Cluster Randomized Test-Negative Design (CR-TND) Trials: A Novel and Efficient Method

to Assess the Efficacy of Community Level Dengue Interventions

Katherine L. Anders[#], Zoe Cutcher[#], Immo Kleinschmidt, Christl A. Donnelly, Neil M.

Ferguson, Citra Indriani, Scott L. O'Neill, Nicholas P. Jewell, and Cameron P. Simmons

These authors contributed equally to this work

Correspondence to: Dr. Katherine Anders, Institute of Vector-Borne Disease, Monash

University, 12 Innovation Walk, Clayton 3800, Victoria, Australia (tel: +61 3 9905 2713; e-

mail: katie.anders@worldmosquito.org)

Author affiliations: Institute of Vector-Borne Disease, Monash University, Melbourne,

Australia (Katherine L. Anders, Zoe Cutcher, Scott L. O'Neill, Cameron P. Simmons); MRC

Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London

School of Hygiene and Tropical Medicine, London, UK, and School of Pathology, Faculty of

Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (Immo

Kleinschmidt); Medical Research Council Centre for Outbreak Analysis and Modelling,

Department of Infectious Disease Epidemiology, School of Public Health, Imperial College

London, London, UK (Christl A. Donnelly, Neil M. Ferguson); Department of Biostatistics,

Epidemiology and Population Health, Centre for Tropical Medicine, Faculty of Medicine,

Universitas Gadjah Mada, Yogyakarta, Indonesia (Citra Indriani); School of Public Health,

University of California, Berkeley, California (Nicholas P. Jewell).

Funding: This work was supported by the Bill and Melinda Gates Foundation and the

Wellcome Trust.

Conflict of interest: The authors declare they have no conflict of interest.

Running head: Cluster Randomized Test-Negative Design Trials

© The Author(s) 2018. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Cluster randomized trials are the gold standard for assessing efficacy of community-level

interventions, such as vector control strategies against dengue. We describe a novel cluster

randomized trial methodology with a test-negative design, which offers advantages over

traditional approaches. It utilizes outcome-based sampling of patients presenting with a

syndrome consistent with the disease of interest, who are subsequently classified as test-

positive cases or test-negative controls on the basis of diagnostic testing. We use

simulations of a cluster trial to demonstrate validity of efficacy estimates under the test-

negative approach. This demonstrates that, provided study arms are balanced for both test-

negative and test-positive illness at baseline and that other test-negative design

assumptions are met, the efficacy estimates closely match true efficacy. We also briefly

discuss analytical considerations for an odds ratio-based effect estimate arising from

clustered data, and outline potential approaches to analysis. We conclude that application

of the test-negative design to certain cluster randomized trials could increase their

efficiency and ease of implementation.

KEY WORDS

Case control; cluster randomized trial; dengue; efficacy; odds ratio; study design; test-

negative design; Wolbachia.

ABBREVIATIONS

CRT: Cluster randomized controlled trial; CR-TND: Cluster randomized trial with test-

negative design sampling; TND: Test-negative design

2

Cluster randomized controlled trials (CRTs) are the gold standard for evaluating the efficacy

of health interventions delivered at the community level, including vector control

interventions to reduce transmission of arboviruses such as dengue and Zika. A recent

literature review emphasized the need for quality randomized controlled trials to improve

disease control strategies (1, 2). The importance of measuring impact on disease, not only

on vector indices, has been specifically highlighted. However, it is widely accepted that trials

using clinical endpoints can be resource intensive and logistically difficult to implement.

CRTs customarily randomly allocate an intervention to some predefined spatial units, and

follow a cohort of 'at risk' participants over time to measure the endpoint of interest in

treated versus untreated clusters. When sufficient units are available, randomization results

in groups comparable in all factors except for the intervention under study, and provides the

basis for statistical inference (3). Such trials with epidemiological endpoints are resource

intensive due to the requirement for active case surveillance. The non-independence of

individuals within each cluster and resultant statistical inefficiency necessitates inflation of

the CRT sample size to achieve power equivalent to an individually randomized trial (3-6).

Traditional CRTs frequently require thousands of participants to generate sufficient events

for hypothesis testing (7-12) particularly for interventions against uncommon events, e.g.

clinically apparent dengue. This has significant cost, time, ethical and logistical implications.

These challenges may partly account for the small number of cluster randomized controlled

trials and subsequent weak evidence base for vector-control interventions against

arboviruses (1), limiting evidence-based decision making for disease control.

Considerable literature demonstrates that sampling participants on the basis of their

outcome status (case-control design) rather than their exposure status (cohort design)

increases efficiency of observational studies (13-17). We propose a CRT study design with

test-negative sampling (CR-TND), a form of outcome-based recruitment, as an efficient

method to assess the efficacy of community-level interventions against dengue (such as

introgression of Wolbachia into mosquito populations (18, 19)). The approach offers the

advantage of being more efficient, cost-effective, and logistically simpler to achieve than a

traditional CRT. We review the assumptions inherent to the test-negative design (TND) and

how these relate to its application in the context of a cluster randomized trial, use

simulations to demonstrate the validity of estimates produced by a CR-TND study, and

discuss potential approaches to analysis and interpretation of results.

