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Abstract 21 

 22 

Listeriosis is a foodborne disease, with a high mortality rate, that predominantly effects the elderly. 23 

Under European Union legislation, EC 2073/2005, food business operators are encouraged to 24 

undertake sampling to ensure that the food processing environment, and required to ensure that food 25 

products, are free of Listeria monocytogenes. To determine the prevalence of L. monocytogenes in 26 

smaller food processing facilities in Northern Ireland, 24 companies submitted six processing 27 

environment swabs and two food samples every two months for eighteen months (July 2015 to 28 

November 2016) for L. monocytogenes examination. The prevalence of L. monocytogenes was 4.6% 29 

in food samples, and 6.3% in processing environment swabs.  Over the duration of the study, 96 30 

isolates of L. monocytogenes were obtained, one from each positive sample, except for two meat 31 

samples that had >100 cfu/g, where two isolates were obtained from each sample. No seasonality in 32 

occurrence of L. monocytogenes was seen for food isolates but significantly higher numbers of 33 

positive processing environment swabs were found in the warmer months of May, July and 34 

September (p = 0.007). Pulsed Field Gel Electrophoresis (PFGE) analysis revealed the presence of 27 35 

pulsotypes; 9 pulsotypes were shared between different facilities and 9 were persistent. Based on a 36 

Combase predictive growth model, 77.5% (n=130) of the foods tested were predicted to support the 37 

growth of L. monocytogenes. All of the isolates carried the pathogenicity genes inlA and actA and 38 

71.4% carried qacH, which confers resistance to quaternary ammonium compounds which are 39 

frequently used in sanitizers. Whole genome sequencing of the isolates allowed multi-locus sequence 40 

typing to be undertaken. The data indicated that the sequence types identified included those with 41 

disease-causing ability, highlighting the disease-causing potential of the isolates. 42 

 43 

  44 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT  

 
3 

1. Introduction 45 

 46 

Clinical invasive infection by Listeria monocytogenes, listeriosis, is rare in healthy humans.  47 

However, there are subsections of the population that are vulnerable to invasive infection, including 48 

the immuno-compromised, the elderly and pregnant women (CDC, 2017). From a public health 49 

perspective, finding ways to reduce exposure of vulnerable consumers to L. monocytogenes in ready-50 

to-eat (RTE) foods is important. Despite this, the number of cases of listeriosis reported in the EU 51 

has increased. In 2015, the number of confirmed human cases of listeriosis reported in the European 52 

Union was 2,206 (0.46 cases per 100,000 population), which was similar to 2014. In 2015, nineteen 53 

member states reported 270 deaths due to listeriosis, which was the highest annual number of deaths 54 

reported since 2008 (EFSA & ECDC, 2016). In a systematic review of the literature, De Noordhout 55 

et al. (2014) estimated the case fatality rate was 23.5%. The susceptibility of older people is of 56 

special concern in the UK due to its ageing population (Harper, 2016).  57 

Since L. monocytogenes is a ubiquitous environmental bacterium (Farber & Peterkin, 1991; 58 

Hellberg & Chu, 2016; Montero et al., 2015), food processing environments are at a continuous risk 59 

of colonisation by L. monocytogenes.  For many RTE products the main, but not sole contamination 60 

mechanism, is by transfer of L. monocytogenes strains from raw materials into niches in the plant 61 

environment and subsequent transfer from these niches into final products (Tompkin, 2002). Such 62 

cross-contamination has been shown in many studies (Bolocan et al., 2015; Leong et al., 2017; 63 

Muhterem-Uyar et al., 2015; Stessl et al., 2014), although cross-contamination from the food to the 64 

processing environment cannot be ruled out.  Effective cleaning (the removal of soil) followed by 65 

sanitising (the destruction of microorganisms), or the application of heat can remove 66 

L. monocytogenes from processing environments (Murugesan, Kucerova, Knabel, & Laborde, 2015; 67 

Zottola, 1994). However, any failings in these procedures can result in contamination of products that 68 

have been rendered Listeria-free by the critical control point of cooking (Currie et al., 2015; Leong et 69 
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al., 2017; Swaminathan & Gerner-Smidt, 2007).  Accordingly, the European Union has legislated to 70 

ensure the safety of RTE products that support the growth of L. monocytogenes (EU, 2005).  For 71 

foods supporting growth of L. monocytogenes (apart from foods for infants or special dietary 72 

purposes, where complete absence is required), absence is required when the product leaves the 73 

manufacturer, unless the manufacturer can demonstrate that the numbers will be <100cfu/g at the end 74 

of the shelf life. Foods not supporting growth must have <100cfu/g at the end of the shelf life. 75 

Since RTE food processing environments are recognised as a significant source of L. 76 

monocytogenes contamination (Beno et al., 2016; Tompkin, 2002), it is important for food business 77 

operators (FBOs) to have an appropriate surveillance programme to monitor and control the risk of L. 78 

monocytogenes contamination of the final product. Environmental monitoring programmes are 79 

recommended in the EU (EU, 2005) and required in some food sectors in the United States of 80 

