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In this paper we present a model to estimate the density of aedes mosquitoes in a com-
munity affected by dengue. The method consists in fitting a continuous function to the
incidence of dengue infections, from which the density of infected mosquitoes is derived
straightforwardly. Further derivations allow the calculation of the latent and susceptible
mosquitoes' densities, the sum of the three equals the total mosquitoes' density. The
method is illustrated with the case of the risk of urban yellow fever resurgence in dengue
infested areas but the same procedures apply for other aedes-transmitted infections like
Zika and chikungunya viruses.
© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Commu-
nications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The main components of the Ross-Macdonald model for vector-borne infections have been estimated with reasonable
degree of accuracy (Amaku et al., 2016, 2013; Coutinho, Burattini, Lopez, & Massad, 2006; Lopez et al., 2016; Massad &
Coutinho, 2012; Massad, Coutinho, Lopez, & da Silva, 2011).

Values for mosquitoes' biting and mortality rates, extrinsic incubation periods, probabilities of transmission from
mosquitoes-to-humans and vice-versa, human recovery and mortality rates from infection, are found in the specialized
ersity of Sao Paulo, Brazil.

unications Co., Ltd.

ting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the
icenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:edmassad@usp.br
http://crossmark.crossref.org/dialog/?doi=10.1016/j.idm.2017.12.001&domain=pdf
www.sciencedirect.com/science/journal/24680427
www.keaipublishing.com/idm
https://doi.org/10.1016/j.idm.2017.12.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.idm.2017.12.001
https://doi.org/10.1016/j.idm.2017.12.001


E. Massad et al. / Infectious Disease Modelling 2 (2017) 441e454442
literature (Liu-Helmersson et al., 2016). Mosquitoes' densities, however, vary from place to place and with time and are
extremely difficult to estimate (Adams & Kapan, 2009). Empirical efforts (Maciel-de-Freitas, Eiras, & Lourenço-de-Oliveira,
2008) to determine the actual size of the mosquitoes populations in affected areas are limited in number and very labori-
ously done. Even these are limited in space and time due to regional and seasonal variations.

Aedes aegypti is known to transmit several infections like dengue virus, yellow fever virus, chikungunya virus, and Zika
virus (ECDC, 2017). Some authors (Larsen& Ashley,1971) suggested to be a potential vector of Venezuelan Equine Encephalitis
virus and vector competency studies have shown Ae. aegypti is capable of transmitting West Nile virus. West Nile virus has
also been isolated from this mosquito species in the field (Turell et al., 2005).

In this paper we propose a method to indirectly estimate the density of aedes mosquitoes in dengue affected areas. The
method is based on incidence data of dengue infections and an application is illustrated with the case of the risk of urban
yellow fever in a dengue infested area of Brazil. It serves, however, for the estimation of the risk of any aedes-transmitted
disease outbreak, like Zika virus, chikungunya, Mayaro, among others (ECDC, 2017).
2. Materials and methods

2.1. Formalism

2.1.1. The Ross-Macdonald model
We use a variant of the classical Ross-Macdonald model, described in details in (Coutinho et al., 2006; Amaku et al., 2015,

2016).
The populations involved in the transmission are human hosts and mosquitoes. Therefore, the population densities are

divided into the following compartments: susceptible humans denoted SH; infected humans, IH; recovered (and immune)
humans, RH; total humans, NH; susceptible mosquitoes, SM; infected and latent mosquitoes, LM; infected and infectious
mosquitoes, IM. The variables and parameters appearing in the model are defined in Tables 1 and 2, respectively.

The model is defined by the following equations:

dSH
dt

¼ �abIM
SH
NH

þ mHðNH � SHÞ

dIH
dt

¼ abIM
SH
NH

� ðmH þ gHÞIH

dRH
dt

¼ gHIH � mHRH

dSM
dt

¼ �acSM
IH
NH

þ mMðLM þ IMÞ þ dNM

dt

dLM
dt

¼ acSM
IH
NH

� gMLM � mMLM

dIM
dt

¼ gMLM � mMIM

dNM

dt
¼

8>><
>>:

0 for constant population size

or

U cosð2pft þ fÞNMðtÞ for seasonal variation
NH ¼ SH þ IH þ RH

NM ¼ SM þ LM þ IM

(1)
Table 1
Model variables and their biological meanings.

