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Abstract
Background: Gene Ontology (GO) terms are often used to assess the results of microarray
experiments. The most common way to do this is to perform Fisher's exact tests to find GO terms
which are over-represented amongst the genes declared to be differentially expressed in the
analysis of the microarray experiment. However, due to the high degree of dependence between
GO terms, statistical testing is conservative, and interpretation is difficult.

Results: We propose testing groups of GO terms rather than individual terms, to increase
statistical power, reduce dependence between tests and improve the interpretation of results. We
use the publicly available package POSOC to group the terms. Our method finds groups of GO
terms significantly over-represented amongst differentially expressed genes which are not found by
Fisher's tests on individual GO terms.

Conclusion: Grouping Gene Ontology terms improves the interpretation of gene set enrichment
for microarray data.

Background
In recent years there has been an explosion in the number
of studies measuring gene expression under various differ-
ent experimental conditions. The outcome of such studies
is usually a list of genes which have been seen to vary
between the different conditions and therefore may be of
interest to study further. Increasingly use is made of data-
bases of other information on the genes in order to pro-
vide additional inference. One of the most used in the
Gene Ontology (GO) database [1].

The Gene Ontology is a database of standardised biologi-
cal terms used to annotate gene products. In total it com-
prises around 16,000 terms, divided in three branches:
Molecular Function, Biological Process and Cellular Com-

ponent. Each branch can be represented as a directed acy-
clic graph (DAG) relating terms (or nodes) of different
degrees of specificity, with directed links from less specific
to more specific terms. Each node in the graph can have
several parents (broader related terms) and children
(more specific related terms). See Figure 1 for an example
of a small section of the GO graph. Annotation of a gene
to any given node A implies automatic annotation to all
ancestors of A (the set of broader terms related to A by
directed paths). Genes can be annotated with several
terms, though many genes have not been annotated at all.

Tests for gene set enrichment [2] compare lists of differen-
tially expressed (DE) genes and non-DE genes to find
which terms in the GO are over or under-represented
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A region of the GO graphFigure 1
A region of the GO graph. Graph of all the ancestors of the term "inflammatory response" (terms shown in this figure may 
have child terms not shown). Vertical shading indicates terms with small p-values in FatiGO (though not significant). Horizontal 
shading indicates terms in the significant POSOC groups. Relations between GO terms were found using the QuickGO web-
site: http://www.ebi.ac.uk/ego/. The term "response to other organism" was not accessed by the FatiGO website.
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amongst the DE genes. Several groups have developed
software to carry out Fisher's exact tests to find GO terms
which are over-represented amongst the genes found to be
differentially expressed in the microarray experiment, e.g.
[3,4] and other work cited in [5]. The Fisher's test for node
i essentially compares the proportion of DE genes anno-
tated to node i with the proportion of non-DE genes
annotated to node i (using the hypergeometric distribu-
tion).

Since there is a test for each of several 1000 GO nodes,
multiple testing must be taken into account. This is gener-
ally done by controlling the False Discovery Rate (FDR)
[6]. Benjamini and Hochberg's method [6] gives valid
control of the FDR even when the different tests are posi-
tive-regression-dependent.

There remain some problems in the finding and interpre-
tation of over or under-represented GO terms. Some diffi-
culties which relate to the structure of the Gene Ontology
graph are given here:

I. Interpretation of closely related functions
Since all genes annotated to a given GO node are also
annotated to all its parents, closely related nodes may
be found separately significant. If the GO graph were
a tree, this problem could be partly solved by choosing
a depth of the tree to focus on, according to the bal-
ance of statistical power and specificity of function
required. In fact most software packages available do
treat the GO graph as if it were a tree, with levels
defined as the shortest path from the node to the top.
However, as the graph is not a tree, one level can con-
tain child-parent pairs. (For example in Figure 1, the
shortest paths from the root node "Biological Process"
to "defense response" and "immune response" are of
equal length, but "immune response" is a child of
"defense response"). In the interpretation of the func-
tion of the DE genes, these should not really be treated
separately.

