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Introduction to Double Robust Methods for

Incomplete Data

Shaun R. Seaman and Stijn Vansteelandt

Abstract. Most methods for handling incomplete data can be broadly clas-
sified as inverse probability weighting (IPW) strategies or imputation strate-
gies. The former model the occurrence of incomplete data; the latter, the dis-
tribution of the missing variables given observed variables in each missing-
ness pattern. Imputation strategies are typically more efficient, but they can
involve extrapolation, which is difficult to diagnose and can lead to large bias.
Double robust (DR) methods combine the two approaches. They are typically
more efficient than IPW and more robust to model misspecification than im-
putation. We give a formal introduction to DR estimation of the mean of a
partially observed variable, before moving to more general incomplete-data
scenarios. We review strategies to improve the performance of DR estimators
under model misspecification, reveal connections between DR estimators for
incomplete data and “design-consistent” estimators used in sample surveys,
and explain the value of double robustness when using flexible data-adaptive
methods for IPW or imputation.

Key words and phrases: Augmented inverse probability weighting, cali-
bration estimators, data-adaptive methods, doubly robust, empirical likeli-
hood, imputation, inverse probability weighting, missing data, semiparamet-

ric methods.

1. INTRODUCTION

Statistical analysis of data is often complicated by
the data being incomplete, for example, due to indi-
viduals in a survey not answering a question, patients
missing a clinic visit, or data simply being lost. The
individuals on whom complete data are obtained (the
“complete cases”) often constitute a nonrepresentative
subset of the sample. This makes an analysis that uses
only this subset potentially biased, as well as being po-
tentially inefficient because it discards the data avail-
able on the individuals with incomplete data (the “in-
complete cases”). More sophisticated approaches for
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analysing incomplete data are designed to reduce bias
and/or increase efficiency. They can broadly be classi-
fied into imputation strategies and inverse probability
weighting (IPW) approaches [17].

Imputation approaches involve specifying a model
(the “imputation model”) for the partially observed
variables given any fully observed variables. Missing
values are then “predicted” based on this model. Mul-
tiple imputation is the most popular such approach, and
has close connections to maximum likelihood (ML)
methods for incomplete data. The latter methods in-
volve implicit imputation of the missing data. A draw-
back of imputation approaches is that they can involve
much modelling of the incomplete data and there may
be large bias when the imputation model is misspec-
ified. This potential for bias is especially large when
the distribution of observed data in individuals with a
given missingness pattern is very different from that in
the overall population. In that case, imputation involves
extrapolation under the imputation model, so that even
minor model misspecification over the range of the ob-
served data may induce large bias. Additional concerns
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may arise from the difficulty of specifying the imputa-
tion model in a way that obeys the structure imposed
by the model that will be used to analyse the imputed
data (i.e., such that it is “congenial with the analysis
model” [19]).

IPW methods avoid these issues of extrapolation and
uncongeniality by not using an imputation model. They
instead rely on a missingness model, that is, a model
for the probability that an individual is a complete case
given a set of predictors of missingness. The analysis
model is then fitted to just the complete cases, inversely
weighting each by its estimated probability of being
complete given its missingness predictors. A drawback
of IPW is that it can be very inefficient, because, like
the complete-case analysis, it ignores potentially useful
data on the incomplete cases. It can also be subject to
large finite-sample bias. Recognition of these problems
led to research on augmented IPW (AIPW) estimators.
These, like imputation estimators, involve a model for
the conditional distribution of the partially observed
variables given fully observed variables. AIPW estima-
tors are more efficient than (unaugmented) IPW esti-
mators when this imputation model is correctly speci-
fied. Indeed, among all estimators that, like [IPW esti-
mators, are consistent whenever the missingness model
is correctly specified, AIPW estimators with correctly
specified imputation models are the most efficient.

In 1999, Scharfstein et al. [32] noted that an AIPW
estimator previously developed by Robins et al. [28]
for estimating the mean of a partially observed vari-
able had the property of being consistent not only when
the missingness model was correctly specified, but also
when an imputation model for the conditional distri-
bution of this variable was correctly specified and the
missingness model was misspecified. This property be-
came known as “double robustness” [26]. At about
the same time, it was recognised that the estimator
of Robins et al. [24] was closely related to a “gen-
eralised regression” estimator first developed in the
1970s for improving the efficiency of an IPW estima-
tor of a finite-sample population mean when sampling
probabilities are known [6]. Since the double robust
(DR) property was discovered, many estimators pos-
sessing this property have been developed. However,
the DR property has also been criticised. Simulation
studies which showed that minor misspecifications of
both the imputation and missingness models can some-
times induce large bias and variance in the DR estima-
tor led to a questioning of the practical usefulness of
double robustness [12]. Such scepticism has been re-
inforced by the availability of imputation and IPW ap-
proaches based on flexible “data-adaptive” methods for

fitting the imputation and missingness model, respec-
tively, which reduce the risk of model misspecification
[16].

This article is an introduction to DR methodology for
incomplete data. As in much of the literature on miss-
ing data (and DR estimators in particular), we shall
assume that data are missing at random (MAR). Data
are said to be MAR if the conditional probability that
a particular missingness pattern occurs given the data
does not depend on the missing values in that pattern
[35]. In Section 2, we consider the problem of esti-
mating the mean of a partially observed variable us-
ing fully observed auxiliary variables, using this exam-
ple to contrast imputation with IPW and to present a
DR AIPW estimator. In Section 3, we introduce more
formality and give a review of the general semipara-
metric theory underlying DR estimation. This enables
us to describe DR estimators for more general missing
data problems. So-called “standard” DR estimators use
ML to estimate the parameters of the missingness and
imputation models. In Section 4, we review more re-
cently developed methods which seek to improve the
performance of DR estimators (relative to standard DR
estimators) under model misspecification by using al-
ternative estimators of these parameters. In Section 5,
we consider the use of data-adaptive methods (e.g.,
smoothing methods or regularisation methods) for the
imputation or missingness model. We argue that there
are advantages to using these methods in DR estima-
tors (rather than in imputation or IPW estimators). Sec-
tion 6 discusses the wide variety of statistical mod-
els for which DR estimators have been proposed, DR
methods for nonmonotone missing and missing not at
random (MNAR) data (most work has been on mono-
tone missing, MAR data), and some possible directions
of future research. Implementation of DR estimators in
standard statistical packages is described in the supple-
mental article [36].

2. IPW, Rl AND AIPW FOR A MISSING OUTCOME

For pedagogic purposes, we first consider the prob-
lem of estimating the expectation 8§ = E(Y) of a par-
tially observed random variable Y from a sample of
size n when auxiliary variables W are observed on the
whole sample. This has been the focus of much of the
work on DR estimation. In Section 3, we discuss DR
estimation for more general missing data problems.

Let Y; and W; denote Y and W for the ith individ-
ual in the sample, and R; be an indicator that Y; is
observed (R; = 1 if Y; is observed; R; = 0 if miss-
ing). Individuals with R; =1 are “complete cases”;
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those with R; = 0 are “incomplete cases”. Assume
Wi, YL, Ry),...,(W,,Y,, R,) are independent and
identically distributed. Henceforth, we omit subscripts
i unless needed.