Variable Biological Meaning

SH Density of susceptible humans
IH Density of infected humans
RH Density of recovered humans
SM Density of uninfected mosquitoes
LM Density of latent mosquitoes
IM Density of infected mosquitoes



Table 2
Model parameters, their biological meanings and values used.

Parameter Meaning Value Dengue Value Yellow Fever

a Average daily rate of biting 10 month�1 10 month�1

b/byf Fraction of bites actually infective 0.6 variable
mH Human natural mortality rate 1.19 � 10�3 month�1 1.19 � 10�3 month�1

gH/gHyf Human recovery rate 4.0 month�1 6.0 month�1

gM/gMyf Latency rate in mosquitoes 5.6 month�1 4.0 month�1

mM Natural mortality rate of mosquitoes 5.6 month�1 5.6 month�1

c/cyf Dengue susceptibility of A. aegypti 0.6 variable
aH/aHyf Disease-induced mortality rate 0 0.0244 month�1
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Remark 1. This model differs from the classical Ross-Macdonald model because the extrinsic incubation period in the classical
Ross-Macdonald model is assumed to last tdays, whereas in model (1) we assumed an exponential distribution for the latency in
the mosquitoes. The classical Ross- Macdonald model can be obtained from system (1) by replacing the fifth and sixth equations by
(Amaku et al., 2014):

dLM
dt

¼ acSM
IH
NH

� mMLM � acSMðt � tÞ IHðt � tÞ
NHðt � tÞe

�mMt

dIM
dt

¼ acSMðt � tÞ IHðt � tÞ
NHðt � tÞe

�mMt � mMIM

where t is the extrinsic incubation period and mM is the mosquito mortality rate. The expressions developed below in this
paper with equation (1) can be replaced by the corresponding expressions of the classical Ross-Macdonald model described

above by replacing gM
gMþmM

by e�mMt. gM is related to tby t ¼ � 1
mM

ln
�

gM
gMþmM

�
.

The form of the extrinsic incubation period is not known experimentally, to the best of our knowledge. Both assumptions
mentioned above are therefore arbitrary. We choose the exponential decay of latency because it simplifies the calculations.

First we identify a dengue outbreak. For the purposes of this paper, an outbreak is defined as beginning at the moment ti
when the epidemic curve is at its lowest values, that is, when d

dtIHðtiÞ ¼ 0. The outbreak ends at time tf , when d
dtIHðtf Þ ¼ 0

again.

2.1.2. Calculating dengue incidence from notification data in a population previously unexposed to dengue viruses
Second, having identified a dengue outbreak, we fitted a continuous function to the number of actually reported dengue

cases multiplied by 4 to take into account the 4:1 asymptomatic:symptomatic ratio (Ximenes et al., 2016), which has the
form:

IncidenceDENV ðtÞ ¼ c1 exp

"
� ðt � c2Þ2

c3

#
þ c4 (2)

representing the time-dependent dengue infection incidence. In equation (2), c1 is a scale parameter that determines the
maximum incidence, c2 is the time at which the maximum incidence is reached, c3 represents the width of the time-
dependent incidence function and c4 is just another scaling parameters. Equation (2) is intended to reproduce a
“Gaussian” curve and so c1 and c4 are just scale parameters but c2 represents the “mean” (andmode ormaximum) time and c3
represents the “variance” of the time distribution of cases. All parameters ci; i ¼ 1; :::; 4 were fitted to model (2) so that the
force of infection when applied to the dynamical model described below reproduces the observed incidence of dengue for a
given outbreak in a region preferably small.

The first term of the first equation in system of equation (1) models the number of new infections per time unit. In terms of
the classical notation of vector-borne infections (Coutinho et al., 2006), it is equal to the product of the force-of-infection, lðtÞ
times the number of susceptible humans, denoted SHðtÞ. As is well known, the force-of-infection in vector-borne infections is
the product of the biting rate times the probability of transmission from infected mosquitoes to the human hosts, times the
number of infected mosquitoes divided by the total number of humans (Coutinho et al., 2006). In terms of the variables of the
model, the force of infection is defined as follows.

Let SH and IH represent the susceptible and infected humans, respectively, and lðtÞ be the force of infection (or incidence-
density rate) which, as mentioned above, represents the product of the mosquitoes biting rate,a, the probability of trans-
mission from mosquitoes to humans, b, and the number of infected mosquitoes with respect to humans, IM

NH
, and is normally
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denoted l ¼ ab IM
NH
. As mentioned in the subheading of this section, all individuals in this population are considered sus-

ceptible to dengue, that is, SHð0Þ ¼ NH .