II. Statistical power
How far down the GO should we look? The most spe-
cific GO terms have few genes annotated so there is
often not enough power to find these terms statisti-
cally significant. The more general the GO term, the
more genes are annotated to it, but the less useful it is
as an indication of the function of the differentially
expressed genes.

III. Dependence between tests
There is a great deal of positive dependence between
GO terms, since many genes are annotated to several
GO terms. This can be controlled for with an appropri-
ate multiple testing correction, but with high depend-

ence the correction will be very conservative, so some
statistically significant terms will be missed.

Some work has been done to improve the dependence
issue. Grossmann et al. 2006 [7] takes account of the hier-
archical structure of the GO by measuring the over-repre-
sentation of each term relative to its parent terms. Alexa et
al. 2006 [8] downweights the contribution of genes to the
calculation of over-representation of a term if the children
of that term have already been found significantly
enriched. These methods do not improve the statistical
power, as the number of genes in each hypothesis test will
be smaller than in the usual term-by-term tests, as double-
counting is penalised. However, they do help with inter-
pretation, since they produce just one (or at least not too
many) significant p-values for each significant region of
the graph. We propose a complementary approach; we
choose to group closely related GO nodes together first,
and obtain a p-value for each group. This has the addi-
tional benefit that we can find additional significant
regions of the GO graph, as the power of the tests is
improved by grouping terms together. We use a software
package called the Poset Ontology Categorizer or POSOC
[9] which groups GO terms together based on gene anno-
tation and pseudo-distance between nodes, whilst
respecting the structure of the Ontology. We call our
method PoGO; software is available at http://
www.bgx.org.uk/software.

Results and discussion
Wildtype versus knock-out mouse data set
Our first application is a data set consisting of wildtype
and knock-out mice, referred to here as the Cd36 data set.
Cd36 is a gene known to be involved in insulin-resistance
[10]. This data set was previously analyzed with a Baye-
sian hierarchical model [11] and the resulting lists of
genes input to the FatiGO software [3] to find over and
under-represented GO terms. Controlling for the false dis-
covery rate (using Benjamini and Hochberg's method [6])
led to no terms being found statistically significant. (The
smallest Benjamini and Hochberg adjusted p-value is
0.27, so no significant results can be found at any sensible
FDR level.)

We now analyze this data using POSOC groups. This data
set is from the U74A Affymetrix chip, so the POSOC
groups we use are those found using all genes on the
U74A chip (and the Biological Process branch of the GO).
There are 258 groups. Note that the number of nodes in
the Biological Process branch of the Gene Ontology is
around 4100, so we have greatly reduced the space on
which we perform the statistical tests. Table 1 shows the
frequencies of group sizes. Figure 2 shows a scatter plot of
the number of genes versus number of nodes. The distri-
butions are highly skewed, with most groups being made
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up of fewer than 5 GO nodes, and having fewer than 50
genes annotated.

The adjusted p-values found by testing the POSOC groups
are given in Table 2. PoGO finds three groups significantly
over-represented amongst DE genes after controlling for
FDR at 5%: those with cluster heads "response to pest,
pathogen or parasite", "response to wounding" and
"immune response". The numbers of GO nodes in these
groups are 48, 32 and 118, and the numbers of genes 272,
173 and 467. The three groups are marked in Figure 2. It
can be seen that they are large groups, but not atypical.

The GO categories found significant here are of interest.
Previous research on the functions of Cd36 has linked the
gene product to the regulation of immune responses to
pathogens [12] and parasites [13]. Cd36 deficiency in
humans has been found to be associated with increased
severity of malarial pathology in affected populations
[14].

Chemically-induced diabetic rat data set
We have also applied PoGO to a publicly available list of
differentially expressed genes found in an experiment on
chemically-induced diabetic rats and normal non-
induced rats, using Affymetrix arrays [15]. The original
paper studied this in the context of erectile dysfunction in

diabetes. The list of DE genes is given in the supplemen-
tary information for that paper.

