Accepted Manuscript

Prevalence and persistence of *Listeria monocytogenes* in premises and products of small food business operators in Northern Ireland

Robert H. Madden, Mike Hutchison, Kieran Jordan, Vincenzo Pennone, Ozan Gundogdu, Nicolae Corcionivoschi

PII: S0956-7135(17)30599-6

DOI: 10.1016/j.foodcont.2017.12.020

Reference: JFCO 5912

To appear in: Food Control

Received Date: 6 October 2017

Revised Date: 13 December 2017

Accepted Date: 14 December 2017

Please cite this article as: Madden R.H., Hutchison M., Jordan K., Pennone V., Gundogdu O. & Corcionivoschi N., Prevalence and persistence of *Listeria monocytogenes* in premises and products of small food business operators in Northern Ireland, *Food Control* (2018), doi: 10.1016/ j.foodcont.2017.12.020.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Prevalence and persistence of *Listeria monocytogenes* in premises and products of small food business operators in Northern Ireland

- 1
- Robert H. Madden¹, Mike Hutchison², Kieran Jordan³, Vincenzo Pennone³, Ozan Gundogdu⁴
 and Nicolae Corcionivoschi^{1*}
- 4
- ⁵ ¹Food Microbiology, Agri-Food and Biosciences Institute, Veterinary Science Department, Belfast,
- 6 BT9 5PX, Northern Ireland
- 7 ²Hutchison Scientific, Cheddar, Somerset, BS27 3NA, United Kingdom
- ³Food Safety Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
- ⁹ ⁴Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine,
- 10 Bloomsbury, London, WC1E 7HT, UK
- 11
- 12 * Correspondence:
- 13 Nicolae Corcionivoschi, Food Microbiology, Agri-Food and Biosciences Institute, Veterinary
- 14 Science Department, Belfast, BT9 5PX, Northern Ireland
- 15 Nicolae.corcionivoschi@afbini.gov.uk
- 16
- 17 Keywords: Listeria monocytogenes, ready-to-eat-foods, persistence, SME, food safety, food
- 18 processing.
- 19
- 20 Running title: Listeria monocytogenes in SMEs in Northern Ireland

')	l
4.	l

Abstract

0	0
L	4

23	Listeriosis is a foodborne disease, with a high mortality rate, that predominantly effects the elderly.
24	Under European Union legislation, EC 2073/2005, food business operators are encouraged to
25	undertake sampling to ensure that the food processing environment, and required to ensure that food
26	products, are free of Listeria monocytogenes. To determine the prevalence of L. monocytogenes in
27	smaller food processing facilities in Northern Ireland, 24 companies submitted six processing
28	environment swabs and two food samples every two months for eighteen months (July 2015 to
29	November 2016) for L. monocytogenes examination. The prevalence of L. monocytogenes was 4.6%
30	in food samples, and 6.3% in processing environment swabs. Over the duration of the study, 96
31	isolates of L. monocytogenes were obtained, one from each positive sample, except for two meat
32	samples that had >100 cfu/g, where two isolates were obtained from each sample. No seasonality in
33	occurrence of L. monocytogenes was seen for food isolates but significantly higher numbers of
34	positive processing environment swabs were found in the warmer months of May, July and
35	September ($p = 0.007$). Pulsed Field Gel Electrophoresis (PFGE) analysis revealed the presence of 27
36	pulsotypes; 9 pulsotypes were shared between different facilities and 9 were persistent. Based on a
37	Combase predictive growth model, 77.5% (n=130) of the foods tested were predicted to support the
38	growth of L. monocytogenes. All of the isolates carried the pathogenicity genes inlA and actA and
39	71.4% carried qacH, which confers resistance to quaternary ammonium compounds which are
40	frequently used in sanitizers. Whole genome sequencing of the isolates allowed multi-locus sequence
41	typing to be undertaken. The data indicated that the sequence types identified included those with
42	disease-causing ability, highlighting the disease-causing potential of the isolates.

43

1. Introduction

47	Clinical invasive infection by Listeria monocytogenes, listeriosis, is rare in healthy humans.
48	However, there are subsections of the population that are vulnerable to invasive infection, including
49	the immuno-compromised, the elderly and pregnant women (CDC, 2017). From a public health
50	perspective, finding ways to reduce exposure of vulnerable consumers to L. monocytogenes in ready-
51	to-eat (RTE) foods is important. Despite this, the number of cases of listeriosis reported in the EU
52	has increased. In 2015, the number of confirmed human cases of listeriosis reported in the European
53	Union was 2,206 (0.46 cases per 100,000 population), which was similar to 2014. In 2015, nineteen
54	member states reported 270 deaths due to listeriosis, which was the highest annual number of deaths
55	reported since 2008 (EFSA & ECDC, 2016). In a systematic review of the literature, De Noordhout
56	et al. (2014) estimated the case fatality rate was 23.5%. The susceptibility of older people is of
57	special concern in the UK due to its ageing population (Harper, 2016).
58	Since L. monocytogenes is a ubiquitous environmental bacterium (Farber & Peterkin, 1991;
59	Hellberg & Chu, 2016; Montero et al., 2015), food processing environments are at a continuous risk
60	of colonisation by L. monocytogenes. For many RTE products the main, but not sole contamination
61	mechanism, is by transfer of L. monocytogenes strains from raw materials into niches in the plant
62	environment and subsequent transfer from these niches into final products (Tompkin, 2002). Such
63	cross-contamination has been shown in many studies (Bolocan et al., 2015; Leong et al., 2017;
64	Muhterem-Uyar et al., 2015; Stessl et al., 2014), although cross-contamination from the food to the
65	processing environment cannot be ruled out. Effective cleaning (the removal of soil) followed by
66	sanitising (the destruction of microorganisms), or the application of heat can remove
67	L. monocytogenes from processing environments (Murugesan, Kucerova, Knabel, & Laborde, 2015;
68	Zottola, 1994). However, any failings in these procedures can result in contamination of products that
69	have been rendered Listeria-free by the critical control point of cooking (Currie et al., 2015; Leong et

70 al., 2017; Swaminathan & Gerner-Smidt, 2007). Accordingly, the European Union has legislated to 71 ensure the safety of RTE products that support the growth of L. monocytogenes (EU, 2005). For 72 foods supporting growth of L. monocytogenes (apart from foods for infants or special dietary 73 purposes, where complete absence is required), absence is required when the product leaves the 74 manufacturer, unless the manufacturer can demonstrate that the numbers will be <100 cfu/g at the end 75 of the shelf life. Foods not supporting growth must have <100cfu/g at the end of the shelf life. 76 Since RTE food processing environments are recognised as a significant source of L. 77 monocytogenes contamination (Beno et al., 2016; Tompkin, 2002), it is important for food business operators (FBOs) to have an appropriate surveillance programme to monitor and control the risk of L. 78 79 monocytogenes contamination of the final product. Environmental monitoring programmes are 80 recommended in the EU (EU, 2005) and required in some food sectors in the United States of America (FDA, 2011) and contribute to the identification and tracking of L. monocytogenes along the 81 82 food chain, and within food processing facilities. Such programmes can have an impact on avoiding 83 cross-contamination to food (Ho, Lappi & Wiedman, 2007). Applying genetic fingerprinting, such as 84 pulsed field gel electrophoresis (PFGE) or whole genome sequencing (WGS) can assist studies on 85 isolate characterization and tracking (Dalmasso & Jordan, 2015; Schmid et al., 2014; Stasiewicz, Oliver, Wiedmann, & den Bakker, 2015), especially with regard to determining persistence of L. 86 87 monocytogenes in food processing facilities. 88 Whilst large scale food processors will be aware of strategies and interventions to exclude

L. monocytogenes, small to medium sized enterprises (SMEs) may require assistance. These are defined in European Union document 2003/361/EC as, inter alia, having fewer than 250 employees, but in the current project most of the SMEs involved had <20 employees. In the Republic of Ireland (RoI), a research project on assessment of *L. monocytogenes* was considered to have contributed to a reduction of *L. monocytogenes* in food and food processing environments, leading to a decreased risk to public health (Leong et al., 2017).