Remark 2. Note that lðtÞSHðtÞ is the dengue incidence. Or in detail, Incidence ðtÞ ¼ lðtÞSHðtÞ ¼ ab IMðtÞ
NH

SHðtÞ.
By numerically adjusting model (2) to the actual data we found the values of the parameters ci; i ¼ 1; :::;4 that generate

lðtÞSHðtÞ, that is, the incidence data (reported cases); in other words, the fitted function Incidence DENV ðtÞ (equation (2)) is
used to the system of equation (1) in order to check the incidence lðtÞSHðtÞ.

The fitted incidence (taking into account the 4:1 asymptomatic:symptomatic ratio (Ximenes et al., 2016)), for two
neighborhoods of the city of Rio de Janeiro in 2011e2012, using the parameters values shown in Table 2, are shown in Figs. 1
and 2.
3. Calculating the density of mosquitoes from the incidence of a dengue outbreak

In order to calculate the density of mosquitoes, we shall need the expression and derivatives of the incidence estimated
(fitted) in the previous section.
3.1. Calculating the derivatives of Incidence DENV ðtÞ

From equation (2), we have:

d
dt

IncidenceDENV ðtÞ ¼ �2c1

�ðt � c2Þ
c3

�
exp

("
� ðt � c2Þ2

c3

#)
(3)
Fig. 1. Fitting a continuous function to the incidence of dengue infection in the period between October 2011 and December 2012 in Botafogo, Rio de Janeiro. Dots
represent the actual notified data (x 4, see main text), continuous line the mean incidence and dotted line the 95% Confidence Interval.

Fig. 2. Fitting a continuous function to the incidence of dengue infection in the period between October 2011 and December 2012 in S~ao Crist�ov~ao, Rio de Janeiro.
Dots represent the actual notified data (x 4, see main text), continuous line the mean incidence and dotted line the 95% Confidence Interval.
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d2

dt2
IncidenceDENV ðtÞ ¼ �2c1

c3

(
1�

"
2ðt � c2Þ2

c3

#)
exp

("
� ðt � c2Þ2

c3

#)
(4)

d3 4c
"

2ðt � c Þ2
# "

ðt � c Þ2
#

dt3
IncidenceDENV ðtÞ ¼ 1

c23
ðt � c2Þ 3� 2

c3
exp � 2

c3
(5)
3.2. Calculating the derivatives of SHðtÞ

From the first equation of the Ross-Macdonald model for the susceptible humans we obtain:

d
dt
SHðtÞ ¼ �ab

IMðtÞ
NH

SðtÞ þ mHðNH � SHðtÞÞ (6)

But, as mentioned above, Incidence DENV ðtÞ ¼ lðtÞSHðtÞ ¼ ab IMðtÞ
NH

SðtÞ. Hence:

d
dt
SHðtÞ ¼ �IncidenceDENV ðtÞ þ mHðNH � SHðtÞÞ (7)

Therefore:

SHðtÞ ¼ NH½1� expð � mHtÞ� þ expð � mHtÞ
8<
:SHð0Þ �

Zt

0

expð � mHsÞIncidenceDENV ðsÞds
9=
; (8)

or, in terms of the parameters of equation (2):

SHðtÞ ¼ e�mHtSHð0Þ � c4

�
1� e�mHt

�
mH

þ NH

�
1� e�mHt

�
� c1

ffiffiffiffiffiffiffiffi
c3p

p
2

e

"
c3

	
c2
c3
�mH

2


2

�c2
2
c3

#
e�mHt

�
(
erf

" ffiffiffiffiffi
1
c3

s
t þ ffiffiffiffiffi

c3
p 	

� c2
c3

þ mH
2


#
� erf

� ffiffiffiffiffi
c3

p 	
� c2
c3

þ mH
2


�) (9)

where erf ðxÞ ¼ 1ffiffiffi
p

p
Z x

0
e�t2dt is the error function.

For the numerical simulations, we used SHð0Þ ¼ NH . This is consistent with the case when the population do not have a
history of previous exposure to dengue.

