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Background: Many reviews aim to compare numerous treatments and report

results stratified by subgroups (eg, by disease severity). In such cases, a network

meta‐analysis model including treatment by covariate interactions can estimate

the relative effects of all treatment pairings for each subgroup of patients. Two

key assumptions underlie such models: consistency of treatment effects and

consistency of the regression coefficients for the interactions. Consistency

may differ depending on the covariate value at which consistency is assessed.

For valid inference, we need to be confident of consistency for the relevant

range of covariate values. In this paper, we demonstrate how to assess consis-

tency of treatment effects from direct and indirect evidence at various covariate

values.

Methods: Consistency is assessed using visual inspection, inconsistency

estimates, and probabilities. The method is applied to an individual patient

dataset comparing artemisinin combination therapies for treating uncompli-

cated malaria in children using the covariate age.

Results: The magnitude of the inconsistency appears to be decreasing with

increasing age for each comparison. For one comparison, direct and indirect

evidence differ for age 1 (P = .05), and this brings results for age 1 for all

comparisons into question.

Conclusion: When fitting models including interactions, the consistency of

direct and indirect evidence must be assessed across the range of covariates

included in the trials. Clinical inferences are only valid for covariate values

for which results are consistent.
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1 | INTRODUCTION

When many treatments (eg, treatments 1, 2, and 3) exist
for the same condition and they form a connected
network, network meta‐analysis (NMA) can estimate the
relative effects of all treatment pairings (eg, 2 vs 1, 3 vs
1, and 3 vs 2) using all direct and indirect evidence.1-5

The NMA models assume consistency between direct
and indirect evidence for the treatment effects.6,7 The
assumption is satisfied when the consistency equations
hold, for example, for a 3‐treatment network d23=d13
−d12, where, for example, d23 is the treatment effect for
3 vs 2. In other words, the assumption holds when, for
each treatment pairing, the treatment effect is the same
regardless of which trials allocated the 2 interventions.
Methods to assess consistency include comparing
characteristics, investigating treatment effect modifiers,
comparing outcome measurements in the referent group,
node splitting, inconsistency modelling, hypothesis tests,
back‐transformation, multidimensional scaling, a 2‐stage
approach, and a graph‐theoretical method.3,4,6,8-15

It is very common to explore treatment by covariate
interactions in meta‐analyses using meta‐regression or
subgroup analysis.16 Interactions can be included in an
NMA model to evaluate whether each relative treatment
effect varies with a covariate (eg, a patient or methodolog-
ical characteristic, such as disease severity or allocation
concealment).

The benefits of including interactions can be substan-
tial. The model can produce the relative effects of all
treatment pairings for each covariate value. For example,
including an interaction for a categorical covariate, such
as disease severity, which has 2 categories (ie, severe and
nonsevere), would give one set of the relative effects for
patients with severe disease and another set for patients
with nonsevere disease. Similarly, using a continuous
covariate (eg, patient age in years), the relative effects of
all treatment pairings could potentially be calculated for
any covariate value (eg, ages 1, 2, and 3). The estimation
of results for each covariate value allows different
recommendations to be made for different subgroups of
patients; personalising treatment in this way can benefit
patients and ensure the cost‐effective use of health
care.17-26 For example, as shown in an NMA, for the
treatment of epilepsy, sodium valproate is recommended
for patients with generalised seizures whereas carbamaze-
pine is advised for patients with partial seizures.26,27

Furthermore, when heterogeneity and/or inconsistency
is detected in the NMA without interactions, results may
be unreliable. If the treatment effect–modifying covariates
that are causing the variability can be identified, results
from models including interactions can be used to draw
clinically meaningful results.
When fitting NMA models including interactions, we
assume consistency of the treatment effects, where the
treatment effects are estimated at the point where the
covariate is zero (eg, d23=d13−d12) and consistency is
also assumed for the regression coefficients for the
interactions. As an example, for a 3‐treatment network,
β23 = β13 − β12, where, for instance, β23 is the interaction
regression coefficient for 3 vs 2.17,18,20 The assumption for
the coefficients holds when, for each treatment pairing,
the coefficient is the same no matter which trials allocated
the 2 interventions. Another way of viewing these 2
assumptions is simply that the treatment effects must be
consistent at every covariate value. If such assumptions
do not hold, results may be invalid and unreliable conclu-
sions may be drawn.

