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Data and code: This work used anonymised data from the UK Cystic Fibrosis Registry. Data 

are available following application to the Registry Research Committee. 

https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry/apply-for-data-from-the-uk-

cf-registry. Example code for obtaining estimated survival probabilities from the final model 

presented is provided at https://github.com/ruthkeogh/landmark_CF. Code used in the 

analyses is also provided at the same webpage. Further details are given in the Supplementary 

Materials.  
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ABSTRACT 

Background 

Cystic fibrosis (CF) is an inherited, chronic, progressive condition affecting around 10,000 

individuals in the UK and over 70,000 worldwide. Survival in CF has improved considerably 

over recent decades and it is important to provide up-to-date information on patient 

prognosis. 

Methods 

The UK Cystic Fibrosis Registry is a secure centralized database, which collects annual data 

on almost all CF patients in the UK. Data from 43,592 annual records from 2005-2015 on 

6181 individuals were used to develop a dynamic survival prediction model that provides 

personalized estimates of survival probabilities given a patient’s current health status using 

16 predictors. We developed the model using the landmarking approach, giving predicted 

survival curves up to 10 years from ages 18 to 50. We compared several models using cross-

validation. 

Results 

The final model has good discrimination (C-indexes 0.873, 0.843, 0.804 for 2-, 5-, 10-year 

survival prediction) and low prediction error (Brier scores 0.036, 0.076, 0.133). It identifies 

individuals at low and high risk of short- and long-term mortality based on their current 

status. For patients aged 20 during 2013-2015, for example, over 80% had a greater than 95% 

probability of 2-year survival and 40% were predicted to survive 10 years or more.  

Conclusions 

Dynamic personalized prediction models can guide treatment decisions and provide 

personalized information for patients. Our application illustrates the utility of the 

landmarking approach for making the best use of longitudinal and survival data and shows 

how models can be defined and compared in terms of predictive performance. 
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INTRODUCTION 

Cystic fibrosis (CF) is an inherited, chronic, progressive condition affecting around 10,000 

individuals in the UK and over 70,000 worldwide.
1,2

 In the United Kingdom (UK) CF affects  

about 1 in 2500 live births 
3
. Children with CF are generally diagnosed in the first few 

months of life, with universal newborn screening implemented in 2007 in the UK, though 

some people with milder phenotypes are diagnosed into adulthood.
4
 

Survival in CF has improved considerably over recent decades. Of individuals born around 

1970, over half died before reaching their mid- to late teens.
5,6

 By contrast, the estimated 

median survival age for a person born with CF today in the UK is 48 for males and 44 for 

females.
1,7

 It is important to be able to provide patients with up-to-date information on their 

prognosis, and to provide clinicians with information to guide treatment decisions, including 

listing for lung transplantation. 

Data from national CF patient registries with longitudinal measures of health status and long 

term follow-up have created the opportunity to develop models for predicting survival based 

on individual characteristics.
8,9

 Although there have been many studies of factors associated 

with survival in CF (see Buzetti et al.
10

 and MacNeill
3
 for overviews),  fewer have focused on 

prediction. We identified three models for survival prediction in UK patients, but all are 

based on small samples or subsets of patients.
11–13

 Survival prediction models in CF have 

been developed using national patient registries by Liou et al.
14

 and Mayer-Hamblett et al.
15

 

(United States), Aaron et al.
16

 (Canada), and Nkam et al.
17

 (France). Until recently there have 

been (to our knowledge) no detailed studies of survival using the UK CF Registry. Keogh et 

al.
18 

provided estimates of survival using UK CF Registry data given the baseline 

characteristics of sex, genotype, and age of diagnosis. In this paper we develop a model for 

personalized prediction of survival in the UK making use of time-dependent measures of 

health status. 
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The aims of this article are twofold. Our first aim was to use data from the UK CF Registry to 

develop a dynamic survival prediction model that provides estimates of the probability of 

short-term, mid-term and long-term survival given a patient’s current and past health status.
19

  

We used the landmarking approach applied to UK CF Registry data on adults from 2005-

2015,
 20,21

 giving predicted survival curves up to 10 years from each landmark age, which can 

be any age post-diagnosis. The model therefore provides predictions for individuals living 

with the CF who already survived to a given age. The model is dynamic in that it enables 

predictions to be updated over time, using updated measures of time-dependent predictors 

alongside a patient’s current age. Our second aim was to provide an example for other 

researchers of how to develop a dynamic prediction model using landmarking, illustrating the 

utility of this approach for making the best use of longitudinal and survival data, and showing 

how different models can be defined and compared in terms of their predictive performance. 