The original work on this data set found interesting GO
terms represented amongst the DE genes [15], but no
multiple testing corrections were performed. We carried
out a FatiGO analysis, and found 3 terms significantly
over-represented for FDR controlled at 5%: "oxygen and
reactive oxygen species metabolism", "response to oxida-
tive stress" and "response to chemical stimulus", with
adjusted p-values of 0.009, 0.003, and 0.03 respectively.
The next smallest adjusted p-value is 0.11.

For this set of genes, 279 groups of GO terms are found by
POSOC. Table 3 gives the most significant groups, with
their adjusted p-values. PoGO finds 5 POSOC groups sig-
nificant at FDR = 5%. The second group, "extracellular
matrix organisation and biosynthesis" is of interest
because it incorporates collagen and elastin related terms.
This makes sense in the context of vascular changes in
erectile dysfunction. The first and third, "lipid metabo-
lism" and "oxygen and reactive oxygen species metabo-
lism", are known to be relevant in diabetes (see for
example [16] and [17]).

FatiGO finds terms corresponding to the third POSOC
group, but not the first two.

Transgenic and wildtype arabidopsis data set
Our third application of PoGO is to a data set from an
experiment comparing transgenic and wildtype arabidop-
sis plants, using Affymetrix arrays [18]. The transgenic
plants express a Brassica primary metabolic enzyme. They
were observed in the original work to have enhanced lev-
els of glucosinolate (GSL). The list of DE genes is given in
the supplementary information for that paper.

PoGO finds three POSOC groups significant when con-
trolling FDR at 5% (results are given in Table 4). The first
one, "response to hormone stimulus", is a parent of a GO
term found in [18]: "response to auxin stimulus". In the
original work, patterns in expression profiles of known
genes were identified that suggest perturbation of sulfate
metabolism. The second and third POSOC groups found
by PoGO, "sulfate assimilation" and "sulfate reduction,
APS pathway", are close to "sulfate metabolism" in the
GO graph. The next two terms, "response to temperature"
and "cysteine metabolism", which have adjusted p-values
of just over 5%, are also interesting. The former is a parent
of the term "response to heat" identified in [18]. The term
"cysteine metabolism" is also interesting in this context,
as GSL is synthesized from methionine [19] and methio-
nine is derived from cysteine [20]. This is also connected
to "sulfate reduction, APS pathway", as the APS pathway

Table 2: PoGO results for the Cd36 data set. Adjusted p-values 
for the 5 most significant POSOC groups.

POSOC group Adjusted p-value

immune response 0.006
response to pest, pathogen or parasite 0.006
response to wounding 0.031
protein localization 0.100
digestion 0.522

Table 1: Distribution of numbers of GO nodes in POSOC 
groups.

Size (no. GO nodes) No. POSOC groups

1–5 190
6–10 28
11–15 6
16–20 6
21–40 12
41–60 2
61–80 4
81–100 5
101–120 1
121–140 1

> 140 3

Numbers of GO nodes in POSOC groups for the U74A chip (used for 
the Cd36 data set).
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in plants is part of the process of synthesizing cysteine
from sulfate [21].

For this data set, FatiGO finds 10 significant GO terms
(adjusted p-values are given in Table 5). FatiGO finds the
terms "response to hormone stimulus", "response to tem-
perature" and "sulfur utilization" (the last term is near to
the other sulfur-related terms in the GO graph).