Therefore, there are 4 possible scenarios that can occur
when including interactions: both assumptions hold
(ie, consistent treatment effects at the zero covariate value
and consistent coefficients); neither assumption holds
(ie, inconsistent treatment effects at zero covariate and
inconsistent coefficients); or only one assumption holds
(either consistency of the treatment effects at zero covari-
ate or consistency of the coefficients). Figure 1A‐D shows
examples of the 4 scenarios. The figures show how the
treatment effect for 3 vs 2 changes with an increasing
covariate value; separate regression lines are shown for
direct and indirect evidence. The direct evidence for 3 vs
2 is from trials that allocated treatments 2 and 3, and the
indirect evidence for 3 vs 2 would be from the remaining
trials. Note that the 2 lines have the same intercept when
the treatment effects at the zero covariate value are consis-
tent (Figure 1A and 1D) and the lines have the same slope
when the coefficients are consistent (Figure 1A and 1C).

In Figure 1, the consistency of the treatment effects at
each covariate value is represented by the distance
between the 2 lines at each covariate value. We see that
when both assumptions hold, the consistency of the treat-
ment effects is the same regardless of the covariate value
(Figure 1A). In Figure 1C, where there are consistent coef-
ficients but inconsistent treatment effects at the covariate
zero, the level of consistency of the treatment effects is the
same at every covariate value. Yet in Figure 1B and 1D,
where the coefficients are inconsistent, consistency of the
treatment effects may differ depending on the covariate
value at which consistency is assessed; at some values,
there is consistency while at other values there is not.
Notice that Figure 1B and 1D is essentially the same graph
but with the y‐axis drawn at a different covariate value. In
Figure 1D, there is consistency at the zero covariate, and in
Figure 1B, there is consistency at a different point. For
Figure 1B, if consistency is only assessed for the parame-
ters estimated by the model (ie, the log odds ratios at zero
covariate and the regression coefficient), the covariate



FIGURE 1 Graphs showing how the

treatment effect for treatment 3 vs

treatment 2 could change with a covariate

value with separate lines representing

direct evidence (from trials that allocated

treatments 2 and 3) and indirect evidence

(from the remaining trials) when (A) the

treatment effects at zero covariate are

consistent and the regression coefficients

for the treatment by covariate interaction

are consistent; (B) the treatment effects at

zero covariate are inconsistent and the

coefficients are inconsistent; (C) the

treatment effects at zero covariate are

inconsistent and the coefficients are

consistent; and (D) the treatment effects at

zero covariate are consistent and the

coefficients are inconsistent
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range where there is reasonable consistency would be
missed, whereas in the situation presented by Figure 1D,
no points of consistency would bemissed if only the param-
eters estimated by the model are assessed for consistency.

To draw reliable inferences, we must be confident that
there is no evidence of inconsistency for the relevant
range of covariates. Therefore, to gain a full understand-
ing of consistency for a particular dataset, it is important
to assess consistency at different covariate values to deter-
mine whether the consistency assumptions hold across
the entire covariate range of interest, a limited covariate
range, or not at all.

In this article, we demonstrate how to check consis-
tency at different covariate values. To our knowledge, no
other literature has highlighted this issue or demonstrated
methods. We describe and demonstrate how consistency
can change using real individual patient data with a
dichotomous outcome and a continuous covariate under
a Bayesian framework. However, the methods introduced
certainly apply whenever NMA models exploring
interactions are used including frequentist or Bayesian
approaches and any data types.
2 | METHODS

Here, we explain how to assess consistency at different
covariate values by suggesting how to choose the covari-
ate values at which to make the assessment, various ways
to assess consistency, and possible conclusions to draw
from the results.
2.1 | Choosing covariate values

For continuous covariates, consistency can be assessed at
particular covariate values that span the whole covariate
range for which data are available. For example, for the
covariate age in years, if the age of included patients in
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the trials ranged from 18 to 77 years, consistency could be
assessed at equally spaced time points (eg, years 20, 30, 40,
50, 60, and 70). Of course, it is also important to consider
whether results for particular covariate values are of
interest for clinical decision‐making.