METHODS 

Design and data source 

We undertook a landmarking analysis using data from the UK CF Registry, a national, secure 

database sponsored and managed by the Cystic Fibrosis Trust.
19

 The Registry was established 

in 1995 and records demographic data and longitudinal health data on nearly all people with 

CF in the UK, to date capturing data on over 12,000 individuals. NHS Research Ethics 

approval has been granted for the collection of data into the Registry. Each patient or their 

parent provided written informed consent for collection of data in the Registry and use of 

pseudonymized data in research. In the UK, CF patients are treated in specialist centres and 

data for the Registry are collected in a standardized way at designated (approximately) annual 

visits. Data collected cover over 250 variables in several domains, alongside mortality data. 

We restricted our analyses to a set of 17 variables (Table 1) recorded routinely in the Registry 

and previously found to be associated with survival, based on a review of the literature. 
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3,10,11,13,15–17,22–28
 This set consists of  three baseline variables – sex, genotype (F508del 

alleles), and age of diagnosis—as well as calendar year, and 13 internal time-dependent 

variables: forced expiratory volume in 1 second as percentage predicted  (FEV1%); forced 

ventricular capacity as percentage predicted (FVC%); height; weight; infection status for four 

organisms (Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia cepacia, 

Methicillin-resistant Staphylococcus aureus [MRSA]); CF-related diabetes; pancreatic 

insufficiency; days in hospital on intravenous (IV) antibiotics; days at home on IV 

antibiotics; and other hospitalization. We calculated FEV1% and FVC% using the Global 

Lung Initiative (GLI) equations.
29

 We investigated using BMI instead of weight and height, 

but found that models including weight and height separately were better fitting, based on 

Akaike’s Information Criterion.
30

 The two variables for days on IV antibiotics are used as 

surrogate indicators for pulmonary exacerbations.
31,32

 

Analyses are based on follow-up during the study period 2005-2015, so that some individuals 

have at least 10 years of follow-up, enabling estimation of survival up to 10 years. We 

therefore excluded individuals who died or were lost to follow-up before 2005. In order to 

focus on adults, we only used data on individuals from age 18 onwards during the study 

period.  

The landmarking approach 

The landmarking approach for dynamic prediction of survival was first described by van 

Houwelingen.
20

 A detailed account is provided by van Houwelingen and Putter.
21

 In brief, at 

a given age (a ‘landmark age’) from which a prediction is to be made, the data are restricted 

to individuals who have not yet had the event (in this case, death) or been censored. Values of 

predictor variables available up to the landmark age are used as covariates in a model for the 

probability of survival up to some time horizon, conditional on survival to the landmark age. 

Typically, the focus is on survival to a single time horizon (    ), e.g. 2 years after the 
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landmark age (      ), and censoring is imposed at      so that only events up to that time 

are used in the survival analysis. For a chronic condition like CF, however, it is of interest to 

study survival to several time horizons. We use the Cox model and its extensions to model 

survivor curves up to 10 years after each landmark age.  

Landmark data sets were created from landmark ages           (eFigure 1; 

http://links.lww.com/EDE/B407, eTable 1; http://links.lww.com/EDE/B407, eAppendix 1; 

http://links.lww.com/EDE/B407). Data on individuals aged over 50 are sparse. The  th 

landmark data set included all individuals known to be alive at age   during 2005-2015, who 

had not received a transplant prior to age  , who were diagnosed with CF before age  , and 

who joined the Registry before age  . Individuals lost to follow up before age   were 

excluded. We excluded people who received a transplant prior to age    because the variables 

of importance for survival in transplanted patients are likely to be quite different from those 

of importance for untransplanted individuals.
33

 Individuals transplanted after age   were 

included in the  th landmark data set and their deaths were counted as events in the survival 

analysis. The predictors in the  th landmark data set were the three baseline variables, 

calendar year and variables that summarize the measurements of the remaining 13 time-

dependent predictors up to age  . We summarize time-dependent measurements in two ways. 

