Brugman, VA; Medlock, JM; Logan, JG; Wilson, AJ; Lindsay, SW; Fooks, AR; Mertens, PPC; Johnson, N; Carpenter, ST (2018) Bird-biting mosquitoes on farms in southern England. The Veterinary record. ISSN 0042-4900 DOI: https://doi.org/10.1136/vr.104830

Downloaded from: http://researchonline.lshtm.ac.uk/4648845/

DOI: 10.1136/vr.104830

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
Bird-biting mosquitoes on farms in southern England

Victor Albert Brugman,1,3 Jolyon M Medlock,3,4 James G Logan,2 Anthony J Wilson,1 Steve W Lindsay,2,5 Anthony R Fooks,6,7 Peter P C Mertens,1,8 Nicholas Johnson,6,9 Simon T Carpenter1

Mosquitoes that blood-feed on avian hosts are important vectors of many arthropod-borne viruses (arboviruses). In Europe, these include West Nile virus (WNV), Usutu virus (USUTV) and Sindbis virus.1–3 These are all maintained in enzootic bird-mosquito-bird cycles and are important veterinary and medical threats to the UK.4 5 Principally, veterinary concerns lie with the risks to domestic animals, such as the incidental spillover infection of horses with WNV which may lead to serious neurological sequelae.6 7 Wildlife may also be affected, with certain wild birds being highly susceptible to infection and death with USUTV,8 although poultry are less susceptible.9 10 To date, UK surveillance for these viruses has not yielded evidence of active virus transmission11–14 although serological evidence has been reported.15 16

Farms provide larval habitat for the development of a wide diversity of mosquitoes17–19 close to domestic animals and wildlife. Previously, we reported empirical data of mosquitoes on farms in the UK feeding on both resident and migratory birds.20 Additionally, some of these species feed on humans at farm sites,21 demonstrating the potential for spillover of viruses into these populations.

Studies using animal-baited traps provide data on the biting rates on key hosts.22 Several investigations using bird-baited traps (BBT) have been undertaken in Europe (eg, Czech Republic,23 France,24 25 Portugal26 and Sweden27) but UK data are limited to a single study.28 This investigation aimed to identify the ornithophilic activity of UK farm-associated mosquitoes using BBTs run alongside standard artificial surveillance traps.

The study was conducted between June and October 2013 on four mixed livestock farms in Oxfordshire, Kent, Hampshire and Surrey (see table 1 for habitat classifications according to Laird29). This region is considered to be at high risk of potential outbreaks as it is the warmest part of the country during the summer and early autumn when the biting activity of mosquitoes is likely to be highest. Trapping was conducted overnight (~12 hours) for nine nights on each farm using two BBTs, one set at 1 m and the second set at 4 m from the ground. A Mosquito Magnet Pro trap (MMP) (Midgetech, Stirling, UK) baited with 1-octen-3-ol was placed approximately 100 m away. A one-hour human landing catch (HLC) was additionally performed by one collector starting 30 minutes before sunset.

BBTs used chickens as bait and were constructed from pine stripwood, galvanised wire mesh and insect-proof netting (BioQuip, California, USA) (figure 1). Mosquitoes entered the trap via two gutter-like ‘baffles’ and were trapped in the top and side sections from where they were aspirated. The traps were modified from their original design24 following discussion with the Home Office where prevention of biting was recommended. Contact between chickens and mosquitoes was, therefore, prevented via an internal netting layer. Floor space was also increased, and a perch bar added to ensure the chickens were not stressed. Six chickens (ISA/Warren crossbreed) were maintained on a standard diet of layer pellets and two randomly allocated to each trap per evening; food (layer pellets and mixed corn) and water were provided throughout. Preliminary
described molecular methods.20 32 Maculipennis sl were then delineated using previously identified as Cx torrentium and Cx pipiens lato (sl) from The Pirbright Institute colony placed into farms, except the Oxfordshire site, yielded mosquitoes. or species complexes, were collected (table 2). All specimens were identified morphologically using standard keys. 30 31 Specimens compared with 0–12 per cent when unbaited. that the BBTs retained 24–65 per cent of mosquitoes BBT, bird-baited trap ‘high’ position; BBL, bird-baited trap ‘low’ position; HLC, human landing catch; MMP, Mosquito Magnet Pro trap, baited with 1-octen-3-ol.

Table 1 Details of each farm together with habitat classifications present on each according to Laird,29 as follows: (1) flowing streams; (2) ponded ponds; (6) shallow temporary pools; (7) intermittent ephemeral puddles; (8) natural containers; (9) artificial containers; (10) natural subterranean waters; (11) artificial subterranean waters.