95	The aim of this study was to assess the occurrence and persistence of L. monocytogenes in 24
96	RTE food processing facilities in Northern Ireland over an eighteen-month period (July 2015 to
97	November 2016). Regular monitoring of the processing environments and products of the RTE food
98	manufacturers, with molecular characterisation of the L. monocytogenes strains isolated was
99	undertaken.
100	
101	2 Materials and Methods
102	
103	2.1 L. monocytogenes monitoring program
104	Staff of the College of Food, Agriculture & Rural Enterprise (CAFRE), Cookstown, led the
105	recruitment of FBOs to be involved in the programme. In total, 24 companies participated in this
106	study with staff attending a half day workshop for training in sampling procedures. All participating
107	FBOs provided sketch plans of their premises and marked the environmental sites to be sampled
108	during the programme. At the workshop the FBOs received detailed instructions which included
109	information on how to take swab samples, which areas to sample, and on the packaging and shipment
110	of the samples to the laboratory. This was designed to ensure consistent sampling by all participants.
111	In addition a video of the appropriate sampling procedures was made and placed on YouTube for
112	subsequent access by participants to ensure uniform sampling. For swab samples, all FBOs were
113	asked to take samples from three specific areas: a drain in the main processing hall, an area of floor
114	(1 m^2) and a storage shelf. Because of the variation in layout and type of the facilities, the area to
115	swab for the remaining samples was to be chosen by the FBO from anywhere in the food processing
116	environment, and the location noted. Cutting areas, walls, other drains and pooled water were
117	suggested as optimum locations. For food samples, FBOs were instructed to send two food samples
118	which were at the stage of being ready to be sent from the processing facility. All sampling took

place during normal production conditions. Management practices were assessed by means of adetailed questionnaire submitted to all participants.

121 From July 2015 to November 2016, a total of 24 food processing facilities from seven food 122 sectors (cooked meat, horticultural products, sandwich, baked goods, salads, seafood and dairy 123 [Table 1]) were analysed bimonthly for the presence of L. monocytogenes. All of these food 124 processing facilities produced RTE food products, and were distributed throughout Northern Ireland 125 (NI). Sampling packs, which consisted of a polystyrene box (DS Smith, UK) containing six pre-126 moistened 3M sponge-stick swabs (Technopath, Ireland), a sterile liquid container (VWR, Ireland), 127 two sterile bags (VWR, Ireland), two cable ties, and two ice packs, were sent to all participating food 128 processing facilities two weeks prior to the assigned sampling date.

129

130 2.2 Microbiological analyses

131 All microbiological media were supplied by Oxoid, (Basingstoke, UK), unless otherwise 132 stated. Sampling kits were dispatched to FBOs two weeks before the target sampling date, and 133 samples were sent from FBOs by courier on the day of sampling, to arrive at AFBI the next morning, 134 where they were analysed immediately (less than 24 h after sampling). The methods used were 135 detection of Listeria spp. (including L. monocytogenes), BS EN ISO 11290-1:1996/Amd 1:2004, and 136 enumeration of Listeria spp. (including L. monocytogenes) as described in BS EN ISO 11290-137 2:1998/Amd 1 2004, except that only agar Listeria according to Ottavani and Agosti (ALOA) was 138 used. Briefly, for food samples, for the enumeration of *Listeria* spp. 25 g of sample were added to 139 225 ml of Fraser broth base (CM0895 without selective supplements), blended for 2 min (Colworth 140 400, Seward Limited, Worthing, UK) then allowed to stand for 1 h. The samples were then plated 141 (0.1 ml) onto plates of ALOA agar and incubated (37°C for 48 h), with examination after 24 h and 48 142 h. Plates with less than 150 typical colonies were counted. Where plates yielded presumptive L. 143 monocytogenes, five colonies were purified and confirmed, using API Listeria (bioMérieux UK

144	Limited, Basingstoke, RG22 6HY), and the final count obtained by multiplying the presumptive
145	count by the percentage of confirmed L. monocytogenes colonies. For swabs, 90 ml of Fraser broth
146	base with half strength supplements was added to the swab in the bag in which it was transported to
147	the laboratory, followed by incubation and sub-culture as described above.
148	
149	2.3 Pulsed field gel electrophoresis
150	The PFGE analysis was carried out using the International Standard PulseNet protocol
151	(PulseNetUSA, 2013). Listeria monocytogenes isolates were grown overnight in Brain Hearth
152	Infusion (BHI) agar at 37°C, subsequently a suspension in 10 mM Tris:1 mM EDTA buffer, pH 8.0
153	(TE) was prepared with an approximate OD_{610} of 1.0. To 400 µL of cell suspension was added 20
154	mg/ml of Lysozyme which was incubated at 55°C for 20 min. After incubation, 20 μ l of Proteinase K
155	stock (20mg/ml) was added, followed by 400 µl of SeaKem Gold agarose 1%. Plugs were prepared
156	by dispensing the mix into plug moulds. Solid plugs were then lysed for 2 h in 5 ml of cell lysis
157	buffer (50mM Tris, 50mMEDTA, pH8.0 + 1% Sarcosyl) supplemented with 25 µl of 20 mg/ml
158	proteinase K solution. The plugs were then washed twice in distilled water and four times in TE
159	buffer.
160	DNA was digested with 10 U/µl of the restriction enzyme AscI FastDigest (Fisher Scientific,
161	Ireland) and 50 U/µl of the restriction enzyme Apal FastDigest (Fisher Scientific, Ireland); the
162	restricted DNA was run in a 1% SeaKem Gold agarose gel for 21 h as described in the PulseNet
163	protocol, on a CHEF-DR III (Bio-Rad). After staining with $1 \mu g/ml$ ethidium bromide solution, the
164	gels were observed with the Alpha Imager (Alpha Innotech, DE). Analysis of the gels was performed
165	with BioNumerics v7.0 software (Applied Maths) using and UPGMA (unweighted pair group
166	method with averages) and the Pearson coefficient with 1% tolerance.

167

168 2.4 Whole genome sequencing

169	DNA was extracted from all isolates using a PureLink Genomic DNA Kit (Thermofisher
170	Scientific, Paisley, UK) as per the manufacturer's instructions. The whole genome sequencing of all
171	L. monocytogenes isolates was performed as previously described (Ugarte-Ruiz et al., 2015) using
172	Illumina MiSeq 2×250 bp paired-end sequencing. To analyse the data quality, FastQC was used
173	(Andrews, 2016). To trim and crop the sequencing reads, Trimmomatic was used with the following
174	parameters: (v0.32) 'leading' and 'trailing' setting of 3, a 'slidingwindow' setting of 4:20 and a
175	'minlength' of 36 nucleotides (Bolger, Lohse, & Usadel, 2014). BWA-MEM (v0.7.7-r441) was used
176	to map the reads using the genome sequence of L. monocytogenes EGD (HG421741) as described by
177	Li & Durbin, 2010. VelvetOptimiser (v2.2.5) using n50 optimization was used to perform assembly
178	(Gladman & Seeman, 2012; Zerbino & Birney, 2008). The reference strain L. monocytogenes EGD
179	(HG421741) was used to complete contigs using ABACAS (v1.3.1) (Assefa, Keane, Otto, Newbold,
180	& Berriman, 2009). Multi locus sequence type (MLST) was determined using PubMLST
181	(https://github.com/tseemann/mlst). Genome annotation was provided by using Prokka (Seemann,
182	2014). To read the genomes, and assess them for presence of internalin A, actA,
183	Listeria pathogenicity islands 3 and 4, the stress survival islet SSI-1, bcrABC and qacH, Artemis and
184	ACT software were used (Carver, Harris, Berriman, Parkhill, & McQuillan, 2012).
185	
186	2.5 Measurement of pH and a_w .
187	A subset of food samples (n=130) was analysed to determine the pH, using the methodology

of BS 4401-9-1975, ISO 2917-1974, and water activity (a_w) determined according to British Standard
method BS ISI 21807:2004, using a Rotronic HygroLab 3 (Rotronic Instruments [UK] Ltd, Crawley,
RH10 9EE, UK). These represented two samples of each of the products submitted by FBOs.