Hence:

d2

dt2
SHðtÞ ¼ � d

dt
IncidenceDENV ðtÞ � mH

d
dt
SHðtÞ (10)

d3 d2 d2
dt3
SHðtÞ ¼ �

dt2
IncidenceDENV ðtÞ � mHdt2

SHðtÞ (11)
3.3. Calculating the derivatives of IHðtÞ

From the second equation of the Ross-Macdonald model for the infected humans we obtain:

d
dt
IHðtÞ ¼ ab

IMðtÞ
NH

SðtÞ � ðmH þ gHÞIHðtÞ ¼ IncidenceDENV ðtÞ � ðmH þ gHÞIHðtÞ (12)
which can be solved by standard methods resulting in:
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IHðtÞ ¼ IHð0Þe�ðmHþgHÞt þ
Zt

0

eðmHþgHÞðx�tÞIncidenceDENV ðxÞdx (13)
For the numerical simulations, we used IHð0Þ ¼ IncidenceDENV ð0Þ
ðmHþgHÞ , which follows from equation (12) and implies d

dtIHð0Þ ¼ 0.

Note that when the population do not have a history of previous exposure to dengue, IncidenceDENV ð0Þ ¼ 1, meaning that one
case was introduced in the population.

3.4. Calculating the number of mosquitoes NMðtÞ ¼ SMðtÞ þ LMðtÞ þ IMðtÞ

3.4.1. Infective mosquitoes IMðtÞ
We know that:

IncidenceDENV ðtÞ ¼ lðtÞSHðtÞ ¼ ab
IMðtÞ
NH

SðtÞ (14)

Therefore:
IMðtÞ ¼ NH

SHðtÞ
IncidenceDENV ðtÞ

ab
(15)

d NH 1
�
d IncidenceDENV ðtÞ d

�

dt
IMðtÞ ¼

SHðtÞ ab dt
IncidenceDENV ðtÞ � SHðtÞ dt

SHðtÞ (16)

d2 N 1
(
2Incidence ðtÞ	 d


2 Incidence ðtÞ d2
dt2
IMðtÞ ¼ H

SHðtÞ ab
DENV

ðSHðtÞÞ2 dt
SHðtÞ � DENV

SHðtÞ dt2
SHðtÞ

� 2
SHðtÞ

d
dt
SHðtÞ

d
dt

IncidenceDENV ðtÞ þ
d2

dt2
IncidenceDENV ðtÞ

� (17)

d3 N 1
(

6
	
d


3 5
	
d


2 d

dt3

IMðtÞ ¼ H

SHðtÞ ab
�
ðSHðtÞÞ3 dt

SHðtÞ IncidenceDENV ðtÞ þ ðSHðtÞÞ2 dt
SHðtÞ dt

IncidenceDENV ðtÞ

þ 4

ðSHðtÞÞ2
	
d
dt
SHðtÞ


	
d2

dt2
SHðtÞ



IncidenceDENV ðtÞ �

3
ðSHðtÞÞ

d2

dt2
SHðtÞ

d
dt

IncidenceDENV ðtÞ

� 3
ðSHðtÞÞ

d
dt
SHðtÞ

d2

dt2
IncidenceDENV ðtÞ �

IncidenceDENV ðtÞ
ðSHðtÞÞ

d3

dt3
SHðtÞ þ

d3

dt3
IncidenceDENV ðtÞ

�
(18)
3.4.2. Latent mosquitoes LMðtÞ
From the sixth equation of the Ross-Macdonald model for the infected mosquitoes we obtain:

d
dt
IMðtÞ ¼ gMLMðtÞ � mMIMðtÞ (19)

Therefore:
LMðtÞ ¼ 1
gM

�
d
dt
IMðtÞ þ mMIMðtÞ

�
(20)

Hence:
d
dt
LMðtÞ ¼ 1

gM

�
d2

dt2
IMðtÞ þ mM

d
dt
IMðtÞ

�
(21)

d2 1
�
d3 d2

�

dt2

LMðtÞ ¼
gM dt3

IMðtÞ þ mMdt2
IMðtÞ (22)
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3.4.3. Susceptible mosquitoes SMðtÞ
From the fifth equation of the Ross-Macdonald model for latent mosquitoes we obtain:

d
dt
LMðtÞ ¼ ac

IHðtÞ
NH

SMðtÞ � ðmM þ gMÞLMðtÞ (23)

Therefore:
SMðtÞ ¼ NH

acIHðtÞ
�
d
dt
LMðtÞ þ ðmM þ gMÞLMðtÞ

�
(24)
Hence:

d
dt
SMðtÞ ¼

�
NH

acIHðtÞ
�
d2

dt2
LMðtÞ þ ðmM þ gMÞ d

dt
LMðtÞ

�
� NH

acI2HðtÞ
d
dt
IHðtÞ

�
d
dt
LMðtÞ þ ðmM þ gMÞLMðtÞ

�)
(25)
The total size of the mosquitoes population, NMðtÞ is given by:

