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Tuberculosis (TB) is a global public health problem, which is caused by Mycobacterium

tuberculosis (Mtb). Type 2 diabetes mellitus (T2DM) is one of the leading predisposing

factors for development of TB after HIV/AIDS. Glibenclamide is a widely used

anti-diabetic drug in low and middle-income countries where the incidence of TB

is very high. In a human macrophage cell line, glibenclamide, a K+ATP-channel

blocker, promoted alternative activation of macrophages by enhancing expression

of the M2 marker CD206 during M2 polarization. M2 macrophages are considered

poorly microbicidal and associated with TB susceptibility. Here, we investigated the

effect of glibenclamide on M1 and M2 phenotypes of primary human monocytes and

further determined whether specific drug treatment for T2DM individuals influences the

antibacterial function of monocytes in response to mycobacterial infection. We found

that glibenclamide significantly reduced M1 (HLA-DR+ and CD86+) surface markers

and TNF-α production on primary human monocytes against mycobacterial infection.

In contrast, M2 (CD163+ and CD206+) surface markers and IL-10 production were

enhanced by pretreatment with glibenclamide. Additionally, reduction of bactericidal

activity also occurred when primary human monocytes from T2DM individuals who

were being treated with glibenclamide were infected with Mtb in vitro, consistent with

the cytokine responses. We conclude that glibenclamide reduces M1 and promotes

M2 polarization leading to impaired bactericidal ability of primary human monocytes of

T2DM individuals in response to Mtb and may lead to increased susceptibility of T2DM

individuals to TB and other bacterial infectious diseases.

Keywords: glibenclamide, Mycobacterium tuberculosis, monocyte, diabetes mellitus, M2 polarization, anti-

diabetic drug

INTRODUCTION

Tuberculosis (TB) is a global public health problem, which is the leading cause of death due to
a single infectious agent, Mycobacterium tuberculosis (Mtb). In 2016, TB resulted in 1.3 million
deaths and 6.3 million new cases, and it is estimated that about one-quarter of the human
population is latently infected (1, 2). In many tropical countries, such as Thailand, TB is an
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important cause of death and primarily a disease of the lung,
which serves as a port of entry and a site of disease manifestation.
Type 2 diabetes mellitus (T2DM) is an important risk factor for
development of TB (3). A global overview focusing specifically
on Asian countries with a high TB-DM burden indicates a
TB prevalence 1.8–9.5 times higher among DM patients when
compared to the general population (4). The predictive factors
for TB among those with DM are HIV co-infection, age (older
than 45), overweight, poor glycemic control, and being male
(5, 6). However, this underlying immunological mechanisms are
still poorly understood. Given the lack of an effective vaccine to
protect adults against TB in the tropics, the problems of antibiotic
resistance and the predictions that the global burden of T2DM
could reach almost 600 million people in the next 20 years (7),
understanding the mechanisms by which diabetes predisposes to
this infection is essential. Glibenclamide rINN (glyburide USAN,
sulfonylurea group) is a widely commonly used anti-diabetic
drug in low and middle-income countries where the incidence
of TB is high (1). The drug acts by binding to and inhibiting the
ATP-sensitive potassium channel (KATP) inhibitory regulatory
subunit sulfonylurea receptor 1 (SUR1) in pancreatic beta
cells, then increases the plasma insulin concentrations (8). This
drug lowers blood glucose concentrations by about 20% and
HbA1c by 1–2% (9). However, glibenclamide has the side effects
such as hypoglycemia and reduced immune functions through
inhibition of inflammasome (8) and Atp binding cassette
transporter (10). Our previous study showed that glibenclamide
has potent and wide-ranging effects on cell mediated immune
responses including reduced neutrophil pro-inflammatory
cytokine production, migration, and killing in response to
another intracellular bacteria, Burkholderia pseudomallei
(11, 12).