America (FDA, 2011) and contribute to the identification and tracking of L. monocytogenes along the 81 

food chain, and within food processing facilities. Such programmes can have an impact on avoiding 82 

cross-contamination to food (Ho, Lappi & Wiedman, 2007). Applying genetic fingerprinting, such as 83 

pulsed field gel electrophoresis (PFGE) or whole genome sequencing (WGS) can assist studies on 84 

isolate characterization and tracking (Dalmasso & Jordan, 2015; Schmid et al., 2014; Stasiewicz, 85 

Oliver, Wiedmann, & den Bakker, 2015), especially with regard to determining persistence of L. 86 

monocytogenes in food processing facilities.  87 

Whilst large scale food processors will be aware of strategies and interventions to exclude 88 

L. monocytogenes, small to medium sized enterprises (SMEs) may require assistance. These are 89 

defined in European Union document 2003/361/EC as, inter alia, having fewer than 250 employees, 90 

but in the current project most of the SMEs involved had <20 employees. In the Republic of Ireland 91 

(RoI), a research project on assessment of L. monocytogenes was considered to have contributed to a 92 

reduction of L. monocytogenes in food and food processing environments, leading to a decreased risk 93 

to public health (Leong et al., 2017). 94 
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The aim of this study was to assess the occurrence and persistence of L. monocytogenes in 24 95 

RTE food processing facilities in Northern Ireland over an eighteen-month period (July 2015 to 96 

November 2016). Regular monitoring of the processing environments and products of the RTE food 97 

manufacturers, with molecular characterisation of the L. monocytogenes strains isolated was 98 

undertaken.  99 

 100 

2 Materials and Methods 101 

 102 

2.1 L. monocytogenes monitoring program 103 

Staff of the College of Food, Agriculture & Rural Enterprise (CAFRE), Cookstown, led the 104 

recruitment of FBOs to be involved in the programme. In total, 24 companies participated in this 105 

study with staff attending a half day workshop for training in sampling procedures. All participating 106 

FBOs provided sketch plans of their premises and marked the environmental sites to be sampled 107 

during the programme. At the workshop the FBOs received detailed instructions which included 108 

information on how to take swab samples, which areas to sample, and on the packaging and shipment 109 

of the samples to the laboratory. This was designed to ensure consistent sampling by all participants. 110 

In addition a video of the appropriate sampling procedures was made and placed on YouTube for 111 

subsequent access by participants to ensure uniform sampling. For swab samples, all FBOs were 112 

asked to take samples from three specific areas: a drain in the main processing hall, an area of floor 113 

(1 m2) and a storage shelf. Because of the variation in layout and type of the facilities, the area to 114 

swab for the remaining samples was to be chosen by the FBO from anywhere in the food processing 115 

environment, and the location noted. Cutting areas, walls, other drains and pooled water were 116 

suggested as optimum locations. For food samples, FBOs were instructed to send two food samples 117 

which were at the stage of being ready to be sent from the processing facility. All sampling took 118 
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place during normal production conditions. Management practices were assessed by means of a 119 

detailed questionnaire submitted to all participants. 120 

From July 2015 to November 2016, a total of 24 food processing facilities from seven food 121 

sectors (cooked meat, horticultural products, sandwich, baked goods, salads, seafood and dairy 122 

[Table 1]) were analysed bimonthly for the presence of L. monocytogenes. All of these food 123 

processing facilities produced RTE food products, and were distributed throughout Northern Ireland 124 

(NI). Sampling packs, which consisted of a polystyrene box (DS Smith, UK) containing six pre-125 

moistened 3M sponge-stick swabs (Technopath, Ireland), a sterile liquid container (VWR, Ireland), 126 

two sterile bags (VWR, Ireland), two cable ties, and two ice packs, were sent to all participating food 127 

processing facilities two weeks prior to the assigned sampling date. 128 

 129 

2.2 Microbiological analyses 130 

All microbiological media were supplied by Oxoid, (Basingstoke, UK), unless otherwise 131 

stated. Sampling kits were dispatched to FBOs two weeks before the target sampling date, and 132 

samples were sent from FBOs by courier on the day of sampling, to arrive at AFBI the next morning, 133 

where they were analysed immediately (less than 24 h after sampling). The methods used were 134 

detection of Listeria spp. (including L. monocytogenes), BS EN ISO 11290-1:1996/Amd 1:2004, and 135 

enumeration of Listeria spp. (including L. monocytogenes) as described in BS EN ISO 11290-136 

2:1998/Amd 1 2004, except that only agar Listeria according to Ottavani and Agosti (ALOA) was 137 

used. Briefly, for food samples, for the enumeration of Listeria spp. 25 g of sample were added to 138 

225 ml of Fraser broth base (CM0895 without selective supplements), blended for 2 min (Colworth 139 

400, Seward Limited, Worthing, UK) then allowed to stand for 1 h. The samples were then plated 140 