ASSUMPTIONS OF THE TEST-NEGATIVE DESIGN AND APPLICATION TO CRTs

The TND is a modified case-cohort study in which symptomatic patients meeting pre-

defined inclusion/exclusion criteria are enrolled and subsequently classified as test-positive

'cases' or test-negative 'controls' based on the results of definitive diagnostic testing. This

design is frequently used for evaluating the effectiveness of seasonal influenza vaccination

(20-25) and its internal validity has been explored in depth (20-23, 26-28). Briefly, validity

depends primarily upon the avoidance of selection bias in the sampling of cases and

controls, and the extent to which the exposure distribution amongst controls is

representative of the exposure distribution amongst the source population that gives rise to

cases. Key assumptions and their relevance to CR-TND trials are discussed below. For ease

of discussion we refer to the illness in those testing positive for the pathogen of interest as

"test-positive illness", and in those testing negative as "test-negative illness".

4

Assumption 1. Test-negative illness is not associated with the intervention

A core assumption of the TND is that the test-negative illness is not affected by the

intervention (21, 22, 26); i.e. in the case of influenza VE studies, receipt of the influenza

vaccine would not be expected to modify the incidence of non-influenza ARI. In randomized

trials, random allocation of the intervention reduces the likelihood of any association

between test-negative illness and the intervention. With an increasing number of clusters,

the likelihood of test-negative illness occurring disproportionately in one study arm by

chance is reduced. This may be particularly relevant where the test-negative illness is a

communicable disease, as these tend to cluster in space and time. In cluster randomized

trials with few allocation units, constrained randomization (29) can improve balance in

factors potentially associated with test-positive or test-negative illness. Randomization thus

represents a methodological advantage over influenza vaccine effectiveness studies in

which self-selection may lead to an association between the intervention and outcome.

Assumption 2. Non-differential probability of seeking health care

Haber et al. (26) suggested the TND yields an unbiased estimate of effectiveness/efficacy

even if the likelihood of seeking healthcare (and being enrolled) is associated with the

intervention, provided this association exists for both test-positive and test-negative

patients (26). Thus the TND may reduce bias due to intervention-driven changes to

healthcare-seeking behavior relative to traditional cohort designs, a feature that may be

particularly appealing in cluster randomized trials if blinding the community to intervention

status is not feasible. A recent exploration of the theoretical basis of the TND in

observational studies of influenza vaccine effectiveness (28) argued that the TND achieves a

reduction in, rather than elimination of, bias due to healthcare-seeking behavior, since

healthcare-seeking behavior represents a continuous propensity rather than a simple binary

variable that can be conditioned upon. Such potential bias should be further reduced in the

CR-TND, since randomization of the intervention should achieve balance between study

arms in individuals' average propensity to seek healthcare. Constrained randomization can

further enforce a balance between study arms in their baseline observed incidence of test-

negative illness (that incorporates care-seeking propensity as well as true disease

incidence).

Assumption 3. The efficacy of the intervention is not associated with healthcare-seeking

behavior

The external validity of the TND depends on the intervention being equally effective across

groups with different healthcare-seeking behavior, such that the effectiveness/efficacy

estimate generated through a study of individuals presenting to clinics is generalizable to

the broader population (21). A limitation to this assumption could arise in both TND and CR-

TND studies if those more or less likely to seek care at a study clinic differ systematically in

some factor associated with intervention effectiveness. For example, if socioeconomic

status differs with healthcare-seeking behavior, this may correlate with differences in

housing, vector density, community uptake of the intervention, or other factors that might

impact the effectiveness of a dengue vector control intervention. Tacitly, in extending

effectiveness estimates to cases of all severity, we assume that the intervention does not

modify the spectrum of disease outcomes.

Assumption 4. The test used to determine disease status is highly sensitive and specific.

Several authors (23, 26, 30) have modeled the effects of imperfect diagnostic testing on the

TND estimate under different scenarios, demonstrating that a test (or combination of tests)

with imperfect sensitivity or specificity biases the estimate toward the null, with the

greatest bias arising from imperfect specificity. This, of course, remains true with clustered

participants since clustering affects variation and not bias. Thus TND or CR-TND studies that

demonstrate effectiveness/efficacy even with imperfect test sensitivity and/or specificity

will underestimate the true effect (23). Use of a consistent diagnostic algorithm, gold

standard diagnostic tests, and with laboratory testing performed blind to exposure status,

will minimize the potential for differential or non-differential outcome misclassification to

bias the estimates from a TND or CR-TND study, in the same way as for other designs.

Assumption 5. Uncensored sampling of controls

The effect measure estimated from a retrospective study depends critically upon the criteria

applied to the selection of controls (31, 32). If controls are drawn from all individuals in the

population at risk, without exclusion of those who test positive at any other time during the

study period (i.e. uncensored or inclusive sampling), then the exposure distribution in the

controls can be assumed to reflect the exposure distribution in the source population. In

that case the study provides a direct estimate of the population relative risk, without

dependence on the rare disease assumption (32, 33), and, in this regard, a TND most

resembles a case-cohort design. If controls are sampled inclusively as above, and also

longitudinally throughout the study period concurrently with cases (incidence-density or risk-

set sampling), then their cumulative exposure distribution represents that of the source

population at each point in time ('risk period') that a case arose. If this temporal matching is

7

accounted for in the analysis, then the odds ratio directly estimates a population incidence

rate ratio (31, 33, 34).