191

192 2.6 Statistical analyses

193	All statistical analyses were undertaken by the Biometrics & Information Systems Branch,
194	AFBI, using Genstat Release 18.1 for Windows (VSN International Ltd, Hemel Hempstead, HP2
195	4TP, UK). One-way analysis of variance was used to study temporal differences with $P < 0.05$
196	indicating significance.
197	
198	3 Results
199	
200	3.1 Occurrence of L. monocytogenes
201	Overall, the 24 FBOs submitted 1,598 samples for analysis. These consisted of 1,203 swabs
202	and 395 food samples. Seventy-six swabs (6.3%) and eighteen food samples (4.6%) yielded
203	L. monocytogenes, with 5.9% of samples being positive overall. All the food samples had <100cfu/g,
204	except for two samples of cooked meat, one that had >2000 cfu/g and one that had 140 cfu/g. L.
205	monocytogenes were not isolated from twelve of the premises tested; four produced dairy products
206	and the eight others a variety of products, including hot smoked salmon, pasta sauces, pâtés and
207	ready meals, baked goods, cooked chicken, and salad and vegetable based products. The overall
208	prevalence of L. monocytogenes at the different facilities is shown in Table 1, while the type of
209	positive sample, is shown in Table 2. Overall, 96 L. monocytogenes isolates were obtained during an
210	eighteen-month sampling schedule, one from each positive sample, except for two meat samples that
211	had >100cfu/g, where two isolates were obtained from each sample. Study of the number of positive
212	samples with time (data not shown) suggested that there were differences in the prevalence of
213	<i>L. monocytogenes</i> between the seasons of summer and winter (summer = May, July, September;
214	winter = November, January, March). No statistically significant difference was found between the
215	numbers of positive food samples found in summer and winter however, for processing environment
216	swabs, significantly more positive samples were found during the summer months, $p = 0.007$.

217 Of the positive samples, 47.8% were in drains and on floors, while 19.1% were from food 218 samples. The remainder were from other processing environment sites, for example trolleys, tables 219 and walls.

220

221 3.2 Analysis of the isolates by pulsed field gel electrophoresis

222 The isolates were analysed by pulsed field gel electrophoresis (PFGE); two isolates that were 223 not recoverable were not included in the PFGE analysis, leaving PFGE analysis on 94 isolates. A 224 total of 27 distinguishable pulsotypes were identified, based on > 90% similarity. Figure 1 shows a 225 minimum spanning tree, representing the PFGE profiles of all the isolates. The different colors 226 represent different food categories. Within a circle, each segment represents an isolate, while the 227 circle represents a pulsotype where the isolates show > 90% similarity. The length of the line 228 between the circles represents the distance of the relationship between the pulsotypes/isolates. Pulsotypes with only one isolate are represented by a circle with no segments. Of the 27 pulsotypes, 229 230 there were 10 with a single isolate and 8 with more than 4 isolates. Nine of the pulsotypes had 231 isolates from more than one food sector, indicating possible cross contamination between food 232 sectors (Table 3 gives more detail on pulsotypes shared across food sectors).

For each of the companies which were positive for *L. monocytogenes*, Table 3 shows the number of pulsotypes, number of persistent pulsotypes and the number of pulsotypes shared between different food sectors (widespread pulsotype). A persistent pulsotype was defined as repeated identification of an isolate of the same pulsotype over a period longer than 6 months. Of the 27 pulsotypes identified, 21 of these were identified in 3 of the companies tested. This shows the diversity of the isolates obtained, but also shows a degree of similarity in the isolates from the different companies (Figure 2).

240 Persistent pulsotypes were identified at 6 of the 12 facilities. Of the 27 pulsotypes, 9 were 241 persistent. Five pulsotypes showed a cross-contamination scenario in 3 of the companies, where 242 indistinguishable pulsotypes were found on food and in the processing environment. 243 The PFGE profiles obtained in this study were compared with a database of strain PFGE 244 profiles obtained in a similar study in the RoI. There were no similarities at the level of >90%245 between the isolates from this study and isolates obtained previously. 246 Comparison between the pulsotypes obtained in this study and about 2,500 PFGE profiles in a 247 database of international isolates at Teagasc, Moorepark, Ireland, showed that of the 27 pulsotypes 248 obtained in this study, 10 were comparable with international isolates. These included similarities 249 with strains from Ireland, Austria, Romania, Czech Republic, Turkey and Australia (data not shown). 250 Seven of the pulsotypes from the current project were >90% similar to mushroom production chain 251 isolates from a project in the RoI. Figure 3 shows an example of one of these. 252 A comparison between the pulsotypes from this study and those of clinical isolates from the 253 ROI was made. Seven of the pulsotypes identified in this project were similar to pulsotypes from 254 clinical isolates at >90% (data not shown).

255

256 3.3 Potential for growth of L. monocytogenes on the food products

257 The pH and a_w data were used as the input into the Combase L. monocytogenes computer 258 growth prediction model (http://browser.combase.cc) to obtain an estimate of the mean generation 259 time at three storage temperatures: 4, 6, and 8°C. Combase predicted that 19 of the 130 samples 260 would not support the growth of L. monocytogenes due either to their pH being below 4.40 (14 261 samples), or their a_w being below 0.934 (5 samples). The pH and a_w for the remaining 111 samples 262 which were predicted to support growth is shown in Supplementary Figure 1. Over 80% of the 111 263 samples had a pH greater than 5.5 and over 86% had a a_w greater than 0.97. To assess, and compare, 264 the potential of each foodstuff to support the growth of L. monocytogenes, an arbitrary growth

265	parameter was chosen. This was the ability of the food to support ten generations of growth,
266	equivalent to approximately 1,000-fold growth, in seven days or less. This corresponded to growth
267	from 1 cell per 10 g of food to the limit of 100 cfu/g, and was intended to be a parameter
268	comprehensible to the FBOs (data not shown). At 4°C, growth predictions showed that none of the
269	foods supported 10 generations of growth in one week. However, at 6°C growth could exceed this
270	target in 55.0% of the foods, and at 8°C this rose to 77.5% of the foods.
271	
272	3.4 Whole genome sequencing of the isolates
273	All of the L. monocytogenes isolates were subjected to WGS and 91 sequences were obtained;
274	the quality of the DNA did not allow WGS to be completed for 5 strains. The genome sequences
275	were then analysed for the presence of four virulence-associated genes: internalin A, inlA; actin
276	assembly protein, actA; Listeria pathogenicity island 3, LIPI-3 and Listeria pathogenicity island 4,
277	LIPI-4. Three genes indicative of stress tolerance were also studied; stress survival islet, SSI-1;
278	a resistance cassette, which contributes to resistance to quaternary ammonium compounds, bcrABC;
279	and the quaternary ammonium compound-resistance gene, qacH (Fox, Allnutt, Bradbury, Fanning, &
280	Chandry, 2016). All 91 isolates carried functional genes for <i>inlA</i> and <i>actA</i> and 65 (71.4%) carried
281	qacH. None carried LIPI-3, LIPI-4, or bcrABC.
282	These whole genome sequences were analysed to determine the MLST of the isolates, a
283	feature frequently used for clinical characterisation of isolates. Twelve MLSTs were
284	found(Supplementary Figure 1), and in nine FBOs some MLSTs were isolated on more than one
285	occasion (Table 4).
286	
287	4 Discussion