(0.1 ml) onto plates of ALOA agar and incubated (37ºC for 48 h), with examination after 24 h and 48 141 

h. Plates with less than 150 typical colonies were counted. Where plates yielded presumptive L. 142 

monocytogenes, five colonies were purified and confirmed, using API Listeria (bioMérieux UK 143 
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Limited, Basingstoke, RG22 6HY), and the final count obtained by multiplying the presumptive 144 

count by the percentage of confirmed L. monocytogenes colonies. For swabs, 90 ml of Fraser broth 145 

base with half strength supplements was added to the swab in the bag in which it was transported to 146 

the laboratory, followed by incubation and sub-culture as described above.  147 

 148 

2.3 Pulsed field gel electrophoresis 149 

The PFGE analysis was carried out using the International Standard PulseNet protocol 150 

(PulseNetUSA, 2013). Listeria monocytogenes isolates were grown overnight in Brain Hearth 151 

Infusion (BHI) agar at 37°C, subsequently a suspension in 10 mM Tris:1 mM EDTA buffer, pH 8.0 152 

(TE) was prepared with an approximate OD610 of 1.0. To 400 µL of cell suspension was added 20 153 

mg/ml of Lysozyme which was incubated at 55°C for 20 min. After incubation, 20 µl of Proteinase K 154 

stock (20mg/ml) was added, followed by 400 µl of SeaKem Gold agarose 1%. Plugs were prepared 155 

by dispensing the mix into plug moulds. Solid plugs were then lysed for 2 h in 5 ml of cell lysis 156 

buffer (50mM Tris, 50mMEDTA, pH8.0 + 1% Sarcosyl) supplemented with 25 µl of 20 mg/ml 157 

proteinase K solution. The plugs were then washed twice in distilled water and four times in TE 158 

buffer.  159 

DNA was digested with 10 U/µl of the restriction enzyme AscI FastDigest (Fisher Scientific, 160 

Ireland) and 50 U/µl of the restriction enzyme ApaI FastDigest (Fisher Scientific, Ireland); the 161 

restricted DNA was run in a 1% SeaKem Gold agarose gel for 21 h as described in the PulseNet 162 

protocol, on a CHEF-DR III (Bio-Rad). After staining with 1 µg/ml ethidium bromide solution, the 163 

gels were observed with the Alpha Imager (Alpha Innotech, DE). Analysis of the gels was performed 164 

with BioNumerics v7.0 software (Applied Maths) using and UPGMA (unweighted pair group 165 

method with averages) and the Pearson coefficient with 1% tolerance. 166 

 167 

2.4 Whole genome sequencing 168 
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DNA was extracted from all isolates using a PureLink Genomic DNA Kit (Thermofisher 169 

Scientific, Paisley, UK) as per the manufacturer’s instructions. The whole genome sequencing of all 170 

L. monocytogenes isolates was performed as previously described (Ugarte-Ruiz et al., 2015) using 171 

Illumina MiSeq 2 × 250 bp paired-end sequencing. To analyse the data quality, FastQC was used 172 

(Andrews, 2016). To trim and crop the sequencing reads, Trimmomatic was used with the following 173 

parameters: (v0.32) ‘leading’ and ‘trailing’ setting of 3, a ‘slidingwindow’ setting of 4:20 and a 174 

‘minlength’ of 36 nucleotides (Bolger, Lohse, & Usadel, 2014). BWA-MEM (v0.7.7-r441) was used 175 

to map the reads using the genome sequence of L. monocytogenes EGD (HG421741) as described by 176 

Li & Durbin, 2010. VelvetOptimiser (v2.2.5) using n50 optimization was used to perform assembly 177 

(Gladman & Seeman, 2012; Zerbino & Birney, 2008). The reference strain L. monocytogenes EGD 178 

(HG421741) was used to complete contigs using ABACAS (v1.3.1) (Assefa, Keane, Otto, Newbold, 179 

& Berriman, 2009). Multi locus sequence type (MLST) was determined using PubMLST 180 

(https://github.com/tseemann/mlst). Genome annotation was provided by using Prokka (Seemann, 181 

2014). To read the genomes, and assess them for presence of internalin A, actA, 182 

Listeria pathogenicity islands 3 and 4, the stress survival islet SSI-1, bcrABC and qacH, Artemis and 183 

ACT software were used (Carver, Harris, Berriman, Parkhill, & McQuillan, 2012). 184 

 185 

2.5 Measurement of pH and aw.  186 

A subset of food samples (n=130) was analysed to determine the pH, using the methodology 187 

of BS 4401-9-1975, ISO 2917-1974, and water activity (aw) determined according to British Standard 188 

method BS ISI 21807:2004, using a Rotronic HygroLab 3 (Rotronic Instruments [UK] Ltd, Crawley, 189 

RH10 9EE, UK). These represented two samples of each of the products submitted by FBOs. 190 

 191 

2.6 Statistical analyses 192 
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All statistical analyses were undertaken by the Biometrics & Information Systems Branch, 193 

AFBI, using Genstat Release 18.1 for Windows (VSN International Ltd, Hemel Hempstead, HP2 194 