For categorical covariates, consistency can be assessed
at each covariate value. For example, for the covariate
disease severity, consistency could be assessed for the
treatment effect applicable for patients with severe disease
and then for those with nonsevere disease.
2.2 | Ways to assess consistency

We propose 3 ways to assess consistency: visual
inspection, calculating inconsistency estimates, and the
corresponding probabilities of consistency.

To set notation, suppose we are comparing the direct
and indirect evidence for a particular comparison,
denoted as treatment Z vs treatment Y. For a treatment
pair YZ, direct evidence would be from trials that
allocated treatments Y and Z, whereas indirect evidence
would be from the remaining trials.

Using direct evidence, suppose the treatment effect for

Z vs Y at the covariate value zero is ddir
YZ and the regression

coefficient for the treatment by covariate interaction for Z

vs Y is βdir
YZ . Therefore, the treatment effect for Z vs Y at

covariate value X from direct evidence is given by

ddir
YZ þ βdir

YZ X : (1)

Also, using indirect evidence, suppose dind
YZ represents

the treatment effect for Z vs Y at the covariate value zero

and β ind
YZ represents the regression coefficient for Z vs Y.

Then, the treatment effect for Z vs Y at covariate value X
from indirect evidence is

dind
YZ þ β ind

YZ X : (2)

For a 3‐treatment network, estimates of the treatment

effects at the covariate value zero (ie, ddir
12 ; d

dir
13 ; and ddir

23 )

and of the regression coefficients (ie, βdir
12 ; β

dir
13 ; and βdir

23 )
from direct evidence can be calculated by fitting multiple
pairwise meta‐regression models. The corresponding

results based on indirect evidence (ie, dind
12 ;

dind
13 ; dind

23 ; β ind
12 ; β ind

13 ; and β ind
23 ) could be calculated using

the consistency equations, for example, dind
23 ¼ ddir

13 −d
dir
12

and β ind
23 ¼ βdir

13 −β
dir
12 . Then, for each chosen covariate

value, the calculated estimates of the treatment effect
and coefficients can be substituted into Equations 1 and
2 along with the covariate value to provide, for each
covariate value, an estimate of the treatment effect for
each comparison Z vs Y based on direct evidence and also
estimates based on indirect evidence.

For larger networks, for each comparison Z vs Y, esti-
mates of the treatment effects and regression coefficients
based on direct evidence and estimates from indirect evi-
dence can be calculated using more advanced techniques,
such as node splitting or back‐calculation.10 Once these
results have been obtained, consistency can then be assessed.
2.2.1 | Visual inspection

For each treatment comparison Z vs Y, at each covariate
value X, consistency can be assessed by visually
comparing the direction, size, and precision of the
treatment effect estimated using indirect evidence (ie,

dind
YZ þ β ind

YZ X) and that estimated from direct evidence

(ie, ddir
YZ þ βdir

YZ X).
2.2.2 | Inconsistency estimates

Also, for each comparison Z vs Y, at each covariate value,
an inconsistency estimate can be calculated as the differ-
ence between the treatment effect estimated using indi-

rect evidence (ie, dind
YZ þ β ind

YZ X) and that estimated from

direct evidence (ie, ddir
YZ þ βdir

YZ X). Therefore, the inconsis-
tency estimate wYZ is

wYZ ¼ ddir
YZ þ βdir

YZ X
� �

− dind
YZ þ β ind

YZ X
� �

;

which can be rewritten as

wYZ ¼ ddir
YZ−d

ind
YZ

� �þ X βdir
YZ−β

ind
YZ

� �
: (3)

Large positive and large negative values of the incon-
sistency estimate would indicate inconsistency, whereas
values near to zero would suggest agreement between
direct and indirect evidence.

The inconsistency estimate can be calculated at
different covariate values by substituting the estimated
treatment effects and coefficients into Equation 3 along
with the various chosen covariate values.

Notice that if the regression coefficient from direct

evidence (ie, βdir
YZ ) is consistent with the regression

coefficient from indirect evidence (ie, β ind
YZ Þ, that is,

βdir
YZ−β

ind
YZ

� � ¼ 0;

then the inconsistency estimate becomes

wYZ ¼ ddir
YZ−d

ind
YZ

� �
;

and therefore, the estimate does not depend on the
covariate value X and is the same for any covariate value.
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This is why the level of consistency is the same at every
covariate value in Figure 1C.

