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Identification of a Novel Clinical 
Phenotype of Severe Malaria 
using a Network-Based Clustering 
Approach
Ornella Cominetti1,7, David Smith2, Fred Hoffman3,8, Muminatou Jallow4, Marie L. Thézénas5, 
Honglei Huang5, Dominic Kwiatkowski  5, Philip K. Maini1 & Climent Casals-Pascual5,6

The parasite Plasmodium falciparum is the main cause of severe malaria (SM). Despite treatment with 
antimalarial drugs, more than 400,000 deaths are reported every year, mainly in African children. 
The diversity of clinical presentations associated with SM highlights important differences in disease 
pathogenesis that often require specific therapeutic options. The clinical heterogeneity of SM is largely 
unresolved. Here we report a network-based analysis of clinical phenotypes associated with SM in 2,915 
Gambian children admitted to hospital with Plasmodium falciparum malaria. We used a network-based 
clustering method which revealed a strong correlation between disease heterogeneity and mortality. 
The analysis identified four distinct clusters of SM and respiratory distress that departed from the 
WHO definition. Patients in these clusters characteristically presented with liver enlargement and high 
concentrations of brain natriuretic peptide (BNP), giving support to the potential role of circulatory 
overload and/or right-sided heart failure as a mechanism of disease. The role of heart failure is 
controversial in SM and our work suggests that standard clinical management may not be appropriate. 
We find that our clustering can be a powerful data exploration tool to identify novel disease phenotypes 
and therapeutic options to reduce malaria-associated mortality.

Severe malaria (SM) is a major public health problem and a complex disease. Worldwide, 3.3 billion people live 
in areas where malaria is transmitted by infected anopheline mosquitoes. Despite recent improvements in the 
implementation of effective control measures in some countries, in 2016 the estimated number of clinical malaria 
cases globally was 216 million, with 445,000 deaths (1).

The definition of severe malaria proposed by the World Health Organization (WHO) was designed to capture 
the majority of children at risk of dying and thus it prioritizes sensitivity over specificity. In sub-Saharan Africa, 
children with coma (cerebral malaria) and/or respiratory distress are at the highest risk of death. These clini-
cal syndromes capture a heterogeneous population that possibly reflect diverse pathophysiological processes. 
Critically, the current WHO classification of SM fails to capture this heterogeneity and thus treatment allocation 
based on this definition may have undesired consequences. Most adjuvant treatments proposed to date have con-
sistently failed to improve patient outcome.

A systems approach to medicine applies mathematical and computational models of biological systems to 
make predictions about complex biological functions1. For example, high-dimensional data from clinical studies 
or data generated with high-throughput technologies can be represented by networks. The structure of these net-
works can be studied to help develop intuition about how clinical presentations are related and to how network 
structure correlates with biological function or clinical phenotype2,3.
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We hypothesized that a rational unbiased approach to classify disease, which takes into account clinical heter-
ogeneity, may improve our understanding of disease pathogenesis and identify novel therapeutic targets. We have 
investigated the use of a network-based approach to identify biologically meaningful phenotypes that depart from 
the current clinical definition in 2,915 Gambian children admitted to hospital with SM (Fig. 1).

Results
Clinical Features-Selection and Generation of a Network of 2,915 Children with Severe Malaria.  
A well curated clinical dataset of 2,915 Gambian children with SM was used to identify a reduced set of clinical 
features to derive biologically meaningful distances between patients (Table 1 and sTable 1)4,5. We used sparse 
principal component analysis (sPCA) to select the clinical features that best separated different patient groups 
(clusters) without prior knowledge of the underlying clinical syndrome6. We observed that approximately 60% of 
the variability of the data was explained by just 13 variables of a total of 46 clinically relevant variables included 
in the analysis (sFig. 1). The subsequent addition of clinical features selected by sPCA had a marginal impact 
on the percentage of variability explained. To derive a network of patients in a biologically meaningful space, 
we then selected only those variables that were significantly associated with an unambiguous clinical outcome 
(death) based on statistical significance and low collinearity (sFig. 1b). Only eight variables significantly associ-
ated with mortality were finally selected to derive distance measures between patients (sTable 2). These variables 
broadly captured three of the most relevant pathogenic mechanisms of SM, namely impairment of brain func-
tion (Blantyre coma score7, seizures during admission, tonic seizures and unusual sleepiness), impairment of 