4TP, UK). One-way analysis of variance was used to study temporal differences with P < 0.05 195 

indicating significance. 196 

 197 

3 Results 198 

 199 

3.1 Occurrence of L. monocytogenes 200 

Overall, the 24 FBOs submitted 1,598 samples for analysis. These consisted of 1,203 swabs 201 

and 395 food samples. Seventy-six swabs (6.3%) and eighteen food samples (4.6%) yielded 202 

L. monocytogenes, with 5.9% of samples being positive overall. All the food samples had <100cfu/g, 203 

except for two samples of cooked meat, one that had >2000 cfu/g and one that had 140 cfu/g. L. 204 

monocytogenes were not isolated from twelve of the premises tested; four produced dairy products 205 

and the eight others a variety of products, including hot smoked salmon, pasta sauces, pâtés and 206 

ready meals, baked goods, cooked chicken, and salad and vegetable based products. The overall 207 

prevalence of L. monocytogenes at the different facilities is shown in Table 1, while the type of 208 

positive sample, is shown in Table 2. Overall, 96 L. monocytogenes isolates were obtained during an 209 

eighteen-month sampling schedule, one from each positive sample, except for two meat samples that 210 

had >100cfu/g, where two isolates were obtained from each sample. Study of the number of positive 211 

samples with time (data not shown) suggested that there were differences in the prevalence of 212 

L. monocytogenes between the seasons of summer and winter (summer = May, July, September; 213 

winter = November, January, March). No statistically significant difference was found between the 214 

numbers of positive food samples found in summer and winter however, for processing environment 215 

swabs, significantly more positive samples were found during the summer months, p = 0.007. 216 
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Of the positive samples, 47.8% were in drains and on floors, while 19.1% were from food 217 

samples. The remainder were from other processing environment sites, for example trolleys, tables 218 

and walls. 219 

 220 

3.2 Analysis of the isolates by pulsed field gel electrophoresis 221 

The isolates were analysed by pulsed field gel electrophoresis (PFGE); two isolates that were 222 

not recoverable were not included in the PFGE analysis, leaving PFGE analysis on 94 isolates. A 223 

total of 27 distinguishable pulsotypes were identified, based on > 90% similarity. Figure 1 shows a 224 

minimum spanning tree, representing the PFGE profiles of all the isolates. The different colors 225 

represent different food categories. Within a circle, each segment represents an isolate, while the 226 

circle represents a pulsotype where the isolates show > 90% similarity. The length of the line 227 

between the circles represents the distance of the relationship between the pulsotypes/isolates. 228 

Pulsotypes with only one isolate are represented by a circle with no segments. Of the 27 pulsotypes, 229 

there were 10 with a single isolate and 8 with more than 4 isolates. Nine of the pulsotypes had 230 

isolates from more than one food sector, indicating possible cross contamination between food 231 

sectors (Table 3 gives more detail on pulsotypes shared across food sectors). 232 

For each of the companies which were positive for L. monocytogenes, Table 3 shows the 233 

number of pulsotypes, number of persistent pulsotypes and the number of pulsotypes shared between 234 

different food sectors (widespread pulsotype). A persistent pulsotype was defined as repeated 235 

identification of an isolate of the same pulsotype over a period longer than 6 months. Of the 27 236 

pulsotypes identified, 21 of these were identified in 3 of the companies tested.   This shows the 237 

diversity of the isolates obtained, but also shows a degree of similarity in the isolates from the 238 

different companies (Figure 2).  239 
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Persistent pulsotypes were identified at 6 of the 12 facilities. Of the 27 pulsotypes, 9 were 240 

persistent. Five pulsotypes showed a cross-contamination scenario in 3 of the companies, where 241 

indistinguishable pulsotypes were found on food and in the processing environment.  242 

The PFGE profiles obtained in this study were compared with a database of strain PFGE 243 

profiles obtained in a similar study in the RoI. There were no similarities at the level of >90% 244 

between the isolates from this study and isolates obtained previously.  245 

Comparison between the pulsotypes obtained in this study and about 2,500 PFGE profiles in a 246 

database of international isolates at Teagasc, Moorepark, Ireland, showed that of the 27 pulsotypes 247 

obtained in this study, 10 were comparable with international isolates. These included similarities 248 

with strains from Ireland, Austria, Romania, Czech Republic, Turkey and Australia (data not shown). 249 

Seven of the pulsotypes from the current project were >90% similar to mushroom production chain 250 

isolates from a project in the RoI .  Figure 3 shows an example of one of these.  251 

A comparison between the pulsotypes from this study and those of clinical isolates from the 252 