Monocytes and macrophages are the primary target of
Mtb, and their innate capacity to control Mtb defines the
early progression of the infection (13). In peripheral blood,
monocyte numbers expand during active TB disease (14).
In vitro study on diabetic cells found reduced level of Mtb
phagocytosis possibly due to alteration in diabetic monocytes and
complement system (15). Monocytes can differentiate into M1
or M2 macrophages with pro- or anti-inflammatory functional
phenotypes, respectively (16). An M1 phenotype is associated
with the up-regulation of MHC-II molecules (such as HLA-
DR) (17) and a co-stimulatory receptor, CD86 and the ability to
produce pro-inflammatory cytokines such as TNF-α and IL-1β
(16, 18, 19). Alternatively, theM2 phenotype can be characterized
by the upregulation of the scavenger receptors, CD163 and
the mannose receptor, CD206, as well as the ability to release
anti-inflammatory cytokines, such as IL-10 (16, 20). Generally,
M1 macrophages are considered part of the common host
response against intracellular bacteria and involved in killing of
mycobacteria, while M2 macrophages are associated with tissue
repair and bacterial persistence (13, 21). The polarization state
of monocytes is likely important for maintenance of a balanced
inflammatory response in TB disease. In a human macrophage
cell line, glibenclamide promoted alternative activation of
macrophages by enhancing the expression of the M2 marker
CD206 during M2 polarization (22). However, to date, there is

no information as to how glibenclamide affects primary human
monocyte phenotype and function in response to mycobacterial
infection. Here, we demonstrated the effect of glibanclamide on
M1 and M2 phenotypes of primary human monocytes against
BCG and Mtb in vitro and also investigated whether drug
treatment for T2DM individuals influences cytokine production
and killing activity by monocytes in response to mycobacterial
infection. We conclude that glibenclamide reduces M1 markers
and enhances M2 markers on primary human monocytes,
which leads to reduced killing activity against Mtb. Our
findings suggest that treatment with glibenclamide impairs the
anti-bacterial defense functions of human monocytes in DM
individuals.

MATERIALS AND METHODS

Participants
We collected whole blood from 10 healthy individuals at
LSHTM, UK and 41 diabetic, and 15 healthy control Thai
individuals enrolled at Yang Lum Health Promoting Hospital,
Ubon Ratchathani, Thailand. All individuals had no signs of
acute infectious disease in the 3 months prior to enrollment.
We classified diabetic individuals according to drug treatment,
divided into three groups: (1) glibenclamide alone or both
glibenclamide and metformin, (2) glipizide alone, and (3)
metformin alone. Diabetic individuals from each group exhibited
impaired glycemic control based on HbA1c levels (>6.5%).
Exclusion criteria for both healthy and diabetic volunteers
included impaired renal function, defined by a serum creatinine
level of ≥2.2 mg/dl.

Ethics Statement
This study was carried out in accordance with the
recommendations of UK and Thailand guidelines for human
research and the protocol was approved by LSHTM Research
Ethics Committee and Nakhon Phanom Hospital Ethical
Review Committee for Human Research. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki.

Microorganisms
Stocks of Mtb H37Rv or Mycobacterium bovis Bacille Calmette-
Guerin (BCG) Pasteur-Aeras were cultured in 7H9-OADC-
Tween-Glycerol for 14 days. Bacterial growth was assessed by
measuring the optical density at 600 nm and the number of
viable bacteria (colony-forming units) in inocula determined
by retrospective plating of serial ten-fold dilutions on 7H11
agar, and then frozen at −80◦C. Live Mtb was handled
under Advisory Committee on Dangerous Pathogens (UK) bio-
containment level 3 conditions at LSHTM and Khon Kaen
University.

Monocyte Isolation
We isolated human peripheral bloodmononuclear cells (PBMCs)
from heparinized venous blood by Ficoll-Paque centrifugation.
PBMC suspensions at 107 cells/ml were plated 300 µl in each
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respective well of a 48-well plate and incubated for 2 h. The non-
adherent cells were removed by repeated pipetting and washed
with 10% FBS in RPMI 1640 culture medium for three times.
Fresh medium was added to the adherent cells. The resulting
cell preparation was confirmed to consist of >95% monocytes by
Giemsa staining and microscopy.

