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Precise estimation of age is essential in evolutionary anthropology,
especially to infer population age structures and understand the
evolution of human life history diversity. However, in small-scale
societies, such as hunter-gatherer populations, time is often not
referred to in calendar years, and accurate age estimation remains a
challenge. We address this issue by proposing a Bayesian approach
that accounts for age uncertainty inherent to fieldwork data. We
developed a Gibbs sampling Markov chain Monte Carlo algorithm
that produces posterior distributions of ages for each individual,
based on a ranking order of individuals from youngest to oldest
and age ranges for each individual. We first validate our method
on 65 Agta foragers from the Philippines with known ages, and
show that our method generates age estimations that are superior
to previously published regression-based approaches. We then use
data on 587 Agta collected during recent fieldwork to demonstrate
how multiple partial age ranks coming from multiple camps of
hunter-gatherers can be integrated. Finally, we exemplify how the
distributions generated by our method can be used to estimate
important demographic parameters in small-scale societies: here,
age-specific fertility patterns. Our flexible Bayesian approach will
be especially useful to improve cross-cultural life history datasets
for small-scale societies for which reliable age records are difficult
to acquire.
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Accurate estimation of the age of individuals is essential in
evolutionary anthropology. Major questions in the field re-

quire an accurate inference of the timing of life history events,
such as age at menarche, age at first reproduction, age at ces-
sation of reproduction, interbirth intervals, and death. Age is
also essential when assessing infant growth or developmental
trajectories and when estimating age structure properties of a
population (e.g., the potential for population growth or decline,
recovering signatures of epidemics, assessing vulnerability to
ecological perturbations). Humans have important derived life
history features, such as shorter interbirth intervals, longer life
span, extended postreproductive longevity, and childhood de-
pendence (1). These life history traits vary across species in the
slow/fast continuum (2), and they likely vary within humans in
response to differences in ecology, such as differential mortality
rates (3) and energetics (4). However, due to unreliable age
estimations, very few studies have highlighted variability in life
history traits in traditional societies (3, 5, 6). The challenge of
estimating ages is particularly problematic for populations where
individuals do not relate their age to calendar years, as is the case
among many hunter-gatherer and other small-scale societies (7,
8). Although longitudinal studies (7, 9) are an ideal approach to
address questions about variation in life history traits in small-
scale populations, these studies are rare. There is consequently a
need for methods to estimate ages based on cross-sectional data
from these populations.
A few approaches have been proposed to estimate ages in small-

scale societies (reviewed in 7). The simplest one is visual inspection
and approximate clustering into age cohorts (e.g., infant, child,
teen, adult, old age). A clear disadvantage of this method is its lack

of precision, because establishing life history strategies requires a
refined age structure. Furthermore, differences in physical ap-
pearance trajectories in forager populations in comparison to
Western counterparts are likely to cause misattribution of ages. For
instance, forager infants are often small and underdeveloped,
appearing younger than their Western peers, whereas older indi-
viduals may appear older compared with Western individuals of
the same age. An alternative class of approaches is exemplified by
indirect demographic models developed in the field of human
demography (10), which are characterized by model parameters
that are estimated based on actual population data. For example,
Howell (8) applied a “steady-state model” approach to the Dobe
!Kung foragers. This method assumes a stable population struc-
ture, ascertains a relative age list of all individuals, and estimates
the death and fertility rates of the population. This approach
permits an approximation of the population age structure by
mapping these rates onto different life tables (e.g., in which 80%
live to the age of 1 y, 75% live to the age of 2 y, etc.) and selecting
the life table with the best correspondence. Given that these life
tables are created from very different populations, caveats of this
approach include the difficulty in finding matching life tables,
particularly for growing or declining populations for which these
rates are unknown (7). Crucially, stable population models fix the
proportion of individuals who live up to a certain age, which may
obscure differences in life history adaptations and demography.
To overcome these problems, Hill and Hurtado (ref. 7, but ref.