NMðtÞ ¼ SMðtÞ þ LMðtÞ þ IMðtÞ (26)

or
NMðtÞ ¼
�

NH

acIHðtÞ
�
d
dt
LMðtÞ þ ðmM þ gMÞLMðtÞ

�
þ 1
gM

�
d
dt
IMðtÞ þ mMIMðtÞ

�
þ NH

SHðtÞ
Incidence DENV ðtÞ

ab

�
(27)
4. Illustrating the method

4.1. Example of applications

4.1.1. Testing the model's experimental consistency
In order to test the model's accuracy, we applied the formalism above to the borough of Olaria in Rio de Janeiro. Olaria is

located at the north of the city of Rio de Janeiro and is a traditional suburban residential area of the city. In the 2000 census,
Olaria had an estimated population of 62,509 inhabitants in an area of around 3.7 km2.

This borough was chosen because in 2007 Maciel-de-Freitas et al. (2008) carried out a study in the area, in which they
estimated, through the MosquiTrap and aspirator method, the population of Aedes aegyptii. In the estimated 0.79 km2 area
covering the average flight range of aedes mosquitoes, the authors found 3505 and 4828 female mosquitoes in the
MosquiTrap and aspirator, respectively, totalizing 8333.

Using the data from dengue in the same period, themodel estimated a total aedes population in the 0.79 km2 area of Olaria
in a period of two weeks as 8145 ± 12 female mosquitoes, which is a good approximation to the empirical data.

4.1.2. The case of dengue in two other neighborhoods of Rio de Janeiro
After fitting the dengue incidence in a given outbreak for a specific region, we used the above formalism to calculate the

total mosquito density by simulating system (1). For this, we need, in addition to the parameters values as in Table 2, the initial
condition for the susceptible mosquitoes, SMð0Þ.

� Botafogo

Botafogo is a beachfront neighborhood of the city of Rio de Janeiro, Southeastern Brazil. It is essentially an upper middle
class with small commerce community, with a population of about 83,000 people, distributed in an area of 479.90 ha.

We used dengue data for the period between October 2011 and December 2012, comprising 3140 infections. Fig. 1 shows
the fitting of equation (2) to the monthly number of dengue infections in Botafogo. The parameters values used in the cal-
culations are shown in Table 2.

� S~ao Crist�ov~ao

S~ao Crist�ov~ao is a traditional neighborhood located in the Central area of Rio de Janeiro, Brazil. With a population of about
26,000 people distributed in an area of 410.56 ha, S~ao Crist�ov~ao experienced 3248 dengue infections in the period between
October 2011 and December 2012.



Fig. 3. Estimation of the size of the Aedesmosquitoes' population from the incidence of dengue infection in the period between October 2011 and December 2012
in Botafogo (red lines) and S~ao Crist�ov~ao (black lines) Rio de Janeiro. Continuous line the mean mosquitoes' population size and dotted line the 95% Confidence
Interval.
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Fig. 2 shows the fitting of equation (2) to the monthly number of dengue infections in S~ao Crist�ov~ao.
In Fig. 3 we show the result of the calculation of the total number of Aedes mosquitoes in both neighborhoods, using the

parameters as in Table 2.

� Combining the data from both neighborhoods

In this section, we show that the method can be used for small geographical areas where the infection transits by
mosquitoes' movements but can also be applied for larger aggregated areas, where the infection transits by infected humans
movements.

Let us call the incidence in areas 1 and 2 as Incidence1ðtÞ and Incidence2ðtÞ, respectively, and defined as:

Incidence1ðtÞ ¼ abIM1
ðtÞ SH1

ðtÞ
NH1

ðtÞ;

and

Incidence2ðtÞ ¼ abIM2
ðtÞ SH2

ðtÞ
NH2

ðtÞ

(28)

Incidence1þ2ðtÞ ¼ ab
�
IM1

ðtÞ SH1
ðtÞ

NH1
ðtÞ þ IM2

ðtÞ SH2
ðtÞ

NH2
ðtÞ

�
(29)

If we define:

IM1
ðtÞ ¼ qIMðtÞ;