Firstly, we used the most recently available measure at time   of each time-dependent 

variable. This ‘last-observation-carried-forward’ approach was used in the original 

descriptions of landmarking.
20,21

 Secondly, we fitted a mixed effects model to data available 

on time-dependent variables up to the landmark age and used the resulting fitted values and 

slopes at the landmark age as predictors, since some studies have suggested that this makes 

better use of the data than last-observation-carried-forward.
34–36

 We implemented this two-

stage landmarking approach by fitting a multivariate mixed model to three continuous time-
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dependent variables - FEV1%, FVC%, weight - up to each landmark age (eAppendix 2; 

http://links.lww.com/EDE/B407, eTable 2; http://links.lww.com/EDE/B407).  

We created a single stacked data set by stacking the 33 landmark data sets (         ), for 

use in pooled models (see below). Many individuals appear multiple times in the stacked data 

set because they are eligible for several landmark data sets. Robust standard errors were used 

to account for this. 

Model building 

The aim was to obtain a dynamic prediction model that performs well for predicting 2-, 5- 

and 10-year survival from each landmark age. We considered a number of multivariable Cox 

models (Table 2) before selecting a final model based on assessment of their predictive 

performance. Further details on the models and on how predicted survival probabilities were 

obtained are given in eAppendix 2; http://links.lww.com/EDE/B407.  

Models 1-5 use the last-observation-carried-forward values for the 13 time-dependent 

predictors. We began by fitting separate survival models from each landmark age   (Model 

1).  An alternative is to fit a pooled model (a ‘supermodel’) to the stacked data set. The 

simplest supermodel (Model 2) allowed a separate baseline hazard for each landmark age, but 

assumed common predictor coefficients across all landmark ages. Models 1 and 2 were 

initially fitted using a time horizon of 10 years (       ), which enables us to obtain 

predicted survival probabilities for any time up to 10 years after the landmark age. We also 

investigated whether 2- and 5-year survival could be better predicted by using        and 

       respectively. One might expect to better predict 2-year survival (for example) by 

using         instead of         because the effects of time-dependent variables are 

expected to change less over 2 years than 10 years. However, this was not found to be the 

case and all subsequent models were fitted with        . Since we found that the 
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supermodel gave better predictive performance, subsequently investigated models were all 

extensions of Model 2.  

Model 3 allows predictor coefficients (log hazard ratios) to vary smoothly with  . Model 4 

allows the predictor coefficients to vary with time since landmark      . Model 5 uses a 

common baseline hazard with the impact of landmark age on the hazard modeled using 

regression terms. Model 6 extends Model 2 by using the fitted value and slope at each 

landmark age for each of FEV1%, FVC%, and weight from the multivariate mixed models 

(one for each landmark age) as additional time-dependent predictors (as well as the last-

observation-carried-forward values). By incorporating slopes from the mixed models, the 

prediction model includes information about trajectories of FEV1%, FVC%, and weight up to 

each landmark age. For height and the categorical time-dependent variables we used last-

observation-carried-forward in all models. In all models continuous variables were assumed 

to have linear effects; modeling them using splines brought negligible changes in predictive 

performance. 

Model assessment 

We divided the data into a training-plus-validation set - an 80% random sample of the 

stacked data, stratified by landmark age - and a “holdout” set - the remaining 20%.
37

 The 

training-plus-validation set was used for model development and assessment. Details are 

given in eAppendix 3; http://links.lww.com/EDE/B407. 

We compared the predictive performances of different models in terms of discrimination, 

using the C-index,
38–40

 and prediction error, using the Brier score.
41,42

 C-indexes and Brier 

scores were calculated separately for each landmark age for prediction of 2-, 5- and 10-year 

survival. We also obtained overall C-indexes and Brier scores across landmark ages for 2-, 5- 

and 10-year survival. A Monte-Carlo cross-validation procedure was used to avoid over-

optimism about predictive performance.
43
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We selected the model with the best predictive performance as the final model, though where 

several models had similar performance we favored a simpler model. The final model was 

applied to the holdout data to estimate its performance in a new set of individuals. Last, the 

final model was fitted to the complete data and is reported in full for use by other researchers. 

We performed all analyses using R. eAppendix 4; http://links.lww.com/EDE/B407 provides 

details on software. 