11 for the Hadza) designed an alternative method to estimate the
ages of Ache hunter-gatherers that did not assume a stable pop-
ulation. It is based on a relative age list, including all individuals,
with absolute ages for a subset of individuals. The relative age list
was constructed by first dividing the population into age cohorts
containing individuals of approximately the same age. Each indi-
vidual ranked all others within their cohort, as well as those in-
dividuals in the cohorts above and below them (i.e., either older or
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younger than themselves). These relative lists were combined into
cohorts, and then a master population list, by selecting the rank-
ings with the smaller number of contradictions. The absolute ages
of some of the individuals were obtained from birth certificates,
estimated from known events, or estimated by an “age-difference
chain” (individuals were questioned about their age at the time a
younger individual was born by picking an individual of a known
age and matching their age at the time of birth of the younger
individual) (7). Given these absolute ages and the relative age list,
a fifth-order polynomial curve was fitted with relative age rank as
the independent variable and age as the dependent variable. Fi-
nally, the ages of the remaining individuals were estimated as the
value of the polynomial curve at the corresponding rank.
Despite improving upon previous methods, this approach still

presents several drawbacks. First, the choice of a fifth-order
polynomial is arbitrary. Previous investigators (11) have, for ex-
ample, used third-order polynomials. Some ages may be fitted
poorly by a polynomial, whereas overfitting may also be an issue,
especially for datasets with few known ages. In addition, the un-
certainty associated with any age estimation is not taken into ac-
count. This issue is particularly problematic in age-difference
chains because the error is cumulative, leading to high uncertainty,
especially for older individuals. For example, for the Ache with
known ages, Hill and Hurtado (7) have shown that the error in age
estimations using this age-difference chain is approximately +0.5 y
(SD = 1.2) for each 12.5-y interval. Although relatively small, with
the oldest individuals potentially overestimated in age by an av-
erage of ∼2 y, this method does not control for the concomitant
increase in error with age. Based on SDs, this concomitant in-
crease would be between +8.6 y and −3.4 y for the oldest indi-
viduals based on their predicted age from the regression model.
This error has particular relevance for the estimation of age at
some important life history events in later life, such as age at last
reproduction and menopause.
Here, we present a Bayesian method for age estimation im-

proving upon previous approaches. Bayesian approaches have
previously been designed and successfully applied in, for exam-
ple, paleodemography (12, 13) and radiocarbon dating in ar-
chaeology (14); however, they are not readily applied to data
typically collected in anthropological fieldwork on small-scale
societies. Our method requires two inputs: first, a single rank-
ing or multiple partial rankings of individuals by age obtained
from interviewing members of the population, and, second, an
arbitrary a priori age distribution per individual chosen by the
researchers familiar with the population, which can be based on
accurate measures or on “eyeballing.” These two pieces of in-
formation are combined using a statistical inference technique
called Gibbs sampling, generating a posterior age distribution for
each individual. This posterior distribution represents all that
can be known about the age of that individual, given the age
ranks and prior age distributions. We show that our method
generates more accurate age estimations than regression-based
approaches on 65 individuals from a hunter-gatherer society with
known ages. As further empirical validation, and to show the
flexibility of our method for actual fieldwork, we present a case
study on Agta foragers from Palanan, the Philippines. Finally, we
analyze age-specific fertility patterns in the Agta, fully integrat-
ing the uncertainties in the estimated ages of a mother and her
offspring. This case study demonstrates how the posterior dis-
tributions produced by our method can be reliably used for es-
timating important demographic parameters in small-scale
societies for which precise dates of birth do not exist. Our
method opens new possibilities in demographic and life history
studies, allowing cross-sectional data to be incorporated in cross-
cultural comparisons.