Comparison of individual and group analyses
Here we present a comparison of the individual and group
analyses for the Cd36 data set. Table 6 shows the GO
terms ranked the highest by FatiGO (i.e. terms with the
smallest p-values), with their membership of POSOC
groups. Note that none of these terms were found signifi-
cant in the FatiGO analysis. It can be seen that 10 out of
the 15 top-ranked terms are members or immediate

Sizes of POSOC groups for the U74A chipFigure 2
Sizes of POSOC groups for the U74A chip. Number of genes versus number of GO nodes for the POSOC groups for 
the U74A chip. The solid circles mark the three groups found significant in the group analysis for the Cd36 data set.
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ancestors of at least one significant POSOC group. The
others are too high up in the graph (i.e too general) to
belong to POSOC groups. The most general GO terms are
not very useful for functional analysis, as they are not spe-
cific enough. We see that grouping terms which are close
in the graph has enabled us to find a significant region of
the graph, where the individual term tests were not found
significant.

Not only has grouping terms improved the statistical
power, it has also improved the interpretation of the
results. Figure 1 shows part of the ontology containing
several of the most over-represented GO terms from the
FatiGO analysis (these terms have vertical shading). As
shown in the graph, these are very close to each other in
the ontology. Thus it makes sense to declare the region
significantly over-represented rather than looking at each
term separately.

Figure 1 includes the cluster heads of all three significant
POSOC groups (terms in the significant POSOC groups
have horizontal shading). The Figure shows that these
groups overlap. Note that the Figure does not show all the
descendant terms of the cluster heads. The "immune
response" group includes 42 out of 48 of the "response to
pest, pathogen or parasite" GO nodes and 28 out of 32 of
the "response to wounding" GO nodes. The POSOC
grouping reduces the number of tests we need to perform,
but retains dependence between groups. The multiple
testing correction used allows for this dependence, how-
ever.

One way of thinking about the amount of dependence
between the statistical tests is to calculate the number of
tests each gene appears in, since genes being annotated to
multiple GO terms causes dependence between them. For
the term-by-term analysis this is the number of individual
GO terms a gene is annotated to. For the group analysis it
is the number of POSOC groups the gene belongs to.
Amongst the genes represented on the U74A chip, approx-

imately 1/2 belong to fewer POSOC groups than individ-
ual terms, 3/8 belong to the same number of POSOC
groups as individual terms, and 1/8 belong to more
POSOC groups than individual terms (this is because
some GO terms appear in more than one POSOC group).
We see that there is an overall reduction in the number of
tests each gene appears in, and therefore an overall reduc-
tion in the dependency between tests.

Sensitivity to POSOC parameters

We have investigated the sensitivity of the PoGO results to
changes in two POSOC parameters: firstly the choice of

score function  or  (see Methods Section for defi-

nitions), and secondly the choice of the specificity param-
eter r. We have performed this comparison on the Cd36
data set.

With the scoring function , changing specificity does

not have a great effect. Using r = log2(2) POSOC obtains

249 cluster heads, which are quite general terms (we
would not wish to decrease the specificity). Increasing r to
log2(4) to increase the specificity of cluster heads in fact

only gives 258 clusters (this is the set used in our main
results above). Increasing r further does not give any
appreciable increase in number of clusters. The list of
most significant cluster heads found by PoGO using r =
log2(2) is as in Table 2 except for the substitution of "cell

activation" with an adjusted p-value of 0.12 in the fifth
place. Using the second scoring function, r has a bigger
effect. With r = log2(2) POSOC gives just 1 cluster, which

is no use for our application. For r = log2(4) we find 221

clusters. The list of most significant cluster heads found by
PoGO is again very similar to that found in the main anal-
ysis. "Response to pest, pathogen or parasite" and
"response to wounding" are replaced by "response to

Sij
( )1 Sij

( )2

Sij
( )1

Table 4: PoGO results for Field et al. data set. Adjusted p-values 
for the 10 most significant POSOC groups.

POSOC group Adjusted p-value

response to hormone stimulation 0.0001
sulfate reduction, APS pathway 0.0001
sulfate assimilation 0.032
response to temperature 0.055
cysteine metabolism 0.058
transcription, DNA-dependent 0.095
circadian rhythm 0.095
response to chitin 0.095
regulation of transcription 0.095
electron transport 0.123

Table 3: PoGO results for Sullivan et al. data set. Adjusted p-
values for the 10 most significant POSOC groups.