289	The results of this study show that 50% of the 24 food processing facilities where sampling
290	took place were free of L. monocytogenes in the food and the food processing environment for the
291	18-month duration of the sampling. It is significant that L. monocytogenes was not detected in any of
292	the 5 of the dairy processing companies where sampling took place (all the companies used
293	pasteurised milk, with the main products being ice cream, yoghurt and cheese). Sandwich production
294	companies and horticultural product production facilities were the food sectors where the highest
295	number of facilities were positive – 4 of 4 and 3 of 4, respectively. In a similar study in the RoI, 10 of
296	54 facilities were completely free of L. monocytogenes for the 3-year duration of that study (Leong et
297	al., 2017). Correlation of data on management practices at facilities that were positive and negative
298	for L. monocytogenes did not identify any practices that would lead to an increase or decrease in
299	occurrence of L. monocytogenes (data not shown). From a food safety perspective, a L.
300	monocytogenes-free processing environment will have a reduced risk of L. monocytogenes
301	contamination of the food produced.

302 All of the positive samples came from 12 facilities, 4 of 4 sandwich producing companies, 3 303 of 4 horticultural product production facilities, 2 of 3 meat companies, 1 of 2 baked goods companies 304 and 1 of 1 seafood company. It should be noted that two samples of meat products sampled prior to 305 distribution were found to exceed 100 cfu/g, and were therefore not fit for sale. In these cases, the 306 FBOs were informed and appropriate action was taken. All other food samples (n=393) had <100 307 cfu/g. In this study, sandwiches had significant Listeria contamination, as was shown by (Cossu et 308 al., 2016), and they have been implicated in cases of listeriosis (Silk, McCoy, Iwamoto, & Griffin, 309 2014). This show the importance of anti-listeria controls in sandwich producing facilities.

The overall occurrence in food and in the processing environment was 4.6% and 6.3%, respectively. Comparing the results with other published surveys is not applicable as, 1) different methodologies (for sampling and analysis) are frequently used, 2) in many surveys, one facility is surveyed on several occasions or several facilities are surveyed on one occasion, 3) some surveys are

targeted at facilities that have been shown to be positive. In extensive surveys, using similar
methodologies, Leong et al, (2017) found that 3.8% of 4667 processing environment samples and
4.2% of 1202 food samples were positive, while Beno et al. (2016) found 1.4% of 4430 processing
environment samples positive. Muhterem-Uyar et al. (2015) reported a higher occurrence in meat
processing facilities than in dairy processing facilities (32.0% and 8.8%, respectively), attributing the
higher occurrence in meat processing facilities to cross-contamination from carcasses. In addition,

320 not all the meat processing facilities produced ready-to-eat food.

321 The locations most commonly associated with L. monocytogenes contamination were areas 322 such as floors and drains (Kells & Gilmour, 2004; Leong, Alvarez-Ordonez, & Jordan, 2014; Ruckerl 323 et al., 2014; Schoder, Rossmanith, Glaser, & Wagner, 2012). This prevalence was not consistent over 324 the 18-month period of the study as processing environment samples were more frequently positive 325 during the warmer months of May to September (p = 0.007). This is in contrast to other studies such as that undertaken in the RoI (Leong et al., 2017), where no seasonality was found. Weather, such as 326 327 warm or wet conditions, can affect the prevalence of *L. monocytogenes* (Hellberg & Chu, 2016). 328 However, in this study, no obvious cause for the seasonality observed was determined. In contrast, the statistical analyses showed no seasonal effects with regard to prevalence in the food samples. 329 330 Seasonality of contamination has been reported in dairy products (Meyer-Broseta, Diot, Bastian, 331 Rivière, & Cerf, 2003), but no dairy products were positive in this study.

The ninety-four isolates genetically characterised by PFGE resulted in 27 distinguishable pulsotypes; 33% of these pulsotypes showed persistence at the processing facility. Nine of the pulsotypes were found in different food sectors. If more extensive sampling and analysis were undertaken, it is possible that other pulsotypes would be identified as persistent. The persistence of *L. monocytogenes* indicates either repeated contamination events or the resistance of *L. monocytogenes* to the hygiene procedures in the facility (for review see Carpentier & Cerf, 2011). Persistence of *L. monocytogenes* in the food processing environment presents a risk of cross contamination to the food

339 being produced. In order to address such persistence, more stringent hygiene measures, or hygiene 340 barriers on access to the facility (including for raw materials) are necessary. Such measures can 341 reduce cross contamination to the final product and contribute to the prevention of public health 342 issues (Awofisayo-Okuyelu et al., 2016; McCollum et al., 2013; Montero et al., 2015). 343 The results of the project show the diversity of the isolates obtained (Figure 1), but also 344 shows a degree of similarity in the isolates from the different companies (Figure 2). For example, the 345 PFGE profile of an isolate from the floor in front of a sink at one facility was >90% similar to a food 346 isolate from the same facility and isolates from processing environment and food samples from other 347 facilities (Figure 2). Further studies analysing the WGS data in more detail may help to resolve this 348 issue and determine how similar the isolates are. 349 The presence of the same L. monocytogenes pulsotype in different companies (widespread 350 occurrence) shows the possibility of cross contamination between different production units and 351 sometimes different food sectors. This can happen when services are shared, like transporters, raw 352 materials, couriers, etc. In the current study, there were no known links between the companies where 353 the same pulsotype was found in different facilities, except for one case where the same company 354 operates two facilities. Widespread contamination was detected in the mushroom industry. In Ireland, 355 the mushroom industry is a very 'cross border' industry, where companies have premises in both NI 356 and RoI. This could explain the occurrence of seven common pulsotypes that were commonly found 357 in both NI and the RoI. Alternatively, there are global clones of L. monocytogenes (Chenal-358 Francisque et al., 2013), indicating that it is possible for the same pulsotype to be found in different 359 facilities that have no apparent epidemiological link. 360 Cross contamination was shown at four facilities, where L. monocytogenes isolates from

does not discriminate between the two possible scenarios, namely if the contamination went from the

processing environment swabs had the same pulsotype as food samples in the same facility. PFGE

363 food to the environment or vice-versa. Further analyses would be required to differentiate these

361

364 scenarios. Persistence of L. monocytogenes in the food processing environment presents a risk of 365 cross contamination to the food being produced. Cross contamination from the processing environment has been previously reported (Ivanek, Grohn, Wiedmann, & Wells, 2004; Leong et al., 366 367 2017; McCollum et al., 2013) and has been implicated in outbreaks of listeriosis (Currie et al., 2015). 368 In a comparison between the pulsotypes identified in this study and those obtained in other 369 countries, 10 common pulsotypes were identified. Again, this shows the existence of global clones of 370 L. monocytogenes, not necessarily connected to epidemiological data (Chenal-Francisque et al., 371 2013). The relationship between these clones is unclear, and further studies would be required to 372 clarify this. For example, a comparison of whole genome sequences can highlight the presence of 373 single nucleotide polymorphisms (SNPs) between strains with indistinguishable PFGE profiles. This 374 is especially important where PFGE similarities are shown in the comparison with clinical isolates, 375 but in the absence of epidemiological data no link can be made between isolates from food and 376 disease-causing isolates.