In the case of a (cluster randomized) test-negative design study, patients presenting to

participating clinics with a test-negative illness are assumed to represent a sample of the

source population from which cases arise, i.e. the population who would present to these

clinics and be enrolled as a case if they experienced a test-positive illness. Foppa et al. (25)

have demonstrated that TND studies using incidence density sampling produce valid

estimates of effect even when the incidence of test-positive or test-negative illness varies

temporally. Because calendar time may correlate also with the exposure distribution (e.g.

influenza vaccination uptake), analyses of observational TND studies have often included

adjustment for calendar time (21). In the analysis of a CR-TND study, a participant's

exposure to the intervention is considered fixed and non-time varying for the purpose of the

intention-to-treat analysis, as per the randomized allocation, in which case time adjustment

is not warranted. A per-protocol analysis, however, may account for individuals' time-

varying exposure to the intervention and require adjustment for calendar time.

Assumption 6. Participants with test-negative illness are only recruited when test-positive

illness is circulating

An extension of assumption 5 in the case of a seasonal illness is that, in order to achieve

incidence density sampling of test-positive and test-negative participants, recruitment

should only occur during periods when test-positive illness is circulating (21). Outside the

transmission season there is effectively no 'population at risk' of test-positive illness, and

therefore test-negative controls recruited during this period are not a valid sample of the

source population from which test-positive cases arise. This principle holds also for CR-TND

studies. In practice, if a study is to run over more than one transmission season it may be

infeasible to stop and start patient recruitment, or the beginning and end of the

transmission periods may not be easily predicted in advance. This criterion can still be met

while allowing continuous recruitment, by restricting the dataset for analysis to include only

those test-negative controls enrolled during periods in which there were also test-positive

participants recruited.

Finally, we note that many of the concerns regarding the TND raised by careful

consideration of biases (27, 28, 35) are mitigated, or removed, by exposure randomization

in a CR-TND. For example, randomization essentially removes the impact of differential

misclassification of disease outcome within levels of extraneous factors (28) since the latter

are balanced across arms. In addition, in the case of an infectious disease where spatio-

temporal heterogeneity could lead to differences in baseline risk of illness between clusters,

randomization of a sufficient number of clusters will ensure the overall risk of illness

remains balanced between study arms. The causal diagrams relevant to TNDs (specifically

directed acyclic graphs: DAGs) (28) apply here directly but are simplified as no arrows point

into the (randomly assigned) intervention node; clustering of response does not affect a

DAG. Further, randomization of exposure removes bias from estimation of marginal odds

ratio measures of association (27). The non-collapsibility of the odds ratio (27) applies here

to the extent that an intervention's effect at a cluster level may be greater than the

population effect; however, this means that the latter measure will simply be conservative.

Later, in the paper we show that basic estimation procedures for CRTs and TNDs can be

straightforwardly extended to CR-TND study data.

SIMULATIONS

We assessed the validity of efficacy estimates generated through a CR-TND using

simulations and found accurate and unbiased estimates are produced, provided the

randomization achieves balance between study arms at baseline in both the outcome of

interest and the test-negative illness, and other assumptions of the TND are met. We

simulated scenarios to compare the CR-TND efficacy estimate against the true efficacy of a

hypothetical preventive intervention against dengue (Web Figure 1). Initially we assumed

the intervention had no effect. Hypothetical study populations were generated, consisting

of 20-100 clusters, each with a random population size drawn from a uniform distribution

with range 5000 to 25,000. Baseline dengue and test-negative illness incidence rates in each

cluster were simulated based on independent Beta distributions, and applied to cluster

population sizes to yield case counts for each category (Web Figure 2). Parameter choices

for test-negative illness incidence were selected to yield two distinct values of the inter-

cluster coefficient of variation (k), k = 0.5 and 0.25; k was set at 0.5 for dengue incidence.

The rate parameters were selected to mimic dengue case notification rates (36-38) and k

values (39) from southeast Asian dengue endemic settings. Note that any co-variation of

dengue and test-negative case counts arises solely from common cluster population sizes.

We randomly allocated half the clusters to receive the intervention. We performed simple

randomization, plus three constrained randomizations in which we generated a large

number of potential random allocations and accepted only those in which the baseline i)

dengue incidence, ii) test-negative illness incidence or iii) both dengue and test-negative

illness incidence were balanced between arms, defined as a difference of ≤10% in aggregate

incidence.