Monocyte Stimulation and Cytokine
Measurement
Unless stated otherwise, purified monocytes at a concentration
2.5× 105 cells/ml in RPMI 1640 culture medium were pretreated
with 50µM glibenclamide (Sigma) [comparable to the peak
human plasma concentration achieved following a 20mg oral
dose (23)] for 30min and then infected with live Mtb or BCG
at 102 or 105 CFU per well or activated with 10 µg/ml of LPS
(from Escherichia coli, Sigma) at 37◦C for 96 h. The supernatants
were stored at −80◦C until cytokines were measured. TNF-
α, IL-10, and IL-6 concentrations were tested in duplicate
by ELISA (Invitrogen and BD Biosciences) according to the
manufacturer’s instructions. IL-1β concentration was measured
using Quantikine HS ELISA (R and D system). IL-8, MCP-1,
RANTES, IP-10, and MIG were determined using a cytometric
bead array multiplex assay (CBA) in accordance with the
manufacturer’s instructions (BD Biosciences). All cytokine data
in response to Mtb, BCG, or LPS were subtracted from the
medium control of each sample.

Cell Surface Marker Staining
Following incubations, the plate was incubated in 4◦C for
30min and rubbed gently by pipette. Then, suspendedmonocytes
were collected and transferred to FACS tubes. Then, cells were
centrifuged and washed with 1ml FACS buffer. Pelleted cells were
surface stained with anti-CD14-BV421, anti-CD16-BV510, anti-
CD86-PE-Cy7, anti-HLA-DR-PE, anti-CD206-APC, and anti-
CD163-BV605 (BioLegend) for 30min at 4◦C. After washing
with FACS buffer, cells were fixed by 4% paraformaldehyde
(Sigma, UK) for 10min at 4◦C and then washed by FACS buffer.
Finally, cells were resuspended in 250 µl FACS buffer and kept
in 4◦C until analysis. Data was acquired using an LSRII flow
cytometer (BD Biosciences) configured with three lasers and 10
detectors and FACSDiva acquisition software (BD Biosciences).
Compensation was performed using tubes of CompBeads (BD
Biosciences) individually stained with each fluorophore and
compensation matrices were calculated with Flowjo version 10
(TreeStar Inc., Ashland, OR, USA).

In vitro Mycobacterial Growth Inhibition
Assay (MGIA)
Purified monocytes were pretreated with or without
glibenclamide for 30min as described and then infected
with live Mtb or live BCG at 102 CFU for 96 h with glibenclamide
in the condition. Following incubations, cells and remaining Mtb
or BCG were pelleted and cells were lysed by incubation in sterile
water with vortexing three times in between. Mtb or BCG from
each individual tube were then transferred into a corresponding
MGIT tube and time to positivity was determined using a MGIT
960 (Becton Dickinson). Direct-to-MGIT controls were used

for the calculation of relative growth. All mycobacteria growth
inhibition assays were carried out in duplicate. For each tube,
time to positivity in hours was converted to log CFU of bacteria
using a previously determined standard curve for the stock of
Mtb or BCG used (24).

Statistics
Statistical analysis (One way ANOVA and paired t-test) was
performed by using Graphpad PRISM statistical software
(Graphpad). P-values ≤ 0.05 were considered significant. The
statistical power of the study was calculated by post-hoc power
analysis for all experiments measuring cytokine production in
diabetic individuals and there we have >80% power with 95%
confidence to detect differences between groups.

RESULTS

Glibenclamide Reduces M1 While
Enhancing M2 Surface Marker Expression
on Primary Human Monocytes
Because the peripheral lipid portion of the cell wall is very
similar between BCG and Mtb (25), it is predicted that
their ability to infect peripheral monocytes or macrophages
is similar. Firstly, to determine the effect of glibenclamide on
M1 and M2 marker expression, purified primary monocytes
from healthy control individuals were pretreated with the
drug at doses comparable to the range of glibenclamide given
during oral therapy to human patients (26, 27), prior to
infection with BCG. In this study, we refer only to two major
subsets, terming classical monocytes simply as CD14+CD16−,
and non-classical as CD14+CD16+ (28). Cultured monocytes
were analyzed with M1 (HLA-DR+ and CD86+) and M2
(CD163+ and CD206+) surface markers on CD14+CD16−