POSOC group Adjusted p-value

lipid metabolism 0.012
extracellular matrix organisation and biosynthesis 0.012
oxygen and reactive oxygen species metabolism 0.027
copper ion homeostasis 0.030
acetyl-CoA metabolism 0.036
iron ion homeostatis 0.054
energy pathways 0.078
carboxylic acid metabolism 0.086
synaptic transmission 0.132
protein tetramerization 0.169
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external biotic stimulus" and "response to stress", which
are very close in the GO graph. All that has changed is that
slightly different terms have been designated as cluster
heads.

Conclusion
We have introduced the idea of finding regions of the GO
graph which are over or under-represented amongst dif-
ferentially expressed genes, rather than testing each GO
node individually. We have applied the method to three
data sets in three different organisms, one knock-out v.
wildtype, one transgenic v. wildtype and one with a chem-
ically induced phenotype. In all three cases, using the

group analysis we find meaningful categories which
would not have been found when testing individual GO
terms.

The way in which GO terms are grouped together is crucial
to the success of the group analysis. The POSOC method
seems to be a sensible way to summarise the locations of
the genes in the GO graph. It does however retain a con-
siderable amount of dependence between the groups. This
is inevitable, since annotation to any given GO term
implies annotation to all ancestor terms (thus shared
descendant terms of two terms in different groups must be
assigned to both of those groups).

The cluster heads found by POSOC are rather general
terms. From a biological point of view, it would of course
be preferable to test more specific terms. We have found
that in the current version of POSOC it is difficult to
obtain more specific cluster heads. However, if we were to
use groups of more specific terms we would start to run
into the problems of increasing numbers of tests and few
genes annotated to each group. We have found that with
the current level of specificity, testing POSOC groups can
find interesting results. In this implementation, we have
not addressed the issues of uncertainties in gene annota-
tion [22] or the uncertainty in which genes are differen-

Table 6: POSOC membership for top FatiGO terms for the Cd36 data set.

FatiGO Rank: GO node Membership of POSOC groups POSOC group significant at 5%?

1: response to external stimulus IA
2: response to pest, pathogen or parasite response to pest, pathogen or parasite yes
3: response to wounding response to wounding yes
4: organismal movement IA
5: response to biotic stimulus IA
6: neurophysiological process -
7: response to stress IA
8: inflammatory response immune response yes

response to pest, pathogen or parasite yes
response to wounding yes

9: transmission of nerve impulse -
10: neuromuscular physiological process -
11: defense response IA
12: immune response immune response yes

response to pest, pathogen or parasite yes
response to wounding yes

13: chemotaxis immune response yes
response to pest, pathogen or parasite yes
cell migration no
chemotaxis no
response to wounding yes

14: nucleobase, nucleoside, nucleotide and nucleic acid metabolism -
15: cell-cell signalling -

POSOC group membership of the most over-represented GO terms found by FatiGO. "IA" in the membership column indicates the term is an 
immediate ancestor (IA) of one of the significant POSOC groups. Note that none of these terms were found significant by the FatiGO analysis.

Table 5: FatiGO results for Field et al. data set. Adjusted p-values 
for the 10 most significant GO terms.

POSOC group Adjusted p-value

cellular macromolecule metabolism 0.007
protein metabolism 0.007
response to abiotic stimulus 0.009
cellular protein metabolism 0.010
response to hormone stimulation 0.041
response to temperature 0.041
sulfate utilization 0.041
response to endogenous stimulus 0.041
macromolecule stimulus 0.041

All other adjusted p-values are greater than 0.1
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tially expressed: both the GO annotation  of gene g to

node i and the differential expression status  of each

gene are treated as fixed. The method could be extended
to incorporate both types of uncertainty. Using a Bayesian
model to analyse the gene expression data gives the whole

posterior distribution of  for each gene. This uncer-

tainty could be propagated to provide uncertainty on the
Fisher p-values, or used as part of a unified Bayesian
model resulting in posterior probabilities for GO groups
being over or under-represented. This has been done by
[23], in the context of testing individual GO terms. If the

annotation uncertainty (uncertainty on ) could be

expressed in the form of a statistical distribution, it could
be incorporated in a similar way, possibly in the form of
a prior distribution in a Bayesian model.