We calculated the exposure odds ratio (OR) in dengue vs test-negative controls for each

random allocation, using the standard formula:

 $\frac{\text{dengue cases in intervention arm}}{\text{dengue cases in non-intervention arm}} \ / \ \frac{\text{test-negative controls in intervention arm}}{\text{test-negative controls in non-intervention arm}} \ .$

For simplicity, we assumed complete sampling of dengue (test-positive) cases and test-

negative controls from both study arms, perfect diagnostic test sensitivity and specificity,

and that all assumptions of the TND were met. Thus the only variation across simulations

was in cluster intervention assignment. We repeated each simulation 1,000 times for each

combination of the number of clusters and inter-cluster coefficient of variation. The

percentage deviation from the expected null value (i.e. OR=1) was assessed for each

simulation (Figure 1).

Results demonstrate that the odds ratio estimated through a CR-TND study approximates

the true null value. Random variation around the null is particularly reduced when study

arms are balanced for both test-positive and test-negative illness baseline incidence. Such

variation also decreases as the number of study clusters increases and at the lower value of

inter-cluster heterogeneity for test-negative illness incidence. With balance on historical

incidence of both dengue and test-negative outcomes, estimation is effective even with

small numbers of clusters (Figure 1D).

We further investigated validity of the odds ratio estimates assuming a true intervention

efficacy of 50%, by repeating the above steps while deterministically halving dengue

incidence in each intervention cluster. The deviation of the simulation-derived odds ratio

estimates from the expected 'true' value was identical for an assumed efficacy of 50% (Web

Figure 3) and at the null (Figure 1).

11

ANALYSIS OF CLUSTER RANDOMIZED TEST-NEGATIVE DESIGN STUDIES

Community-level interventions introduce additional complexity into analysis of a CR-TND

compared to an observational TND study, while allowing inference to be based on

randomization. With test-negative designs, vaccine effectiveness is usually estimated

through the odds ratio as defined above (21). Logistic regression models allow adjustment

for potential confounders (20, 40) including calendar time. Common adjustments are time-

matching using a conditional logistic regression model, or inclusion of calendar week as a

categorical parameter using splines in an unconditional model (40). For a CR-TND, however,

any analysis needs to account for the clustering. We note two possible approaches that

adapt procedures commonly used for CRTs.

(a) Cluster-level Summary Data: We can simply use the estimated odds ratio based on

data aggregated across all clusters, with the null hypothesis that the odds of being in the

intervention arm is the same among test-positives as test-negatives. Inference can be based

on the permutation distribution that considers all possible cluster intervention assignments.

An approximate version of this test uses an estimate of the variance of the estimated odds

ratio that accounts for the clustering using simple finite population sampling ideas (41).

The aggregate odds ratio provides a consistent estimate of the relative risk, albeit at a

population-averaged, or marginal, level (41). (This is in contrast to a cluster-specific odds

ratio that is, in general, further from the null than the marginal version—see (3); the

difference is not of practical concern with rare outcomes). Confidence intervals can either

be based on inverting the permutation test or via the approximate variance formula (41).

An alternative summary efficacy measure is based on the proportion of test-positive

patients (amongst all tested individuals) in each cluster. At the null, the average of these

proportions should be the same in both arms. For testing, the average of these proportions

for the intervention clusters can then be compared to the same for control clusters via the t-

statistic, with inference based on a permutation test again, or on an approximate variance

(41).

This approach also provides an estimate of the (cluster-specific) relative risk (RR).

Specifically, with 2m clusters (m assigned to intervention), the expected proportion of test-

positives in the intervention clusters is approximately $\frac{RR}{RR+(\frac{r}{2})(1+RR)}$, and $\frac{1}{1+(\frac{r}{2})(1+RR)}$ for the

control clusters, where the ratio of sampled controls to cases is r. For example, if r = 1 and

RR = 0.5, the average proportion of test-positives in a treated cluster is 2/5 (0.40) and 4/7

(0.57) in a control cluster. These calculations assume that the intervention effect is identical

in all treated clusters. The difference in these average proportions of test-positives between

intervention and control clusters yields an estimate of the relative risk since we can

substitute the estimated difference in the proportions, d, into the formula $d = \frac{1}{1 + (\frac{r}{r})(1 + RR)}$

 $\frac{RR}{RR+(\frac{r}{r})(1+RR)}$, yielding a quadratic equation for RR. This yields an estimate of RR, along with

an appropriately transformed confidence interval (from that for d) (41).

Note that Generalized Estimating Equations estimates of the odds ratio that use robust

variances do not perform well in situations where there are relatively few clusters. On the

other hand, random effects logistic regression performs better and may provide a third

alternative approach with sufficient clusters available (41).

13

(b) Individual-level analysis: In the CR-TND a form of 'per-protocol' analysis is

likely of interest, to reduce the potential impact of exposure misclassification arising from

the fact that some individuals in an intervention cluster may spend substantial time in a

control cluster and vice-versa. This 'contamination' would necessarily reduce the observed

effect of the intervention. Available measurements on such mobility contemporaneous to

symptoms would then be included in an analysis that allows for individual-level covariates,

in addition to calendar time as previously discussed.

Modifications to the permutation distribution techniques used for either the odds ratio or

the difference in average test-positive proportions across clusters, may be developed by

extending similar approaches for standard cluster randomized trials (42-44). In addition,

covariates can be introduced straightforwardly into a random effects logistic regression

model. Incorporating calendar time in this way effectively fits a proportional hazards frailty

model if one assumes that the intervention effect is constant over time.