However, if instead the treatment effect at the zero

covariate value from direct evidence, ddir
YZ , is consistent

with that from indirect evidence (ie, dind
YZ Þ, such that

ddir
YZ−d

ind
YZ

� � ¼ 0;

then the inconsistency estimate can be written as

wYZ ¼ X βdir
YZ−β

ind
YZ

� �
;

and therefore the estimate is zero when the covariate is
zero or when the regression coefficients from direct and

indirect evidence are consistent (ie, βdir
YZ−β

ind
YZ

� � ¼ 0),
and would depend on the covariate otherwise. This is
the scenario observed in Figure 1D.

Yet if the treatment effects at the zero covariate value
from direct and indirect evidence are inconsistent, that is,

ddir
YZ−d

ind
YZ

� �
≠0;

and if

βdir
YZ−β

ind
YZ

� �
>0;

then the inconsistency estimate increases with increasing
covariate values, whereas if

βdir
YZ−β

ind
YZ

� �
<0;

then the inconsistency estimate decreases with increas-
ing covariate values. This scenario was presented in
Figure 1B.
2.2.3 | Probabilities and hypothesis testing

Furthermore, to assess consistency, for each comparison
Z vs Y, at each covariate value X, a Bayesian probability
(eg, from node‐splitting models) can be calculated to
determine the probability that the direct and indirect
evidence agrees.6,10 Further details are given in Section 3.2.

Under a frequentist approach (eg, using back‐calcula-
tion), for each comparison Z vs Y, at each covariate value
X, a 2‐sample t test can be performed provided no
multiarm trials contribute to the evidence, to test the null
hypothesis that there is no difference between direct and
indirect evidence.10 The inconsistency estimate

wYZ ¼ ddir
YZ þ βdir

YZ X
� �

− dind
YZ þ β ind

YZ X
� �

has variance

var wYZð Þ ¼ var ddir
YZ þ βdir

YZ X
� �þ var dind

YZ þ β ind
YZ X

� �
:

The test statistic

TYZ ¼ wYZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var wYZð Þp

can be compared with the standard t distribution to obtain
a P value. Small P values indicate a significant difference
between the results from direct and indirect evidence.
Previously, similar consistency tests have used a level of
5%14,28-30 or 10%29-31 to denote statistical significance; we
advocate using the 10% level because it errs on the side
of caution.
2.3 | Interpreting results

For continuous covariates, if the direct and indirect
evidence appears consistent across the whole covariate
range studied, the results from the NMA model including
interactions are valid for that covariate range. Conversely,
if the direct and indirect evidence is inconsistent across
the whole covariate range studied, the results from the
model are invalid for that covariate range. If the direct
and indirect evidence is consistent for some covariate
values studied and inconsistent at other covariate values,
the results from the model would be useable for the
covariate range where consistency is observed.

Similarly, for categorical covariates, the results from
the model are valid if the direct and indirect evidence is
consistent for each category studied; the results from the
model are not reliable if the evidence is inconsistent for
each category studied; and it may be appropriate to draw
conclusions from the model for the categories where con-
sistency is observed if the evidence is consistent for some
categories studied and inconsistent for other categories.
3 | ILLUSTRATIVE APPLICATION

In this section, the described methods are demonstrated
through application to an individual patient dataset.
3.1 | The dataset

The individual patient data are from a trial performed at
sites across Africa that randomised children with
uncomplicated Plasmodium falciparum malaria.32 Four
artemisinin‐based combination therapies were compared:
amodiaquine‐artesunate (AQ + AS), dihydroartemisinin‐
piperaquine (DHAPQ), artemether‐lumefantrine (AL),
and chlorproguanil‐dapsone plus artesunate (CD + A).
Meta‐analysis was used to analyse the trial because inves-
tigators at each site chose which treatments they wanted
to allocate (on the basis of antimalarial resistance and
malaria endemicity); this is analogous to a meta‐analysis
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of trials where trial investigators choose treatments to
randomise in their study.

Treatment success at day 28 was an outcome, and
patient age was considered to be a potentially treatment
effect–modifying covariate. The data consisted of the
treatment allocation, outcome, site, and baseline age, of
each child. Table S1 displays a summary of the data.