377 Since L. monocytogenes was present in half of the food processing facilities participating in 378 this study, there is potential for cross-contamination to food products. Thus, it is relevant to determine if these foods support the growth of L. monocytogenes. Although not foolproof, predictive 379 380 microbiology can give an indication of growth potential. Nineteen of the 130 food products tested 381 (using Combase predictions based on pH and water activity) were predicted not to support the growth 382 of L. monocytogenes; these were mainly low pH products such as yoghurts, cheese, fruit products and 383 coleslaw, which all had a pH below 4.4. While the pH of cheese can increase post-production due to 384 the actions of the endogenous microflora (Schoder, Skandamis, & Wagner, 2013), this was unlikely 385 to occur with the cheese products studied, hence they would be not support growth during their 386 normal shelf life.

The remaining 111 food samples, i.e. 85%, all had pH and a_w values which would support the growth of *L. monocytogenes* at 4°C, 6°C and 8°C, according to the ComBase model. While 4°C is the

389 intended temperature of a domestic refrigerator, a UK-wide microbiological study found that the 390 mean temperature of pre-packed meats on retail display was 6.8°C, with 71.3% of samples above the 391 industry guideline of 5°C, and 32.7% being stored above 8°C (Madden, 2014). Hence, the 392 temperatures of 4 and 8°C, and the intermediate temperature of 6°C, were chosen for the growth 393 studies. Growth in the foodstuffs over a seven-day period was determined using the arbitrary 394 criterion of calculating the time for 10 generations of microbial growth (approximately a 1,000-fold 395 increase in numbers), using the generation time predicted by ComBase. This allowed a simple metric 396 to be communicated to FBOs. At 4°C none of the 111 foodstuffs were predicted to support such 397 growth. However, increasing the temperature to 6°C resulted in 55% of the samples failing the test, 398 while 77.5% failed at 8°C. This shows the importance of temperature in controlling the growth of L. 399 monocytogenes, and the importance of proper control over the temperature of domestic refrigerators. 400 In order to help them comply with Commission Regulation (EC) No 2073/2005, this information was 401 communicated to participants. Additionally, guidance for FBOs undertaking challenge studies to 402 determine the ability of foods to support growth of L. monocytogenes in the food matrix has been 403 published (Beaufort, Bergis, Lardeux, Polet, & Botteldoorn, 2014). Thus, for most of the food 404 products analysed in this study, an initial contamination of one L. monocytogenes per 10 g could 405 exceed the regulatory level of L. monocytogenes cited in Commission Regulation (EC) No 2073/2005 406 (100 cfu/g) within a week, if they were subjected to abuse temperatures found in retail premises. 407 The Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health 408 England, supplied data on clinical MLSTs from the UK (April 2016-March 2017), where 10 MLSTs 409 were found (STs 1, 5, 6, 8, 20, 21, 121, 155, 204 and 394). ST204 was the most common sequence 410 type identified in this study, comprising 30 isolates. This MLST was isolated from a number of 411 different food processing facilities, and was found for the duration of the project. All of the clinical-412 associated MLSTs were found in the isolates from this study, where they comprised 98% of the 413 isolates. Furthermore, the National Salmonella, Shigella & Listeria Reference Laboratory in the RoI

414 reported that eight of the nine most common MLSTs isolated during this study were also found as 415 clinical isolates. However, based on a study of fifteen ST204 isolates, this MLST was reported as 416 being mainly an environmental isolate (Fox et al., 2016). It should be noted that not all isolates with a 417 given MLST are genetically identical. For example, 86% of the ST204 isolates carried the qacH 418 gene, and were therefore different from the 14% which did not carry it. 419 Overall, most of the isolates for which WGS data was obtained (71%) carried the qacH gene, 420 which confers resistance to quaternary ammonium salts, the basis of many sanitizers used in the food 421 industry (Sidhu, Sørum, & Holck, 2004). The high rate of carriage of *qacH* by ST204 isolates found 422 in this study contrasts with its absence in the 15 isolates described in the report of Fox et al. (2016), and may reflect selection for this property in food processing environments. Resistance to quaternary 423 424 ammonium salts may also be a contributory factor to the high prevalence of this MLST found in this 425 study. 426 Study of the WGS data showed that all of the isolates obtained carried the virulence genes 427 *inl*A and *act*A (Fox et al., 2016). However, determining the true pathogenic abilities of the isolates 428 was beyond the scope of this study; further work on the WGS data and on invasion assays would be 429 required to further investigate pathogenic properties of the isolates (Chen et al., 2016). Overall, the results obtained showed that most participating FBOs can produce RTE food free 430 431 from *L. monocytogenes*, and many were able to keep their production facility free from this pathogen. 432 Hence, most FBOs appear to have determined effective control strategies and practical interventions. 433 However, WGS data suggests some FBOs have persistent strains, and that many of the isolates could 434 be potential pathogens. Therefore, there is a need for FBOs to continually assess control strategies 435 and practical interventions for the exclusion of L. monocytogenes.

436

437 **5** Conflict of Interest

438	The authors declare that the research was conducted in the absence of any commercial or financial
439	relationships that could be construed as a potential conflict of interest.
440	
441	6 Author Contributions
442	Substantial contributions to the conception or design of the work; or the acquisition, analysis, or
443	interpretation of data for the work; RM, MH, KJ, VP, OG, NC
444	Drafting the work or revising it critically for important intellectual content; RM, MH, KJ, OG, NC
445	Final approval of the version to be published; RM, MH, KJ, VP, OG, NC
446	Agreement to be accountable for all aspects of the work in ensuring that questions related to the
447	accuracy or integrity of any part of the work are appropriately investigated and resolved. RM, MH,
448	KJ, VP, OG, NC
449	
450	7 Funding
451	This study was funded by <i>safe</i> food, the Food Safety Promotion Board, as project 04-2014.
452	
453	8 Acknowledgments
454	The authors wish to express their thanks to all of the participating companies for the staff time and
455	effort they expended to support this project. Dr Roisin Lagan, the College of Agriculture, Food &
456	Rural Enterprise (CAFRE) assisted by using her industrial expertise to bring food companies into the
457	program, whilst Ms Pam Scates, AFBI, played a significant role by coordinating the in-plant
458	sampling program, and providing consistent encouragement and support to the participating
459	companies. This study was funded by <i>safefood</i> , the Food Safety Promotion Board, as project 04-
460	2014.
461	

463 **Bibliography**

- Andrews, S. (2016). FastQC, a quality control tool for high throughput sequence data. Retrieved
 from http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 04-10-2017.
- 467 Assefa, S., Keane, T. M., Otto, T. D., Newbold, C., & Berriman, M. (2009). ABACAS: Algorithm-
- 468 based automatic contiguation of assembled sequences. *Bioinformatics*, 25(15), 1968-9.
- 469 https://doi.org/10.1093/bioinformatics/btp347
- 470 Awofisayo-Okuyelu, A., Arunachalam, N., Dallman, T., Grant, K. A., Aird, H., Mclauchlin, J., ...
- 471 Amar, A. C. (2016). An Outbreak of Human Listeriosis in England between 2010 and 2012
- 472 Associated with the Consumption of Pork Pies. *Journal of Food Protection*, 79(5), 732–740.
- 473 https://doi.org/10.4315/0362-028X.JFP-15-456
- 474 Beaufort, A., Bergis, H., Lardeux, A.-L., Polet, -Marie, & Botteldoorn, N. (2014). EURL Lm
- 475 Technical guidance document for conducting shelf-life studies on *Listeria monocytogenes* in
- 476 ready-to-eat foods. Retrieved from
- 477 https://ec.europa.eu/food/sites/food/files/safety/docs/biosafety_fh_mc_technical_guidance_docu
 478 ment_listeria_in_rte_foods.pdf. Accessed 04-10-2017.
- 479 Beno, S. M., Stasiewicz, M. J., Andrus, A. D., Ralyea, R. D., Kent, D. J., Martin, N. H., ... Boor, K.
- 480 J. (2016). Development and Validation of Pathogen Environmental Monitoring Programs for
- 481 Small Cheese Processing Facilities. *Journal of Food Protection*, 79(12), 2095–2106.
- 482 https://doi.org/10.4315/0362-028X.JFP-16-241
- 483 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina
- 484 sequence data. *Bioinformatics*, *30*(15), 2114-20. https://doi.org/10.1093/bioinformatics/btu170
- 485 Bolocan, A. S., Oniciuc, E. A., Alvarez-Ordóñez, A., Wagner, M., Rychli, K., Jordan, K., & Nicolau,
- 486 A. I. (2015). Putative Cross-Contamination Routes of *Listeria monocytogenes* in a Meat
- 487 Processing Facility in Romania. *Journal of Food Protection*, 78(9), 1664–1674.