Results
Validation and Benchmarking: Bayesian Outperforms Regression-
Based Approaches to Age Estimation. First, we assess how well
our Bayesian approach estimates ages compared with regression
methods. We apply fivefold cross-validation (CV) [i.e., we ran-
domly partition 65 Agta with known ages (obtained from ref. 15)
into five groups of 13 individuals, consider the ages of the indi-
viduals in each group in turn as known, and estimate the ages of
the remaining individuals]. For each of the five partitions, this
procedure yields 52 estimations that are then compared with the
true known ages (details are provided in Materials and Methods).
The results are summarized in Fig. 1 and SI Appendix, Table S1.
The distribution of differences between known age and mean age
estimated by our method across all five CV partitions shows that
the median error of the differences per individual is about 0.29 y
(i.e., 4 mo) and the mean is 0.91 y (i.e., 11 mo). Estimation ac-
curacy becomes worse for older individuals, whose ages are in-
herently more difficult to estimate due to wider prior age
brackets and larger age differences between the individuals (SI
Appendix, Table S1). Interestingly, similar results are achieved
even when no age is considered known and ages are estimated
based on rank and age brackets alone. The near-equivalence of
the Bayesian method with and without known ages is also

Fig. 1. Validation and benchmarking of the Bayesian approach. Box plots of
absolute differences between estimated and known ages for all 65 individ-
uals in all five partitions from the Headland database of Agta (15) are shown
(also Fig. 2) for five different methods of estimation (i.e., fifth-order poly-
nomial, fifth-order polynomial with midpoint age estimations, LOESS,
Bayesian posteriors approximated by the mean, and Bayesian posteriors
computed without taking into account known ages approximated by the
mean). Note that the latter distribution without known ages only comprises
65 differences because no multiple partitions exist. Statistical comparisons
are performed with Bayesian t tests quantifying the strength of evidence for
different means of the logged distributions via BFs (BF > 3 is considered as
positive evidence; BF > 150 is considered as strong evidence) and two-sided
nonparametrical KS tests assessing difference between distributions (all
pairwise comparisons are provided in SI Appendix, Table S2). The y axis is in
log-scale to highlight the majority of differences that are below 10 (raw
values are provided in SI Appendix, Fig. S6).
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supported by statistical comparison of the two distributions of
error: a Bayesian t test finds no evidence for different means,
whereas a nonparametric two-sided Kolmogorov–Smirnov (KS)
test reports no significant differences between the two distribu-
tions [Bayes factor (BF) = 0.23, P = 0.61; Fig. 1].
In comparison to the Bayesian approach, polynomial regression

has a higher median error of the differences per individual of
around 1.16 y (14 mo) and a high mean of 2.66 y (32 mo). The
latter is the result of multiple outliers in the error distribution
caused by high estimation errors for very young or very old indi-
viduals, especially when the closest individual with known age is
far from these individuals. For example, the first individual with
known age in the third partition (Fig. 2) has a rank of 12. Coun-
terintuitively, regressing on both known ages and midpoints of the
age brackets does not improve the estimation (the rationale be-
hind including the midpoints is provided in Materials and Meth-
ods). The mean error for polynomial regression fitted with
midpoints of the age brackets is 52 mo, and comparing it with the
distribution without midpoints via a Bayesian t test and KS test
yields very strong evidence for greater error in the model using
midpoints (BF > 4 × 1020, P < 1 × 10−10; Fig. 1). We also tested a
third approach based on local regression (LOESS) (16), which
drops the requirement for the data to fit a fifth-order polynomial
and allows for more flexible curves. LOESS shows intermediate
performance with a median error of 0.64 y (7 mo). P values and
BFs of all pairwise comparisons of error distributions, including
LOESS, are shown in SI Appendix, Table S2.
We tested the influence of the number of known ages, using

twofold to 13-fold CV. The performance of the Bayesian approach

is not significantly influenced by the number of known ages. Such
is not the case for the polynomial regression, for which large dif-
ferences are observed, especially when fewer ages are known,
mostly reducing the accuracy (details are provided in SI Ap-
pendix). Furthermore, we asked how robust the approaches are
to errors in known ages and ranking order. SI Appendix, Fig. S4
shows that our Bayesian method is not influenced by slight
errors in known ages, whereas polynomial regression and, to a
lesser extent, LOESS follow a trend toward worse performance.
Errors in ranking order cannot be tested independent of errors
in known ages for regression approaches. We therefore only
assessed our Bayesian approach, and find a clear impact of
errors in ranking order on the estimation accuracy, as shown in
SI Appendix, Fig. S5. However, even with 40% errors in the
ranking order, the estimation accuracy is comparable to the
estimation accuracy of polynomial regression when supplying
the correct order. Finally, we explored how well the resulting
posterior distributions quantify the estimation uncertainty. To
be useful as quantification, a 95% credible interval, for exam-
ple, should contain the true age in 95% of the individuals whose
age is being estimated, whereas a 50% credible interval only in
half of the individuals. We tested if highest posterior densities
(HPDs) fulfill this requirement, and confirmed that HPDs
closely mirror estimation uncertainty (SI Appendix, Fig. S2).
In summary, we observe that our Bayesian approach outper-