Figure 1. Study workflow. (a) Pre-processing of data and feature selection: To allow data on different scales to 
be compared and derive meaningful distances between patients, clinical variables were normalized prior to 
analysis. To minimize the noise introduced by redundant variables, the most informative clinical features were 
selected based on their ability to account for variation in the data using sparse PCA (inverse power method36). 
(b) Definition of the distance matrix: The distance matrix contains all the pairwise Euclidean distances between 
any pair of points (patients) in the dataset. Distances between data points corresponding to different patients 
were derived based on the reduced set of variables selected in a). (c) Clustering Coefficient-based thresholding: In 
order to find those clusters that maximize similarities within clusters and differences between clusters, a distance 
threshold was derived as a fraction of the maximum pairwise distance. This information was used to determine 
which pairs of nodes (patients) were linked in the network (see methods) (d). Proximity of patients in the feature 
spaced was based on unthresholded inter-patient distances and represented as a density heatmap (e).
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respiratory function (deep breathing, use of accessory muscles during respiration and intercostal recession) and 
anemia (measured by hemoglobin concentration).

We then used a Gaussian kernel function to assign a density to each patient depending on the distance to all 
other patients irrespective of the patient’s original cluster-assignment (Fig. 2). The patient distribution was plotted 
in a density heat map where areas of high density indicated clinical phenotypes with a composition of patients 
with highly similar clinical features and areas with low density represented more heterogeneous phenotypes. The 
density estimation showed that patients in low-density areas were highly correlated with patients with multiple 
SM syndromes (P < 0.001). The lowest density corresponded to patients with all three SM syndromes, whereas 
the SM syndrome with the highest density (homogeneity) was severe malarial anemia (sFig. 6). We observed that 
mortality was significantly higher in those phenotypes with lower Gaussian density (P < 0.001) (Fig. 3).

Validation of Cluster Distribution of the Thresholded Network of Children with Severe Malaria.  
A distance threshold was used for network analysis and visualization purposes. The thresholded network included 
238 clusters. Of these, only 19 clusters contained more than 20 patients, with case fatality rates that ranged from 0% 
to 53%. We reasoned that if this set of clusters were a random partition, the mortality of clusters would show a ten-
dency towards the average mortality of the overall study population. To test this, we preserved the topology of the 
original network but randomly shuffled the patient mortalities associated with each node. In 12 of the 19 clusters 
identified in the original network, the proportion of deaths was significantly higher than that observed for net-
works with a shuffled relationship between nodes and patients (sFig. 4). Similarly, to verify that the clusters iden-
tified were not a peculiarity of our method, we checked cluster composition using a standard clustering method 
(hierarchical clustering)8,9. The comparison of the network clusters with clusters built from the same set of clinical 
features using hierarchical clustering method showed a high level of agreement (Rand Index = 0.98) (sFig. 5).

Identification and Biological Validation of Clusters Identified in a Network of Patients with 
Respiratory Distress and Severe Anemia. To compare the clusters in the thresholded network with the 
distribution predicted by the standard WHO definition, patients in the network were colour-coded using the 
WHO classification of the different SM syndromes10, namely cerebral malaria (CM), respiratory distress (RD), 
severe malarial anemia (SMA) or a combination of these syndromes (Figs 4 and 5).