ROI was made. Seven of the pulsotypes identified in this project were similar to pulsotypes from 253 

clinical isolates at >90% (data not shown).  254 

 255 

3.3 Potential for growth of L. monocytogenes on the food products 256 

The pH and aw data were used as the input into the Combase L. monocytogenes computer 257 

growth prediction model (http://browser.combase.cc) to obtain an estimate of the mean generation 258 

time at three storage temperatures: 4, 6, and 8°C. Combase predicted that 19 of the 130 samples 259 

would not support the growth of L. monocytogenes due either to their pH being below 4.40 (14 260 

samples), or their aw being below 0.934 (5 samples). The pH and aw for the remaining 111 samples 261 

which were predicted to support growth is shown in Supplementary Figure 1. Over 80% of the 111 262 

samples had a pH greater than 5.5 and over 86% had a aw greater than 0.97. To assess, and compare, 263 

the potential of each foodstuff to support the growth of L. monocytogenes, an arbitrary growth 264 
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parameter was chosen. This was the ability of the food to support ten generations of growth, 265 

equivalent to approximately 1,000-fold growth, in seven days or less. This corresponded to growth 266 

from 1 cell per 10 g of food to the limit of 100 cfu/g, and was intended to be a parameter 267 

comprehensible to the FBOs (data not shown). At 4°C, growth predictions showed that none of the 268 

foods supported 10 generations of growth in one week. However, at 6°C growth could exceed this 269 

target in 55.0% of the foods, and at 8°C this rose to 77.5% of the foods.  270 

 271 

3.4 Whole genome sequencing of the isolates 272 

All of the L. monocytogenes isolates were subjected to WGS and 91 sequences were obtained; 273 

the quality of the DNA did not allow WGS to be completed for 5 strains. The genome sequences 274 

were then analysed for the presence of four virulence-associated genes: internalin A, inlA; actin 275 

assembly protein, actA; Listeria pathogenicity island 3, LIPI-3 and Listeria pathogenicity island 4, 276 

LIPI-4.Three genes indicative of stress tolerance were also studied; stress survival islet, SSI-1; 277 

a resistance cassette, which contributes to resistance to quaternary ammonium compounds, bcrABC; 278 

and the quaternary ammonium compound-resistance gene, qacH (Fox, Allnutt, Bradbury, Fanning, & 279 

Chandry, 2016). All 91 isolates carried functional genes for inlA and actA and 65 (71.4%) carried 280 

qacH. None carried LIPI-3, LIPI-4, or bcrABC.  281 

These whole genome sequences were analysed to determine the MLST of the isolates, a 282 

feature frequently used for clinical characterisation of isolates. Twelve MLSTs were 283 

found(Supplementary Figure 1), and in nine FBOs some MLSTs were isolated on more than one 284 

occasion (Table 4). 285 

 286 

4 Discussion 287 

 288 
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The results of this study show that 50% of the 24 food processing facilities where sampling 289 

took place were free of L. monocytogenes in the food and the food processing environment for the 290 

18-month duration of the sampling. It is significant that L. monocytogenes was not detected in any of 291 

the 5 of the dairy processing companies where sampling took place (all the companies used 292 

pasteurised milk, with the main products being ice cream, yoghurt and cheese). Sandwich production 293 

companies and horticultural product production facilities were the food sectors where the highest 294 

number of facilities were positive – 4 of 4 and 3 of 4, respectively. In a similar study in the RoI, 10 of 295 

54 facilities were completely free of L. monocytogenes for the 3-year duration of that study (Leong et 296 

al., 2017). Correlation of data on management practices at facilities that were positive and negative 297 

for L. monocytogenes did not identify any practices that would lead to an increase or decrease in 298 

occurrence of L. monocytogenes (data not shown). From a food safety perspective, a L. 299 

monocytogenes-free processing environment will have a reduced risk of L. monocytogenes 300 

contamination of the food produced. 301 

All of the positive samples came from 12 facilities, 4 of 4 sandwich producing companies, 3 302 

of 4 horticultural product production facilities, 2 of 3 meat companies, 1 of 2 baked goods companies 303 

and 1 of 1 seafood company. It should be noted that two samples of meat products sampled prior to 304 

distribution were found to exceed 100 cfu/g, and were therefore not fit for sale. In these cases, the 305 

FBOs were informed and appropriate action was taken. All other food samples (n=393) had <100 306 

cfu/g. In this study, sandwiches had significant Listeria contamination, as was shown by (Cossu et 307 

al., 2016), and they have been implicated in cases of listeriosis (Silk, McCoy, Iwamoto, & Griffin, 308 

2014). This show the importance of anti-listeria controls in sandwich producing facilities. 309 

The overall occurrence in food and in the processing environment was 4.6% and 6.3%, 310 

respectively. Comparing the results with other published surveys is not applicable as, 1) different 311 

methodologies (for sampling and analysis) are frequently used, 2) in many surveys, one facility is 312 

surveyed on several occasions or several facilities are surveyed on one occasion, 3) some surveys are 313 
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targeted at facilities that have been shown to be positive. In extensive surveys, using similar 314 

methodologies, Leong et al, (2017) found that 3.8% of 4667 processing environment samples and 315 