forms both LOESS and polynomial regression. It achieves this
accuracy nearly independent of the availability of known ages
and correctly quantifies estimation uncertainty. Finally, it is ro-
bust to errors in known ages and, to some extent, in rank order.

Palanan Agta Case Study: A Flexible Method for Fieldwork Data. After
testing the data in a longitudinal dataset with known ages, we
applied our aging methodology to an anthropological cross-
sectional case study on Agta foragers from the Philippines, for
whom most ages are unknown. In particular, we highlight two key
aspects of our approach: first, the flexibility of our method in
dealing with fieldwork data by allowing for multiple partial ranks
in age estimation, and, second, exemplifying how the uncertainties
in age estimations can be integrated into subsequent analyses,
such as estimating age-specific fertility patterns, which requires the
estimation of the age of both mother and child, potentially in-
creasing estimation errors.
A key difficulty with small-scale societies, including the Agta, is

that individuals living in geographically distant camps rarely know
each other well enough to rank each other’s ages accurately. As a
result, this loose pattern of familiarity among individuals precludes
the assembly of a single age rank. Rather, multiple partial ranks
are generated, 266 partial ranks in our case, that include different,
yet overlapping, subsets of individuals, but never the entire pop-
ulation. One of the great flexibilities of our Bayesian approach is
that this situation can be accommodated intuitively. We present
our approach to multiple partial ranks informally here, and give
more details in SI Appendix. In the first step, consistent partial
ranks are merged. For example, ðA,B,CÞ and ðB,C,DÞ are con-
sistent and can be merged to yield ðA,B,C,DÞ. In contrast,
ðA,B,CÞ and ðB,A,DÞ are not consistent, and therefore kept
separate. Longer ranking orders that result from merging tend to
impose stronger constraints on the prior age distributions, espe-
cially for individuals otherwise at either end of the partial rank,
which results in narrower posterior distributions and, conse-
quently, more accurate age estimations. Together with the priors
on the individuals’ ages, all partial ranks resulting from this
merging step are then used as input for separate runs of the Gibbs
sampler, where a run produces distributions of ages for each in-
dividual contained in the partial rank. At this stage, one has
multiple results from independent applications of our Bayesian
approach to different partial ranks and the same age priors. The
last step is to merge all distributions that belong to the same

Fig. 2. Experimental setup and results of validation and benchmark of the
Bayesian approach. We show the results of four different ways to estimate
age, including the Bayesian approach presented here. We performed five-
fold CV; that is, we randomly partitioned the 65 Agta with known ages in
the Headland database (15) into five groups of 13 individuals each (groups
given at the top of the first panel) and used each group as the basis to es-
timate the age of the remaining individuals. Each panel shows the results for
the five CV partitions (Top to Bottom): fifth-order polynomials; fifth-order
polynomials fitted on 13 known ages and midpoints of the age brackets for
the remaining individuals (age brackets are the lower and upper age limits
inferred by the authors from photographs of the individuals); LOESS (16);
and, finally, the Bayesian method, including the results of a sixth run where
no ages are considered known.
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individual, generating a final age distribution per individual. To
this end, the different distributions are combined to form a
weighted mixture density, which can be thought of as simply
adding up the various distributions and rescaling them to integrate
to one. In this way, ranking orders that have been frequently
reported by multiple individuals are naturally weighted more than
ranking orders reported once or only a few times. Fig. 3 (Upper)
demonstrates this procedure for two Agta.
Besides its flexibility to deal with multiple partial ranks, a dis-