The 17 sites each included 2 or 3 of the following treat-
ments: DHAPQ, AQ + AS, AL, and CD + A. All 6 com-
parisons were supported by direct evidence (Figure 2).
3.2 | Implementation

We fitted a standard NMAmodel including a treatment by
covariate interactions and a second node‐splitting NMA
model that provided estimates of the treatment effect at
zero covariate and estimates of the coefficient based on
direct evidence alone and separate estimates from indirect
evidence alone. Correlation between treatment effects
from the same site was taken into account in the models.
In both models, we fixed the between‐site variances to be
identical across treatment comparisons. See the Supporting
Information for modelling specifications and code.

The drugs were ordered by treatment success rate:
DHAPQ (1), AQ + AS (2), AL (3), and CD + A (4). The
covariate was centred at its mean. In a node‐splitting
model, direct and indirect evidence is separated for 1
comparison. Node splitting could not be used to assess
consistency for AQ + AS vs DHAPQ because of the nature
of the multiarm trials in the network, which meant that
no indirect evidence contributed to the comparison
AQ + AS vs DHAPQ after direct evidence was removed
from the network. Similarly, node‐splitting models could
not be used for AL vs DHAPQ or CD + A vs DHAPQ.

WinBUGS 1.4.3 and the R2WinBUGS package in R
were used to fit the models.33-35 A uniform prior
FIGURE 2 Network diagram of artemisinin‐based combination

therapies. AL indicates artemether‐lumefantrine; AQ + AS,

amodiaquine‐artesunate; CD + A, chlorproguanil‐dapsone plus

artesunate; DHAPQ, dihydroartemisinin‐piperaquine. Number of

sites (number of patients) displayed
distribution (ie, σ~uniform (0, 10)) was chosen for the
between‐site standard deviation. All other parameters
were given noninformative normal prior distributions
(ie, normal (0, 100 000)). Three chains with different
initial values were run for 300 000 iterations. The initial
100 000 draws were discarded, and chains were thinned
such that every fifth iteration was retained. Convergence
was assessed using Gelman–Rubin plots, trace plots, and
autocorrelation plots.

Log odds ratios for children aged 1, 2, 3, 4, and 5 years
were reported. These covariate values were chosen
because the age of children included in the trial ranged
from 6months to 5 years, and age is traditionally expressed
by year. Also, results for children of average age were
presented because the models were centred at the mean.

The inconsistency estimate was calculated at each itera-
tion of the chain. A probability was estimated by counting
the number of iterations for which the estimate was positive
(≥0) and then calculating the probability (ie, prob) that the
estimate was positive, by dividing the number of counted
iterations by the total number of iterations of the chain.
The probability value corresponding with a 2‐tailed test
was obtained by P=2×minimum (prob,1−prob) that
represents the probability of consistent direct and indirect
evidence with lower probabilities indicating lower levels of
agreement.10,36 The posterior distribution of the inconsis-
tency estimates was checked for symmetry and unimodality.
4 | RESULTS

4.1 | Visual inspection

For AL vs AQ+AS, Figure 3 displays, for each age, the pos-
terior distribution of the log odds ratio from direct evidence
and indirect evidence. At each age, the direct and indirect
evidence differs in terms of the direction and size of the
log odds ratio, but not the precision. The magnitude of the
inconsistency appears to be decreasing with increasing
age. Table S2 displays the corresponding odds ratios, which
also differ in terms of size and direction and also precision.
Figure 4 shows how age varies the log odds ratio. For AL vs
AQ+AS, there are differences between direct and indirect
evidence for both the intercept and slope; in particular,
the log odds ratio increases with age using direct evi-
dence, and it decreases with age using indirect evidence.

For CD + A vs AQ + AS, the results from direct and
indirect evidence differ but not as much as for AL vs
AQ + AS (Figure S1). Differences exist between direct
and indirect evidence with respect to the size of the log
odds ratio. The magnitude of the inconsistency estimate
decreases with increasing age. Differences are also seen
between odds ratios from direct and indirect evidence
(Table S2). In Figure 4, differences exist between direct



FIGURE 4 A‐C, Graphs showing, for

each comparison, how the posterior

median of the log odds ratio for treatment

success and its 95% credibility interval

change with age; separate results are

presented for direct evidence and indirect

evidence. Lines represent the posterior

median and upper and lower bound of the

95% credibility interval, and the shaded

area represents the 95% credibility interval.