RESULTS 

Data overview 

The stacked data set has 43,592 rows and 6181 unique individuals, of whom 931 died within 

10 years of follow-up (eAppendix 2; http://links.lww.com/EDE/B407).  Censoring is due to 

the end of follow-up at the end of 2015, rather than loss to follow-up (eAppendix 2; 

http://links.lww.com/EDE/B407).  Many individuals appear in multiple landmark data sets. 

eFigure 1; http://links.lww.com/EDE/B407 illustrates how the data arose. Figure 1 

summarizes the number of individuals in each landmark data set, and the number of deaths 

within 2, 5, and 10 years of each landmark age. eTable 1; http://links.lww.com/EDE/B407 

gives more detailed information. eTable 3; http://links.lww.com/EDE/B407 summarizes the 

predictors at landmark ages 20, 30, 40, and 50.  

Comparison of dynamic prediction models 

Overall C-indexes and Brier scores from Models 1-6 are shown in Table 3. Model 1, in which 

separate models were fitted from each landmark, gave overall C-Indexes of 0.841 for 2-year 

survival, 0.811 for 5-year survival, and 0.771 for 10-year survival, and corresponding Brier 

scores of 0.038 for 2-, 0.082 for 5- and 0.147 for 10-year survival, indicating better predictive 

performance for short-term survival. A supermodel fitted across landmark ages (Model 2) 

brought gains in terms of both discrimination (C-indexes) and prediction error (Brier scores). 

The C-indexes increased to 0.873 for 2-, 0.843 for 5- and 0.804 for 10-year survival, and the 
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Brier scores reduced to 0.036 for 2-, 0.076 for 5-, and 0.133 for 10-year survival. Landmark-

age-specific C-indexes and Brier scores (eFigures 2 and 3; http://links.lww.com/EDE/B407) 

show that the gains in predictive performance from using the supermodel are particularly 

important for older landmark ages. This is because there are fewer data at those ages and 

hence more to be gained by drawing strength from other landmark ages by using a 

supermodel.  

Allowing the predictor coefficients to depend on landmark age in a smooth way (Model 3) 

resulted in very similar results to Model 2. Including time-varying coefficients for all 

predictors (Model 4) resulted in worse predictive performance compared with Model 2. 

Restricting the time-varying coefficients to FEV1%, the strongest predictor, gave very similar 

results to Model 2. Using splines instead of a linear form for the time-varying coefficients did 

not bring any improvements.  This lack of advantage of using time-varying coefficients in 

part reflects our finding that using a shorter time-horizon (       or  ) did not improve 

prediction. Using a common baseline hazard, with the impact of landmark age modeled using 

regression terms (Model 5), resulted in considerably worse predictive performance than 

Model 2.  

Inclusion of the fitted values and slopes from mixed models for FEV1%, FVC%, and weight 

in addition to the last-observation-carried-forward terms brought small improvements in the 

C-indexes and Brier scores. Further investigations found that including the mixed model 

terms without the corresponding last-observation-carried-forward terms resulted in worse 

predictive performance than Models 2 and 6.  

Final model 

Based on the above comparisons, we selected Model 2 as the final model: increasing model 

complexity had not resulted in improvements in predictive performance, suggesting a trade-

off between increased complexity and estimation of more parameters. While there were small 
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gains in predictive performance from using mixed models for three of the continuous 

variables (Model 6), these were fairly negligible and came at the expense of a substantially 

more complicated procedure for obtaining predicted survival probabilities. Also, Model 2 

requires only the most recent values of predictors at the landmark age, while the mixed 

modeling approach (Model 6) requires a series of measures up to the landmark age. 

Furthermore, Model 2 is more straightforward to explain and report to potential users.  

eFigure 4; http://links.lww.com/EDE/B407 shows calibration plots for the final model for 

landmark ages 20, 30, 40, and 50, which compare model-based predicted survival 

probabilities with ‘observed’ probabilities. For 2-year and 5-year survival the points lie close 

to the line of equality, indicating good agreement between predicted probabilities from the 

model and the observed probabilities. There is also good agreement for 10-year survival for 

landmark ages 20, 30, and 40. At landmark age 50 the agreement between predicted and 

observed 10-year survival probabilities is less good, which may be partly due to sparse data at 

the older ages. These results indicate that the model is well calibrated for prediction of 2- and 

5-year survival from all landmark ages, and for 10-year survival at least up to age 40.  