IM2
ðtÞ ¼ ð1� qÞIMðtÞ;

SH1
ðtÞ ¼ pSHðtÞ;

SH2
ðtÞ ¼ ð1� pÞSHðtÞ;

NH1
ðtÞ ¼ pNHðtÞ; and

NH2
ðtÞ ¼ ð1� pÞNHðtÞ;

(30)

then:

Incidence1þ2ðtÞ ¼ ab
�
qIMðtÞ pSHðtÞ

pNHðtÞ
þ ð1� qÞIMðtÞ ð1� pÞSHðtÞ

ð1� pÞNHðtÞ
�

(31)

and the fractions q; ð1� qÞ;p and ð1� pÞ cancel out, reducing equation (31) to equation (14).

Remark 3. About the above calculation, one should note that: (1) the values of p and q can be time-dependent; (2) the formalism
can be extended to any number of sites. Note, however, that by combining sites we lose the spatial distribution of mosquitoes. We
get only the total number.

Fig. 4 illustrates this reasoning for the neighborhoods of Botafogo and S~ao Crist�ov~ao combined.
Note that the numerical simulation is a good approximation of the sum of the number of mosquitoes of each borough.



Fig. 4. Estimation of the size of the Aedesmosquitoes' population from the incidence of dengue infection in the period between October 2011 and December 2012
in Botafogo and S~ao Crist�ov~ao. Black lines represent the sum of both neighborhoods and red line the combination of them. Continuous line the mean mosquitoes'
population size and dotted line the 95% Confidence Interval.
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5. Calculating dengue incidence from notification data in a population previously exposed to dengue viruses

The only modification necessary for this case from the previous discussed formalism occurs when we test the model's
consistency. When the population has been previously exposed to dengue, the boundary conditions must be modified.

In this case only a fraction p of the human population is susceptible to dengue due to previous epidemics, that is
SHð0Þ/pNH � IHð0Þ and RHð0Þ/ð1� pÞNH in the initial conditions of system (1). The implications of this is as follows.

First, consider the Effective Reproduction Number, Reff ðtÞ (Massad & Coutinho, 2012) of system (1):

Reff ðtÞ ¼
a2bcgmNmðtÞ

mMðmH þ gHÞðmM þ gMÞNH

pS*HðtÞ
NH

(32)

where S*Hð0Þ ¼ NH . There is a threshold pth that makes Reff ðtÞ<1for t >0.
When p/pth, then it is necessary a larger mosquitoes population to explain the same number of infections observed.

When p<pth, then it is impossible to have an outbreak in these places and the formalism breaks down. When p ¼ 1, then we
have a minimum mosquitoes population that reproduces the observed number of cases. In contrast, when p/pth, the
mosquitoes population tends to its maximum size. This maximum size is calculated using the expression of R0 ¼ 1 (R0 is
Reff ðt ¼ 0Þ). Therefore, in the case where the population has been previously exposed to dengue, the total size of the sus-

ceptible mosquitoes population (density) is given by pS*HðtÞð0 � p � 1Þ.

6. Digging a little bit more on the methodology proposed: testing the model's theoretical consistency

In this section, we examine how the method proposed above deals with an artificially constructed outbreak. To artificially
construct an outbreak of a hypothetical vector-borne infection we specify a function NMðtÞ (see below) and use it in a con-
ventional Ross-Macdonald model.

We know (Coutinho et al., 2006; Amaku et al., 2015, 2016) that a pure Ross-Macdonald model usually produces a single
outbreak with a narrow and high peak in the incidence of cases (later we show an exception). In nature, these narrow and
high peak are seldom observed because, as explained in (Amaku et al., 2016) the outbreak is produced in waves, that is, the
disease travels throughout a geographical area. The Ross-Macdonald model only reproduces an outbreak of this type if we
concentrate on data from an area small enough (of the order of the area covering few times the mosquitoes' flight range).

We produced three pure Ross-Macdonald models, one with a constant mosquito population and two in which the
mosquito population oscillates with time (the incidence in one of these last outbreaks is bi-modal with time). In the three
cases, not surprisingly, we discovered that we could not fit the outbreakwith the 'Gaussian' type of function as in equation (2).
The resulting fit was always broad and the mosquito's population retrieved was in poor agreement with the artificial input.
We tried to solve this problem by replacing equation (2) with (31):

Incidence ¼ c1sech
2ðc2t þ c3Þ þ c4 (33)

but the fitted outbreak was not good in the case of the one-modal outbreak and, of course, very poor for the bi-modal
outbreak.