The phenotypic analysis of the network revealed an evident trend for patients to cluster according to the 
standard definition of the SM syndromes proposed by the WHO. However, some patient clusters, despite having 
the same composition of standard phenotype allocations, were further separated into new groups (Fig. 4). In 
particular, we wondered why children with RD, or SMA with RD, were segregated into four different clusters 
(clusters 124, 125, 126 and 132 in Fig. 4, dashed ovals) when we might have expected them to lie in a single 
cluster. To provide a biological validation for this partition of patients, we used liquid chromatography tandem 
mass-spectrometry (LC-MS/MS) to characterize the plasma proteome of samples from patients included in these 
clusters. We found that the differences observed in the plasma proteome were larger across clusters than within 
clusters (sFig. 7). The results from the proteomic analysis support the notion that patients belonging to different 

Observations Value

Age in months, median (IQR) Median (IQR) 2,695 44 (27–71)

Sex (female) % 2,695 47.9

Temperature (°C) Mean (SD) 2,674 38.1 (1.01)

Hemoglobin (g/dL) Mean (SD) 2,695 6.57 (2.48)

Parasite density (parasites/µL) Geometric mean (95%CI) 2,695 33,049
(30,692–35,588)

Coma score % [2,695]

  0 41 2.63

  1 261 9.68

  2 694 25.7

  3 520 19.2

  4 401 14.8

  5 748 27.7

Respiratory distress % 2,695 40.8

Severe anemia % 2,695 23.8

Hypoglycemia % 2,042 21.9

Hepatomegaly % 2,662 38.8

Splenomegaly % 2,662 16.8

Transfusion % 2,695 48.8

Table 1. Baseline characteristics of the population studied. Clinical variables were defined as follows: Severe 
anemia (with any parasite density), Hb < 5 g/dL or PCV < 15; Respiratory distress, abnormal respiratory 
pattern (respiratory pattern values > or = 3), grunting or use of accessory muscles of respiration, or abnormally 
deep (acidotic) breathing; Hypoglycemia ≤ 2.2 mM; Hepatomegaly > 2 cm below right costal margin; 
Splenomegaly > 2 cm below left costal margin.
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clusters are biologically different but left the physiological interpretation open (details of the differentially regu-
lated protein can be found in sFig. 7). To investigate this further we both returned to our full feature space and 
performed more experiments.

Figure 2. Clinical heterogeneity of severe malaria. Density heatmap shows the distribution of patients in the 
8-dimensional feature space. Higher density values (in red) indicate closer proximity of patients in this feature 
space. Black dots indicate SM patients who died.

Figure 3. Clinical heterogeneity and mortality in severe malaria. Quantile distribution of patient density (10 
quantiles) and mortality rates and 95% confidence intervals in children with SM. Dotted line indicates average 
mortality in the population studied.
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Figure 4. Network visualization of 2,915 children with severe malaria. A network visualization of the distinct 
clusters (connected components after thresholding) of patients. The nodes are coloured according to the WHO 
definition. The four clusters of respiratory distress and severe anemia that were identified in the network 
(clusters 124, 125, 126 and 132) appeared segregated despite similar WHO-defined clinical composition. CM: 
cerebral malaria; CMRD: cerebral malaria with respiratory distress; RD: respiratory distress; CMSMA: cerebral 
malaria with severe malarial anemia; CMRDSMA: cerebral malaria, respiratory distress and severe malarial 
anemia; RDSMA: respiratory distress with severe malarial anemia; SMA: severe malarial anemia. ‘Others’ 
include children who did not meet criteria to be included as severe malaria syndromes.

Figure 5. Clinical heterogeneity and cluster visualization of severe malaria. A 3D plot to visualize the 
relationship of cluster density showing clinical heterogeneity (lower height) and the distribution of patients in 
the clusters as indicated in Fig. 4. Cluster height indicates patients presenting with a similar set of clinical signs. 
A video to visualize and navigate this figure can be accessed online.
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Clinical Validation of Phenotypes of SM associated with Respiratory Distress and Severe Anemia.  
We sought to account for the clinical difference between the four clusters. The clinical features that determined 
the segregation of the 4 clusters of SM with RD, namely degree of consciousness (Blantyre coma score) and abnor-
mal sleepiness, were clinically non-specific and insufficient to gain any insight into the underlying mechanism of 
disease (Table 1). Despite this, clusters 124 and 132 are clinically very similar for a number of indicators (Table 1) 
and yet have very different mortality rates. We sought to determine what other clinical features best accounted for 
the segregation of the 4 clusters and used sPCA including all 46 clinical variables. This analysis revealed that hepa-
tomegaly (liver enlargement) was the clinical feature that best explained the separation of these clusters (children 
in cluster 132 have both a higher rate of hepatomegaly and a higher death rate than in cluster 124).