and CD14+CD16+, respectively (Figure 1A and Figure S1).
Here, we found that glibenclamide significantly reduced M1
surface markers on CD14+CD16− and enhanced M2 surface
markers on CD14+CD16+ with or without BCG infection
(Figure 1), regardless of the concentration of BCG (Figure S2).
M2 surface markers were not detected on CD14+CD16− and
no difference was found with glibenclamide-pretreatment of M2
and M1 surface markers on CD14+CD16− and CD14+CD16+

monocytes, respectively (Figure S3). To determine whether
glibenclamide alters M1 and M2 surface markers in an
M2 macrophage polarization model, we activated primary
human monocytes with IL-4 to obtain M2 phenotype cells in
the presence or absence of glibenclamide (Figure S4). With
glibenclamide, M1 surface markers of CD14+CD16− cells were
significantly reduced, while an upward trend was observed in the
expression of M2 surface markers (Figure S4B). Gibenclamide
also clearly enhanced M2 surface marker expression (CD206)
in CD14+CD16− cells during M2 polarization (Figure S4A),
consistent with the published data on human macrophage cell
lines (22). We also performed an M1 macrophage polarization
model, but no significant difference was found (data not shown).
Nevertheless, we provide evidence that glibenclamide reducesM1
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FIGURE 1 | Glibenclamide reduces M1 but enhances M2 markers on human monocytes. Monocytes from UK healthy individuals (n = 10) were treated with

glibenclamide [GB, 0 (vehicle, DMSO), 25, 50µM] for 30min. Drug-treated monocytes were incubated with 100 CFU of BCG or RPMI medium (Med) for 96 h and then

analyzed M1 and M2 markers by flow cytometry. (A) After exclusion of debris and doublets, monocytes were detected as CD14+CD16− and CD14+CD16+

populations and then further analyzed for M1 (HLA-DR+ and CD86+) and M2 (CD163+ and CD206+) expression, respectively. These data are representative of a

healthy individual. (B) The percentage of M1 or M2 positive cells for each individual are shown. Each bar represents the median of each group and each dot

represents the value of each sample. Statistical analysis was performed using One Way ANOVA to compare all groups, ***P < 0.001, **P < 0.01, *P < 0.05. No

asterisk, non-significant.

and increases M2 surface marker expression on primary human
monocytes.

Glibenclamide Reduces TNF-α While
Enhancing IL-10 Production From Primary
Human Monocytes in Response to BCG
and M. tuberculosis
We next evaluated whether glibenclamide alters the ability
of primary human monocytes to release pro- and anti-
inflammatory cytokines in response to BCG and Mtb
infection by detecting TNF-α (M1 phenotype) and IL-10
(M2 phenotype), respectively. Purified primary monocytes
from healthy individuals were pretreated with glibenclamide,
infected with BCG or Mtb for 96 h and cytokine concentrations
measured in supernatants. Consistent with its impact on
macrophage polarization, glibenclamide significantly reduced
TNF-α in a concentration-dependent manner (Figure 2A).
Secretion of IL-1β was significantly reduced when cells
were pretreated with glibenclamide (Figure S5). In contrast,
glibenclamide significantly enhanced IL-10 production in
response to both BCG and Mtb from the same cell cultures
(Figure 2B). Together, we conclude that glibenclamide reduces
the expression of cytokines associated with M1 phenotype
and enhances expression of M2 associated cytokines in

primary human monocytes in response to mycobacterial
infection.