The full-data (or “complete-data”) estimator, n
Y7 1 Y;, for B is infeasible when Y can be missing.
The complete-case estimator, > " | R;Y;/> ", R;, is
typically inconsistent unless R is independent of Y.
The IPW, regression imputation (RI) and DR estima-
tors described below are valid under the weaker as-
sumption that R is independent of Y given W, that is,
Wi, Y1, R, ..., (W,, Y, R,) are MAR.

In IPW, each complete case is weighted by 7 (W)~!,
where (W) = P(R = 1| W) is the probability that an
individual with this value of W would be a complete
case. Each complete case then represents 7(W)~!
individuals in the population, all with the same W
value. One of these would have observed Y if sam-
pled; the others would have missing Y. The weighted
sample of complete cases therefore has (over re-
peated samples) the same distribution of W as the
population, and by MAR, also the same distribu-
tion of Y as the population. This motivates the IPW
estimators of B: n~! pIy Rim(W)~lYy; [11] and

" Rir(W)TY /Y Rim(W;)~!. Since (W)
is unknown unless data are missing by design, a model
m(W; a), called the “missingness model”, is specified
for it and an estimator & of e« calculated from data
(R1,Wy,...,R,, W,). For example, one could use
(W) = explt(otTW) Wlth a estimated by ML. Let
élpw = ,BIPWA(“) =n" R m(Wi;&)~'Y; and
rwe = Prwp@ = X!, Rr(W;a)" 'Y/
Y Rim(W; &)~ ! denote the IPW estimators with
estimated weights (“B” in the subscript “IPW,B”
stands for “sample bounded”: BIPW’B is guaranteed
to lie within the range of the observed Y values). If
(W3 e) is correctly specified and & is a consistent
estimator of «, then ,BIPW and ,BIPW B are consistent es-
timators of g, provided that there exists a § > 0 such
that P{m (W) > 8} = 1 (this “positivity” assumption
rules out scenarios where individuals with certain val-
ues of W cannot be complete cases) and 7w (W; o) is a
sufficiently smooth function of «.

In RI, a parametric model m(W; y) for E(Y | W) is
specified. This is called the “outcome model”. Let p be
an estimator of p (e.g., the ML estimator calculated us-
ing the complete cases). Parameter f is then estimated
by Bri = Bri(P) =n~' X1 m(Wi: p). IEm(W:y)is
correctly specified and y is consistent, then ,BRI is con-
sistent. Moreover, if p is efficient, then so is ﬁRI. Note
that if m(W; p) is a canonical generalised linear model

_]'

that includes an intercept and y is the ML estimator,
then Y7 | Rm(W;;p) =37 | R;Y; and so Bri can
be written as n~! YrARY + (1 — Rym(Wi; p)).
The RI estimator then equals the mean of Y after re-
placing missing values by imputed values m(W; p).

The efficiency of 3R1 comes at the cost of assum-
ing that model m(W; y) is correctly specified. When
there is little overlap between the distributions of W in
complete and incomplete cases, the RI estimator works
by extrapolating the relation between W and Y esti-
mated from complete cases to regions of the W space
where incomplete cases but few (if any) complete cases
lie. This extrapolation is potentially risky, because even
models that fit the data on complete cases perfectly
may give a poor approximation of E(Y | W) in these
regions [44]. This is illustrated by the following exam-
ple.

EXAMPLE 1. Let P(W =0) = P(W =1) =
P(W=2)=1/3,logitP(R=1| W)=4—4W, and
either @) Y | W ~ N(W,0%) or (b)Y | W ~ N(I(W >
1), 02), where I(-) denotes the indicator function.

In case (a), the RI estimator ,éRI based on linear re-
gression model m(W; y) = y1 +y» W with ML estima-

tor p is consistent; in case (b), it is inconsistent [ﬁRI N
0.94, whereas E(Y) = 0.67]. This is a concern be-
cause, unless the sample size were very large, it would
be difficult to decide on the basis of the observed data
whether this linear regression model is correctly speci-
fied, as there would generally be few complete cases
with W = 2. The IPW estimators ﬁlpw and ;‘}Alpw,B
based on model logitm (W; ) = o1 + oW with ML
estimator & are consistent in both cases. While these
also rely on a model [for 7 (W)] which may be mis-
specified, its goodness-of-fit is arguably easier to as-
sess because this requires data only on R and W, which
are fully observed, and there is no need for extrapola-
tion outside the observed data range. The variances of
both IPW estimators are larger than that of /§RI, be-
cause of the large weights attributed to the small pro-
portion of complete cases with W = 2. For example,
using simulation we estimated that, when n = 100,000
and o2 = 1, the variances (x 105) of BIPW, ﬁIPw,B and
BRI are 51, 28 and 6.1, respectively. The relatively large
variances of the IPW estimators can be seen as reflect-
ing genuine uncertainty about S, in contrast to the vari-
ance of ,3RI, which does not reflect model and extrap-
olation uncertainty about E(Y | W = 2). This uncer-
tainty could be accommodated by using more flexible
outcome models, but this would drastically increase the
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variance of ,BARI; indeed ultimately, if W is categori-
cal and the missingness and outcome models are sat-
urated, the IPW and RI estimators (and their variance
estimators) are equivalent [21]. More generally, when
the outcome model is not saturated and there is very lit-
tle overlap between the distributions of W in complete
and incomplete cases, it may be difficult to ensure that
a flexible outcome model is sufficiently flexible outside
the region of the W space where the complete cases lie.

The inefficiency of the IPW estimators is a serious
drawback, but it can be reduced by making more use
of the W data on the incomplete cases. In particular,
the augmented IPW (AIPW) estimator

ppr = Por(&, P)

:_Zn(W

(1) o
T Z{ (W >} m(Wi: )
—Zm(Wl,y)
i=1
(2) Lo R )
EZW{Yi—m(Wﬂ}’)},
i=1 b

of B, where & and p are estimators of e and y, is
efficient relative to all estimators that rely solely on
correct specification of the missingness model, pro-
vided that the outcome model is also correctly speci-
fied (see Section 3). The first term on the right-hand
side of equation (1) is just /§Ipw and the second term
is called the augmentation term. This uses data on W
on the incomplete cases to improve its efficiency. In
the alternative (equivalent) expression for ,éDR, equa-
tion (2), the first term on the right equals ,éRI and the
second term can be viewed as a “correction” factor: it
uses IPW to estimate how much /§R1 overestimates (or
underestimates) £ (Y) and then subtracts this. Estima-
tor Apr is consistent and asymptotically normal dis-
tributed when either i) w(W; «) is correctly specified
and & is a consistent estimator of a, or ii) m(W; y)
is correctly specified and p is a consistent estimator
of y, a property known as “double robustness”. A for-
mal proof of this is given in the supplemental article
[36], but essentially it is because: (i) when 7 (W; &) is
correctly specified, the augmentation term converges
to zero [because then & converges to the true value of
o and E{R/m(W;a) | W} =1 at this true value]; and
(i) when m(W; p) is correctly specified, the correc-
tion term converges to zero [because then y converges

to the true value of y and E(Y | W, R)
this true value].