- 488 https://doi.org/10.4315/0362-028X.JFP-14-539
- 489 Carpentier, B., & Cerf, O. (2011). Review Persistence of *Listeria monocytogenes* in food industry
 490 equipment and premises. *International Journal of Food Microbiology*, *145*(1), 1-8.
- 491 https://doi.org/10.1016/j.ijfoodmicro.2011.01.005
- 492 Carver, T., Harris, S. R., Berriman, M., Parkhill, J., & McQuillan, J. A. (2012). Artemis: An
- 493 integrated platform for visualization and analysis of high-throughput sequence-based
- 494 experimental data. *Bioinformatics*, 28(4), 464–469.
- 495 https://doi.org/10.1093/bioinformatics/btr703
- 496 Centre for Didease Control and prevention (CDC). (2017). Listeria (listeriosis): people ar risk.
- 497 Retrieved from: https://www.cdc.gov/listeria/risk.html. Accessed 04-10-2017.
- 498 Chen, Y., Gonzalez-Escalona, N., Hammack, T. S., Allard, M. W., Strain, E. A., & Brown, E. W.
- 499 (2016). Core genome multilocus sequence typing for identification of globally distributed clonal
- 500 groups and differentiation of outbreak strains of *Listeria monocytogenes*. Applied and
- 501 Environmental Microbiology, 82(20), 6258-6272. https://doi.org/10.1128/AEM.01532-16
- 502 Chenal-Francisque, V., Diancourt, L., Cantinelli, T., Passet, V., Tran-Hykes, C., Bracq-Dieye, H., ...
- 503 Brissed, S. (2013). Optimized multilocus variable-number tandem-repeat analysis assay and its
- 504 complementarity with pulsed-field gel electrophoresis and multilocus sequence typing for
- 505 *Listeria monocytogenes* clone identification and surveillance. *Journal of Clinical Microbiology*,
- 506 51(6), 1868-80. https://doi.org/10.1128/JCM.00606-13
- 507 Cossu, F., Spanu, C., Deidda, S., Mura, E., Casti, D., Pala, C., ... De Santis, E. P. L. (2016). Listeria
- 508 spp. and *Listeria monocytogenes* contamination in ready-to-eat sandwiches collected from
- 509 vending machines. *Italian Journal of Food Safety*, 5(2), 61–64.
- 510 https://doi.org/10.4081/ijfs.2016.5500
- 511 Currie, A., Farber, J. M., Nadon, C., Sharma, D., Whitfield, Y., Gaulin, C., ... Sierpinska, U. (2015).
- 512 Multi-Province Listeriosis Outbreak Linked to Contaminated Deli Meat Consumed Primarily in

513	Institutional Settings, Canada, 2008. Foodborne Pathogens and Disease, 12(8), 645–652.
514	Dalmasso, M., & Jordan, K. (2015). PFGE as a Tool to Track Listeria monocytogenes in Food
515	Processing Facilities: Case Studies. Pulse Field Gel Electrophoresis. Methods in Molecular
516	Biology, 29-34. Humana Press.
517	De Noordhout, C. M., Devleesschauwer, B., Angulo, F. J., Verbeke, G., Haagsma, J., Kirk, M.,
518	Speybroeck, N. (2014). The global burden of listeriosis: a systematic review and meta-analysis.
519	The Lancet. Infectious Diseases, 14(11), 1073-1082. http://doi.org/10.1016/S1473-
520	3099(14)70870-9
521	EFSA, & ECDC. (2016). The European Union summary report on trends and sources of zoonoses,
522	zoonotic agents and foodborne outbreaks in 2015. EFSA, ECDC, 2016. EFSA Journal, 14(12),
523	20449. https://doi.org/10.2903/j.efsa.2016.4634
524	Food and Drug Administration (FDA) (2011). FDA Food Safety Modernization Act. Retrieved from:
525	http://www.gpo.gov/fdsys/pkg/PLAW-111publ353/pdf/PLAW-111publ353.pdf. Accessed 06-
526	10-2017.
527	European Union (EU) (2005). COMMISSION REGULATION (EC) No 2073/2005 of 15 November
528	2005 on microbiological criteria for foodstuffs. Retrieved from:

- 529 https://www.fsai.ie/uploadedFiles/Consol_Reg2073_2005.pdf. Accessed 13-12-2017.
- 530 Farber, J. M., & Peterkin, P. I. (1991). *Listeria monocytogenes*, a Food-Borne Pathogen.
- 531 *Microbiological Reviews*. 55(3), 476–511.
- 532 Fox, E. M., Allnutt, T., Bradbury, M. I., Fanning, S., & Chandry, P. S. (2016). Comparative
- 533 genomics of the Listeria monocytogenes ST204 subgroup. Frontiers in Microbiology. 7, 2057
- 534 https://doi.org/10.3389/fmicb.2016.02057
- 535 Gladman, S., & Seeman, T. (2012). VelvetOptimiser, v2.2.5. Retrieved from:
- 536 http://www.vicbioinformatics.com/software.velvetoptimiser.shtml. Accessed 04-10-2017.
- 537 Harper S., W. M. (2016). Future of an Ageing Population Executive Summary Key: Findings Future

- 538 of an Ageing Population Evidence base. *Government Office for Science*. Retrieved from:
- 539 http://www.jp-demographic.eu/wp-content/uploads/2016/07/gs-16-10-future-of-an-ageing-

540 population.pdf. Accessed 13-12-2017.

- 541 Hellberg, R. S., & Chu, E. (2016). Effects of climate change on the persistence and dispersal of
- foodborne bacterial pathogens in the outdoor environment: A review. *Critical Reviews in Microbiology*, 42(4), 548–572. https://doi.org/10.3109/1040841X.2014.972335
- 544 Ho A. J., Lappi V. R., Wiedman, M. (2007). Longitudinal Monitoring of *Listeria monocytogenes*
- 545 Contamination Patterns in a Farmstead Dairy Processing Facility. *Journal of Dairy Science*,
- 546 90(5), 2517–2524. https://doi.org/10.3168/JDS.2006-392
- 547 Ivanek, R., Grohn, Y. T., Wiedmann, M., & Wells, M. T. (2004). Mathematical Model of *Listeria*
- 548 *monocytogenes* Cross-Contamination in a Fish Processing Plant. Journal of Food Protection,
- 549 67(12), 2688–2697. Retrieved from http://www.jfoodprotection.org/doi/pdf/10.4315/0362-
- 550 028X-67.12.2688. Accessed 04-10-2017.
- 551 Kells, J., & Gilmour, A. (2004). Incidence of *Listeria monocytogenes* in two milk processing
- 552 environments, and assessment of *Listeria monocytogenes* blood agar for isolation. *International*
- 553 *Journal of Food Microbiology*, 91(2), 167-74. https://doi.org/10.1016/S0168-1605(03)00378-7
- 554 Leong, D., Alvarez-Ordonez, A., & Jordan, K. (2014). Monitoring occurrence and persistence of
- 555 *Listeria monocytogenes* in foods and food processing environments in the Republic of Ireland.
- 556 Frontiers in Microbiology, 5, 436. https://doi.org/10.3389/fmicb.2014.00436
- 557 Leong, D., NicAogáin, K., Luque-Sastre, L., McManamon, O., Hunt, K., Alvarez-Ordonez, A., ...
- Jordan, K. (2017). A 3-year multi-food study of the presence and persistence of *Listeria*
- 559 monocytogenes in 54 small food businesses in Ireland. International Journal of Food
- 560 *Microbiology*, 249(16), 18–26. https://doi.org/10.1016/j.ijfoodmicro.2017.02.015
- 561 Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform.
- 562 *Bioinformatics*, 26(5), 589-95. https://doi.org/10.1093/bioinformatics/btp698