4.2% of 1202 food samples were positive, while Beno et al. (2016) found 1.4% of 4430 processing 316 

environment samples positive.  Muhterem-Uyar et al. (2015) reported a higher occurrence in meat 317 

processing facilities than in dairy processing facilities (32.0% and 8.8%, respectively), attributing the 318 

higher occurrence in meat processing facilities to cross-contamination from carcasses. In addition, 319 

not all the meat processing facilities produced ready-to-eat food.   320 

The locations most commonly associated with L. monocytogenes contamination were areas 321 

such as floors and drains (Kells & Gilmour, 2004; Leong, Alvarez-Ordonez, & Jordan, 2014; Ruckerl 322 

et al., 2014; Schoder, Rossmanith, Glaser, & Wagner, 2012). This prevalence was not consistent over 323 

the 18-month period of the study as processing environment samples were more frequently positive 324 

during the warmer months of May to September (p = 0.007). This is in contrast to other studies such 325 

as that undertaken in the RoI (Leong et al., 2017),  where no seasonality was found. Weather, such as 326 

warm or wet conditions, can affect the prevalence of L. monocytogenes (Hellberg & Chu, 2016). 327 

However, in this study, no obvious cause for the seasonality observed was determined. In contrast, 328 

the statistical analyses showed no seasonal effects with regard to prevalence in the food samples. 329 

Seasonality of contamination has been reported in dairy products (Meyer-Broseta, Diot, Bastian, 330 

Rivière, & Cerf, 2003), but no dairy products were positive in this study.  331 

The ninety-four isolates genetically characterised by PFGE resulted in 27 distinguishable 332 

pulsotypes; 33% of these pulsotypes showed persistence at the processing facility. Nine of the 333 

pulsotypes were found in different food sectors. If more extensive sampling and analysis were 334 

undertaken, it is possible that other pulsotypes would be identified as persistent. The persistence of L. 335 

monocytogenes indicates either repeated contamination events or the resistance of L. monocytogenes 336 

to the hygiene procedures in the facility (for review see Carpentier & Cerf, 2011). Persistence of L. 337 

monocytogenes in the food processing environment presents a risk of cross contamination to the food 338 
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being produced. In order to address such persistence, more stringent hygiene measures, or hygiene 339 

barriers on access to the facility (including for raw materials) are necessary. Such measures can 340 

reduce cross contamination to the final product and contribute to the prevention of public health 341 

issues (Awofisayo-Okuyelu et al., 2016; McCollum et al., 2013; Montero et al., 2015). 342 

The results of the project show the diversity of the isolates obtained (Figure 1), but also 343 

shows a degree of similarity in the isolates from the different companies (Figure 2). For example, the 344 

PFGE profile of an isolate from the floor in front of a sink at one facility was >90% similar to a food 345 

isolate from the same facility and isolates from processing environment and food samples from other 346 

facilities (Figure 2). Further studies analysing the WGS data in more detail may help to resolve this 347 

issue and determine how similar the isolates are. 348 

The presence of the same L. monocytogenes pulsotype in different companies (widespread 349 

occurrence) shows the possibility of cross contamination between different production units and 350 

sometimes different food sectors. This can happen when services are shared, like transporters, raw 351 

materials, couriers, etc. In the current study, there were no known links between the companies where 352 

the same pulsotype was found in different facilities, except for one case where the same company 353 

operates two facilities. Widespread contamination was detected in the mushroom industry. In Ireland, 354 

the mushroom industry is a very ‘cross border’ industry, where companies have premises in both NI 355 

and RoI. This could explain the occurrence of seven common pulsotypes that were commonly found 356 

in both NI and the RoI.  Alternatively, there are global clones of L. monocytogenes (Chenal-357 

Francisque et al., 2013), indicating that it is possible for the same pulsotype to be found in different 358 

facilities that have no apparent epidemiological link.  359 

Cross contamination was shown at four facilities, where L. monocytogenes isolates from 360 

processing environment swabs had the same pulsotype as food samples in the same facility. PFGE 361 

does not discriminate between the two possible scenarios, namely if the contamination went from the 362 

food to the environment or vice-versa. Further analyses would be required to differentiate these 363 
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scenarios. Persistence of L. monocytogenes in the food processing environment presents a risk of 364 

cross contamination to the food being produced. Cross contamination from the processing 365 

environment has been previously reported (Ivanek, Grohn, Wiedmann, & Wells, 2004; Leong et al., 366 

2017; McCollum et al., 2013) and has been implicated in outbreaks of listeriosis (Currie et al., 2015). 367 

In a comparison between the pulsotypes identified in this study and those obtained in other 368 

countries, 10 common pulsotypes were identified. Again, this shows the existence of global clones of 369 

L. monocytogenes, not necessarily connected to epidemiological data (Chenal-Francisque et al., 370 

2013). The relationship between these clones is unclear, and further studies would be required to 371 

clarify this. For example, a comparison of whole genome sequences can highlight the presence of 372 

single nucleotide polymorphisms (SNPs) between strains with indistinguishable PFGE profiles. This 373 

is especially important where PFGE similarities are shown in the comparison with clinical isolates, 374 

but in the absence of epidemiological data no link can be made between isolates from food and 375 

disease-causing isolates. 376 

Since L. monocytogenes was present in half of the food processing facilities participating in 377 

this study, there is potential for cross-contamination to food products. Thus, it is relevant to 378 

determine if these foods support the growth of L. monocytogenes. Although not foolproof, predictive 379 

microbiology can give an indication of growth potential. Nineteen of the 130 food products tested 380 