The DR estimator ﬁDR can be much more efficient
than Blpw when both 7 (W; a) and m(W; y) are cor-
rectly specified and & and p are consistent, especially
when Var(Y | W) is small relative to Var(Y), that is,
when W is a strong predictor of Y [25]. This is because
the correction term in equation (2) is then small rela-
tive to the first term, and so ﬁDR ~ ,éRI. Indeed, when
both 7(W; &) and m(W; y) are correctly specified, it
can be shown (see [36]) that n Var(,éDR) — Var(Y) +
E[{1 — (W)} (W)~ Var(Y | W)] as n — oo, which
equals n times the variance of the (infeasible) full-data
estimator n ! i_1Y: when Var(Y | W) = 0. To illus-
trate this, we return to case (a) of Example 1, where
Y ~N(W,o?).

=m(W;y) at

EXAMPLE 1 (Continued). When n = 100,000 and

2 = 1, the variances (x10°) of ,élpw, ,élpw,B, I§RI,
/§DR and the full-data estimator are, respectively, 51,
28, 6.1, 20 and 1.7: the DR estimator is more effi-
cient than the IPW estimators, though not as efficient
as the RI estimator. When n = 100,000 and o2 = 0.01,
the variances (X 10°) are 31, 8.8, 0.72, 0.86 and 0.67:
the DR, RI and full-data estimators are close to being
equally efficient.

EXAMPLE 2. Wirth et al. [48] used data from the
National Family Health Survey 3 to estimate the per-
centage of sexually active Indian men who had paid for
sex in the past year. Of the 49,700 men surveyed, 3%
refused to answer the question about paying for sex;
these were more likely to be young, unmarried, un-
employed and to believe that a husband has the right
to have sex with another woman. Among men who
answered the question, the percentage reporting pay-
ing for sex was 0.9%. Wirth et al. built missingness
and outcome models using 24 variables thought to be
predictive of paying for sex and/or refusing to answer
(e.g., age, education, marital status). The resulting DR
estimate of the percentage paying for sex was 1.1%.
Among unmarried men, 18% refused to answer the
question, 6.9% of those who answered reporting pay-
ing for sex and the DR estimate was 12.3%.

3. SEMIPARAMETRIC THEORY OF DR
ESTIMATORS

DR estimators do not require correct specification of
the entire data-generating distribution, and are semi-
parametric in this sense. Semiparametric efficiency
was, and continues to be, very important in DR theory:
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the development of DR estimators by Robins and oth-
ers, and of earlier related survey sampling estimators,
was motivated by the goal of improving the efficiency
of IPW estimators; only later was the DR property of
these estimators recognised. In this section, we give an
introduction to the semiparametric theory that under-
lies DR estimators and describe estimators for more
general missing data problems than that discussed in
Section 2. A more detailed account of semiparametric
theory for DR estimators can be found in, for example,
[40] or [41].

3.1 Semiparametric Models and m-Estimators

Assume that random variables Zi,..., Z, are in-
dependently and identically distributed with density
f (). A semiparametric model is a model M for
the density f(z) of Z that parameterises one or
more aspects of f(z) in terms of an unknown finite-
dimensional parameter 8 but leaves other aspects un-
restricted.

An example is the model for Z = X xT,wht
that assumes

3) EY | X)=np(X;pB),

where u(X; B) is a known vector function of X and
B, but which otherwise leaves f(z) unrestricted. This
is known as a restricted moment model and is usu-
ally fitted using generalised estimating equations [15].
A specific example of this model is the semiparamet-
ric regression model E(Y | X) = g(ﬁTX ) for scalar
outcome Y, covariates X and known link function
g(-). Other examples of semiparametric models are
the Cox proportional hazards model, which restricts
hazard ratios but otherwise leaves f(z) unrestricted,
and the nonparametric model, which places no restric-
tion on f(z). The parameter of interest in the non-
parametric model could be, for example, § = E(Y) =
[Yf(z)dZ, where Y denotes an element of Z; then
the obvious estimator of B is n=! Y1, V;.

EXAMPLE 3. Schnitzer et al. [33] used data from
randomised trials of anti-HIV therapy. The semipara-
metric regression model logit P(Y = 1| X1, X2, X3) =
Bint + B1 X1 + B2 X2 + B3 X3 was used to predict occur-
rence of a clinical event in a patient within five years
(Y) as a function of his/her baseline CD4 (X ;) and CDS8
cell (X») counts and age (X3) while he/she remained
on assigned therapy.

EXAMPLE 4. Seaman and Copas [34] used data
from a different HIV trial. The binary outcome of in-
terest Y; (t = 1,...,T) was whether HIV RNA was

detectable in the patient at timepoint # (RNA was mea-
sured each 12 weeks for three years). Seaman and Co-
pas estimated how the probability of detectable RNA
changed over time in each of the three trial arms. They
used the semiparametric regression model logit P(Y, =
1| X1, X2, X3) = Y3} Xi(Bintk + Bto.k?), where bi-
nary Xy =1 if the patient is in arm k and fqjo x 1S the
slope for arm k.

EXAMPLE 5. Qi et al. [23] used Cox regression to
model the dependence of the hazard of bone fracture
on age and bone mineral density in a cohort of post-
menopausal women. The semiparametric model was
h(t | X1, X2) = ho(2) exp(B1 X1 + B2X2), where ho(r)
is the baseline hazard at time ¢ and h(¢ | X1, X7) is the
hazard given age (X) and mineral density (X»).

Much of the focus of semiparametric theory has
been on finding consistent estimators with the great-
est asymptotic efficiency, that is, smallest asymptotic
variance. This search has been restricted to estimators
that are regular asymptotic linear (RAL) (see the sup-
plemental article [36] for definition of RAL). If an es-
timator ﬁ of parameter B in a semiparametric or para-
metric model M is RAL, then, for all densities f(z)
allowed by model M, ,f? is consistent and asymptot-
ically normally distributed (CAN). Therefore, in par-
ticular, ﬁ converges to 8 and n Var(B) converges to a
constant [which may depend on f(z)] as n — oo.

For most models M, the task of identifying which of
the RAL estimators of 8 is asymptotically the most ef-
ficient among all the RAL estimators under that model
requires correct specification of restrictions on aspects
of f(z) beyond the restrictions already implied by
model M. For example, M might impose restrictions
only on conditional expectations of Z, while identify-
ing the most efficient RAL estimator under M might
additionally require correct specification of conditional
variances. When this RAL estimator is only the most
asymptotically efficient when those further aspects of
f (z) are correctly modelled, it is called “locally (semi-
parametric) efficient” under model M otherwise it is
called “globally efficient”. For many models M, lo-
cally semiparametric efficient estimators are difficult
to obtain. We therefore often content ourselves with
finding the most asymptotically efficient among all the
RAL estimators in a large subclass of RAL estimators.
Such estimators are called “locally (semiparametric)
efficient” over the considered class. Local efficiency is
important in DR theory, because most—if not all—DR
RAL estimators are locally efficient over a large class
of RAL estimators. This explains why the search for
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DR estimators is often helped by the search for effi-
cient estimators, as we show in the next section.