tinctive feature of the Bayesian approach presented here is that it
produces full posterior age distributions that quantify uncertainty,
rather than mere point estimates. Figs. 3 and 4 illustrate how the
full information in the posterior age estimates can be integrated
into subsequent analyses, age-specific fertility here. Computing the
age at parturition is trivial when the ages of both mother and child
are known exactly: Simply calculate the difference. However, if the
age of the mother, the child, or both is uncertain, and therefore
described by a distribution, the solution becomes less obvious. Our
age estimation procedure faces this problem because it results in
distributions that capture the uncertainty in the age estimation. In
Fig. 3, we use convolution to derive the distribution of age at
parturition for a mother (the definition of convolution is provided
in Materials and Methods), which explicitly considers the un-
certainty about maternal and child ages. This analysis was per-
formed on all mother and child pairs, forming the mixture of the
resulting distributions [think of as “averaged” (i.e., stacked and
normalized)] to obtain the overall distribution of age at parturition
in the Agta population. Fig. 4 depicts this posterior distribution of
age at parturition separately for cases where both the mother’s
and the child’s ages are known exactly from birth certificates
(histogram) and for all other cases (density curve). Although we
do not necessarily expect the distributions to be the same, because
fewer precise ages are available for older individuals (SI Appendix,
Table S3), we nonetheless fail to reject the null hypothesis that
both are sampled from the same distribution (KS test, P > 0.10).

We interpreted this failure to reject as an internal check validating
our approach and results.

Discussion
This study introduced a Bayesian approach to estimate ages in a
fully probabilistic framework. Its strengths are high accuracy and
great flexibility. Initial age ranges or prior distributions can be
chosen from a wide spectrum of distributions to reflect the level
of confidence in the a priori age estimation for each individual:
from point masses when date of birth is known to wide uniform
distributions when ages are vaguely estimated and lie in a poorly
informed range. The second type of input data that is required
is a ranking of individuals by age. However, our approach can
also work on multiple partial ranks, a common difficulty when
aging small-scale societies. Fig. 5B exemplifies how these two
data types are integrated to produce posterior distributions that
fully capture and quantify the uncertainty in the resulting age
estimations.
By comparing our method with regression-based approaches,

we have demonstrated that the Bayesian approach outperforms
all regression methods considered, and furthermore correctly
quantifies estimation uncertainty. Notably, this finding is true
even when no known dates of birth are provided, a situation
where regression-based approaches cannot be applied. Hence,
our approach can also work when absolute ages for all or most
individuals are not available. However, we caution that the
number of individuals and the density with which they cover the
range of ages are critical for the accuracy of estimated ages. No
accurate estimation is possible with only a few individuals of very
different ages. Nonetheless, the necessary data can be obtained
in short field trips, which should make age estimations for vari-
ous small-scale societies readily available, facilitating future
studies on the evolution of human adaptive variation.
The Agta case study demonstrated that our method performs

well in typical fieldwork conditions and challenges. The large
geographical area of Agta camps made it impossible to compile a
single complete age rank; therefore, we extended our basic
Bayesian framework to deal with partial ranks (Fig. 3). This
extension demonstrates that specific social organizations with
particular traits can be integrated into our approach with relative
ease, making our method widely applicable in diverse fieldwork
conditions.
Finally, we analyzed the results we generated for the Agta to