DISCUSSION

Public health strategies to control dengue and other arboviruses lack a robust evidence base

due to the absence of well-powered cluster randomized trials of community-level

interventions with disease endpoints (2). The absence of such trials might reflect the

common belief that mosquito population suppression must inevitably lead to lower disease

incidence, yet this relationship is poorly characterized and unlikely to be linear (45, 46).

Additionally, there is a perception that cluster randomized trials require fever surveillance of

pre-defined cohorts of 'at risk' individuals and that such efforts must always be logistically

and financially demanding. Here we propose that cluster randomized trials with test-

negative design sampling offer increased efficiency and validity by recruiting participants

based on their outcome, rather than exposure status. Advantages include a smaller total

sample size and potentially single rather than repeat contact with study participants, as well

as avoidance of potential biases that can arise in longitudinal studies from under-

ascertainment of illness events or loss to follow-up. A primary advantage of the CR-TND

approach over traditional TNDs is the randomization of the intervention that reduces

confounding and provides a firm basis for inference. The CR-TND therefore represents an

attractive novel design for trials of community-based interventions against acute infectious

diseases such as dengue.

The key assumption underlying the validity of CR-TND effect estimates is that the ratio of

exposed to unexposed patients with test-negative illness is an unbiased estimate of the

ratio of exposed to unexposed persons in the source population who would seek health care

if they developed the test-negative (or test-positive) illness. This assumption could be

violated if an inappropriate test-negative illness was selected, upon which the intervention

has a true effect. For example, in the case of a dengue vector control intervention trial,

another Aedes-borne pathogen such as Zika or chikungunya must be excluded from the

classification of test-negative illness because the intervention could also feasibly modify the

distribution of these diseases. Furthermore, small numbers of clusters limit the power of

the design. Our simulations indicate that constrained randomization may be useful to

increase precision, particularly when the number of clusters under study is small.

The outcome-based sampling in a CR-TND uses an odds ratio as the estimate of effect, the

interpretation of which depends on the criteria applied in sampling test-negative controls.

When controls are sampled concurrently with cases and without regard for past or future

test-positive illness, as is proposed here, the odds ratio of exposure in test-positive vs test-

negative patients yields a direct estimate of the relative risk in the source population. If the

temporal matching of test-positives and test-negatives is accounted for in the analysis, then

this becomes an unbiased estimate of the rate ratio, and thus the CR-TND can produce an

equivalently intuitive and valid effect estimate as a traditional longitudinal CRT design but

with potentially substantial savings in time and resources (41).

In addition to its efficiency benefits, the outcome-based sampling employed in the CR-TND

also has a potential advantage over traditional study designs in reducing biases that can

arise through longitudinal follow-up where the ascertainment of disease endpoints relies on

passive case detection of study participants presenting to clinics when ill. Such designs carry

a risk of misclassification bias, as any cohort members with the disease of interest who fail

to present to a study clinic, or to be identified upon presentation, are falsely classified as

disease-free (21). Loss-to-follow up that is differential between study arms and/or outcome

status is another potential source of bias in traditional longitudinal designs, particularly

when follow-up periods are long. The health care-seeking behaviour of the population, if

differential between treatment arms e.g. with a non-blinded intervention, can also

confound the observed association between intervention and outcome (21). These biases

are avoided in the CR-TND through the sampling of test-negative controls from the same

patient population as the test-positive cases, and because of the random assignment of the

intervention. CRTs of community interventions are susceptible to exposure misclassification

if participants' mobility patterns lead to contamination between intervention and control

clusters. The CR-TND allows for inclusion of a per-protocol analysis employing more

nuanced exposure classification based on recall of movements just prior to illness onset,

which would not be possible in e.g. a prospective serological cohort with sampling at annual

or six-monthly intervals.

A key challenge to implementation of the CR-TND, compared with an observational TND, is

adaptation of analytical methods to account adequately for clustering of participants with

respect to their intervention allocation status. We have elsewhere proposed methods to

accommodate clustering in group-level analysis of intervention effect, using a permutation

approach to statistical inference (41). Published CRT formulae for sample size calculations

are inadequate for the CR-TND, and simulation studies based on baseline data, best

estimates, or pilot studies are needed to assess the required sample size (41). Even for CRTs,

sample size calculations need preliminary estimates of design effects induced by the

clustering, information that is often poorly reported.

Both the accuracy of sample size estimations, and the benefits conferred by constraining

randomization to only those allocations in which balance is achieved in both test-negative

and test-positive illness incidence, depend on the availability of reliable baseline data, and

the degree to which historical patterns are likely to reflect the future illness distribution. The

spatial and temporal variability in many infectious diseases, and their propensity to cluster

in space and time, could lead to a different distribution being observed during the study

period compared to baseline. The incidence rate ratio of test-negative illness between

treated and untreated arms during the study period should therefore be reported; this

should approximate one if the assumption of no relationship between intervention and test-

negative illness is upheld. Re-estimation of power/sample size at an interim time point after

study commencement – using the trial data from the control arm to determine inter-cluster

heterogeneity of test-positive and test-negative illness – may also be advisable to affirm the

estimates based on historical data.