Many RAL estimators for parametric and semipara-
metric models are m-estimators. We shall focus on
these. An m-estimator B is the solution to estimat-
ing equations of the form )7, u(Z;; B) = 0 for some
function u(Z; ) of Z and B such that E{u(Z; )} =
0, where B, denotes the true value of 8. Subject to reg-

ularity conditions [40], ,@ 2z Bo as n — oo. One ex-
ample of an m-estimator is that using u(Z; ) =Y — B
to estimate B = E(Y) in the nonparametric model.
Solving >, (¥; — B) = 0 yields the estimator ,3 =
n~! >, Y. AllRAL estimators of f in this model are
asymptotically equivalent to this B (which is therefore
globally efficient over the class of all RAL estimators
under this model). Another example is estimation of
in the restricted moment model [equation (3)]. It can
be shown that all RAL estimators of 8 in this model
are asymptotically equivalent to an m-estimator with
u(Z,p)=AX){Y — u(X; B)} for some conformable
matrix A(X) of full rank, and conversely that all m-
estimators of this form are RAL estimators of § in this
model [40]. Over the class of all RAL estimators of 8
in this model, the locally efficient one at the true dis-
tribution of Z is that using A(X) = DT (X)V~1(X),
where D(X) = du(X, B)/9B" evaluated at B = Bo
and V(X) = Var(Y | X). A third example of an m-
estimator is the ML estimator of B in a parametric
model: here, u(Z; B) is the score function.

3.2 Construction of DR Estimators

Suppose Z is only partially observed. The aim is still
to estimate B in the semiparametric model M for the
full data (Z1, ..., Z,), but incompleteness of the data
makes use of the full-data m-estimator of Section 3.1
infeasible and we instead seek an estimator that uses
only the observed data. Semiparametric theory shows
how to convert a RAL m-estimator for full data into a
RAL m-estimator for observed data. This is relatively
straightforward when data Z are MAR and monotone
missing, and we now show how to do this. Consider
first the situation where there are only two missing-
ness patterns. Here, we can write Z = (Z(I)T, Z(Q)T)T,
where ZV is observed on the whole sample and Z® is
observed on a subset of the sample. The latter could be,
for example, the outcome or a covariate in a restricted
moment model. For each individual, let R = 1 if Z?®
is observed and R = 0 if it is missing. Individuals with
R =1 are the complete cases. The observed data are

2z RiZP Ry, ZD RZP Ry,

The MAR assumption implies that P(R=11| Z) =
PR=1|ZD). Let r(ZW)y=P(R =1|ZWD). As-
sume there exists a § > 0 such that P{rr(Z(l)) >
8} = 1. A parametric model JT(Z(I);OC) is specified
for n(Z(U), where 7(ZW; @) is a sufficiently smooth
function of «. Denote by Mpiss the semiparamet-
ric model for (Z(V, RZ®, R) defined by model M
for Z, model n(Z(l);a) for R given Z(l), and the
MAR assumption. Suppose that the solution to the m-
estimating equations Y *_, u(Z;; ) = 0 is a full-data
RAL estimator for 8 under model M. Then a corre-
sponding observed-data estimator is the solution to the
AIPW estimating equations

n

Y

1 ~
T VAREE))

R;
+{1_T
n(Z;”; )

u(Z;; pB)
4)
}¢(Z§”; 8) =0,

where & is an estimator of & based on data (Ry, Zil),
...,Rn,Zﬁll)), for example, the ML estimator, and
& (ZD; B) is some function of Z1 and B. If 7 (Z1V;
«) is correctly specified and & is a consistent estimator
of «, then the solution to equation (4) is a RAL es-
timator for B under model M piss. That is, it is CAN
when models M and 7(ZV; &) are correctly speci-
fied and data Z are MAR. We prove this later, after in-
troducing the DR estimator. For the restricted moment
model in particular, all observed-data RAL estimators
of B are asymptotically equivalent to an m-estimator
of the form of equation (4) with u(Z, ) = A(X){Y —
n(X; B)} for some conformable matrix A(X) of full
rank.

If ¢(Z(1); B) is chosen to be zero, equations (4)
reduce to IPW estimating equations, which use only
data on complete cases. Semiparametric theory shows
that the optimally efficient choice of ¢(Z1; B) is
bop(ZV: B) = E{w(Z: B) | ZV, R = 1}. That is,
the asymptotically most efficient RAL estimator of
B among the class of estimators that solve equations
(4) for a fixed choice of u(Z; ) is that which uses
d(ZV; B) = ¢ (ZV; B). Put formally, V(u, ) —
V(u, ¢0pt) is nonnegative definite for any ¢(-), where
V (u, ¢) denotes the asymptotic variance of the estima-
tor that uses u(-) and ¢(-).

In practice, E{u(Z; ) | ZW R = 1} is unknown.
So, a parametric imputation model ¢(Z(1); B.y) for
E{u(Z;B) | ZV, R = 1} is specified. This model can
be specified either directly, or indirectly by choos-
ing a model f(z® | ZV, R =1;p) for fz? |
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ZW R = 1). Denote by Mimp the semiparametric
model for (Z(l), RZ®, R) defined by models M and
#(Z1: B, y) and the MAR assumption. Let p denote
an estimator of y based on the complete cases (e.g.,
the ML estlmator) Now, B can be estimated as the so-
lution Bpgr = Bpgr (&, ) to the DR (AIPW) estimating
equations

n
Z Sﬂ,i(ﬂ? &v }’;)
i=1

OS>

z;
= ﬂf(Z“) P

it -o
n(Z )

This is a RAL estimator for 8 under model M piss

when 7 (ZWV; «) is correctly specified and & is consis-

tent. Moreover, it turns out that ﬁDR is also a RAL es-

timator for 8 under model My, when p is consistent.

That is, BDR is CAN if model M is correctly specified,
the data are MAR, and either (i) 7 (Z"; «) is correctly
specified and @ is consistent, or (ii) S(ZW: B, y) is
correctly specified and y is consistent (or both) (see the
supplemental article [36] for a proof). For this reason,
BDR is called “double robust”. On the other hand, the
IPW estimator which replaces ¢(Z M. B, y) with zero
is a RAL estimator of § only under model M p;ss. That
is, it is CAN only if 7(Z"; a) is correctly specified.

Let us apply equation (5) to the missing outcome
problem of Section 2. In this case, ZO =y, zW =w,
u(Z; ) =Y — B and $(Z; B, ) =m(W; ) — B.
Here, E{u(Z®:B8) | ZW,R=1}=EXY | W,R =
1) — B, and so it suffices to specify a model m(W; p)
for E(Y | W,R =1). It is easy to show that the
solution ,éDR to equation (5) is the same estimator
f:}DR that we met in Section 2. If, on the other hand,
¢(Z(1); B, y) is set to zero, then the solution to equa-
tion (5) is Bipw B.