Methods
Grouping nodes in the Gene Ontology
In order to overcome issue I given in the Introduction, we
would like to group together GO terms which are close in
the ontology. One way to do this would be to find the
most significant individual GO terms and then group
them for interpretation. This was done for example in
[11]. Here we use software which groups the GO terms
before statistical testing.

The Poset Ontology Categorizer (POSOC) [9] takes a list
of genes and produces a list of GO nodes (called cluster
heads) which summarize the distribution of gene annota-
tions on the graph. It is based on the concepts of coverage
(number of genes annotated to the group of GO terms)
and specificity (how general the cluster heads are). A
pseudo-distance is defined on the graph, which is the
minimum path length between comparable nodes. Each
node in the graph is scored by summing the inverse of the
pseudo-distances to its descendant nodes where the genes
are annotated (so a higher score indicates smaller dis-
tances and more genes covered). The nodes with the high-
est scores are denoted "cluster heads" and are used to
summarize the gene annotation distribution.

There are two scoring functions available:  = (δ(i, j)r +

1)-1 and  = (1 - δ(i, j))r, where δ(i,j) is the pseudo-dis-

tance between nodes i and j and the parameter r weights
the distances and thus controls the specificity of the clus-

ter heads. The actual score for node i is then ∑g ∑j /∑g

Ng, k = 1 or 2, where Ng is the total number of annotations

of gene g and the sum over j is the sum over all descendant
nodes of i which annotate g. For the main analyses in this
paper we use the first scoring function, with r = log2(4). We

also look at the sensitivity to these choices in the Results
section.

Each cluster head represents a group of GO nodes (all
those comparable and more specific than the cluster
head). We compare the proportion of differentially
expressed and non-differentially expressed genes in each
of these groups. We anticipate that with the grouping of
terms issues II and III (statistical power and dependence)
might be lessened.

Statistical testing of groups of GO nodes

PoGO performs a Fisher's test on each GO group i = 1, ...,
m. This tests for association between differential expres-
sion and GO annotation for the given group. Genes which
have no annotations at all are not counted here (as in the
usual Fisher's tests on individual GO terms). Gene anno-
tations come from the NetAffx website [24]. Effectively,
the input to each test is a pair of indicator functions for
each gene, one indicating whether or not the gene is dif-

ferentially expressed  and one indicating if the gene is

annotated to the GO group i being tested . Thus the

condition of being differentially expressed or not is con-
sidered known, as are the gene annotations. The result is
a list of p-values, pi, i = 1, ..., m.

A decision rule is then found (a critical p-value below
which the GO group is declared significantly over or
under-represented in the DE genes) by controlling for the
False Discovery Rate (FDR). We use the Benjamini and
Hochberg method [6], which is valid under positive
regression dependence [25]. Two variables are positive-
regression-dependent if large values of one are associated
with large values of the other. It implies, but is not
implied by, positive correlation. It is not clear if the GO
satisfies this condition, however we would expect a lot of
positive dependency between GO terms, as the depend-
ency is caused by the same genes being annotated to dif-
ferent terms. There are methods to control FDR under
arbitrary dependence [25], but these are very conservative
compared to the Benjamini and Hochberg method (and
the Benjamini and Hochberg method is itself conservative
as it includes no estimate of the number of true null
hypotheses but takes this to be 1 in the calculation of
FDR). Therefore we consider it acceptable to use the Ben-
jamini and Hochberg method, which takes the risk of
some false positives, whilst gaining in the number of true
positives.

Igi
A

Ig
DE

Ig
DE

Igi
A

Sij
( )1

Sij
( )2

Sij
k( )

Ig
DE

Igi
A
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