We hypothesized that increased liver size in children with severe anemia was due to impaired cardiac function 
(heart failure). To test this hypothesis, we measured the concentration of B-type natriuretic peptide (BNP), a bio-
chemical marker associated with heart failure, in plasma from patients included in these four clusters (Fig. 6b). 
Notably, we observed that plasma BNP concentration was significantly associated with increased mortality only 
in those children presenting with hepatomegaly (Fig. 3). We used a fixed-effects logistic regression model to 
measure the association of BNP and mortality. The unadjusted model did not show any significant association 
(P = 0.11). However, when the analyses were stratified by presence of hepatomegaly we observed a significant 
increase in mortality in those children with higher BNP concentration (OR: 1.74 [95%CI 1.03–2.92], P = 0.035). 
These analyses were adjusted for known confounders, namely presence of respiratory distress and transfusion.

We reasoned that the phenotype revealed by the analysis of a thresholded network was not necessarily cir-
cumscribed to the cluster of interest, but rather the cluster was an indicator of a pathogenic mechanism in the 
population studied. We therefore compared the effect of blood transfusion in the mortality of children with and 
without hepatomegaly. The current WHO clinical guidelines recommend the administration of blood transfusion 
for children with a hemoglobin concentration up to 6 g/dL and the benefit of transfusing children with higher 
hemoglobin concentration is unclear. Thus, we restricted the analysis to moderately anemic children who had 
received blood transfusions (hemoglobin concentration from 7 g/dL to 8 g/dL) and observed that blood transfu-
sion was associated with a 5.5 fold increase in the odds of death (OR 5.52 [95%CI 1.47–20.62] in those children 
with hepatomegaly but not in those without hepatomegaly (OR 0.77 [95%CI 0.17–3.37]) (sTable 3). Due to the 
observational nature of this study we could not establish if the survival of those children with hepatomegaly 
would have increased had these children not received a blood transfusion.

Discussion
In this study, we have used a network-based clustering approach to identify a novel clinical phenotype associated 
with SM in Gambian children. We found that the study of clusters in this network space revealed the role of heart 
failure in children with severe malarial anemia and respiratory distress. These findings are clinically important 
and support the applicability of clustering tools to identify new clinical phenotypes in severe malaria.

To our knowledge, this is the first study that uses a network-based clustering approach to understand disease 
complexity in children with SM. The number of studies that have successfully used network-based tools to gain 
new insights into biology or clinical conditions has increased in recent years, possibly in response to the availabil-
ity of high-density data derived from these models11–13. Here, we provide evidence that the clustering of patients 
in a space of eight clinical features provides a suitable scaffold to integrate new layers of biological information 
and to gain insight into the pathogenesis of SM. Although PCA was used as the initial step for feature selection, 
the underlying rationale for this approach was to identify phenotypes that were clinically important and thus 

Figure 6. Biological validation of clusters/phenotypes associated with RD and SMA. Clinical features 
associated with RD and SMA clusters 124, 125, 126 and 132. Risk of death and concentration of plasma B-type 
natriuretic peptide (BNP) in patients with hepatomegaly (red squares) and patients without hepatomegaly 
(black dots). Error bars denote the 95% confidence interval of the odds of death calculated in the logistic 
regression analysis.
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only PCA-selected variables that were associated with mortality were further used to determine the variables 
specifying our network.