563	Lyytikäinen, O., Nakari, U. M., Lukinmaa, S., Kela, E., Nguyen Tran Minh, N., & Siitonen, A.
564	(2006). Surveillance of listeriosis in Finland during 1995-2004. Eurosurveillance, 11(6), 630.
565	Madden, R. H. (2014). A microbiological survey of pre-packed ready-to-eat sliced meats at retail in
566	UK small to medium sized enterprises (SME'S). Retrieved from
567	https://www.food.gov.uk/sites/default/files/SME Survey Report - FINAL_0.pdf. Accessed 04-
568	10-2017.
569	McCollum, J. T., Cronquist, A. B., Silk, B. J., Jackson, K. A., O'Connor, K. A., Cosgrove, S.,
570	Mahon, B. E. (2013). Multistate Outbreak of Listeriosis Associated with Cantaloupe. New
571	England Journal of Medicine, 369(10), 944–953. https://doi.org/10.1056/NEJMoa1215837
572	Meyer-Broseta, S., Diot, A., Bastian, S., Rivière, J., & Cerf, O. (2003). Estimation of low bacterial
573	concentration: Listeria monocytogenes in raw milk. International Journal of Food
574	Microbiology, 80(1), 1-15. https://doi.org/10.1016/S0168-1605(02)00117-4
575	Montero, D., Bodero, M., Riveros, G., Lapierre, L., Gaggero, A., Vidal, R. M., & Vidal, M. (2015).
576	Molecular epidemiology and genetic diversity of Listeria monocytogenes isolates from a wide
577	variety of ready-to-eat foods and their relationship to clinical strains from listeriosis outbreaks in
578	Chile. Frontiers in Microbiology, 6, 384 Retrieved from
579	http://journal.frontiersin.org/article/10.3389/fmicb.2015.00384. Accessed 04-10-2017.
580	Muhterem-Uyar, M., Dalmasso, M., Bolocan, A. S., Hernandez, M., Kapetanakou, A. E., Kuchta, T.,
581	Wagner, M. (2015). Environmental sampling for Listeria monocytogenes control in food
582	processing facilities reveals three contamination scenarios. Food Control, 51, 94-107.
583	https://doi.org/10.1016/j.foodcont.2014.10.042
584	Murugesan, L., Kucerova, Z., Knabel, S. J., & Laborde, L. F. (2015). Predominance and Distribution
585	of a Persistent Listeria monocytogenes Clone in a Commercial Fresh Mushroom Processing
586	Environment. Journal of Food Protection, 78(11), 1988-98. https://doi.org/10.4315/0362-
587	028X.JFP-15-195

588	PulseNetUSA. (2013). PulseNetUSA, 2013. International Standard PulseNet Protocol. Retrieved
589	from
590	http://www.pulsenetinternational.org/assets/PulseNet/uploads/pfge/PNL04_ListeriaPFGEProtoc
591	ol.pdf. Accessed 04-10-2017.
592	Ruckerl, I., Muhterem-Uyar, M., Muri-Klinger, S., Wagner, K. H., Wagner, M., & Stessl, B. (2014).
593	L. monocytogenes in a cheese processing facility: Learning from contamination scenarios over
594	three years of sampling. International Journal of Food Microbiology, 189, 98-105.
595	https://doi.org/10.1016/j.ijfoodmicro.2014.08.001
596	Schmid, D., Allerberger, F., Huhulescu, S., Pietzka, A., Amar, C., Kleta, S., Mellmann, A. (2014).
597	Whole genome sequencing as a tool to investigate a cluster of seven cases of listeriosis in
598	Austria and Germany, 2011-2013. Clinical Microbiology and Infection, 20(5), 431-6.
599	https://doi.org/10.1111/1469-0691.12638
600	Schoder, D., Rossmanith, P., Glaser, K., & Wagner, M. (2012). Fluctuation in contamination
601	dynamics of L. monocytogenes in quargel (acid curd cheese) lots recalled during the
602	multinational listeriosis outbreak 2009/2010. International Journal of Food Microbiology, 157,
603	326-331. https://doi.org/10.1016/j.ijfoodmicro.2012.04.023
604	Schoder, D., Skandamis, P., & Wagner, M. (2013). Assessing in-house monitoring efficiency by
605	tracing contamination rates in cheese lots recalled during an outbreak of listeriosis in Austria.
606	International Journal of Food Microbiology, 167(3), 353-8.
607	https://doi.org/10.1016/j.ijfoodmicro.2013.09.020
608	Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. <i>Bioinformatics</i> , 30(14), 2068-9.
609	https://doi.org/10.1093/bioinformatics/btu153
610	Sidhu, M. S., Sørum, H., & Holck, A. (2004). Resistance to quaternary ammonium compounds in

- 611 food-related bacteria. *Microbial Drug Resistance*, 8(4), 393–399.
- 612 Silk, B. J., McCoy, M. H., Iwamoto, M., & Griffin, P. M. (2014). Foodborne listeriosis acquired in

- 613 hospitals. Clinical Infectious Diseases, 59(4), 532-40. https://doi.org/10.1093/cid/ciu365
- 614 Stasiewicz, M. J., Oliver, H. F., Wiedmann, M., & den Bakker, H. C. (2015). Whole-genome
- 615 sequencing allows for improved identification of persistent *Listeria monocytogenes* in food-
- 616 associated environments. *Applied and Environmental Microbiology*, 81, 6024–6037.
- 617 https://doi.org/10.1128/AEM.01049-15
- 618 Stessl, B., Fricker, M., Fox, E., Karpiskova, R., Demnerova, K., Jordan, K., ... Wagner, M. (2014).
- 619 Collaborative Survey on the Colonization of Different Types of Cheese-Processing Facilities
- 620 with Listeria monocytogenes. Foodborne Pathogenes and Disease. 11(1), 8-14.
- 621 https://doi.org/10.1089/fpd.2013.1578
- Swaminathan B. & Gerner-Smidt, P. (2007). The epidemiology of human listeriosis. *Microbes and Infection*, 9(10), 1236–1243. https://doi.org/10.1016/J.MICINF.2007.05.011
- Tompkin, R. B. (2002). Control of *Listeria monocytogenes* in the Food-Processing Environment.
 Journal of Food Protection, 65(4), 709–725.
- 626 Ugarte-Ruiz, M., Stabler, R. A., Domínguez, L., Porrero, M. C., Wren, B. W., Dorrell, N., &
- 627 Gundogdu, O. (2015). Prevalence of Type VI Secretion System in Spanish *Campylobacter*
- 628 *jejuni* Isolates. Zoonoses and Public Health, 62(7), 497-500. https://doi.org/10.1111/zph.12176
- 629 Zerbino, D. R., & Birney, E. (2008). Velvet: Algorithms for de novo short read assembly using de
- 630 Bruijn graphs. *Genome Research*, 18(5), 821-9. https://doi.org/10.1101/gr.074492.107
- 631 Zottola Edmund A., Sasahara, K. C. (1994). Microbial biofilms in the food processing industry—
- 632 Should they be a concern? *International Journal of Food Microbiology*, *23*(2), 125–148.
- 633 https://doi.org/10.1016/0168-1605(94)90047-7
- 634

Table 1. Occurrence of L. monocytogenes by category of food product produced by the

food business.