AL indicates artemether‐lumefantrine;

AQ + AS, amodiaquine‐artesunate;

CD + A, chlorproguanil‐dapsone plus

artesunate; DHAPQ, dihydroartemisinin‐

piperaquine

FIGURE 3 A‐F, Posterior distributions of log odds ratios at various ages for treatment success for AL versus AQ + AS. AL indicates

artemether‐lumefantrine; AQ + AS, amodiaquine‐artesunate. The mean age was 2.5 years. Posterior median (95% credibility interval)

presented
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and indirect evidence for the slope and intercept forCD+A
versus AQ + AS. However, in this case, the log odds ratio
decreases with age regardless of the type of evidence used.

Similarly, for CD +A vs AL, the results from direct and
indirect evidence are quite similar in terms of the precision
but not the size of the log odds ratio (Figure S2). Also, the
magnitude of the inconsistency decreases with increasing
age. Table S2 shows the odds ratios from direct and
indirect evidence also differ slightly in terms of size. The
intercept and slope estimated using direct evidence differ
from those using indirect evidence; but the log odds ratio
decreases with age for each evidence type (Figure 4).
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4.2 | Inconsistency estimates

Figure 5 displays how the inconsistency estimate changes
with the covariate. For AL vs AQ + AS, the inconsistency
estimate increases with increasing age (from −1.40 to
0.25); yet the absolute value of the estimate decreases
from 1.40 for age 1 to 0.16 for age 4 and then increases
to 0.25 for age 5. For CD + A vs AQ + AS, the inconsis-
tency estimate decreases with increasing age (from 0.95
to −0.42), but the absolute value of the estimate decreases
from 0.95 for age 1 to 0.07 for age 4 and then increases to
0.42 for age 5. For CD + A vs AL, the inconsistency
estimate increases with age (from −1.07 to 0.34), while
the absolute value of the estimate decreases from 1.07
for age 1 to 0.01 for age 4 and then increases to 0.34 for
age 5.
4.3 | Probabilities

For AL vs AQ + AS, there is a low level of agreement
between direct and indirect evidence for age 1 (P = .05)
(Figure 3). For CD + A vs AQ + AS and CD + A vs AL,
the probabilities indicate reasonable agreement between
direct and indirect evidence (Figures S1 and S2).
4.4 | Overall interpretation

The magnitude of the inconsistency appears to be decreas-
ing with increasing age for each comparison. Using the
probabilities, there is inconsistency around age 1 year
FIGURE 5 Graphs showing, for each comparison, how the posterior

change with age (A, C, and E) and how the absolute value of the posterio

AL indicates artemether‐lumefantrine; AQ + AS, amodiaquine‐artesuna

dihydroartemisinin‐piperaquine
for AL vs AQ + AS, and arguably, the results are reason-
ably consistent for ages 2 to 5 years for all comparisons;
therefore, the results from the NMA model including
interactions could be used to draw inferences for children
aged 2 to 5 years. Further results from the model are
shown in Table S3.
5 | DISCUSSION

We have demonstrated that, when fitting NMA models
including interactions, the level of consistency of direct
and indirect evidence can change with the covariate
value. We have shown that it is important to check consis-
tency at different values and have suggested how to do
this.

When we applied the method, we found inconsistent
evidence for AL vs AQ + AS at age 1 (P = .05). If we
had only assessed consistency at a particular covariate
value (eg, at the mean age), we could have incorrectly
concluded that the results were consistent at any covari-
ate value and drawn unreliable conclusions. This shows
that consistency must be assessed at a range of covariate
values, rather than one particular value.

Using the probabilities, we found that the log odds
ratios for all comparisons were consistent for ages 2 to
5 years; therefore, the results from the model including
interactions could be used to draw inferences for this
age range. However, an inconsistency is observed at age
1 for AL vs AQ + AS, and this brings results at age 1 for
median of the inconsistency estimate and its 95% credibility interval

r mean of the inconsistency estimate changes with age (B, D, and F).

te; CD + A, chlorproguanil‐dapsone plus artesunate; DHAPQ,
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all comparisons into question because we do not know
whether the direct and/or indirect evidence is unreli-
able.10 Therefore, it may be more appropriate to recon-
sider all the evidence by exploring other potential
treatment effect–modifying covariates, considering non-
linear relationships and checking methodological rigour
and risk of bias of the evidence sources.