When 7(ZV;a) and ¢(Z1V; B, y) are correctly
specified, the solution BDR to equations (5) is lo-
cally efficient over the class of estimators that solve
equations (4) for the given u(Z;; ) and arbitrary
¢(Z§1); B). More broadly, however, the efficiency of

ﬁDR also depends on the choice of function u(Z; f8).
The choice that maximises efficiency under model
Miss 1s generally difficult to find [40]. It is usually
different from that which gives local efficiency un-
der model M. For example, we saw in Section 3.1
that for the restricted moment model, u(Z; ) =

DT(X)V_I(X){Y — u(X; B)} gives the locally effi-
cient estimator under M. This is not necessarily the
efficient choice under M yiss. An exception to this gen-
eral rule is the missing outcome problem of Section 2,
where u(Z; B) =Y — B gives global efficiency under
M and local efficiency under M pjgs.

So far, we have considered the case where there
are only two missingness patterns. The general case
of monotone missing data (e.g., longitudinal data with
dropout) is treated in the supplemental article [36].
Here, the DR estimator is CAN if either of two sets
of models is correctly specified. The first set is for the
conditional probability of dropout at each time point
given the variables available at that time. The second
set is for the conditional expectation of u(Z; ) given
the variables available up to each time point and not
dropping out before that time.

EXAMPLE 3 (Continued). The difficulty faced by
Schnitzer et al. in estimating the parameters of their
prediction model was that many clinical events were
censored, due to loss to follow-up or deviation from
assigned therapy. To deal with this, they used a DR
estimator. During follow-up, CD4-cell and HIV-RNA
counts were measured at least every 16 weeks, and the
dropout and conditional expectation models for each
timepoint used the CD4 and RNA counts measured at
the previous timepoint.

EXAMPLE 4 (Continued). In the trial considered
by Seaman and Copas, 16% of patients dropped out be-
fore the end. Dropout was higher among patients who
were younger, injected drugs or were no longer on as-
signed therapy, making estimates based on complete
cases potentially biased. So, Seaman and Copas used
DR estimation. The dropout and conditional expecta-
tion models for each timepoint used treatment arm,
injecting behaviour, and an indicator of being on as-
signed therapy, CD4 cell count and RNA count at the
previous timepoint.

EXAMPLE 5 (Continued). In the cohort used by
Qi et al., bone mineral density was measured in less
than 10% of women, making a complete-case analy-
sis potentially inefficient. They instead used DR esti-
mation to handle these missing covariate data. This re-
quired models for the probability that mineral density
was observed and for the distribution of mineral den-
sity given that it was observed. The covariates in these
models were the event/censoring time, the event indi-
cator and age, and both models were estimated using
kernel smoothers. By using the data on all the women,
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the precisions of the hazard ratio estimates were in-
creased relative to complete-case estimates. A descrip-
tion of the method used can be found in the supplemen-
tal article [36].

3.3 Asymptotic Distribution of DR Estimators

The variance of fSDR generally depends on the choice
of estimators & and p. Suppose these are obtained as
the solutions to estimating equations Y ;' ; S, ; (&) =0
and 7 S,:(») =0, and let 6 = BT, al,yHT.
For example, if n(Z(l);a) = expit(ocTZ(l)), then
So(@) = ZW{R — expit(aTZ(l))}. When 7(ZW;
o) or ¢(Z(1) ; B,y) (or both) is correctly specified,
the variance of BDR is consistently estimated by
the sandwich estimator n_l{z _108g, ,(0)/8ﬂT} .
(S0 S:(0)S;(0) WL, 055:0)T /0B) " evalu-
ated at @ = (Bpg. &', 7 )T, where

Si(0)=S8p,(0)

~1
", 0988,i(0) | |\ 9Sa,i(e)
_[Z da T }{Z da T } Savi (@)

i=1 i=1

—1
" 885:0)) [0S, ;
—{Z ﬁ,T()}{Z ay);i}')} S, i),

iz 9y i=1

Here, the terms involving S, ; () and S, ;(¥) can be
viewed as accounting for the uncertainty in & and y, re-
spectively. An alternative to the sandwich estimator is
nonparametric bootstrap. The latter is commonly used,
possibly because the former may be negatively biased
when the effective sample size is small or to construct
confidence intervals that do not rely on a normal as-
sumption [7].

When both 7(ZV: &) and ¢(Z(1); B,y) are cor-
rectly specified, S;(0) = Sg,; (@) (up to a term that con-
verges to zero in probability—see proof of DR in [36]).
An important implication of this is that the asymp-
totic variance of ,BDR does not depend on the choice
of (consistent) estimators & and p in that case, and
in fact equals the asymptotic variance of the DR es-
timator ﬁDR (e, ) that uses the true values of & and p.
It is therefore tempting to replace S; (@) by Sg,;(#) in
the sandwich variance estimator. We discourage this in
general, because, although BDR is DR, inference for 8
is not DR when this is done, as consistency of the re-
sulting variance estimator is no longer guaranteed as
soon as one or both of 7(ZV; &) and ¢(ZV; B, y) is
misspecified. Under such misspecification, or when the

sample size is small, the choice of estimators & and y
can be very important. We return to this issue in the
next section.

4. IMPROVED DOUBLE ROBUST ESTIMATORS

For simplicity, we concentrate in this section on the
missing outcome problem of Section 2. The notation is
the same as used there. Also, ag and y( denote the
probability limits of & and p, that is, & L @y and
y L ¥ o- Much of the material in this section is adapted
from Rotnitzky and Vansteelandt [31] and more details
can be found there, including information on which
methods have been extended to estimate the param-
eters of a semiparametric regression model with par-
tially observed outcome and fully observed covariates
or to handle longitudinal data with dropout.

4.1 Drawbacks of the Standard DR Estimator

Let anp, and pyy denote locally efficient semipara-
metric estimators of & and y under the missingness
and outcome models, respectively. For example, &y
and y ;. could be ML estimators in logistic and linear
regression models, respectively. When ayp, and p
are used, the estimator /§DR given by equation (1) or
(equivalently) (2) is sometimes called the “standard”
DR estimator [5]. There are some issues with this esti-
mator.

First, /§DR may lie outside its parameter space (e.g.,
outside [0, 1] when Y is binary). Even when guaran-
teed to lie within its parameter space, it may not be
within the range of the observed Y values. An estimate
of E(Y) that is less (more) than the minimum (maxi-
mum) observed value of ¥ may be difficult to defend
[25].