Broad Cytokine Production in Response to
M. tuberculosis Is Associated With the
Choice of Drug Treatment in Individuals
With Diabetes Mellitus
Currently, not only glibenclamide and metformin but glipizide,
a partial potassium channel blocker, is also one of the main
drugs being used to control blood glucose levels in TB endemic
areas (29). To investigate whether different drugs involved in the
management of T2DM, vary in their effects on innate immune
function, we compared the broad cytokine production including
TNF-α, IL-10, IL-8, IL-6, MCP-1, RANTES, IP-10, and MIG
of monocytes purified from T2DM individuals under different
drug regimens (see Table 1 for characteristic of individuals).
These T2DM individuals had similar levels of BMI, fasting blood
glucose and markers of glycemic control (HbA1c), regardless
of anti-diabetic drug treatment used (Table 1). We found that
T2DM individuals who were being treated with glibenclamide
had significantly lower TNF-α and IL-8 but increased IL-6 when
compared to monocytes from healthy control groups in response
to Mtb infection (Figure 3A). A similar effect of glibenclamide
was observed upon LPS stimulation of cells, with lower levels of
TNF-α produced from glibenclamide treated cells (Figure 3B).
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FIGURE 2 | Glibenclamide reduces TNF-α while enhances IL-10 production from monocytes in response to BCG and M. tuberculosis. Monocytes from UK healthy

individuals (n = 10) were treated with glibenclamide (GB, 25, 50µM) for 30min., incubated with 105 CFU per well of BCG; or monocytes from UK (n = 5) and Thai

(n = 5) healthy individuals were treated with glibenclamide and incubated with M. tuberculosis at 105 CFU per well (Mtb). After incubation for 96 h, supernatants were

collected for (A) TNF-α and (B) IL-10 detection. Statistical analysis was performed using One Way ANOVA or paired t-test for BCG or Mtb infected samples,

respectively. Each bar is expressed as median of each group and each dot represents each sample. **P < 0.01, *P < 0.05. No asterisk, non-significant.

However, we only observed a trend toward increased IL-10
from monocytes from T2DM individuals who were being treated
with glibenclamide against Mtb infection with or without LPS
activation (Figures 3A,B). Moreover, T2DM individuals who
were being treated with metformin had significantly reduced
IL-8, IL-6, MCP-1, and RANTES in the presence of Mtb
(Figure 3A) and reduced TNF-α and IL-6 in response to LPS
(Figure 3B). IP-10 and MIG levels were lower than the limit of
detection in this experiment. Our data suggests that in T2DM
individuals, glibenclamide reduces an M1 phenotype, especially
TNF-α and IL-8 production in primary human monocytes
in response to Mtb and LPS. Moreover, metformin reduces
IL-6 and chemokines which are involved with macrophage
polarization.

Glibenclamide Treatment Impairs Killing of
M. tuberculosis by Primary Human
Monocytes
Our previous data suggested that glibenclamide promotes an
M2 phenotype in T2DM individuals. Moreover, in other studies,
the shift of polarization toward M2 is associated with poor
microbicidal activity and parallels with TB susceptibility (21).
We further investigated the effect of glibenclamide on the killing
function of primary human monocytes using a mycobacterial
growth inhibition assay (MGIA) (24). Bacterial growth, which
was measured after culture with primary monocytes for

TABLE 1 | General characteristics of diabetic and healthy control individuals.

Diabetic (n = 41)

Individual

groups

Healthy Glibenclamidec Glipizide Metformin

Total (n = 56) 15 12 13 16

Sex (female: male) 13:2 5:7 8:5 11:5

Average age

(year)a
47 ± 7 59 ± 9b 64 ± 10b 61 ± 10b

BMI (kg/m2)a 24.5 ± 3.1 24.5 ± 2.6b 24.6 ± 2.4b 24.4 ± 2.6b

Fasting blood

sugar (mg%)a
ND 169.9 ± 52.4b 141.7 ± 27.2b 145.0 ± 37.2b

HbA1c (%)a 5.3 ± 0.4 8.4 ± 2.3b 7.8 ± 1.9b 7.5 ± 2.1b

ND, not determined.
a The values are means ± SD.
b No statistically significant differences (P≥ 0.05) compared across all diabetic individuals

using One Way ANOVA.
c Glibenclamide alone, n = 6 and combination with metformin, n = 6.