Application in the holdout data 

The final model was fitted to the complete training-plus-validation data and applied to the 

holdout data to demonstrate its use in practice. The resulting overall C-indexes were for 0.854 

for 2- , 0.843 for 5-, and 0.815 for 10-year survival. The corresponding overall Brier scores 

were 0.034, 0.077, and 0.125, representing percentage reductions in prediction error against 

the Kaplan-Meier estimates of survival probabilities of 12.22%, 20.92%, and 23.86%. eTable 

4; http://links.lww.com/EDE/B407 summarizes observed survival within groups defined by 

the predicted survival probabilities.   
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Full model specification 

We fitted the final model to the complete data (the training-plus-validation and holdout data 

combined). Estimated baseline hazards        are given in supplementary materials 

(eAppendix 5; http://links.lww.com/EDE/B407); in combination with the regression 

coefficients in Table 4, these provide a full specification of the dynamic prediction model. 

Higher FEV1%, FVC% and weight were strongly associated with reduced hazard. B. cepacia 

infection, CF-related diabetes, and more hospital days on IV antibiotics were strongly 

associated with increased hazard. Using the final model fitted to the complete data, we 

calculated 2-, 5- and 10-year predicted survival probabilities from ages 20, 30, 40 and 50 for 

individuals in the CF Registry at these ages during the most recent 3-year period for which 

data were available (2013-2015). eFigures 5-8; http://links.lww.com/EDE/B407 and illustrate 

typical profiles of individuals within groups defined by predicted survival probabilities and 

show corresponding predicted survivor curves, illustrating in particular how FEV1%, FVC%, 

weight,  CFRD and IV days are associated with survival Figure 2 shows the distributions of 

the predicted probabilities.  At age 20, over 80% of individuals had a greater than 95% 

probability of 2-year survival, and over 35% of 10-year survival. At landmark ages 30, 40 

and 50, over 75% of individuals had a greater than 90% probability to survive 2 years, and 

over 50% had a greater than 90% probability to survive 5 years. These plots further 

demonstrate how the model could be used to identify patients at greatest risk and those with a 

good prognosis.  

DISCUSSION 

We have developed a model for dynamic prediction of survival for people with CF in the UK 

using UK CF Registry data. We used a landmarking approach applied to CF data to our 

knowledge for the first time, making efficient use of the longitudinal data, by using 

information from the same individual at several ages and incorporating updated measures of 
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health status. The model enables predictions of survival up to 10 years for adults with CF 

aged up to 50 and can be used to identify high risk patients, making use of information on 16 

variables. R code for obtaining estimated survival probabilities from the final model is 

provided at https://github.com/ruthkeogh/landmark_CF. There are several potential roles for 

practical use of the model, including for guiding treatment decisions,  informing referral for 

lung transplantation
44

, and  providing personalized information going far beyond the 

population-level statistics that are currently available, which is important for patients.  

We have outlined a systematic approach to development of a dynamic prediction model using 

landmarking, incorporating the assessment of models of different levels of complexity by 

comparing their predictive performance. There have been relatively few practical applications 

of landmarking.
34,45,46

 Unlike previous applications we have provided predicted survival 

curves instead of focusing on a single time-horizon, and we provided results on model 

performance for 2-, 5-, and 10-year survival. Prediction of long-term survival is of particular 

relevance for chronic conditions such as CF, and ours is to our knowledge the first prediction 

model based on UK CF Registry data. Of the three earlier prediction models using national 

patient registry data , two used logistic regression,
14,17

 and so did not handle censoring, and 

did not make efficient use of the  longitudinal data. Aaron et al.
16

 used a stochastic process 

model. No previous prediction models in CF have considered survival to more than one time 

point or beyond 5 years.
12–17,22,25

    Comparisons of predictive performance with models 

obtained in other populations are summarized in eAppendix 6; 

http://links.lww.com/EDE/B407. Future work may result in new models for the UK 

population that could be compared with ours and it is important that similar measures of 

predictive performance are presented across studies to facilitate comparisons. We used the 

landmarking approach to perform dynamic prediction. An alternative approach uses joint 

modeling of the longitudinal and survival processes.
47–49

 Landmarking had several strengths 
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over joint modeling for this application. Firstly, landmarking enabled us to handle 