The diversity of clinical presentations of SM poses many challenges for adequate condition management. We 
have observed that the clusters of children with lower homogeneity (larger distances in the defined feature space) 
were associated with the presence of multiple SM syndromes and increased mortality rates. The current definition 
of SM is based on a number of clinical features associated with poor outcome but does not necessarily reflect a 
unique mechanism of disease10. Indeed, this definition captures a widely heterogeneous population of patients 
at high risk of dying with one or more SM syndromes, namely coma, respiratory distress and severe anemia4,14,15. 
Expectedly, the heterogeneity of patients presenting with a single SM syndrome was lower than that of patients 
presenting with multiple SM syndromes. However, patient mortality was significantly higher in areas with larger 
inter-patient distances suggesting clinical phenotypes with higher heterogeneity. Intuitively, the diagnosis and 
clinical management of patients who present with clinical features that depart from the ‘average’ case could be 
more challenging than that of the ‘standard’ patient. However, large-scale prospective clinical studies would be 
required to establish a causal link between cluster heterogeneity and mortality in SM.

In children with SM, respiratory distress is a major risk factor of death generally associated with metabolic 
complications which result directly or indirectly from insufficient oxygen tissue delivery10. However, the patho-
genesis of RD is not completely understood16,17. Unexpectedly, the distribution of patients in the thresholded 
network revealed four clusters of children with RD and SMA: it had been expected they would lie in the clusters 
associated with their clinical labels. We found that hepatomegaly was the clinical feature that accounted for most 
of the variability between the clusters. The clinical relevance of hepatomegaly was initially unclear. Hepatomegaly 
was not one of the eight features selected to derive the original network and it is a non-specific clinical sign 
associated with a large number of conditions18,19. We reasoned that impaired cardiac function was a plausible 
mechanistic explanation for the pathogenesis of hepatomegaly.

A plasma proteomic study was conducted as biological validation of the network partition. In particular, we 
investigated if there was a biological correspondence of the cluster segregation observed in patients with SMA and 
RD (124, 125, 126 and 132). Firstly, we hypothesized that if the network partition was a random result or a ‘math-
ematical artefact’, the analysis of plasma samples from patients in these clusters would yield identical signatures. 
Secondly, we reasoned that if the proteomic signatures were different for each cluster, the proteins identified could 
provide an insight into the mechanism of disease associated with these clusters. Indeed, the plasma proteomic 
analysis of patients in these clusters supported the biological identity of these groups but was not conclusive about 
the role of heart failure (since molecular markers associated with impaired cardiac function are found in plasma 
at concentrations below the resolution achieved by standard mass spectrometry techniques20). We thus measured 
B-type natriuretic peptide (BNP) in plasma samples from patients in these clusters. BNP is a 32-amino-acid 
peptide synthesized primarily in the ventricles in response to ventricular wall stress and left ventricular filling 
pressures21,22. Although the concentration of plasma BNP was high in the four clusters, this molecule was associ-
ated with increased mortality only in those children with SM who were admitted with hepatomegaly. This finding 
supports the notion that hepatomegaly in these patients was a specific indicator of impaired heart function.

This study has limitations. Firstly, the feature space of the patient distribution was determined by few variables 
known to impact the clinical outcome of SM and probably missed the potential impact of other non-prognostic 
variables or even variables that were not collected in the case report form. Secondly, we have only used sparse 
PCA as a feature selection tool, which has advantages but also some important limitations. Thirdly, we have not 
analysed every single cluster or “clinical phenotype” in the SM network. Instead, we have selected four clusters 
based on the observation that these clusters corresponded to a specific “clinical phenotype” (as defined by the 
WHO) but were segregated. With these limitations in mind, we reasoned that the correspondence of these clus-
ters with specific clinical features was biologically meaningful and thus, decided to test the hypothesis that heart 
failure could be an important feature of SM.

A limitation of plasma proteomic studies, including ours, is the broad dynamic range of protein concentra-
tions which range from mg/ml to pg/mL (10 orders of magnitude). Standard LC-MS/MS can only identify pro-
teins at concentrations above high ng/mL even after extensive fractionation. It is therefore possible, that a more 
biologically meaningful signature could have been derived with longer chromatographic gradients or further 
orthogonal fractionation.