96 h, showed that glibenclamide significantly reduced the
ability of monocytes to eliminate Mtb and also BCG in a
concentration-dependent manner (Figure 4A). Furthermore, to
examine whether specific drug treatment for T2DM individuals
influenced the antimicrobial functions of monocytes, purified
monocytes from either healthy or T2DM individuals (see
Table 1 for details of individuals) were exposed to Mtb and
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FIGURE 3 | Effect of different DM treatment regimens on broad cytokine production in response to M. tuberculosis. Four Thai groups are shown including healthy

controls and diabetic individuals who have been treated with glibenclamide (GB), glipizide (GP), or metformin (Met). Purified monocytes from each group were infected

with (A) M. tuberculosis at 105 CFU per well (Mtb) or stimulated with (B) 10µg/ml of E. coli LPS. Due to limited blood volume, some samples were not stimulated with

LPS. After incubated at 96 h, supernatants were collected and kept in −80◦C prior to cytokine detection. TNF-α, IL-10, and IL-6 were detected by ELISA and IL-8,

MCP-1 and RANTES were detected by CBA. Each bar is expressed as median with interquartile range of each group and each dot represents each sample. The

number of individuals tested are shown in parentheses. Asterisks indicate significant differences between all individual groups by One Way ANOVA. ****P < 0.0001,

***P < 0.001, **P < 0.01, *P < 0.05. No asterisk, non-significant.

FIGURE 4 | Glibenclamide treatment impairs killing of M. tuberculosis by monocytes. (A) Monocytes from UK healthy individuals were treated with glibenclamide (GB,

50, 100µM) for 30min. Drug-treated monocytes were incubated with 102 CFU per well of M. tuberculosis (Mtb, n = 9) or BCG (n = 5) for 96 h and then the total

bacteria were collected for MGIA. (B) Purified monocytes from four Thai individual groups shown as healthy control (n = 9) and diabetic individuals who have been

treated with glibenclamide (GB, n = 9), glipizide (GP, n = 10), or metformin (Met, n = 11) were infected with 102 CFU of M. tuberculosis for 96 h and total bacteria

were determined by MGIA. Statistical analysis was performed using One Way ANOVA to compare between control and other groups. Data are expressed as median

with interquartile range. ***P < 0.001, * P < 0.05. No asterisk, non-significant.

Frontiers in Immunology | www.frontiersin.org 6 September 2018 | Volume 9 | Article 2109

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kewcharoenwong et al. Glibenclamide Reduces Monocyte Functions

the bacterial growth was assessed by MGIA. Monocytes of
T2DM individuals who were being treated with glibenclamide
had impaired killing activity compared to monocytes from
healthy controls as well as other anti-diabetic drug treatment
groups (Figure 4B). These data implied that glibenclamide
impairs the antimycobacterial function of primary human
monocytes.

DISCUSSION

Individuals with T2DM have an increased risk of developing
infections and sepsis (30, 31). Previous studies show that
phagocyte function is compromised (32) and that antioxidant
systems and adaptive immunity may be depressed in individuals
with T2DM (31). Many conditions are strongly associated with
T2DM, including malignant otitis externa, emphysematous
pyelonephritis, emphysematous cholecystitis, Klebsiella liver
abscesses, rhinocerebral mucormycosis (33), urinary tract
infection by E. coli (34), salmonellosis (35), TB (3), and
melioidosis (36). Our previous studies show that not only T2DM
physiology itself, but also anti-diabetic drug treatment reduced
neutrophil functions of diabetic individuals in response to B.
pseudomallei infection, which caused melioidosis (11, 12).
These Mtb and B. pseudomallei infections share many features
including the importance of cell mediated immunity for
immune defense, generation of granulomatous pathology
in infected tissues, prolonged periods of clinical latency,
an interferon dominant host transcriptional profile and
difficulty in generating sterilizing immunity (36–38). This is
of particular relevance to increased risk of TB in individuals
with T2DM, yet the understanding of the immunological
changes, which underlie this susceptibility are still not
defined.