transplanted individuals in a straightforward way. We excluded previously transplanted 

individuals at each landmark age, but retained post-transplant deaths in the data set for 

estimating survival after each landmark age. Our predictions therefore refer to individuals 

who are untransplanted at the time of making the prediction. Development of a prediction 

model for post-transplant survival is an area for further work. It is not clear how transplanted 

individuals should be handled in the joint modeling approach, especially using readily 

available software. Secondly, the set of predictors included 12 time-dependent variables of 

different types (continuous, categorical, binary). Although joint modeling has recently been 

extended for use with multivariate longitudinal outcomes,
50

 its feasibility for use with a large 

number of such variables of different types remains in question. The two-stage landmarking 

approach,
34–36

 which used mixed models for continuous time-dependent predictors (Model 6), 

did not result in material gains compared with using the last-observation-carried forward 

method. Landmarking also has the advantage of being based on methods, notably Cox 

regression, that are familiar to a clinical audience, which facilitates its explanation. Recent 

comparisons of landmarking with joint modeling using simulation studies have tended to find 

joint modeling to perform slightly better than landmarking. 
35,36,51

 However, they have 

focused on simple simulation scenarios favouring the joint model and have not considered 

landmark supermodels.  

A major strength of our study is the use of the UK CF Registry data to create the dynamic 

prediction model. The Registry collects longitudinal data on almost all UK CF patients, and 

the structured data collection means there is little missing data and little loss to follow-up. A 

limitation is that predicted survival probabilities cannot account for improvements in survival 

that are not yet known about, e.g. due to new treatments.
52,53

 However, treatments manifest 

themselves in measures of health status, and so it is likely that the prediction model could still 
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apply. That is, the distribution of health status measures in the CF population may change, 

but the associations of health status measures with survival remain the same. The 

standardized format of the Registry data collection means that the model could be assessed 

and updated if necessary after a few years.  

We selected a set of predictors previously associated with survival in CF and collected 

routinely in the Registry.
3,10

 FEV1% is the strongest predictor, though predictive performance 

is improved by incorporating the additional variables (eTable 5; 

http://links.lww.com/EDE/B407).  Further investigations using variable selection techniques 

tended to result in a model containing most of the variables. Extensions of variable selection 

techniques to the context of dynamic prediction remains an area for further methodologic 

work. There are many other variables in the Registry and an area for further work is to 

investigate whether using additional variables could improve predictive performance. We 

took the decision not to use data on treatment use as predictors. As noted above, the impact of 

treatments on survival is expected to manifest primarily via the health status measures used as 

predictors. Further investigations also found that adding information on use of two treatments 

did not materially improve prediction (eTable 5; http://links.lww.com/EDE/B407). 

Furthermore, the models created in this work are designed with prediction in mind and the 

estimated coefficients associated with the predictor variables do not necessarily represent 

causal effects. Inclusion of treatment variables could create danger of misinterpretation of the 

impacts of treatment on survival prediction curves as causal effects, which could result in 

inappropriate withholding of treatment if treatment is (non-causally) associated with worse 

prognosis. Estimation of  treatment effects using patient registry data is an area of growing 

interest, 
54,55

 but involves a separate question from that focused on in this paper.  

Our model is for adults with CF. There are relatively few deaths in CF patients aged under 18 

in the UK and different variables may be important for survival prediction in children.
12,56
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We restricted to predictions for adults aged up to 50 because the data above age 50 are sparse. 

Investigations into the health of older people with CF are of interest.  

In summary, we have developed a novel landmarking model for dynamic prediction of 

survival for people with CF in the UK. Further work involves the practical implementation of 

our model in a form suitable for use by clinicians, potentially as an add-on to patient 

information that can already be viewed via the Registry interface. In addition, it is important 

that patients and caregivers are supported to interpret personalized survival predictions.
57–59
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Figure Legends 

Figure 1. Overview of number of individuals in each landmark data set. On the left: Number 

of individuals alive at each landmark age at any point during the study period. On the right: 

Number of deaths within 2-, 5-, and 10-years after each landmark age, among those alive at 

each landmark age. 