<table>
<thead>
<tr>
<th>Farm location</th>
<th>Livestock present</th>
<th>General description</th>
<th>Habitat categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxfordshire (51.714399, -1.389034)</td>
<td>Sheep, cattle, horses</td>
<td>Inland, lowland farm surrounded by small villages and other agricultural holdings.</td>
<td>1, 2, 5, 6, 7, 9</td>
</tr>
<tr>
<td>Kent (51.377201, 0.783809)</td>
<td>Sheep, cattle</td>
<td>Coastal grazing marsh in the Thames estuary. Large numbers of UK-resident and local migratory birds present.</td>
<td>1, 2, 4, 5, 6, 7, 9</td>
</tr>
<tr>
<td>Hampshire (50.822415, -0.952401)</td>
<td>Sheep, cattle</td>
<td>Coastal grazing marsh and mixed arable farm on Hayling Island.</td>
<td>1, 2, 4, 5, 6, 7, 9</td>
</tr>
<tr>
<td>Surrey (51.312052, -0.637904)</td>
<td>Cattle</td>
<td>Smallholding bordered by woodland and close to Her Majesty’s Prison Coldingley.</td>
<td>2, 6, 7, 9</td>
</tr>
</tbody>
</table>

Field testing, conducted inside an insect-proof tent (Insectopia, Austrey, UK) and using Culex pipiens sensu lato (sl) from The Pirbright Institute colony placed into the collection section of the trap overnight, showed that the BBTs retained 24–65 per cent of mosquitoes compared with 0–12 per cent when unbaited. Collected mosquitoes were identified morphologically using standard keys.30 31 Specimens identified as Cx p. sensu lato (sl) and Anopheles maculipennis sl were then delineated using previously described molecular methods.20 32

A total of 610 unfed female mosquitoes, of 16 species or species complexes, were collected (table 2). All farms, except the Oxfordshire site, yielded mosquitoes. The BBTs collected three species/species complexes: Cx p. sensu lato (sl) and Anopheles maculipennis sl were then delineated using previously described molecular methods.20 32

Table 2 The total number of mosquitoes collected during the study

<table>
<thead>
<tr>
<th>Species</th>
<th>Kent farm</th>
<th>Hampshire farm</th>
<th>Surrey farm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BBH</td>
<td>BBL</td>
<td>HLC</td>
</tr>
<tr>
<td>Aedes geniculatus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aedes conspersus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aedes vexans</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aedes flavescens</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aedes punctular</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aedes ruficollis</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aedes species (damaged)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anopheles atroparvus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>An claviger</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>An plumbeus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Coquillettidia richiardii</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Culicoides annulatus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cu scoticus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cu s. scoticus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Culex modestus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. pipiers form f. pipiens</td>
<td>8</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>C. pipiers sensu lat. (f)*</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. pipiers sl/Cx torrentium</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Totals / total</td>
<td>8</td>
<td>10</td>
<td>114</td>
</tr>
</tbody>
</table>

No mosquitoes were collected from the Oxfordshire farm, therefore this site is omitted from the table.

*Specimens separated from Cx torrentium but could not be separated to ecoform.

†Specimens which could not be separated.

BBH, bird-baited trap ‘high’ position; BBL, bird-baited trap ‘low’ position; HLC, human landing catch; MMP, Mosquito Magnet Pro trap, baited with 1-octen-3-ol.
on chickens in Kent but here was absent from the BBTs. *Anopheles* species generally fly upwards upon hitting a vertical surface and thus the gutter design may have lessened the chances of entry for mosquitoes of this genus. Furthermore, unlike in the original design, mosquitoes were prevented from feeding on the birds which may have resulted in greater escape from the trap, as shown in other studies and as indicated by the variability in observed retention rates in the preliminary experiments. The recorded numbers may, therefore, be underestimates of true ornithophilic mosquito activity on these sites. Conversely, the numbers do fall within the range of the previous UK bird-baited trapping study which reported a combined mean of 1.05 mosquitoes/night for *Cx pipiens* sl and *Culiseta morsitans*.

Despite the challenges of using animal-baited mosquito traps, the data generated using BBTs in this study are important to complement and validate data on mosquito host-seeking and feeding behaviour gained from surveillance studies, intensive HLCs and blood meal analyses. The results also demonstrate that farms with the same apparent habitat types present (Kent and Hampshire) may support a vastly different mosquito species diversity. Collectively, the ornithophilic and anthropophilic behaviour of farm-associated mosquitoes highlights their potential importance in enzootic and bridge arbovirus transmission in the event of a UK outbreak. Given current concerns regarding the invasion of exotic arboviruses, it would be prudent to increase awareness among the equine veterinary community in particular of clinical signs of mosquito-borne arboviruses in horses. These workers can play a key role in maintaining expertise in the wider community and offer preventive advice in the event of an outbreak. The simplest practical control measure targeted at mosquitoes would be to regularly empty stagnant water sources to disrupt larval habitats, which would be particularly important in reducing populations of key vector species *Cx pipiens* sl.

Acknowledgements We gratefully acknowledge the support of all the farms, farm workers and research groups involved in the study, particularly those involved with routine chicken care. We thank Thomas Balenghien for providing details of the original bird-baited trap design.

Funding The project was conducted as part of VAB’s PhD funded by the UK’s Biotechnology and Biological Sciences Research Council (BBSRC, grant number BB/F016492/1), and The Pirbright Institute. ARF and NJ were financially supported by the UK Department for Environment, Food and Rural Affairs, Scottish and Welsh governments (Defra grant SV3045).

Competing interests None declared.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made are made. See: https://creativecommons.org/licenses/by/4.0/.

© British Veterinary Association 2018. Re-use permitted under CC BY. Published by BMJ.

References

5 Medlock JM, Snow KR, Leach S. Possible ecology and epidemiology of medically important mosquito-borne arboviruses in Great Britain. Epidemiol Infect 2007;135:466–82.
43 Department of health. West Nile virus: a contingency plan to protect the public’s health, 2004.