The study design described here extends the test-negative design to cluster-randomized

intervention trials. We have demonstrated that valid estimates of effect are produced by

the CR-TND, even with a relatively small number of clusters, particularly when constrained

randomization is employed to ensure balance in baseline test-positive and test-negative

illness, and assuming the core assumptions of the TND are upheld. This design offers

potential for improving the efficiency of cluster randomized trials of preventive

interventions, including for arboviral diseases such as dengue and Zika, through targeted

clinic-based enrolment and testing of patients with a specified disease syndrome instead of

longitudinal follow-up of large cohorts. Other public health applications in which the CR-TND

could prove valuable include the evaluation of mass drug administration for parasitic

infections, and estimation of both the direct and indirect ('herd') effects of vaccine-derived

immunity in the context of vaccine trials or observational studies, subject to first

establishing that the assumptions outlined here are upheld.

Further extensions to this work will refine the approaches to statistical inference and

sample size estimation, and develop methods for individual-level analysis that allow

adjustment for individual covariates such as time of recruitment or non-binary exposure

status due to mobility or heterogeneous coverage of the intervention. Extension to non-

parallel randomized allocations will also be explored, for example where a community-level

intervention is deployed using a stepped-wedge design. The first field implementation of the

CR-TND, to our knowledge, will be a cluster randomized controlled trial to assess the

efficacy of Wolbachia-infected mosquito deployments against dengue in Yogyakarta,

Indonesia (ClinicalTrials.Gov #NCT03055585; (47)). This will provide a valuable opportunity

to test both the feasibility and validity of the design in practice, generating learnings to

inform improved design of trials to evaluate preventive interventions for vector-borne

diseases and other public health priorities.

ACKNOWLEDGEMENTS

Author affiliations: Institute of Vector Borne Disease, Monash University, Melbourne,

Australia (Katherine L Anders, Zoe Cutcher, Scott L O'Neill, Cameron P Simmons); MRC

Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London

School of Hygiene and Tropical Medicine, London, UK, and School of Pathology, Faculty of

Health Sciences, University of the Witwatersrand, Johannesburg, South Africa (Immo

Kleinschmidt); Medical Research Council Centre for Outbreak Analysis and Modelling,

Department of Infectious Disease Epidemiology, School of Public Health, Imperial College

London, London, UK (Christl A Donnelly, Neil M Ferguson); Department of Biostatistics,

Epidemiology and Population Health, Centre for Tropical Medicine, Faculty of Medicine,

Universitas Gadjah Mada, Yogyakarta, Indonesia (Citra Indriani); School of Public Health,

University of California, Berkeley, California (Nicholas P Jewell).

Grants/financial support: This work was supported by the Bill and Melinda Gates

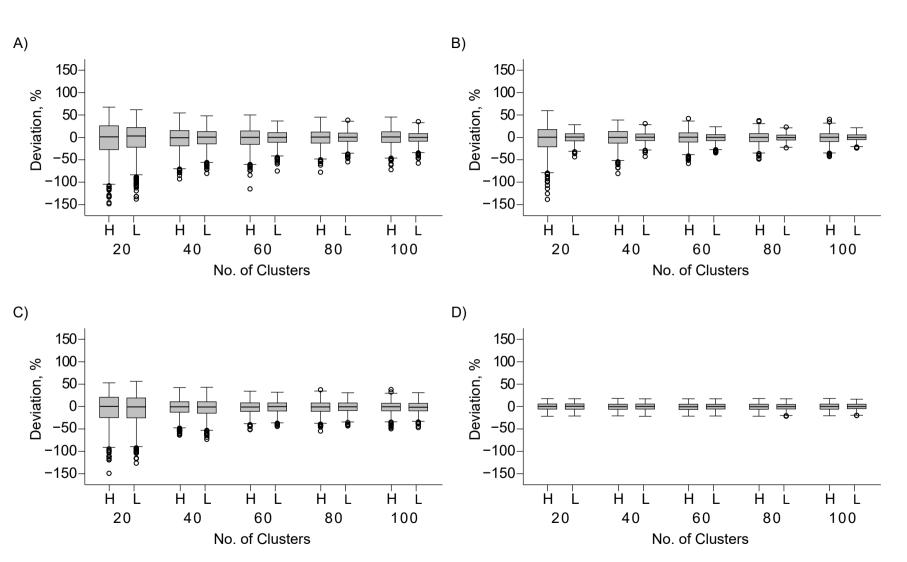
Foundation and the Wellcome Trust.

Conflict of interest: The authors declare they have no conflict of interest.