The existence of heart failure in SM is controversial and critical for patient management. A number of path-
ogenic mechanisms commonly observed in children with SM such as hypoxia, inflammation and metabolic aci-
dosis alone or in combination may be sufficient to impair cardiac function10. Indeed, evidence of myocardial 
dysfunction has been reported in African children with SM and adults with imported malaria23,24. Similarly, 
increased pulmonary vascular resistance which could cause right-side heart failure has been reported in patients 
with SM25. Notably, in the population studied hepatomegaly was correlated with the degree of anemia. The most 
severe forms of anemia were associated with lower haptoglobin concentrations suggesting ongoing erythrocyte 
destruction and release of free hemoglobin. These findings are compatible with previous observations suggesting 
that free-hemoglobin increases vascular resistance by reducing nitric oxide availability26–28.

Our results indicate that the role of heart failure should be reconsidered as a pathogenic mechanism in SM. 
In light of recent and conclusive observations suggesting that aggressive fluid management increases mortality in 
children with SM, we believe our findings are clinically relevant29,30. The clinical impact of these findings should 
be evaluated in prospective studies. Our data support the notion that a systems analysis of clinical features may 
identify new phenotypes and contribute to our understanding of disease heterogeneity. Failure to capture disease 
heterogeneity may underestimate the benefit of a potentially useful intervention in clinical studies. We anticipate 
that methods that contribute to understand disease complexity could also be valuable tools for fine-tuned patient 
selection in randomized controlled trials.



www.nature.com/scientificreports/

8SCIeNTIfIC RepoRts |  (2018) 8:12849  | DOI:10.1038/s41598-018-31320-w

Methods
Study population. The study population consisted of 2,915 children aged 4 months to 15 years and diag-
nosed with severe malaria according to the WHO definition. Children were admitted to the Royal Victoria 
Teaching Hospital (RVTH) from January 1997 to December 20094,5. The study was originally designed to study 
genetic variants associated with severe malaria5. The initial set of variables used for feature selection included 
those present in the case report form. The list of the variables included is described in Supplementary Table 1.

Clinical definitions. Children aged 4 months to 15 years were eligible for enrolment if they had a blood 
smear positive for asexual P. falciparum parasites and met one or more WHO criteria for SM10: Coma (assessed by 
the Blantyre Coma Score [BCS]7), severe anemia (hemoglobin [Hb] <50 g/L or packed cell volume [PCV] <15), 
respiratory distress (costal indrawing, use of accessory muscles, nasal flaring, deep breathing), hypoglycemia 
(<2.2 mM), decompensated shock (systolic blood pressure less than 70 mmHg), repeated convulsions (>3 during 
a 24 hour-period), acidosis (plasma bicarbonate <15 mmol/L) and hyperlactatemia (plasma lactate >5 mmol/L). 
CM was defined as a BCS of 2 or less with any P.falciparum parasite density. Hepatomegaly was defined as >2 cm 
of palpable liver below the right costal margin. Patients were enrolled in the study if informed consent was given 
by the parent or guardian. The study protocol was approved by the Joint Gambia Government/MRC Ethical 
Committee (protocol numbers 630 and 670).

Laboratory measurements. Hemoglobin was measured with a hematology analyzer (Coulter ® MD II, 
Coulter Corporation, USA) and parasite density was counted on Giemsa-stained thick and thin films. Plasma 
samples were collected and stored following Good Clinical and Laboratory Practice protocols (GCLP) at the 
MRC Laboratories (Gambia) and only thawed once to generate aliquots. Plasma concentration of B-type natriu-
retic peptide (BNP) was measured using commercially available immunoassay (Phoenix Europe, Germany) fol-
lowing manufacturer’s instructions.

