumefantrine (LUM), commonly
used in combination with artemisinin, are still unclear. We assessed the polymorphisms of Pfmspdbl2 for associations with LUM
activity in a Kenyan population. MSPDBL2 codon 591S was associated with reduced susceptibility to LUM (P � 0.04). The high
frequency of Pfmspdbl2 codon 591S in Kenya may be driven by the widespread use of lumefantrine in artemisinin combination
therapy (Coartem).

Chemotherapy is central to the treatment and control of Plas-
modium falciparum malaria but faces the parasite’s intrinsic

ability to quickly develop resistance to antimalarials. The combi-
nation of artemisinin and lumefantrine (LUM) (Coartem) is the
treatment of choice for uncomplicated malaria in much of Africa
(1). However, parasites showing reduced LUM susceptibility have
been reported in some countries (2–6). This has been associated
with the selection of wild-type parasites at the P. falciparum chlo-
roquine resistance transporter (crt) 76 locus (7, 8) and with at least
a 2-fold increase in the frequency of the multidrug resistance 1
(MDR1) 86N mutants following treatment (2, 4, 5, 9). Recently, a
single nucleotide polymorphism (SNP) in merozoite surface pro-
tein Duffy binding-like 2 (MSPDBL2) codon 591 (C591S) was
shown to be associated with increased resistance to halofantrine,
mefloquine, and LUM (10). Since LUM is now widely used in the
treatment of malaria, it is important to understand the mecha-
nisms of resistance to this drug. We therefore investigated the role
of Pfmspdbl2 in the response to LUM in vitro using Kenyan isolates
and chloroquine (CQ) as a reference drug. Pfmspdbl2 is a member
of the MSP3 multigene family, including mspdbl1, msp3, and msp6
(11). The associated proteins are expressed simultaneously (11)
and potentially interact with other proteins on the merozoite par-
asite membrane in the invasion of the erythrocyte (12, 13). Thus,
all 4 genes were included in our investigation.

Parasite genomic DNA was extracted using a QIAmp DNA
blood minikit (Qiagen, United Kingdom). We amplified the full-
length Pfmspdbl1, Pfmspdbl2, Pfmsp3, and Pfmsp6 from 65 in vitro
culture-adapted isolates with chemosensitivity data for CQ and
LUM (7, 14) using the primers and PCR cycling conditions de-
scribed in Table S1 in the supplemental material. PCR products
were sequenced using BigDye Terminator v3.1 chemistry (Ap-
plied Biosystems, United Kingdom), and the resultant sequences
were assembled and edited using SeqMan and aligned using
MegAlign (Lasergene 7; DNASTAR, Madison, WI).

Pfmsp3, Pfmsp6, Pfmspdbl1, and Pfmspdbl2 alleles were defined
on the basis of their haplotype structure and associations with in
vitro drug responses assessed using the Kruskal-Wallis test and the
Bonferroni correction for multiple comparisons (15). Thus, P val-
ues of �0.001 remained significant. We also determined the me-

dian 50% inhibitory concentrations (IC50s) and the 95% confi-
dence intervals (CIs) for each SNP that showed a significant
association (P � 0.05) with the drugs tested. Only SNPs with a
�5% minor allele frequency were included, and all analyses were
conducted using Stata v.11 (StataCorp, College Station, TX).

All msp3 and msp6 SNPs analyzed were in linkage disequilib-
rium, representing two previously defined alleles, K1 and 3D7
(Fig. 1A and B, respectively) (16, 17), therefore precluding indi-
vidual SNP analysis. The activity of all the drugs tested did not
differ in parasites harboring 3D7 or K1 alleles in the msp3 and
msp6 genes (Table 1). The SNPs of Pfmspdbl1 and Pfmspdbl2 were
used to determine the actual loci within the haplotypes associated
with changes in drug responses.

Pfmspdbl1 contained a single DBL domain (11, 13), defined by
3 haplotype blocks (Fig. 1C and D), a secreted polymorphic anti-
gen associated with merozoites (SPAM) domain (codons 631 and
669), and a haplotype block between the DBL and SPAM domains
(Fig. 1D). Pfmspdbl2 also contained a single DBL domain (11, 13)
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and a SPAM domain (13), and we obtained sequence data from
codons 127 to 520 (Fig. 1E) and 527 to 694 (Fig. 1F), respectively.