With these artificially created outbreaks, we used a different approach to retrieve the mosquito population that, in this
case, we pretend not to know. First we calculated, from the artificially constructed incidence, the values of SHðtÞ from equation
(8) and IMðtÞ from equation (15). Then, by numerically differentiating, when necessary, from equations (16)e(27), we



Fig. 5. (a) Dengue incidence outbreak constructed with a constant mosquito population. (b) Calculated number of mosquito populations (blue line) compared
with that generated by a Ross-Macdonald model assuming a constant mosquito population (red line).

Fig. 6. (a) Dengue incidence outbreak constructed with a seasonal mosquito population. (b) Calculated number of mosquito populations (blue line) compared
with that generated by a Ross-Macdonald model assuming a seasonalmosquito population (red line).
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Fig. 7. (a) Dengue incidence outbreak constructed with the same seasonal mosquito population as in Fig. 6 but with a different initial condition for the infected
humans. (b) Calculated number of mosquito populations (blue line) compared with that generated by a Ross-Macdonald model assuming a seasonalmosquito
population (red line).
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calculated the values of LMðtÞ and SMðtÞ. Next we checked the above calculations by using the value of the artificially con-
structed incidence to calculate the human prevalence IHðtÞ as in equation (13) and then IMðtÞ, LMðtÞ and SMðtÞ by solving the
differential equations of the Ross-Macdonald model (1). Note that, as mentioned above, this approach is not suitable to be
applied to natural outbreaks, unless the data from outbreak is obtained from a very limited geographical area, where the
infection transits by infected mosquitoes movements.

In Fig. 5 (a and b) we show the incidence of one artificially constructed outbreak assuming a constant mosquitoes pop-
ulation (see Fig. 5a) and the retrieved number of mosquitoes populations using only the generated outbreak's incidence and
compare it with the number of mosquitoes generated by the Ross-Macdonald model (see Fig. 5b). As can be seen, the
agreement is almost perfect.

In Fig. 6 (a and b) we show the incidence of an artificially constructed outbreak assuming an oscillating mosquitoes
population according to equation (34).

dNMðtÞ
dt

¼ U cosð2pft þ fÞNMðtÞ (34)
In Fig. 6a we show the generated artificially outbreak and in Fig. 6b we show the retrieved number of mosquitoes pop-
ulations using only the generated outbreak's incidence and compare it with the number of mosquitoes generated by a Ross-
Macdonald model, assuming an oscillating mosquitoes population according to equation (34). As can be seen, the agreement
is almost perfect.

In Fig. 7a we show a bi-modal outbreak generated by a oscillating population of mosquitoes as in equation (34). The bi-
modal outbreak is obtained by using a different set of initial conditions. Finally in Fig. 7b we show the retrieved number
of mosquitoes populations using only the generated outbreak's incidence and compare it with the number of mosquitoes
generated by a Ross-Macdonald model. Again in this case the agreement is almost perfect.
7. Estimating the risk of urban yellow fever resurgence in dengue endemic cities

In this section, we calculate the risk of yellow fever resurgence and the expected number of autochthonous cases in the
neighborhoods of Botafogo and S~ao Crist�ov~ao analysed in section 4.1.2. This risk was calculated assuming an infected traveler,
arriving at each month of the year in any one of those neighborhoods.
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First we used the number of mosquitoes from dengue incidence from equation (27), described in section 4.1.2 for the
dengue season of 2011e2012. Then we used the Ross-Macdonald model, described below, with the parameters related to
yellow fever, denoted by the subscript yf and as initial conditions for the susceptible individuals the respective populations of
these Rio's neighborhoods. The model has the form:

dSH
dt

¼
	
� abyf IM

SH
NH

þ mHðNH � SHÞ


qðt � t0Þ

dIH
dt

¼
	
abyf IM

SH
NH

�
�
mH þ gHyf

þ aHyf

�
IH



qðt � t0Þ

dRH
dt

¼ gHyf
IH � mHRH

dSM
dt

¼ �acyf SM
IH
NH

þ mMðLM þ IMÞ þ dNM

dt

dLM
dt

¼ acyf SM
IH
NH

� gMyf
LM � mMLM

dIM
dt

¼ gMyf
LM � mMIM

NH ¼ SH þ IH þ RH

NM ¼ SM þ LM þ IM

(35)

where qðt � t0Þ is the Heaviside equation and simulates the arrival of the infected traveler at t ¼ t0 .
dNM
dt is the sum of equations

(16), (21) and (25). As mentioned before SHð0Þ is assumed to be the whole population of each neighborhood and IHð0Þ ¼ 1.

