Uncoupling protein 2 haplotype does not affect human brain structure and function in a sample of community-dwelling older adults.


Heise, V; Zsoldos, E; Suri, S; Sexton, C; Topiwala, A; Filippini, N; Mahmood, A; Allan, CL; Singh-Manoux, A; Kivimäki, M; Mackay, CE; Ebmeier, KP; (2017) Uncoupling protein 2 haplotype does not affect human brain structure and function in a sample of community-dwelling older adults. PloS one, 12 (8). e0181392. ISSN 1932-6203 DOI: https://doi.org/10.1371/journal.pone.0181392

[img]
Preview
Text - Published Version
License:

Download (738kB) | Preview

Abstract

Uncoupling protein 2 (UCP2) is a mitochondrial membrane protein that plays a role in uncoupling electron transport from adenosine triphosphate (ATP) formation. Polymorphisms of the UCP2 gene in humans affect protein expression and function and have been linked to survival into old age. Since UCP2 is expressed in several brain regions, we investigated in this study whether UCP2 polymorphisms might 1) affect occurrence of neurodegenerative or mental health disorders and 2) affect measures of brain structure and function. We used structural magnetic resonance imaging (MRI), diffusion-weighted MRI and resting-state functional MRI in the neuroimaging sub-study of the Whitehall II cohort. Data from 536 individuals aged 60 to 83 years were analyzed. No association of UCP2 polymorphisms with the occurrence of neurodegenerative disorders or grey and white matter structure or resting-state functional connectivity was observed. However, there was a significant effect on occurrence of mood disorders in men with the minor alleles of -866G>A (rs659366) and Ala55Val (rs660339)) being associated with increasing odds of lifetime occurrence of mood disorders in a dose dependent manner. This result was not accompanied by effects of UCP2 polymorphisms on brain structure and function, which might either indicate that the sample investigated here was too small and underpowered to find any significant effects, or that potential effects of UCP2 polymorphisms on the brain are too subtle to be picked up by any of the neuroimaging measures used.

Item Type: Article
Faculty and Department: Faculty of Epidemiology and Population Health > Dept of Population Health (2012- )
PubMed ID: 28771482
URI: http://researchonline.lshtm.ac.uk/id/eprint/4646914

Statistics


Download activity - last 12 months
Downloads since deposit
4Downloads
25Hits
Accesses by country - last 12 months
Accesses by referrer - last 12 months
Impact and interest
Additional statistics for this record are available via IRStats2

Actions (login required)

Edit Item Edit Item