Figure 2. Plots showing the distribution of 2-, 5- and 10-year survival probabilities from 

landmark ages 20, 30, 40, and 50 for individuals in the Registry at those ages between 2013 

and 2015. [This plot is shown in color in eFigure 9; http://links.lww.com/EDE/B407]. 
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Table 1. Variables considered as predictors. All are time-dependent except the baseline 

variables. 

Variable category Variables Description Further information 

    
Baseline variables Sex Male (0), Female (1)  

 Genotype F508del: Homozygous 

F508del: Heterozygous 

F508del: No copies 

 

 Age of diagnosis In years.  

    
Calendar year Calendar year 2005-2015 (coded as 0-10)  

    
Lung function FEV1%  FEV1% predicted, obtained using 

GLI equations. 
Measured at the annual review visit. 

 FVC% FVC% predicted, obtained using 

GLI equations. 

    
Height and weight Weight Kilograms (kg) 

Measured at the annual review visit. 
 Height Centimetres (cm) 

    
Microbiology Pseudomonas 

aeruginosa 

No (0), Yes (1) 

Any finding based on microbiology 

results since the last annual review. 

 Burkholderia cepacia  No (0), Yes (1) 

 Staphylococcus aureus No (0), Yes (1) 

 Methicillin-resistant 

Staphylococcus aureus 

(MRSA) 

No (0), Yes (1) 

    
Complications Pancreatic 

insufficiencya 

No (0), Yes (1) 

All -in the year prior to the annual 

review. 

 CF related diabetesa No (0), Yes (1) 

 Number of hospital IV 

daysb 

0 days (reference category) 

1-14 days 

15-28 days 

29+ days 

 Number of home IV 

daysb 

0 days (reference category) 

1-14 days 

15-28 days 

29+ days 

 Hospitalisation (not for 

IVs) 

No (0), Yes (1) 

FEV1%: Percent predicted forced expiratory volume in 1 second. 

FVC%: Percent predicted forced vital capacity. 

IV: Intravenous antibiotic therapy. 
a Once an individual was recorded as being pancreatic insufficient (“Yes” (1)) they were considered to be pancreatic 

insufficient at all subsequent time points.  Once an individual was recorded as having CFRD (“Yes” (1)) they were 

considered to have CFRD at all subsequent time points.   
b Number of hospital and home IV days are used as surrogate indicators of pulmonary exacerbations. 

 

ACCEPTED



 

 

26 
 

Table 2. Summary of dynamic prediction models investigated. In all analyses the timescale is 

age ( ). Landmark age is denoted  . For models 1 and 2, using age as the time scale or time-

since-landmark as the timescale are exactly equivalent. 
 

Model Form of the log hazard:      ( | ( )  
 ( )  ) Description 

   

Model 1       ( )    
  ( )    

            Separate model fitted at each landmark age 

   

Model 2       ( )   
  ( )      Supermodel with separate baseline hazards for   

      and common predictor coefficients across 

landmark ages.  

   

Model 3       ( )   ( )
  ( )   ( )    Supermodel with separate baseline hazards for   

      and predictor coefficients modelled as a function 

of landmark age  . 

   

Model 4       ( )   (   )
  ( )   (   )    Supermodel with separate baseline hazards for   

      and time-varying predictor coefficients, but 

common across landmark ages. 

   

Model 5      ( )   
  ( )       (   ) Supermodel with an overall baseline hazard, common 

predictor coefficients across landmark ages, and 

landmark effects  (   ). 

   

Model 6       ( )   
  ( )          ( ) As in Model 2, but with additional predictors   ( ) from 

the multivariate mixed model. 

  ( | ( )  
 ( )  ): Hazard at time   given  ( ),   and   ( ), and given eligibility for the  th landmark data set 

(Supplementary Section S1).  

   ( ): Baseline hazard at time   given eligibility for the  th landmark data set (Supplementary Section S1)..  

 : Vector of baseline predictors (sex, genotype and age of diagnosis). 

 ( ): Vector of the last-observation carried forward values at landmark age   for time-dependent predictors (calendar year, 

FEV1%, FVC%, weight, height, CFRD. pancreatic insufficiency, P. aeruginosa, B. cepacia, S. aureus, MRSA, non-IV 

hospitalization, number of IV days). 

  ( ): Vector of predicted values and slopes for FEV1%, FVC% and weight from a multivariate mixed model. 

FEV1%: Percent predicted forced expiratory volume in 1 second. 