Second, when model m (W y) is misspecified, there
is no guarantee that ,BDR will be at least as efficient as
the IPW estimators ﬂ[pw and ,BIPW B-

Third, in practical applications, both models 7 (W;
a) and m(W; y) are likely to be at least mildly mis-
specified, so that neither of the conditions for consis-
tency of /§DR applies. The hope is that 3DR will still
perform well when at least one of these models is ap-
proximately correctly specified. However, Kang and
Schafer [12] demonstrated that this is not necessarily
the case. They gave an example of a data-generating
mechanism for (Y, W, R) and two misspecified mod-
els m(W; a) and m(W; y) and showed that the stan-
dard DR estimator has very large bias and variance in
this example, even though the model misspecification
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is not easily detected from the observed data on a sam-
ple of moderate size. They also showed that the RI es-
timator ﬁRI has relatively small bias and variance in
this example. Robins et al. [25] examined Kang and
Schafer’s data-generating mechanism. They noted that
the overlap between the distributions of W in the com-
plete and incomplete cases was small. As discussed
in Section 2, this means that ERI relies on potentially
dangerous extrapolation, and thus that its good perfor-
mance is partly a matter of luck. Indeed, Robins et al.
[25] showed that if Kang and Schafer’s missingness
mechanism was altered by making complete cases into
incomplete cases and vice versa (by replacing R by
1 — R), the performance of /§R1 became much worse
than that of ﬁDR. Nevertheless, this example cast some
qoubt on the practical usefulness of the DR property of
BDR.

The response to these issues has been the develop-
ment of improved DR estimators, which aim at greater
efficiency and reduced bias relative to the standard DR
estimator. These differ from that estimator in the way
that « and/or y are estimated. As noted in Section 3,
the choice of & and y affects the asymptotic variance of
/§DR unless both 7 (W; a) and m(W; y) are correctly
specified, and affects its asymptotic bias when neither
is correctly specified.

These improved estimators are not a panacea for
scenarios where the population variance of the true
weights a(W)~ ! is large. In this case, there is lim-
ited overlap between the distributions of W in com-
plete and incomplete cases and, unless one is prepared
to trust in extrapolation to incomplete cases of an out-
come model fitted to complete cases, considerable un-
certainty in the estimate of § is inevitable. However,
the improved estimators go a long way to resolving
the issues with the standard DR estimator listed above.
First, most of them guarantee J lies within the parame-
ter space of 5. Some are even sample bounded. As well
as avoiding implausible estimates, sample bounded-
ness can reduce the variance of BDR when the weights
are highly variable. Second, some of the improved es-
timators are asymptotically efficient over a class of es-
timators that includes the simple IPW estimators, pro-
vided that 7 (W; ) is correctly specified, even when
m(W; y) is potentially misspecified. Third, some more
recent methods aim to improve performance when both
m(W; y) and 7 (W; «) may be misspecified or when
the true weights are unstable. We now review these im-
proved DR methods.

4.2 DR Rl and DR Sample-Bounded IPW
Estimators

Several methods calculate @y and then estimate y
in such a way that ensures

n Ri
©® >

i=1

7 (W;; amr) (i —m(Wiz )} =0.

As the left-hand side of equation (6) is the “correction”
term in equation (2), this ensures that ﬁDR reduces to a
RI estimator, that is, /§DR =n"! Yor_ i m(Wi;p). The
advantage of this is that, if the range of m(W; y) equals
the parameter space of 3, then ,éDR must lie within this
space. Further, Gruber and van der Laan show how to
ensure that the range of m(W; y) equals the range of
the observed Y values, making the resulting RI estima-
tor sample-bounded [10].

When m(W; p) is a generalised linear model with
canonical link function, two ways to make equation
(6) hold are: (i) to estimate y using the ML estima-
tor with weights (W amr) ! [12]; or (i1) to include
7(W:émL) ™! as an extra covariate in m(W; y) and
then estimate y by ML [32] [the first way requires
that m(W; y) include an intercept term]. In either case,
equation (6) is one of the score equations for p [corre-
sponding to the intercept in the first case and to the
covariate T (W; &ML)_1 in the second case], and hence
holds at p. Note that if the original model for E(Y | W)
is correctly specified, then the extended model with
covariate 7 (W; apm)~! added will still be correctly
specified. When the original model for E(Y | W) is
misspecified, the first DR RI estimator usually has bet-
ter performance than the second [31].

Robins et al. [25] proposed calculating py;; and then
estimating « in such a way that }7_ | R;w(W;; a)~!.
(Wi py) — n~ '35 m(W s py)} = 0. The
sample-bounded estimator ,BAIPW’ g(a) is then DR. This
DR estimator is related to the minimum-discrepancy
estimators discussed in [36]: they all calculate the
weights in such a way that the weighted average of
m(W; pyp) in the complete cases is equal to the cor-
responding unweighted average in the whole sample.

4.3 Efficient Estimators over a Class of Estimators

All the improved estimators described so far suffer
from the drawback that, if m(W; y) is misspecified,
they can potentially be less efficient than the IPW es-
timators Blpw and ,BAIpw,B. We now describe DR esti-
mators that are, when 7w (W; «) is correctly specified,
guaranteed to be at least as asymptotically efficient as
the IPW estimators that use the same model 7 (W; «).
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Consider a correctly specified model 7 (W; o) and
a fixed choice of (possibly misspecified) model m(W;
y) = h(yTW), where /4 is a known link function, and
let & = éwmr. Let B(vy, 1o, ¥), where vy and v, are real
numbers, denote the estimator that solves equation (5)
with Z{" = W;, u(Z;: ) =Y, — p and $(Z;": . )
replaced by vi + vom(W;;y) — B. So, in particu-
lar, /53(0, 1, yyp) is the standard DR estimator and
é(O, 0,0) and ,3(,8 ,0,0) are, respectively, ﬁlpw and
Bipw B-

Cao et al. [5] and Tan [38, 39] independently derived
estimators that are asymptotically efficient over the set
{B(vl, V2, YY) —00 < v,y <00,y €'}, where I is
the parameter space of p. That is, their asymptotic vari-
ances cannot be greater than that of any AIPW estima-
tor that uses in its augmentation term vy 4+ vom(W; p)
for any fixed vy, v2 and y. In particular, they cannot
be greater than those of ,Blpw, ,BIPW B and the standard
DR estimator (because the last has the same asymp-
totic variance as ,@ 0,1,y,) when m(W;ea) is cor-
rectly specified; see proof of DR in [36]). Rotnitzky
et al. [30] derived a DR RI estimator that is at least
as asymptotically efficient as both B(0, 1, y) for any
y €I and ,BAH:W’B. If m(W;yp)=0 for some y €T,
then B(0, 1, ) = (0, 0, 0) = Bipw for this value of y,
so that Rotnitzky et al.’s estimator is also at least as
asymptotically efficient as BIPW.

Tan’s [39] estimator (which builds on his earlier
work [37]) has the advantage that it is sample bounded.
Cao et al.’s [5] method (further developed by Tsiatis et
al. [42]) and Rotnizky et al.’s [30] method have the ad-
vantage that they allow estimation of the parameters of
a semiparametric regression model, even for longitu-
dinal data with dropout. However, when f is a vector,
Cao et al.’s estimator ensures asymptotic efficiency for
only one specified element of 8. Rotnitzky et al.’s es-
timator ensures asymptotic efficiency for all elements
of B (and indeed for a finite number of arbitrary scalar
functions of B).