illustrate how the posterior age distributions produced by our

Fig. 3. Integrating uncertainties to estimate the mother’s age at parturition.
(Upper) illustrations of how distinct partial rankings of individuals are com-
bined by averaging the resulting age distributions (gray density curves) to give
an overall age distribution (black density curves) per individual. The pair of
individuals was chosen to be mother [Right Upper; right distribution (Lower)]
and child [Left Upper; left distribution (Lower)], allowing us to “convolve”
(Materials and Methods) the age distributions and obtain the posterior dis-
tribution of the mother’s age (Lower, blue density curve) at parturition.
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Fig. 4. Overall distribution of age at parturition for the Palanan Agta. The
overall distribution of the age at parturition in the Agta is obtained by aver-
aging the age distributions obtained by the procedure depicted in Fig. 5 for all
pairs of mother and child in our Palanan Agta dataset (blue density). This
overall age distribution excludes 23 pairs for which the ages of both the
mother and child are precisely known, which are shown separately (histogram).
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method can be used in subsequent analysis. Age-specific fertility
patterns are a fundamental aspect of population structure and
are necessary to understand demographic and model population
processes (17). Figs. 3 and 4 show how the uncertainties in the
posterior age estimations can be propagated through the dif-
ferent steps of the analysis and integrated into the final result. In
contrast, approaches based on summary statistics (e.g., mean and
median, which, by definition, do not capture the full information
contained in the data) or binning point estimations into arbitrary
age classes may distort and inflate confidence in final results, and
do not allow comparisons at the individual level.
The example above illustrates the importance for future work to

derive statistical methods that use the posterior age distributions
directly, and therefore the full information content of the data. In
these cases, the potential of our probabilistic approach can be fully
reached, although we show in Fig. 1 that point estimations (mean
age of the posterior distribution) generated by our method already
improve accuracy. Even though no generic solutions exist for
analyses involving ages, standard approaches, such as resampling
from the posterior distribution, can be implemented on top of the

output produced by our method. It should be noted that, as with
all Markov chain Monte Carlo (MCMC)-based Bayesian ap-
proaches, the MCMC chain, once mixed, is a sample from the
posterior, making such approaches easy to implement.
In summary, our Bayesian approach has the potential to in-

crease the utility of cross-cultural life history datasets for hunter-
gatherers and small-scale societies living in various environ-
ments, and to enable robust and powerful statistical comparisons
between human population groups to shed light on the adaptive
processes shaping variability in human life history.

Materials and Methods
Bayesian Estimation of Age. In contrast to previous approaches, we address age
estimation in a fully probabilistic framework. For a set of individuals, two types
of input data are required: (i) a ranking or ordering of all individuals by age of
type A is younger than type B, is younger than type C, etc., and (ii) an a priori
age distribution per individual. For example, in the simplest case, the a priori
distributions may be uniform, that is, given by hard bounds on the plausible
age of the individual of the type not younger than l and not older than u, with
all ages in-between equally probable. We also refer to the interval ½l,u� as the
age bracket. We require rank order and age brackets to be compatible; that is,
a combination of ages must exist that has nonzero prior probability and sat-
isfies the ranking order. Note that in the main text we relax the requirement
of a single ranking including all individuals, and allow multiple partial rank-
ings. Ranking and prior age distributions are processed to generate a proba-
bility distribution of age per individual. If an individual is not included in any
ranking order, the a priori age distribution and age bracket are all that can be
known about the individual’s age.

In the following, we describe how these age distributions are generated by
Gibbs sampling; the mathematical definitions can be found in SI Appendix. The
heart of the procedure is iterative sampling of random numbers, which is con-
strained in a way to approach the desired age distributions gradually. Conver-
gence to the correct distribution is certain and can be mathematically proven. As
an example, Fig. 5A illustrates the initialization and two sampling steps for five
hypothetical individuals. Say the ranking of the individuals is reflected by their
label (i.e., 1 is younger than 2, is younger than 3, etc.) and their ages have been
bounded a priori as shown by the age brackets. As a starting point for the
sampling, we initialize the age of each individual to be the smallest possible
value that satisfies both the constraints imposed by the ranking and the age
brackets. In our example, doing so is achieved by choosing the left bound of the
age bracket for individuals 1, 2, and 3; however, individuals 4 and 5 must be
older than individual 3, and therefore appear in immediate succession after
individual 3. Note that this configuration is only one of many possible starting
configurations; however, as long as the ordering and age range constraints are
satisfied, the actual starting point is irrelevant and all yield equal results. After
setting the initial values, each individual is considered, in turn, from the youn-
gest to the oldest and assigned a new age by random sampling. The essential
requirement for Gibbs sampling to work is that the ranking constraints and age
brackets are not violated. This requirement means that an appropriate range to
sample a new age from has to be chosen at each step (e.g., marked by gray
shading in Fig. 5A), which can be derived as follows. The youngest possible age is
the higher value out of the preceding individual’s sampled age and the lower
bound of the current individual’s age bracket. The oldest possible age is the
lowest value out of the following: the upper bound of the current individual,
the upper bound of all succeeding individuals, and the next individual’s age
sampled in the previous iteration. If sampling is repeated often enough, this
procedure results in individual age distributions that combine the information
contained in both the age brackets and the age ranking. For the individuals
introduced in Fig. 5A and uniform prior distributions, the effect is shown in Fig.
5B. Intuitively, one can think of the age ranking information as “distorting” the
prior distributions. Note that the approach accommodates arbitrarily small age
brackets, even containing only a single value in the extreme. Hence, if the age of
certain individuals is known with certainty, this information is fully used without
any change to the sampling scheme described above.