Data management and statistical analyses. The data were collected on standardized forms, double 
entered into a database and verified against the original. The original dataset did not contain a large proportion 
of missing values (median of missing values of 3.7% and average of 15.8% for different variables). We chose to 
impute the missing values in order to preserve the largest possible number of variables and patients. Given that 
the percentage of missing values was small, and making the assumption that data were missing at random, we 
used the simple and widely used column mean imputation to impute the missing values. Different imputation 
techniques were assessed, including mean and KNN imputation, and since the results were similar (Rand Index of 
partitionings above 0.80), we were confident that the choice of missing value imputation method did not impact 
the results. Univariate and multivariate logistic regression models were fitted for clinical variables to identify 
clinical features associated with clinical outcome using Stata (v11). The analytical tools described in the following 
sections were implemented in Matlab (R2010a) and some visualisations were performed using the statistical 
environment R (3.5.0).

Feature selection and thresholding. Sparse PCA was used to select clinical features to define the matrix 
of Euclidean pairwise distances between all the data points (patients)6. All variables were normalized prior 
to analysis. Pairs of data points with a Euclidean distance below a given threshold were connected to form an 
unweighted network (see connectivity of the network in sFig. 3). The distance threshold was chosen to be the first 
local maximum of the average clustering coefficient as the threshold was increased from zero to the maximum 
pairwise distance (sFig. 2). This analysis attempts to recover a natural scale at which the data points form relatively 
tight small clusters of patients, where clusters are defined as the distinct connected components recovered after 
thresholding. Pairwise distances and thresholded networks have been successfully used previously to address 
comparable complex networks, ranging from social sciences to genetics31–33.

A similarity matrix containing all the distances between any pair of points (patients) in the dataset was con-
structed in the eight-dimensional space determined by the 8 clinical features selected. In this matrix, smaller 
entries/distances indicated a greater similarity between patients in their clinical presentation. To maximize simi-
larities within clusters and differences between clusters of patients, an appropriate distance threshold was defined 
as a fraction of the maximum pairwise distance between patients. We sought to find a distance threshold that 
maximized the average clustering coefficient but generated a partition with components of sufficient size to derive 
meaningful statistical analysis in relation to clinical outcome (Online methods and sFigs 2, 3). We took a distinc-
tive but simple approach and treated each different connected component in the thresholded network as a cluster 
(we plotted the network using a force (spring)-based algorithm network visualization method).

Calculation of Gaussian density function. A Gaussian kernel density function was used to measure 
closeness of patients in the clinical feature space34. The calculation of individual density for each patient was used 
to measure proximity of patients in the unthresholded clinical feature space. This calculation was thus independ-
ent of cluster allocation in the thresholded network. The density function was defined as follows:

∑= σ
−

D C ex
y

d x y( , )2

Dx is the density associated with patient x, calculated as the sum over all contributions from Gaussian kernels 
centered at every other patient y where d(x, y) is the Euclidean distance and where C corresponds to the Gaussian 
kernels’s normalization constant. The variance selected (σ = 0.2) included all inter-patient distances.
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Proteomic analysis. Plasma samples from 140 Gambian children aged 2 to 59 months were used for pro-
teomic studies. Samples were obtained from patients included in clusters 124, 125, 126 and 132. Individual sam-
ples (5 µl of plasma) were pooled into 3 different groups (~55 µl of plasma per batch) in each cluster category: 35 
individual samples were randomly divided into three groups of 11, 12 and 12 samples (see Fig. 2c). Pooled plasma 
samples were depleted of the top 14 highly-abundant plasma proteins with a multiple affinity removal (MARS) 
column (Agilent, UK) using high-performance liquid-chromatography (HPLC) 1200 series (Agilent, UK). 
Proteins from depleted plasma were precipitated with trichloroacetic acid and quantified using a colorimetric 
assay (BCA Protein assay, Thermo Scientific, US) and further separated by size using SDS-PAGE and bands were 
cut and digested with trypsin. Peptide digests were purified using Sep-Pak C18 columns (Waters, Milford, MA). 
The nano-LC system (final rate 0.3 μl/min) was coupled to LTQ-Orbitrap Velos (Thermo) and searched against 
the human proteome with a false-discovery rate of 1% calculated from target-decoy hits and relative (label-free) 
quantification was based on normalized spectral index quantitation (SINQ)35.
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