(using Combase predictions based on pH and water activity) were predicted not to support the growth 381 

of L. monocytogenes; these were mainly low pH products such as yoghurts, cheese, fruit products and 382 

coleslaw, which all had a pH below 4.4. While the pH of cheese can increase post-production due to 383 

the actions of the endogenous microflora (Schoder, Skandamis, & Wagner, 2013), this was unlikely 384 

to occur with the cheese products studied, hence they would be not support growth during their 385 

normal shelf life. 386 

The remaining 111 food samples, i.e. 85%, all had pH and aw values which would support the 387 

growth of L. monocytogenes at 4°C, 6°C and 8°C, according to the ComBase model. While 4°C is the 388 
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intended temperature of a domestic refrigerator, a UK-wide microbiological study found that the 389 

mean temperature of pre-packed meats on retail display was 6.8°C, with 71.3% of samples above the 390 

industry guideline of 5°C, and 32.7% being stored above 8°C (Madden, 2014). Hence, the 391 

temperatures of 4 and 8°C, and the intermediate temperature of 6°C, were chosen for the growth 392 

studies.  Growth in the foodstuffs over a seven-day period was determined using the arbitrary 393 

criterion of calculating the time for 10 generations of microbial growth (approximately a 1,000-fold 394 

increase in numbers), using the generation time predicted by ComBase. This allowed a simple metric 395 

to be communicated to FBOs. At 4°C none of the 111 foodstuffs were predicted to support such 396 

growth. However, increasing the temperature to 6°C resulted in 55% of the samples failing the test, 397 

while 77.5% failed at 8°C. This shows the importance of temperature in controlling the growth of L. 398 

monocytogenes, and the importance of proper control over the temperature of domestic refrigerators. 399 

In order to help them comply with Commission Regulation (EC) No 2073/2005, this information was 400 

communicated to participants. Additionally, guidance for FBOs undertaking challenge studies to 401 

determine the ability of foods to support growth of L. monocytogenes in the food matrix has been 402 

published (Beaufort, Bergis, Lardeux, Polet, & Botteldoorn, 2014). Thus, for most of the food 403 

products analysed in this study, an initial contamination of one L. monocytogenes per 10 g could 404 

exceed the regulatory level of L. monocytogenes cited in Commission Regulation (EC) No 2073/2005 405 

(100 cfu/g) within a week, if they were subjected to abuse temperatures found in retail premises.  406 

The Gastrointestinal Bacteria Reference Unit, National Infection Service, Public Health 407 

England, supplied data on clinical MLSTs from the UK (April 2016-March 2017), where 10 MLSTs 408 

were found (STs 1, 5, 6, 8, 20, 21, 121, 155, 204 and 394). ST204 was the most common sequence 409 

type identified in this study, comprising 30 isolates. This MLST was isolated from a number of 410 

different food processing facilities, and was found for the duration of the project. All of the clinical-411 

associated MLSTs were found in the isolates from this study, where they comprised 98% of the 412 

isolates. Furthermore, the National Salmonella, Shigella & Listeria Reference Laboratory in the RoI 413 
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reported that eight of the nine most common MLSTs isolated during this study were also found as 414 

clinical isolates. However, based on a study of fifteen ST204 isolates, this MLST was reported as 415 

being mainly an environmental isolate (Fox et al., 2016). It should be noted that not all isolates with a 416 

given MLST are genetically identical. For example, 86% of the ST204 isolates carried the qacH 417 

gene, and were therefore different from the 14% which did not carry it.  418 

Overall, most of the isolates for which WGS data was obtained (71%) carried the qacH gene, 419 

which confers resistance to quaternary ammonium salts, the basis of many sanitizers used in the food 420 

industry (Sidhu, Sørum, & Holck, 2004). The high rate of carriage of qacH by ST204 isolates found 421 

in this study contrasts with its absence in the 15 isolates described in the report of Fox et al. (2016), 422 

and may reflect selection for this property in food processing environments. Resistance to quaternary 423 

ammonium salts may also be a contributory factor to the high prevalence of this MLST found in this 424 

study. 425 

Study of the WGS data showed that all of the isolates obtained carried the virulence genes 426 

inlA and actA (Fox et al., 2016). However, determining the true pathogenic abilities of the isolates 427 

was beyond the scope of this study; further work on the WGS data and on invasion assays would be 428 

required to further investigate pathogenic properties  of the isolates (Chen et al., 2016). 429 

Overall, the results obtained showed that most participating FBOs can produce RTE food free 430 

from L. monocytogenes, and many were able to keep their production facility free from this pathogen. 431 

Hence, most FBOs appear to have determined effective control strategies and practical interventions. 432 

However, WGS data suggests some FBOs have persistent strains, and that many of the isolates could 433 

be potential pathogens. Therefore, there is a need for FBOs to continually assess control strategies 434 

and practical interventions for the exclusion of L. monocytogenes. 435 
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Table 1. Occurrence of L. monocytogenes by category of food product produced by the 

food business. 