The results represent all that is known about the age of the individuals, and
are a combination of all of the information already contained in the input; no
information has been discarded or added based on additional assumptions.
Hence, if the age brackets or the ranking contains errors, so will the output of
our method. However, as we show in Results, we are able to extend our
method to work with multiple partial ranks, which allows us to avoid making
choices and potentially introduce ranking errors in cases where rank order is
unclear. A fundamental advantage of our method is that its output is a dis-
tribution. This distribution allows subsequent analyses to incorporate the full
uncertainty associated with point estimations (e.g., by confidence intervals

Fig. 5. Gibbs sampling of ages under ranking constraint (A) and exemplary
input data and output of the Bayesian approach (B). (A) Illustration of how the
iterative sampling of ages works. Given age brackets, the age of each individual
is initialized (init.) to the smallest possible value so that, together, the ages re-
spect the ordering constraint (here, 1 in black, 2 in red, 3 in cyan, 4 in green, and
5 in purple). Considering each individual in turn, a new age is sampled at random
so that the ranking order remains valid at any time (admissible regions shaded in
gray). A full mathematical description of the procedure is provided in SI Ap-
pendix. (B) Numerical example corresponding to individuals and age brackets
from A and assuming uniform prior age distributions (in gray). The posterior
distributions (same color code as in A, kernel-smoothed here) generated by the
iterative Gibbs sampling procedure described above are shown.

Diekmann et al. PNAS | August 1, 2017 | vol. 114 | no. 31 | 8209

A
N
TH

RO
PO

LO
G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619583114/-/DCSupplemental/pnas.1619583114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619583114/-/DCSupplemental/pnas.1619583114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1619583114/-/DCSupplemental/pnas.1619583114.sapp.pdf


around the mean age) or, in the best case, to use the full age distribution of an
individual directly (e.g., age at parturition estimation), and therefore the en-
tirety of the available information.

Validation and Benchmarking. We validate our approach on 65 Agta hunter-
gatherers from Casiguran (the Philippines), whose exact dates of birth are
known (15) and can be directly compared with the estimations generated by
our Bayesian approach. Ideally, we would have validated our method on
multiple samples from populations with different age structures. However,
we are not aware of any other public dataset providing both pictures and
exact ages, which we require to run our method. As with any validation, we
therefore caution that our performance results do not necessarily generalize
beyond the dataset we used. However, because we do not make any as-
sumption about the population, including a specific age structure, we are
confident that the performance results we present extrapolate well.

As input data, we derived a relative ranking from the known dates of birth,
and three of the authors (D.S., A.E.P. and M.D.) assigned upper and lower age
bounds to these individuals based solely on visual inspection of the accompa-
nying pictures (done before knowing the actual dates of birth). Because pho-
tographs were taken in different years (between 1972 and 2010), all ages and
age estimations were adjusted to the year 2015; hence, the youngest age is 15 y
and the oldest is 93 y. To make the results comparable, we summarized each
posterior distribution by its mean, which can then easily be compared with the
known age of the individual by calculating the difference between the two.