4.4 Bias-Reduced DR Estimators

The methods listed in Section 4.3 minimise the
asymptotic variance of ,éDR over a class of AIPW esti-
mators when 7 (W; ) is correctly specified, but are not
guaranteed to do so when it is misspecified. Vermeulen
and Vansteelandt [46] took a different approach. Rather
than seeking directly to minimise the asymptotic vari-
ance, their “bias-reduced DR estimator” uses the es-
timators & and p obtained by locally minimising the
squared asymptotic bias of Bpr when both models
m(W;a) and m(W; y) are misspecified. This makes

the bias-reduced DR estimator less sensitive than the
standard DR estimator to mild model misspecification.
This can be understood as follows. The asymptotic bias
of Bpr equals E[{m(W;ao) — m(W)Hm(W;yy) —
EY | W)} (W;a0)~ '] [46]. That is, it is the prod-
uct of the degrees of misspecification of the two mod-
els inversely weighted by m(W;ao). This weight-
ing is concerning, because it is in the region where
7w (W;ap) is small that few complete cases are ob-
served, and so misspecification of m(W; y) is most
likely to remain undetected. Vermeulen and Vanstee-
landt’s choice of & and y makes the asymptotic bias re-
duceto E[{m(W;yy) — EY | W)}{1 —m(W)}], hence
avoiding this problem.

Bias-reduced DR estimation can be used for quite
general semiparametric models, even when data are
assumed to be MNAR. However, when B is a vector,
the squared asymptotic bias is minimised only for one
specified element of 8.

Estimating the variance of ,B pr 1s straightforward for
the bias-reduced estimator, because a fortunate effect
of the way that & and p are calculated is that uncer-
tainty in these parameters can be ignored even when
both models 7 (W; «) and m(W; y) are misspecified.
The variance can thus be estimated as explained in Sec-
tion 3.3, replacing S; (@) by Sg; (). This may also ex-
plain why the bias-reduced estimator appears to have
good efficiency in simulation studies [46].

Simulation studies that compare many of the im-
proved DR methods discussed in Sections 4.2—4.4 have
been reported [39, 22, 46]. In these studies, the im-
proved methods had less bias and greater efficiency
than the standard DR estimator when the outcome
model was misspecified; differences were less marked
when only the missingness model was misspecified.
The estimators of Sections 4.3 and 4.4 performed bet-
ter than those of Section 4.2, but among the former
group no method was uniformly best. The range of
data-generating mechanisms considered in these stud-
ies was quite small, however, and more research would
be welcome.

5. DATA-ADAPTIVE METHODS

The increasing popularity and availability of data-
adaptive statistical methods (e.g., kernel smoothing,
penalised likelihood, ensemble learners) may lead the
reader to wonder what is the use of DR estimators
when RI estimators and IPW estimators can be based
on outcome imputations and missingness probabilities,
respectively, obtained via such flexible methods [16].
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In this section, we provide insight into this matter, and
argue that DR estimators are in fact especially useful
when data-adaptive methods are used.

For simplicity, we return to the missing outcome
problem of Section 2. Consider the RI estimator fry =

IZ _,m(W;; p), where p is an estimate obtained
through some data-adaptive statistical method (e.g.,
standard variable selection). The estimator y will typ-
ically have a complicated finite-sample distribution
[13] and nonuniform convergence of this distribution
to a normal distribution, properties which the RI esti-
mator gy will usually inherit. The practical implica-
tion of this is that uniformly valid confidence intervals
with nominal coverage for 8 based on /SRI are diffi-
cult to obtain. Confidence intervals that are not uni-
formly valid are not guaranteed to perform well, be-
cause, for any given n, no matter how large, there exist
distributions of the full data for which their coverage
is poor. This problem is well known for, for example,
lasso-estimators y, where a small change in the data-
generating mechanism (e.g., an element of y changing
from 0 to n~'/2) may lead to a relatively large change
in the distribution of p even for large n, because it
may lead to different variables being selected asymp-
totically [14, 13].

To develop more formal insight into this, we con-
sider the difficulty that arises in the specific example
of lasso or post-lasso (post-lasso is the procedure that
uses lasso as a variable-selection procedure and then
refits the selected model using a standard procedure
(e.g., ML) to reduce shrinkage bias [2]). Similar prob-
lems arise with other data-adaptive methods. Let p be
an estimator of y obtained via lasso or post-lasso. Then
(3, 8,91,

Vn(Br1 — Bo)
[Z m(Wl’ }’) ﬂO}

[Z m(Wi: yo) — o}
IZ m(Wi: p) —m(Wi; yo)}
\/_Z m(Wi;y9) — Bo}

V(@ —vyo)

Y=Yo

1< 0m
7 L g
(N +ni=la}’( isY)

+ VP = poll30, (D).

where || - |2 denotes the Euclidean norm. Assuming
that m(W; y) is correctly specified, the first term in
the expansion (7) generally has an asymptotic nor-
mal mean-zero distribution and the remainder term
Vnlly —vo ||% O, (1) tends to be of lower order than the
other two terms. Although the term n~! 37 1 om(W;;
Y)/0¥ly=y, X /n(p —¥) does (for ﬁxed Yo and as-
suming regularity conditions) converge in distribution
to a normal distribution, this convergence is generally
not uniform. That is, for any n, no matter how large,
there exist values of y for which the distribution of
J/n(p —yy) is far from its asymptotic distribution, and
hence for which /n (,3R1 — Bo) is far from its asymp-
totic distribution.

An additional concern arises when p, the dimen-
sion of y, is large relative to n. Lasso and other
penalised likelihood methods are commonly used in
such settings. Large-sample behaviour of p as p in-
creases with n is therefore of interest. When p in-
creases with 7, there is (in addition to the foremen-
tioned difficulty of obtaining uniformly valid confi-
dence intervals) a problem that bias in Sr; may van-
ish only slowly with increasing » unless the true data-
generating mechanism shows sufficient sparsity, that is,
unless the rate at which s, the number of nonzero el-
ements of y, increases as n increases is sufficiently
small [2]. More specifically, it follows from [2] that,
for lasso and post-lasso estimators, /n||y — y0||% =
0, ((s/+/n)log(p Vv n)), where a v b denotes the max-
imum of a and b. When there is sufficient sparsity to
ensure that (s//n)log(p V n) converges to zero, the
second-order term /n|y — y0||% converges to zero.
However, greater sparsity is required to prevent the
termn~' Y7 i1 0m (Wi ¥) /0y ly=yp, X /n(y — o) in
equation (7) from diverging to infinity, and so to ensure
that bias in \/n (,BRI Bo) vanishes as n — oo.