REFERENCES

- 1. Wilson AL, Boelaert M, Kleinschmidt I, et al. Evidence-based vector control? Improving the quality of vector control trials. *Trends Parasitol.* 2015;31(8):380-390.
- 2. Bowman LR, Donegan S, McCall PJ. Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis. *PLoS Negl Trop Dis.* 2016;10(3).
- 3. Hayes RJ, Moulton LH. *Cluster randomized trials*. London, UK: Chapman & Hall/CRC Press; 2009.
- 4. Cornfield J. Randomization by group: a formal analysis. *Am J Epidemiol*. 1978;108(2):100-102.
- 5. Hayes RJ, Bennett S. Simple sample size calculation for cluster-randomized trials. *Int J Epidemiol*. 1999;28(2):319-326.
- 6. Rutterford C, Copas A, Eldridge S. Methods for sample size determination in cluster randomized trials. *Int J Epidemiol*. 2015;44(3):1051-1067.
- 7. Andersson N, Nava-Aguilera E, Arostegui J, et al. Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial. *BMJ*. 2015;351:h3267.
- 8. Sur D, Ochiai RL, Bhattacharya SK, et al. A cluster-randomized effectiveness trial of Vi typhoid vaccine in India. *N Engl J Med.* 2009;361(4):335-344.
- 9. Henao-Restrepo AM, Camacho A, Longini IM, et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ca Suffit!). *Lancet*. 2016;389(10068):505-518.
- 10. Mortimer K, Ndamala CB, Naunje AW, et al. A cleaner burning biomass-fuelled cookstove intervention to prevent pneumonia in children under 5 years old in rural Malawi (the Cooking and Pneumonia Study): a cluster randomised controlled trial. *Lancet*. 2016;389(10065):167-175.
- 11. Semrau KE, Herlihy J, Grogan C, et al. Effectiveness of 4% chlorhexidine umbilical cord care on neonatal mortality in Southern Province, Zambia (ZamCAT): a cluster-randomised controlled trial. *The Lancet Global health*. 2016;4(11):e827-e836.
- 12. Oluoch T, Katana A, Kwaro D, et al. Effect of a clinical decision support system on early action on immunological treatment failure in patients with HIV in Kenya: a cluster randomised controlled trial. *Lancet HIV.* 2016;3(2):e76-84.
- 13. Rothman KJ, Greenland S, Lash T. Case-control studies. In: Rothman KJ, Greenland S, Lash T, eds. *Modern Epidemiology*. Philadelphia: Lippincott Williams & Wilkins, 2008:111-128.
- 14. Wacholder S. The case-control study as data missing by design: estimating risk differences. *Epidemiology*. 1996;7(2):144-150.
- 15. Wacholder S, Boivin JF. External comparisons with the case-cohort design. *Am J Epidemiol*. 1987;126(6):1198-1209.

- 16. Smith PG, Rodrigues LC, Fine PE. Assessment of the protective efficacy of vaccines against common diseases using case-control and cohort studies. *Int J Epidemiol*. 1984;13(1):87-93.
- 17. Wunsch Filho V, de Castilho EA, Rodrigues LC, et al. Effectiveness of BCG vaccination against tuberculous meningitis: a case-control study in Sao Paulo, Brazil. *Bull World Health Organ*. 1990;68(1):69-74.
- 18. Walker T, Johnson PH, Moreira LA, et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. *Nature*. 2011;476(7361):450-453.
- 19. Hoffmann AA, Montgomery BL, Popovici J, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. *Nature*. 2011;476(7361):454-457.
- 20. Sullivan SG, Feng S, Cowling BJ. Potential of the test-negative design for measuring influenza vaccine effectiveness: a systematic review. *Expert Rev Vaccines*. 2014;13(12):1571-1591.
- 21. Jackson ML, Nelson JC. The test-negative design for estimating influenza vaccine effectiveness. *Vaccine*. 2013;31(17):2165-2168.
- 22. De Serres G, Skowronski DM, Wu XW, et al. The test-negative design: validity, accuracy and precision of vaccine efficacy estimates compared to the gold standard of randomised placebo-controlled clinical trials. *Euro Surveill*. 2013;18(37).
- 23. Orenstein EW, De Serres G, Haber MJ, et al. Methodologic issues regarding the use of three observational study designs to assess influenza vaccine effectiveness. *Int J Epidemiol.* 2007;36(3):623-631.
- 24. Skowronski DM, De Serres G, Dickinson J, et al. Component-specific effectiveness of trivalent influenza vaccine as monitored through a sentinel surveillance network in Canada, 2006-2007. *J Infect Dis.* 2009;199(2):168-179.
- 25. Foppa IM, Haber M, Ferdinands JM, et al. The case test-negative design for studies of the effectiveness of influenza vaccine. *Vaccine*. 2013;31(30):3104-3109.
- 26. Haber M, An Q, Foppa IM, et al. A probability model for evaluating the bias and precision of influenza vaccine effectiveness estimates from case-control studies. *Epidemiol Infect.* 2015;143(7):1417-1426.
- 27. Westreich D, Hudgens MG. Invited Commentary: Beware the Test-Negative Design. *Am J Epidemiol.* 2016;184(5):354-356.
- 28. Sullivan SG, Tchetgen Tchetgen EJ, Cowling BJ. Theoretical Basis of the Test-Negative Study Design for Assessment of Influenza Vaccine Effectiveness. *Am J Epidemiol*. 2016;184(5):345-353.
- 29. Moulton LH. Covariate-based constrained randomization of group-randomized trials. *Clin Trials.* 2004;1(3):297-305.
- 30. Jackson ML, Rothman KJ. Effects of imperfect test sensitivity and specificity on observational studies of influenza vaccine effectiveness. *Vaccine*. 2015;33(11):1313-1316.