	Total	L. monocytogenes	% Samples
Food category	samples	positive	Positive
Cooked meat	225	27	12.0
Horticultural productse ¹	398	26	9.1
Sandwich	286	24	8.4
Baked goods	128	10	7.8
Salads	136	5	3.7
Seafood	144	2	1.4
Dairy	281	0	0.0
Total	1,598	94	5.8

¹Includes mushrooms, vegetables and fruits

 Table 2. Food premises yielding Listeria monocytogenes from the processing

environment and/or products. To maintain anonymity, the premises listed have been

designated in terms of the type of principal products.

Products from food premises	Number of isolates from each food premises		
	Processing environment swabs	Food product	
Cooked Meats A ¹ : pulled chicken, turkey and			
beef	17	2	
Cooked Meats B: pork from fresh and cured			
meat	5	5 ²	
Sandwiches A: sandwiches, rolls and wraps	10	2	
Sandwiches B: sandwiches, salads, wraps and			
snacks	7	0	
Sandwiches C: sandwiches, pasta and salad			
bowls, coleslaw, potato salad	0	4	
Sandwiches D: sandwiches	1	0	
Processed mushrooms	12	7	
Baked goods: cakes, pies, sausage rolls	10	0	
Salads: green and pasta salads, chicken tuna and			
egg mixes	5	0	
RTE raw fruit pieces in consumer packs	5	0	
RTE processed fish/shellfish	2	0	
RTE vegetable products	2	0	

¹Where more than one company manufactured a product type they have been designated successively, as A, B etc.

²Three food samples were positive and two of these samples yielded *L. monocytogenes* isolates from both enrichment cultures and enumeration plates.

Table 3.	Pulsotypes obtained	from different food premi	ses. To maintain anonymity

Products of Food Premises	Number of	Number of	Number of pulsotypes
	pulsotypes	persistent	shared with other
		pulsotypes	companies (persistent
			isolates shared)
Cooked Meats A ¹	10	2	4 (1)
Sandwiches A	5	3	5 (3)
Salads	4	0	4
Cooked Meats B	2	1	0
Baked goods	4	3	1
Sandwiches B	3	0	1
RTE raw fruit	2	0	1
Sandwiches C	1	1	1
RTE vegetable products	2	0	2
RTE processed fish/shellfish	1	0	1
Processed Mushrooms	6	1	4 (1)
Sandwiches D	1	0	1

premises listed have been designated in terms of their principal products

¹Where more than one company manufactured a product type they have been designated successively, as A, B etc.

Table 4. Sequence types (ST) isolated from individual premises on more than one occasion. To maintain anonymity, the premises listed have been designated in terms of the type of principal products.

	Total number of	Number of		
Products from food premises	sequence types	recurrent ST	Recurrent ST	
	(ST)			
Cooked Meats A ¹ : pulled chicken,			Y	
turkey and beef	8	4	ST204	
Cooked Meats B: pork from fresh			\bigcirc	
and cured meat	7	1	ST204	
Sandwiches A: sandwiches, rolls				
and wraps	4	1	ST204	
Sandwiches B: sandwiches, salads,				
wraps and snacks	4	1	ST6	
Sandwiches C: sandwiches, pasta				
and salad bowls, coleslaw, potato				
salad	3	1	ST6	
Processed mushrooms	8	2	ST8, ST204	
			ST6, ST20, ST121,	
Baked goods: cakes, pies, sausage				
rolls	6	2	ST21, ST121	
Salads: green and pasta salads,				
chicken tuna and egg mixes	4	0		
RTE ³ raw fruit pieces in consumer				
packs	2	1	ST155	

¹Where more than one company manufactured a product type, they have been designated

successively, as A, B etc.

² RTE- Ready to Eat

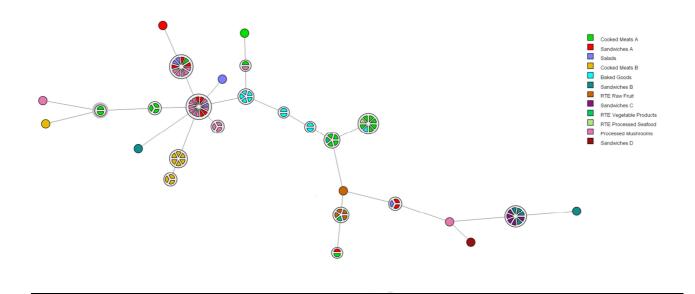
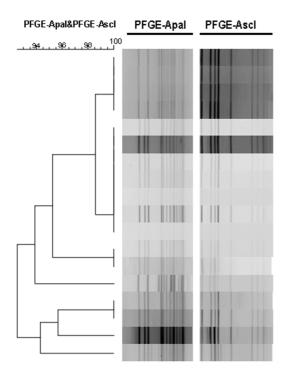



Figure 1. Minimum spanning tree summarising the data from the PFGE profiles of the 94 isolates tested. The different colours represent different food companies. Within a circle, each segment represents an isolate, while the circle represents a pulsotype where the isolates show > 90% similarity. The length of the line between the circles represents the distance of the relationship between the pulsotypes/isolates. Pulsotypes with only one isolate are represented by a circle with no segments.

PFGE-Apal&PFGE-Ascl	PFGE-Apal	PFGE-Ascl	Company	Sample	Date
· · · · · · · · · · · · · · · · · · ·					
			Sandwiches A	Swab – Floor in front of Sink	02/12/2016
			Cooked Meats A	Swab – Stainless Steel Shelf	02/12/2016
			Sandwiches A	Food – Chicken+Caramelised Onion	16/09/2016
			Salads	Swab – Floor in front of Sink	02/12/2016
			Processed Mushrooms	Food – Crumbed Covered Mushrooms	10/09/2015
			Sandwiches A	Swab – Floor in front of Sink	13/11/2015
			Processed Mushrooms	Swab – Production floor Puddle	11/09/2015
			Salads	Swab – Floor in front of Sink	16/09/2016
			Processed Mushrooms	Swab – Production Drain	11/09/2015
			Processed Mushrooms	Swab – Prep Conveyor Belt	13/11/2015
			Processed Mushrooms	Swab – Pack Machine Belt	10/09/2015

Figure 2. PFGE profiles showing similarity between L. monocytogenes isolates obtained from

different food premises.

Sample	Company	Date
Drain water	Rol A	29/06/2016
Floor	Rol B	29/06/2016
Bin	Rol A	29/06/2016
Drain	Rol A	29/06/2016
Drain	NI	16/09/2016
Floor	NI	23/03/2016
Conveyor Belt	NI	16/09/2016
Table	NI	16/09/2016
Floor	Sandwich A	03/02/2016
Drain	NI	05/08/2016
Food	NI	03/02/2016
Floor	NI	03/02/2016
Floor	Sandwich A	13/11/2015
Ladder	Rol A	31/08/2015
Food	NI	16/09/2016
Floor	Sandwich A	10/07/2015
Floor	Sandwich A	02/09/2015
Floor	Salad A	05/08/2016

Figure 3. PFGE profiles of L. monocytogenes from mushroom producers in the Republic of Ireland (RoI) (A and B) compared with food producers in Northern Ireland (NI): a mushroom producer (NI), sandwich maker (Sandwich A) and a salad producer (salad A). Dates are those on which isolates were stored. The scale shows % similarity.

- No Listeria monocytogenes were detected at 50% of the food processing facilities sampled
- At 4°C none of the foods tested were predicted to support growth of *Listeria monocytogenes*
- There were 27 distinguishable pulsotypes in the 96 isolates tested
- Sequence types detected can cause listeriosis