FVC%: Percent predicted forced vital capacity. 

IV: Intravenous antibiotic therapy. 

MRSA: Methicillin-resistant Staphylococcus aureus. 
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Table 3. Overall C-Indexes, Brier scores, and Brier score percentage reductions
a
 for 

prediction of 2-year, 5-year and 10-year survival from Models 1-6.  

 C-Index  Brier score  Brier score % reductiona 

 2-year 5-year 10-year  2-year 5-year 10-year  2-year 5-year 10-year 

            
Model 1 0.841 0.811 0.771  0.038 0.082 0.147  9.56 15.54 11.67 

Model 2 0.873 0.843 0.804  0.036 0.076 0.133  14.85 21.79 20.58 

Model 3 0.872 0.843 0.803  0.036 0.076 0.132  14.798 22.32 21.14 

Model 4b 0.837 0.837 0.797  0.043 0.088 0.168  -2.29 9.85 -0.70 

Model 4c 0.873 0.843 0.804  0.036 0.076 0.133  14.68 21.61 20.09 

Model 5  0.849 0.813 0.766  0.039 0.087 0.158  7.53 11.00 5.57 

Model 6 0.873 0.844 0.805  0.036 0.076 0.132  14.73 21.84 20.91 

Model 1: separate landmark models 

Model 2: supermodel with common   coefficients across landmarks and separate baseline hazard for each landmark age 

Model 3: supermodel with interactions between each covariate and    and separate baseline hazard for each landmark age 

Model 4: supermodel with time-varying   coefficients and separate baseline hazard for each landmark age 

Model 5: supermodel with common   coefficients across landmarks, overall baseline hazard, and landmark effects  
Model 6: as in Model 2, with the addition of mixed model terms to the predictors.  

a Percentage reduction in the Brier score relative to the Brier score obtained from Kaplan-Meier estimates of survival 

probabilities (fitted separately from each landmark age with no predictors).  
b Including time-varying coefficients for all variables. 

c Including time-varying coefficients for FEV1% only. 

 

 

ACCEPTED



28 
 

Table 4. Results from fitting the final selected model to the complete data. HR: hazard ratio. 

CI: confidence interval. The confidence intervals were obtained using robust standard errors. 

HRs for continuous variables refer to a unit change. 

Variable  HR 95% CI 

    
Sex Male 1 (ref)  

 Female  0.87   (0.72,1.06)  

    
Genotype 2 copies 1 (ref)  

 1 copy  0.98   (0.83,1.15)  

 Other  1.05   (0.78,1.43)  

    
Age of diagnosis (years)     0.99   (0.98,1.00)  

Calendar year (years)     0.97   (0.95,1.00)  

FEV1%    0.97   (0.96,0.97)  

FVC%    0.99   (0.98,1.00)  

Weight (kg)   0.98   (0.97,0.99)  

Height (cm)   0.99   (0.98,1.00)  

P. aeruginosa No 1 (ref)  

 Yes  1.04   (0.90,1.19)  

    
B. cepacia No 1 (ref)  

 Yes  1.91   (1.51,2.40)  

    
S. aureus No 1 (ref)  

 Yes  0.87   (0.77,0.98)  

    
MRSA No 1 (ref)  

 Yes  1.02   (0.77,1.34)  

    
Pancreatic insufficiency No 1 (ref)  

 Yes  1.07   (0.80,1.42)  

    
CF related diabetes No 1 (ref)  

 Yes  1.48   (1.29,1.70)  

    
Hospitalisation (not for IVs) No 1 (ref)  

 Yes  1.06   (0.79,1.41)  

    
Number of hospital IV days 0 days 1 (ref)  

 1-14 days  1.13  (0.99,1.28) 

 15-28 days  1.52   (1.31,1.76)  

 29+ days  2.37   (2.05,2.74)  

Number of home IV days 0 days 1 (ref)  

 1-14 days  1.03   (0.90,1.19)  

 15-28 days  1.06  (0.90,1.26) 

 29+ days  1.39   (1.20,1.61)  

FEV1%: Percent predicted forced expiratory volume in 1 second. 

FVC%: Percent predicted forced vital capacity. 

IV: Intravenous antibiotic therapy. 

MRSA: Methicillin-resistant Staphylococcus aureus 
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