- 31. Vandenbroucke JP, Pearce N. Case-control studies: basic concepts. *Int J Epidemiol*. 2012;41(5):1480-1489.
- 32. Greenland S, Thomas DC. On the need for the rare disease assumption in case-control studies. *Am J Epidemiol*. 1982;116(3):547-553.
- 33. Rodrigues L, Kirkwood BR. Case-control designs in the study of common diseases: updates on the demise of the rare disease assumption and the choice of sampling scheme for controls. *Int J Epidemiol*. 1990;19(1):205-213.
- 34. Pearce N. Classification of epidemiological study designs. *Int J Epidemiol.* 2012;41(2):393-397.
- 35. Lipsitch M, Jha A, Simonsen L. Observational studies and the difficult quest for causality: lessons from vaccine effectiveness and impact studies. *Int J Epidemiol*. 2016;45(6):2060-2074.
- 36. Ramadona AL, Lazuardi L, Hii YL, et al. Prediction of Dengue Outbreaks Based on Disease Surveillance and Meteorological Data. *PLoS One.* 2016;11(3):e0152688.
- 37. Cuong HQ, Vu NT, Cazelles B, et al. Spatiotemporal dynamics of dengue epidemics, southern Vietnam. *Emerg Infect Dis.* 2013;19(6):945-953.
- 38. Nealon J, Taurel AF, Capeding MR, et al. Symptomatic Dengue Disease in Five Southeast Asian Countries: Epidemiological Evidence from a Dengue Vaccine Trial. *PLoS Negl Trop Dis.* 2016;10(8):e0004918.
- 39. Wolbers M, Kleinschmidt I, Simmons CP, et al. Considerations in the design of clinical trials to test novel entomological approaches to dengue control. *PLoS Negl Trop Dis.* 2012;6(11):e1937.
- 40. Bond HS, Sullivan SG, Cowling BJ. Regression approaches in the test-negative study design for assessment of influenza vaccine effectiveness. *Epidemiol Infect*. 2016;144(8):1601-1611.
- 41. Jewell NP, Dufault S, Cutcher Z, et al. Analysis of cluster randomized test-negative designs: cluster-level methods. *Biostatistics*. [available online ahead of print 12 Feb 2018]. DOI:10.1093/biostatistics/kxy005.
- 42. Gail MH, Mark SD, Carroll RJ, et al. On design considerations and randomization-based inference for community intervention trials. *Stat Med.* 1996;15(11):1069-1092.
- 43. Rosenbaum PR. Covariance adjustment in randomized experiments and observational studies. *Statist Sci.* 2002;17:286-327.
- 44. Small DS, Ten Have TR, Rosenbaum PR. Randomization inference in a group-randomized trial of treatments for depression: Covariate adjustment, noncompliance, and quantile effects. *J Amer Statist Assoc.* 2008;103:271-279.
- 45. Bowman LR, Runge-Ranzinger S, McCall PJ. Assessing the relationship between vector indices and dengue transmission: a systematic review of the evidence. *PLoS Negl Trop Dis.* 2014;8(5):e2848.

46. Cromwell EA, Stoddard ST, Barker CM, et al. The relationship between entomological indicators of Aedes aegypti abundance and dengue virus infection. *PLoS Negl Trop Dis.* 2017;11(3):e0005429.

47. Anders KL, Indriani C, Ahmad RA, et al. The AWED trial (Applying *Wolbachia* to Eliminate Dengue) to assess the efficacy of *Wolbachia*-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomised controlled trial. *Trials*. 2018;In Press.

FIGURE LEGENDS

Figure 1. Validity of odds ratio estimates from a simulated CR-TND study, under the null hypothesis of no intervention effect. Box and whiskers plots show the distribution of odds ratio estimates from 1000 simulated cluster-randomized allocations of a hypothetical dengue preventive intervention, displayed as the % deviation from the expected OR=1 assuming that the true intervention efficacy is zero. The ten different scenarios within each graph represent a variable number of clusters under study (20 - 100) and two scenarios of the inter-cluster coefficient of variation (k) in baseline test-negative illness incidence: high (H; k=0.5) or low (L; k=0.25). Inter-cluster variation in baseline dengue incidence was constant in all scenarios (k=0.5). Random allocation of the intervention was either unconstrained (A), or constrained to ensure balance between the study arms (+/- 10%) in baseline dengue incidence (B), test-negative illness incidence (C), or both dengue and testnegative illness incidence (**D**). Note that five OR estimates from Panel A (4/1000 simulations with 20 clusters & high k, and 1/1000 simulation with 20 clusters & low k) and two OR estimates in Panel C (2/1000 simulations with 20 clusters & low k) had a deviation value less than -150% and are not shown on the graph.