In this study, we focus on the possible impact of anti-
diabetic drugs on monocytes from diabetic individuals against
mycobacterial infection as monocytes are key mediators of Mtb
infection and resistance (13). Many studies indicate that human
monocytes subsets respond differentially to Mtb infection (39–
43). CD14+CD16+ monocytes have recently been shown to
support Mtb replication as and there is a correlation between
the abundance of CD14+CD16+ cells and the progression of
TB disease (13, 39, 40). Although, binding and ingestion of
microorganisms during non-opsonic phagocytosis had been
reported through the mannose receptor, CD206 (43), our
data showed that glibenclamide enhances CD206 (M2 marker)
on CD14+CD16+ monocytes and this was associated with
a reduction in mycobacterial killing. At the transcriptome
level, M2 macrophages displayed a diminished inflammatory
response to Mtb as reflected by reduced nitric oxide (NO)
production and increased iron availability, suggesting these
monocytes offer a permissible intracellular environment for
bacterial replication (44). Moreover, our data also showed that
glibenclamide reduced MHC-II molecules, HLA-DR, and a
co-stimulatory receptor, CD86 which are involved in antigen
presentation and T cell co-stimulation (21), implying that
monocytes treated with glibenclamide are less efficient in

triggering T cell responses compared to non-treated monocytes.
These data are consistent with a study in HIV negative TB
patients with T2DM in Tanzania. They found that hyperglycemia
was inversely correlated with live BCG-specific CD4+ T cell
responses in patients with latent or active TB and that half
of these diabetic patients were prescribed with glibenclamide
alone in combination with other anti-diabetic drugs (45).
On the other hand, the novel monosubstituted sulfonylureas
could inhibit Mtb replication of both H37Rv and extensively
drug-resistant strains in lungs of mice through targeting
acetohydroxyacid synthase (46). This latter study suggests that
modified sulfonylureas may be effective as potential drug
candidates against TB.

Since our previous data in human neutrophils from diabetic
individuals who have been treated with glibenclamide alone
and in combination with metformin showed a similar cytokine
pattern against B. pseudomallei infection (11), and the majority
of diabetic individuals who have been treated with sulfonylureas
are also treated with metformin [as recommended by the
American Diabetes Association’s (47)], data from those diabetic
individuals treated with glibenclamide alone or in combination
were combined for immune analysis, unless stated otherwise.
TNF-α is a major cytokine of the M1 pathway (14) and
depletion of TNF causes a relative increase in M2 gene
expression, thereby favoring the M2 pathway (exemplified by
the presence of IL-14 or IL-13) (48, 49). In an Mtb infection
model, TNF-α depletion resulted in increased susceptibility,
with mice succumbing to infection within 2–3 weeks, while
harboring a high bacterial burden (50). Also, chemokines
such as IL-8 (CXCL8), MCP-1 (CCL2), and RANTES (CCL5)
are produced at high levels in M1 macrophages (51). In
this study, we not only observed a reduction of TNF-α but
also IL-8 production from monocytes of T2DM individuals
who were being treated with glibenclamide. Surprisingly, we
also found that IL-6 was significantly enhanced in monocytes
of the glibenclamide treatment group. IL-6 exerts a pro-
inflammatory (52) or an anti-inflammatory (53) effect dependent
on the local immune microenvironment. IL-6 can induce M2
macrophage differentiation through STAT3 activation and can
enhance infiltration of CD163+CD206+macrophages in gastric
tumor tissue (54). Moreover, IL-6 production by Mtb-infected
macrophages inhibited uninfectedmacrophage responses to IFN-
γ (55). These previous reports support our data significantly
showing that T2DM individuals who were being treated
with glibenclamide have reduced TNF-α and IL-8 while it
enhances IL-6 production and M2 surface markers on primary
human monocytes, leading to impair mycobacterial killing
(even though some of DM individuals who were being treated
with glibenclamide were also being treated with metformin in
combination).