Food category 

Total 

samples 

L. monocytogenes 

positive 

% Samples 

Positive 

Cooked meat 225 27 12.0 

Horticultural 
productse1 

398 26 9.1 

Sandwich 286 24 8.4 

Baked goods 128 10 7.8 

Salads 136 5 3.7 

Seafood 144 2 1.4 

Dairy 281 0 0.0 

Total 1,598 94 5.8 

 

1Includes mushrooms, vegetables and fruits 
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Table 2. Food premises yielding Listeria monocytogenes from the processing 

environment and/or products. To maintain anonymity, the premises listed have been 

designated in terms of the type of principal products. 

Products from food premises  
Number of isolates from each food 

premises 

 
Processing 

environment swabs 
Food 

product 

Cooked Meats A1: pulled chicken, turkey and 

beef 17 2 

Cooked Meats B: pork from fresh and cured 

meat 5 52 

Sandwiches A: sandwiches, rolls and wraps 10 2 

Sandwiches B: sandwiches, salads, wraps and 

snacks  7 0 

Sandwiches C: sandwiches, pasta and salad 

bowls, coleslaw, potato salad  0 4 

Sandwiches D: sandwiches 1  0 

Processed mushrooms 12 7 

Baked goods: cakes, pies, sausage rolls 10 0 

Salads: green and pasta salads, chicken tuna and 

egg mixes 5 0 

RTE raw fruit pieces in consumer packs 5 0 

RTE processed fish/shellfish 2 0 

RTE vegetable products 2 0 
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1Where more than one company manufactured a product type they have been designated 

successively, as A, B etc. 

2Three food samples were positive and two of these samples yielded L. monocytogenes 

isolates from both enrichment cultures and enumeration plates. 
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Table 3.  Pulsotypes obtained from different food premises. To maintain anonymity 

premises listed have been designated in terms of their principal products 

Products of Food Premises  Number of 

pulsotypes 

Number of 

persistent 

pulsotypes 

Number of pulsotypes 

shared with other 

companies (persistent 

isolates shared) 

Cooked Meats A1 10 2 4 (1) 

Sandwiches A 5 3 5 (3) 

Salads 4 0 4 

Cooked Meats B 2 1 0 

Baked goods 4 3 1  

Sandwiches B 3 0 1 

RTE raw fruit 2 0 1 

Sandwiches C 1 1 1 

RTE vegetable products 2 0 2 

RTE processed fish/shellfish 1 0 1 

Processed Mushrooms 6 1 4 (1) 

Sandwiches D 1 0 1 

 

1Where more than one company manufactured a product type they have been designated 

successively, as A, B etc. 
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Table 4. Sequence types (ST) isolated from individual premises on more than one occasion. To 

maintain anonymity, the premises listed have been designated in terms of the type of 

principal products.  

Products from food premises 

Total number of 

sequence types 

(ST) 

Number of 

recurrent ST 
Recurrent ST 

Cooked Meats A1: pulled chicken, 

turkey and beef 8 4 ST204 

Cooked Meats B: pork from fresh 

and cured meat 7 1 ST204 

Sandwiches A: sandwiches, rolls 

and wraps 4 1 ST204 

Sandwiches B: sandwiches, salads, 

wraps and snacks 4 1 ST6 

Sandwiches C: sandwiches, pasta 

and salad bowls, coleslaw, potato 

salad 3 1 ST6 

Processed mushrooms 8 2 ST8, ST204 

   ST6, ST20, ST121, 

Baked goods: cakes, pies, sausage 

rolls 6 2 ST21, ST121 

Salads: green and pasta salads, 

chicken tuna and egg mixes 4 0  

RTE3 raw fruit pieces in consumer 

packs 2 1 ST155 

1Where more than one company manufactured a product type, they have been designated 

successively, as A, B etc. 
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2 RTE- Ready to Eat 
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Figure 1. Minimum spanning tree summarising the data from the PFGE profiles of the 94 

isolates tested. The different colours represent different food companies. Within a circle, each 

segment represents an isolate, while the circle represents a pulsotype where the isolates show 

> 90% similarity. The length of the line between the circles represents the distance of the 

relationship between the pulsotypes/isolates. Pulsotypes with only one isolate are represented 

by a circle with no segments. 
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Figure 2. PFGE profiles showing similarity between L. monocytogenes isolates obtained from 

different food premises. 
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Figure 3. PFGE profiles of L. monocytogenes from mushroom producers in the Republic of 

Ireland (RoI) (A and B) compared with food producers in Northern Ireland (NI): a mushroom 

producer (NI), sandwich maker (Sandwich A) and a salad producer (salad A). Dates are those 

on which isolates were stored. The scale shows % similarity. 
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• No Listeria monocytogenes were detected at 50% of the food processing facilities sampled  

• At 4°C none of the foods tested were predicted to support growth of Listeria 

monocytogenes 

• There were 27 distinguishable pulsotypes in the 96 isolates tested 

• Sequence types detected can cause listeriosis 