One possible explanation for the inconsistency at age 1
for AL vs AQ + AS is that the eligibility criteria in terms of
age differed across sites. The direct evidence is from 5 sites
where children aged 6 to 59 months were eligible.
However, the indirect evidence is based on 6 sites where
children aged 6 to 59 months were eligible (2 sites
compared AQ + AS vs DHAPQ and 4 sites compared AL
vs DHAPQ) and six sites where children aged 12 to
59 months were eligible (2 sites compared AQ + AS vs
DHAPQ and 4 sites compared AL vs DHAPQ).

The methods presented in this article are extremely
flexible. We applied the methods to individual patient
data for a dichotomous outcome and continuous covariate
using Bayesian methods, but they can be easily adapted
to accommodate aggregated data, other outcome and
covariate data types, and frequentist methods.

The models used in the application assumed that the
regression coefficients for each treatment versus the refer-
ence treatment are independent. However, other model
specifications are possible; for instance, exchangeable
interactions assume that the regression coefficients are
related and follow a distribution, and common
interactions assume the coefficients are the same.17,18,20

The methods presented in this article can be applied with
different modelling specifications.

We have applied similar models to aggregate datasets,
and application is straightforward (application not pre-
sented in this article). However, if aggregate data are
limited, it can be difficult to identify inconsistencies if
they exist because credibility intervals can be wide. When
using aggregate data, if for a particular comparison only
one study contributes direct evidence, the regression
coefficient based on direct evidence would be based on
prior information (using a Bayesian approach) or would
not be estimable (using a frequentist approach). To over-
come the problem, exchangeability of coefficients could
be assumed to borrow strength from other coefficients,
or informative prior distributions may be used. In any
case, node‐splitting models may be applied for other
comparisons to assess consistency.

In this article, consistency was assessed using node
splitting. Node‐splitting models have the advantage of
providing an estimate based on direct evidence and an
estimate from indirect evidence along with agreement
probabilities, and they can take the correlation in
multiarm trials into account. However, other methods,
for example, back‐calculation, may be used to assess
consistency in NMA models including interactions.
Regardless of the method chosen, consistency across
various covariate values must be considered.

The main limitation of this research is that the
methods have only been demonstrated using one dataset;
therefore, the methodology should certainly be applied in
other contexts to further evaluate the strengths and
weaknesses of the method. As with all NMA methods,
we anticipate that application of the methods to large
networks will become more complicated to apply and
report. In particular, in such cases, the number of possible
comparisons where consistency can be assessed can be
large and therefore time‐consuming to assess. There are
automatic routines, which are particularly useful for
complex networks, to identify the relevant comparisons
for a given network.37

The presented methods assume that within‐trial inter-
actions and across‐trial interactions are equivalent. If
ecological bias is at play, across‐trial information may be
biased and may differ from interactions found within tri-
als.38,39 The NMA models that separate within‐trial and
across‐trial interaction have been previously proposed to
explore biases.19,20 The principles presented in this article
could be extended to accommodate within‐trial and
across‐trial information.

Furthermore, multiple testing issues can play a role
especially for large networks. When many statistical tests
are performed, there is an increased chance of incorrectly
concluding there is inconsistency when, in fact, results
are consistent. At any rate, detecting inconsistency when
there is no real inconsistency is erring on the side of
caution. Assessments of consistency should be based on
visual inspection as well as probabilities or P values.
Methods used to adjust for multiple testing in a
frequentist framework (eg, Bonferroni corrections) could
be used to aid interpretation of P values in both
frequentist and Bayesian frameworks.

Lastly, extrapolation issues may arise. Extrapolation
can occur when the covariate distribution differs across
comparisons and the results are interpreted across the
whole covariate range of the included studies. However,
interpreting results across this covariates range allows
one to make predictions for treatment effects at covariate
values where there may be no evidence. Although this can
be attractive, such predictions must be interpreted with
caution.

In conclusion, it is important to evaluate the consis-
tency of direct and indirect evidence at various covariate
values when fitting models including interactions because
the level of consistency can change with the covariate
value. Clinical inferences may be drawn for covariate
values for which results are consistent.
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