In contrast, IL-10 is a hallmark M2 cytokine in both mice
and human (21). However, we only observed a trend of
IL-10 increase in T2DM individuals who have been treated
with glibenclamide. The reason that we could not clearly
see a significant enhancement of IL-10 could be due to (1)
length of culture as IL-10 might be used by monocytes after
96 h culture, and (2) IL-10 is a potent anti-inflammatory
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cytokine that plays a crucial, and often essential, role in
preventing inflammatory pathology and it is produced as a
synthesis inhibitory factor for a negative feedback mechanism
to limit over pro-inflammatory cytokine response toward Mtb
infection (50). Once pro-inflammatory cytokines have been
suppressed, IL-10 might not need to be plentifully produced.
Nevertheless, we have shown that glibenclamide enhances IL-
10 levels in vitro. In Thailand, East Asian (w/Beijing) strains
predominated in both TB meningitis and pulmonary TB disease
(56). However, our study used only Mtb H37Rv, the most
studied strain of TB in research laboratories (57), and BCG,
with which most Thai people have been vaccinated (58). It is
possible that the magnitude of cytokines produced from human
monocytes may be different in response to East Asian Mtb
strains.

Obesity and T2DM are now recognized as chronic
proinflammatory diseases (59). Previous studies found that
short-chain fatty acids inhibit Mtb-induced pro-inflammatory
cytokine production from human PBMCs (60), and poor
glycemic control is a risk factor for TB infection (61). Moreover,
an imbalance in the ratio of M1 and M2 macrophages, with
increased cytokine production from M1 macrophages and/or
reduced anti-inflammatory signals from M2 macrophages leads
to adipose tissue dysfunction and impairs glucose tolerance.
However, the characteristics of our samples showed that Thai
DM individuals had similar BMI results as healthy controls at
the time of enrollment. Also, previous studies proposed that M2
macrophages strongly promote pancreatic beta-cell proliferation
(62), with enhancing beta-cell mass could be an ideal cure for
DM. Linking these observations to our data, indicating that
glibenclamide promotes M2 markers, suggests that another
positive effect of glibenclamide on diabetes is carried out by
macrophages exhibiting an M2 phenotype. The KATP channel
is also known to influence the phenotype of prepolarized
macrophages and inhibition of KATP channel promotes M2,
while opening of KATP channel augments M1 marker expression
in a human monocyte cell line (22). Therefore, as glipizide is
a partial inhibitor of KATP channel, we could not expect to
observe an effect on cytokine production and killing activity of
primary humanmonocytes against Mtb infection. Another major
anti-diabetic drug, metformin, a candidate for host-directed
therapy for TB (63), was reported to reduce pro-inflammatory
cytokine production in response to E. coli LPS (64) and approach
to target Mtb by pharmacologically stimulating intracellular
mycobacteria clearance through autophagy (65). Moreover,
metformin was observed to inhibit macrophage differentiation
via AMPK-mediated inhibition of STAT3 activation and to
inhibit TNF-α and MCP-1 production (66). These are consistent
with our data, which show a reduction in TNF-α and IL-6
against LPS and IL-6, IL-8, MCP-1, and RANTES in response
to Mtb infection in T2DM individuals who were being treated
with metformin. However, the killing function of monocytes
from T2DM who were being treated with metformin is not
impaired.

The possible mechanism to explain how glibenclamide
is associated with M1 and M2 marker alteration could be

(1) pre-differentiated/pre-polarized macrophages presented an
expression pattern of potassium subunits that facilitated more
efficient glibenclamide binding (22) and might directly modulate
macrophage polarization, and (2) the reduction of IL-1β
level through inflammasome which triggered the inhibition of
potassium channel by glibenclamide (8) might result in cytokine
imbalance, especially TNF-α, IL-8, and IL-6 in this study and lead
toM1 andM2marker alteration. This switch betweenM1 andM2
state may indicate how the innate immune balance is maintained
by macrophage subsets during bacterial infection.

Taken together, this is the first report to describe that
glibenclamide impairs mycobactericidal ability of primary
human monocytes of T2DM individuals in response to Mtb by
reducing M1 and promoting M2 polarization. Our data suggests
that treatment with glibenclamide may result in increased
susceptibility of T2DM individuals to TB and other bacterial
infectious diseases.
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