Besides validating our results against the known true ages, we also
compare the quality of our inference against two alternative methods: the
regression approach fitting a fifth-order polynomial (7) and a nonparametric
alternative based on local regression with LOESS (18).

We implement a fivefold CV strategy. We randomly split the data into five
groups of 13 individuals and consider each group in turn. For each group, we
estimate the regression equation anduse it to deduce the agesof the remaining
individuals. Within the Bayesian framework, known ages are taken into ac-
count by choosing discrete probability masses as priors for the age of an in-
dividual rather than uniform densities over an age interval. Fig. 2 sums up our
setup: the random partitioning of the individuals in five groups (numbers
above first panel), the known ages and the lower and upper limits (i.e., age
brackets) derived from the individuals’ pictures, and the regression curves. The
lower and upper age limits vary between individuals, with older individuals
tending to have wider ranges because their age is generally associated with
more uncertainty. Note that the regression approaches do not accommodate
information on the age ranges provided by the age brackets, whereas our
Bayesian approach does. We therefore also test a fifth-order polynomial re-
gression fitted not only on the known ages of 13 individuals for a given CV
partition but on the middle values of the age brackets for all other individuals
as well. As far as the differences between the method presented here and
regression allow, this inclusion ensures a fair comparison because both ap-
proaches are provided with equivalent input. Finally, to test how our method
would work in a situation where exact ages are impossible to obtain, we also
apply our approach entirely without known ages (i.e., solely relying on the
information from the age brackets and the ranking of individuals).

Case Study: Palanan Agta. We apply our age estimation method to data we
collected on the Palanan Agta, a hunter-gatherer population from northeastern

Luzon, north of the Casiguran Agta, to demonstrate the application and flex-
ibility of our method. We give a detailed description of the collection procedure
we devised for the two types of data required as input, the ranking orders, and
the age brackets for all individuals in SI Appendix, Sup. Materials and Methods.
Ethical approval for this project was granted by the University College London
Ethics Committee (UCL Ethics code 3086/003) and carried out with permission
from local government and tribal leaders in Palanan. Informed consent was
obtained from all participants, and parents signed the informed consents for
their children (after group and individual consultation and explanation of the
research objectives in the Agta language).

Estimated Age at Parturition Based on Age Distributions of Mother and Child.
Let the age of mother and child be modeled by random variables M and C,
respectively. Analogous to the case where ages are known exactly, the age
at parturition, say P, is then described by the difference between the two
random variables, P =M−C. Because M and C are both defined by distri-
butions, so is P, and the full probabilistic description of the age at parturition
we seek is given by the probability density function (pdf) of P, say fPðxÞ. It
can be derived from the pdfs of M and C by a mathematical operation called
“convolution”: Let fMðxÞ and fCðxÞ be the pdfs of M and C, respectively; then

fPðxÞ=
Z∞

−∞

fMðτÞfC ðτ− xÞdτ.

Convolution can therefore be thought of as an operation transforming two
distributions into one, as illustrated in Fig. 3.

Implementation and Statistical Analyses. The Gibbs sampler has been imple-
mented in Python 2.7 (19) and can be downloaded from our website at www.
ucl.ac.uk/mace-lab/resources/software. Detailed information, including burn-
in, thinning, and various diagnostic statistics, is provided in SI Appendix.

All analyses and plotting were implemented in the statistical analysis
programming language R, version 3.1.3 (20). Regression analyses were per-
formed using the functions “lm” (chapter 4 in ref. 16) and “loess” (chapter
8 in ref. 16), KS statistical tests with “ks.test,” and convolution with the
function “convolve,” all from the R library “stats.” Bayesian t tests were
computed by the function “ttestBF” (21) from the “BayesFactor” library. The
KS test in Fig. 4 is performed by rejecting the null hypothesis at level α
if the KS statistic Dn,n’ is greater than the critical value approximated by

cðαÞ�n+n’
nn’

�1=2
, with cð0.1Þ= 1.22 (tables 54 and 55 in ref. 22) and n and n’ being

the sample sizes: here, 23 exact ages at parturition (summarized in the his-

togram) versus a distribution derived from 324 mother/child pairs.
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