Remark 4. SHðtÞ, IHðtÞ and RHðtÞ are densities (Amaku et al., 2015). Therefore, to assume IHð0Þ ¼ 1 is to assume that a number of
infected travelers invade the neighborhood and that their densities is 1 individual per unit area. This is unimportant if the area is
small enough.

For the neighborhood of Botafogo, the maximum number of autochthonous cases is reached when the imported infection
arrives at around 7 months after October 2011, with the number of yellow fever infections peaking between 5 and 11 and
serious cases peaking between 1 and 2 (Fig. 7).

For the neighborhood of S~ao Crist�ov~ao, the maximum number of autochthonous cases is reached when the imported
infection arrives at around 4months after October 2011, with the number of yellow fever infections peaking between 5 and 11
and serious cases peaking between 1 and 2 (Fig. 8).

To complete the above analysis, we calculated the probability that one infected traveler arriving in February 2012would
generate at least one autochthonous yellow fever case, as shown in Fig. 9.

As mentioned above, the risk of urban yellow fever resurgence depends on the size of the Aedes mosquitoes population
and its vectorial competence. As explained in the main text, this is defined as the relative reduction in the parameters c and b
specific for yellow fever with respect to those specific for dengue. Hence, for instance, we used the value 0.6 for both
parameters in the case of dengue andmultiplied c and b for yellow fever by a factor varying from 0 to 1. Note that we assumed
that the local Aedes mosquitoes are always more competent to transmit dengue than yellow fever (Massad, Coutinho,
Burattini, & Lopez, 2001).

We then calculated:
Fig. 8. Total cases of yellow fever in the neighborhood of Botafogo (black line) and symptomatic cases (red line). Dotted lines represent the 95% confidence
interval.



Fig. 9. Total cases of yellow fever in the neighborhood of S~ao Crist�ov~ao (black line) and symptomatic cases (red line). Dotted lines represent the 95% confidence
interval.
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1) the risk of yellow fever introduction (the probability of at least one autochthonous cases in the first generation of infective
travelers) by one infective traveler to the neighborhoods of Rio de Janeiro arriving in February 2012. We remind that there
was a huge outbreak of dengue in this dengue year of 2011e2012; and

2) the expected number of YF infections in theworst scenario after one year, that is, when the traveler arrives in themonth of
February 2012, both as a function of the local Aedes vector competence.
8. Discussion and conclusions

In this paper we present a model to estimate the density of Aedes mosquitoes in a community affected by dengue. The
model is based on the fitting of a continuous function to the incidence of dengue infections, fromwhich the density of infected
mosquitoes is derived straightforwardly. Further derivations allows the calculation of the latent and susceptible mosquitoes'
densities, the sum of the three equals the total mosquitoes' density. The model is illustrated with the case of the risk of urban
yellow fever resurgence in dengue infested areas but the samemethods apply for other Aedes-transmitted infections like Zika
and chikungunya viruses.

Themodel demonstrated to be reliable as the example of the Olaria neighborhood shows. It retrieved the actual number of
mosquitoes collected in the area with good accuracy.

One caveat is worth noting; the Ross-Macdonald model assumes homogenously mixing population. Therefore, intro-
ducing one infected individual means to introduce a density of infected individuals that is homogeneously distribute over the
whole area (Amaku et al., 2016). Therefore, the smaller the area we apply the model, the more reliable the results are.

The conclusion of the above analysis is that there is a positive and non-negligible risk of urban yellow fever resurgence in
some dengue endemic areas due to their high Aedesmosquitoes densities. The actual risk will be dependent on the probability
that at least one infective human arrives at the right moment of the year, that is, when the local population of aedes
mosquitoes is increasing in size and also on their vector competence. The examples provided in this paper are only intended
to illustrate the method and more accurate parameters estimations are necessary for the true estimation of the risk of
resurgence of urban yellow fever in those areas infested by Aedes aegypti. Finally, estimating the risk of urban yellow fever
resurgence is central for the designing of an optimum vaccination strategy due to the yellow fever vaccine adverse events
(Massad, Coutinho, Burattini, Lopez, & Struchiner, 2005).
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