The above concerns largely disappear when data-
adaptive methods are combined with DR estimators,
because DR estimators enjoy a small bias property
[20, 8]. This means that their bias vanishes faster than
the bias in the nuisance parameter estimator (e.g., )
when the smoothing parameter (e.g., the bandwidth in
a kernel estimator or the penalty parameter in a lasso-
estimator) goes to zero. This property is important for
ensuring correct inference when data-adaptive meth-
ods are used [3]. This can more formally be gnder—
stood as follows. Consider again the estimator Spr =
n=I3"  p(Ri, RY;, W;; &, ), where

p(RaRYvwv 7)’)

__ R Y+{1—7R }(W”)
T IW. &) Wi ")



DOUBLE ROBUST METHODS 195

with p and & obtained through some data-adaptive sta-
tistical method. Then upon repeating the expansion of
equation (7) with /§DR in place of ﬁRI, p(R,RY, W,
@, ) in place of m(W;p), and @ = (', ") " in
place of y, one can see that slow convergence of y
and & does not necessarily induce erratic behaviour
in ﬁDR. This is because, as noted in the proof of DR
in [36], dp(R, RY, W; a, y)/00 has expectation zero
at (ag, o) when w(W; o) and m(W; p) are correctly
specified, and so slow convergence of the first-order
term /1 (é — 0p) in the expansion is not a problem (so
long as 4/n ||9 — 00||% converges to zero).

Farrell [9] uses this idea to demonstrate that, un-
der conditions that we specify next, ﬁDR is asymptot-
ically unbiased and uniformly valid 95% confidence
regions for B can be straightforwardly calculated as

BDR +1.96,/6%/n, where 62 is the sample variance of
p(R,RY, W;a,y). These conditions are that the em-
pirical mean squared errors of m(W; p) and 7 (W; &)
converge in probability to zero, and that their product
converges at faster than n~!-rate. This in particular al-
lows slow convergence of &, so long as p converges
sufficiently fast, and vice versa.

The results of Farrell [9] apply to any data-adaptive
method for estimating & and p, so long as it sat-
isfies the aforementioned conditions. Targeted maxi-
mum likelihood estimation (TMLE), proposed by van
der Laan and Rubin [43] and refined by Gruber and
van der Laan [10], is one such procedure. It is de-
signed to ensure that the DR estimator reduces to a
RI estimator (or “substitution estimator” in their ter-
minology). It involves two steps. First, a preliminary
estimate m©@ (W; y) of E(Y | W) based on a data-
adaptive learning algorithm (e.g., an ensemble learner)
is obtained, and a parametric missingness model is
fitted to obtain &. Second, a canonical generalised
linear model for E(Y | W) is fitted, with link func-
tion h(-), offset term A~ ' {m©@(W; )} and the sin-
gle covariate R/m(W; &). This covariate is chosen be-
cause ML estimation of its coefficient involves setting
Y Rim(W; &)~ {Y; —m(W;; p)} to zero, thereby
making the DR estimator equivalent to a RI estimator.

6. DISCUSSION

Much research on DR estimators has been for the
missing outcome problem of Section 2 and for re-
stricted moment models with missing outcome or co-
variates (see Section 3 and [36]). Other applications
have included, for example, estimating the area under
an ROC curve with missing outcome or predictor [18,

29]. The DR property is not unique to methods for in-
complete data. The missing outcome problem of Sec-
tion 2 is closely related to that of estimating an average
causal effect, and essentially the same DR estimators
appear in this literature (e.g., [1]). DR estimators have
also been proposed for many other causal inference
problems. Rotnitzky and Vansteelandt [31] list numer-
ous examples of DR estimators, within and without the
causal inference literature.

We have focussed on DR incomplete-data estimators
for scenarios where a full-data m-estimator is avail-
able. In the supplemental article [36], we describe more
general DR theory, and illustrate this using the Cox
model with a partially observed covariate. The usual
full-data estimator for the Cox model is the solution to
partial-likelihood estimating equations, which do not
take the form }_7_, u(Z;; B)=0.

The AIPW estimator of Section 2 has close con-
nections to sample survey estimators that pre-date the
work of Robins et al. [28], and to DR empirical likeli-
hood (EL) and generalised EL estimators. In the sup-
plemental article [36], we describe these connections
and provide an introduction to DR EL estimators.

In missing-data problems, DR estimators require
correct specification of either a model for the missing-
ness process (given the full data) or a model for (some
functional of) the outcome distribution (given the miss-
ing data patterns). When the data are nonmonotone
missing, plausible models for the missingness process
can be difficult to construct. This has hindered the de-
velopment of DR estimators in such settings [27]. The
development of DR estimators for nonmonotone miss-
ing data constitutes one of the primary open problems
in this domain.

The construction of DR estimators for MNAR data
is complicated by the lack of factorisation of the like-
lihood, which makes it difficult to describe the model
for the missingness process (given the full data) and the
model for (some functional of) the outcome distribu-
tion (given the missing data patterns) using variation-
independent parameters. Such variation-independent
parameterisation is needed to ensure that consistent es-
timators of the missingness probabilities can be ob-
tained even when the outcome model is misspecified,
and vice versa. Nevertheless, some progress has been
made. A common approach uses a “tilt” function (e.g.,
[29]). A simple application of this approach to the
missing outcome problem of Section 2 would assume
that P(R=1| W,Y) = expit{wY + a(W)}, where
a(W) is some function of W and w is a known param-
eter (here wY is the “tilt” function). This implies that
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JOIW.R=0)=f(y|W,R=1exp(-wY)c(W),
where c¢(W) is a normalising constant. The DR esti-
mator of B is consistent if either a model a(W; &) for
a(W) or amodel b(W; y) for f(y | W,R=1) is cor-
rectly specified.

Finally, although in Section 5 we considered the im-
plications of using variable (or model) selection strate-
gies for the missingness and/or imputation models, we
did not discuss how such selection is best done. Just as
the choice of estimators of the nuisance parameters (o
and y) can have a major impact on the performance of
the DR estimator when at least one of these models is
misspecified, also the choice of selection strategy can
be extremely influential. This is well known when in-
strumental variables are observed, that is, variables that
are predictive of missingness but not of the partially ob-
served variables themselves [4]. The selection of such
variables in the missingness model can cause a major
loss of efficiency, and can moreover drastically amplify
biases, for example due to model misspecification.

The development of variable selection strategies that
prevent selection of instrumental variables in the miss-
ingness model has been an area of vigorous recent re-
search [45, 47]. One such approach is the “collabora-
tive TMLE” method [45]. In the context of the miss-
ing outcome problem of Section 2, this method se-
lects, from a given number of TMLEs for a nested se-
quence of models for 7 (W), the one which minimises
a penalised log-likelihood criterion, for example, the
sum of the squared residuals from the fitted model for
E(Y | W) plus the mean-squared error of the estimator
of B estimated by cross-validation. Because selecting
instrumental variables inflates the mean-squared error
of the estimator of 8 without changing the sum of the
squared residuals, such variables are unlikely to be se-
lected. While targeted variable selection strategies like
the above tend to bring major efficiency improvements
relative to routine strategies, a concern is that all of
them (directly or indirectly) involve jointly modelling
the missingness process and the conditional distribu-
tion of partially observed variables. As such, they risk
giving up on the DR property, since misspecification of
one of these two models may then result in inconsistent
estimation of the other model, even when it is correctly
specified.
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