The MSPDBL1 haplotypes (n � 36) showed an association
with CQ (P � 0.01) and LUM (P � 0.05) drug activity, while the
haplotypes of MSPDBL2 (n � 31) showed an association with
LUM (P � 0.03) (Table 1). Twelve Pfmspdbl1 SNPs (Table 2; see
also Table S2 in the supplemental material) and 4 SNPs of Pfmsp-
dbl2 (Table 3; see also Table S3 in the supplemental material) were
associated with both CQ and LUM. Notably, Pfmspdbl2 SNP1783
(n � 31) codes for codon 591 (since the SNP followed 3 indels, 12
bp long), of which parasites containing serine were associated with
reduced susceptibility to LUM (IC50, 97.6 nM; 95% CI, 77.7 to
199.8 nM; P � 0.04) (Fig. 2; Table 3). Codon 591S was also found
at a high frequency (68%) in our population, similar to findings in
Senegal (80% frequency) (10). This association of Pfmspdbl2
codon 591S with reduced susceptibility to LUM in a different Af-
rican population adds support to the findings of the study in Sen-
egal and suggests that codon 591 may be a marker for the surveil-
lance of LUM resistance. Importantly, though, codon 591 is not
likely to be the causal variant conferring resistance to LUM. Van
Tyne et al. (10) demonstrated that stable integrants containing
PfMSPDBL2 C591 were more sensitive to mefloquine, halofan-

trine, and LUM than those with the 591S parasite. The extensive
use of LUM in Africa may be the major driving force favoring the
high frequency of the 591S mutation.

The observed inverse drug relationship of 4 Pfmspdbl1 codons
(Table 2) associated with resistance to CQ, for instance, codons
351 and 354 (NE, IC50, 86.2 nM; 95% CI 58.1 to 104.3 nM; P �
0.001), and susceptibility to LUM (NE, IC50 � 80.8 nM, 95% CI,
66.3 to 97.8 nM; P � 0.04) is reminiscent of the previously de-
scribed inverse relationship of wild-type CQ parasites showing
resistance to LUM (8, 18, 19). This inverse relationship between
drugs shown by SNPs of Pfmspdbl1 most likely occurs on a back-
drop of the underlying inverse relationship driven by CQ and
LUM, since they are drugs that have been widely used for malaria
treatment. Consequently, LUM-artemisinin may select for wild-
type crt, associated with CQ sensitivity (20) and implicated as a
marker of LUM tolerance (2, 7), suggesting that LUM is likely to
confer resistance via a different mechanism.

Not surprisingly, none of the Pfmsp3, Pfmsp6, Pfmspdbl1, or
Pfmspdbl2 SNPs were in linkage disequilibrium with the K76T crt
locus (data not shown). Additionally, the MSP3 gene family con-
tains multiple high-frequency polymorphisms, which would in-
crease the probability of random associations with drug activity.

FIG 1 Linkage disequilibrium in the Pfmsp3 multigene family. The haplotypes were generated from an analysis of sequenced SNPs. Haplotypes shown are Pfmsp3
K1 and 3D7 (A), Pfmsp6 K1 and 3D7 (B), Pfmspdbl1 DBL domain AHQAIRY, ALTAIKY, and ALQAMKY (C), Pfmspdbl1 3=DBL domain NEVRI, DKIQF, and
NEIQF block 2, NGGRI and DEGIK block 3, TSV and TTG block 4, and the SPAM domain KN and EN (D), Pfmspdbl2 DBL domain AHQAIRY, ALQAIKY, and
ALQAMKY (E), and Pfmspdbl2 SPAM domain 8 (F). Each column represents an SNP, each color in the column represents a different nucleotide, and each row
represents an isolate sequence. The black outline depicts the allelic blocks. The columns shaded in gray are in linkage disequilibrium, and the amino acids from
these polymorphisms were used to define the haplotypes. INS, number of nucleotides inserted (e.g., INS3 means 3 nucleotides); DEL, absence of sequence (i.e.,
a deletion).
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Furthermore, since Pfmspdbl2 has shown evidence of being under
balancing selection and is likely to be under immune pressure
(21), its role in immunity cannot be ignored. However, it remains
to be determined if the C591S mutation can be used as a surveil-
lance marker of LUM resistance in the field.
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