Wijnant, GJ; Van Bocxlaer, K; Yardley, V; Harris, A; Murdan, S; Croft, SL (2017) AmBisome treatment of murine cutaneous leishmaniasis: relation between skin pharmacokinetics and efficacy. Antimicrobial agents and chemotherapy. ISSN 0066-4804 DOI: https://doi.org/10.1128/AAC.02009-17

Downloaded from: http://researchonline.lshtm.ac.uk/4645973/

DOI: 10.1128/AAC.02009-17

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
AmBisome® treatment of murine cutaneous leishmaniasis:
relation between skin pharmacokinetics and efficacy

Gert-Jan Wijnant¹,², Katrien Van Boeckel¹, Vanessa Yardley¹, Andy Harris³, Sudaxshina Murdan² and Simon L. Croft¹*

¹. Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
². Department of Pharmaceutics, UCL School of Pharmacy, London, United Kingdom.
³. Pharmidex Pharmaceutical Services Ltd, 3rd floor, Hanover Street, London W1S 1YH, UK

Corresponding author simon.croft@lshtm.ac.uk.

ABSTRACT

AmBisome® (LAmB), a liposomal formulation of amphotericin B (AmB), is a second-line treatment for the parasitic skin disease cutaneous leishmaniasis (CL). Little is known about its tissue distribution and pharmacodynamics to inform clinical use in CL. Here, we compared the skin pharmacokinetics of LAmB with Fungizone® (DAmB), the deoxycholate form of AmB, in murine models of Leishmania major CL. Drug levels at the target site (the localized lesion) 48 hours after single intravenous (IV) dosing of the individual AmB formulations (1 mg/kg of body weight) were similar, but were 3-fold higher for LAmB than for DAmB on day 10 after multiple administrations (1 mg/kg on days 0, 2, 4, 6 and 8). After single and multiple dosing, intralesional concentrations were respectively 5- and 20-fold higher compared to those in the healthy control skin of the same infected mice. We then evaluated how drug levels in the lesion after LAmB treatment relate to therapeutic outcomes. After five administrations of the drug at 0, 6.25 or 12.5 mg/kg (IV), there was a clear correlation between dose level, intralesional AmB concentration and relative reduction in parasite load and lesion size (R² values > 0.9). This study confirms the improved efficacy of the liposomal over the deoxycholate AmB formulation in experimental CL, which is related to higher intralesional drug accumulation.

KEYWORDS

Pharmacokinetics, pharmacodynamics, amphotericin B, cutaneous leishmaniasis
INTRODUCTION

Cutaneous leishmaniasis (CL) is a vector-borne neglected tropical disease caused by intracellular protozoan Leishmania parasites. Current estimates suggest 350 million people at risk, 12 million cases per year and 1-1.5 million new cases annually in more than 98 countries, of which the majority occurs in Latin America and the Middle East (1). While mortality is limited for the most common form, localized CL, morbidity is serious due to ulceration, disfigurement and often permanent scarring after healing of the lesion, which are all associated with social stigmatization. More complex and potentially dangerous forms of CL are diffuse (diffuse cutaneous leishmaniasis, DCL), chronic (leishmaniasis recidivans, CCL) or destructive to the nasopharyngeal mucosa (mucocutaneous leishmaniasis, MCL).

Current treatments are hampered in their clinical value by toxicity, side effects, variable efficacy, high cost or invasive administration route. First-line treatment consists of pentavalent antimonials, second-line chemotherapeutic options include paromomycin, miltefosine and amphotericin B (AmB). AmB, a macrolcyclic polyene antibiotic and important antifungal agent derived from Streptomyces nodosus, is active due to complexation with ergosterol in leishmanial cell membranes, leading to the formation of pores and ultimately pathogen death (2). Due to infusion-related and acute (nephro)toxicity issues of the classic colloidal dispersion with deoxycholate (Fungizone®, DAmB), lipid formulations with an improved tolerability profile and different physicochemical properties were developed, including a phospholipid complex (Abelcet®), a dispersion with cholesteryl esters (Amphotec™), a multilamellar liposome (Fungisome®) and a unilamellar liposome (AmBisome®, LAmB) (3).

No standard dose regimens have been established for LAmB in the treatment of CL, as published data are limited to small case series or individual case reports (4), but clinical success has been achieved with a course of daily 3 mg/kg for a total dose of 18-21 mg/kg. Due to the need for intravenous administration of LAmB and the related risk of systemic
adverse effects, it is typically reserved as a 2nd line treatment for complex CL. This includes patients with (or at risk of) MCL, DCL or CCL, but also cases where lesions are large, numerous, potentially disfiguring, unresponsive to earlier therapeutic attempts and aesthetically or practically unfeasible to cure locally. General limitations of LAmB include the high price as well as the requirements for cold chain, slow infusion and hospitalization (5). Despite the relative safety and efficacy of LAmB in CL, fundamental questions about its pharmacology for this disease remain unanswered. Evaluation of pharmacokinetics (PK) and pharmacodynamics (PD) in preclinical models is important to inform optimal clinical use and learn lessons for drug development. A number of studies have looked at the difference in PK and PD properties of AmB formulations in the treatment of invasive fungal pathologies (6-11), but none have done so for CL. Here, we report (i) the single dose pharmacokinetics of LAmB and DAmB in both healthy and Leishmania major-infected BALB/c mice, (ii) skin distribution after multiple dosing of LAmB and DAmB in murine CL and (iii) the relationship between dose, intralesional AmB concentrations and response after LAmB treatment at three dose levels.

MATERIALS AND METHODS

Drugs. AmBisome® (LAmB, Gilead, UK) and Fungizone (DAmB, Bristol-Myers Squib, UK) were reconstituted with sterile water as per the manufacturer’s instructions to yield stock solutions of respectively 4 mg/ml and 5 mg/ml. These were diluted in 5% aqueous dextrose to a dose of 1 mg/kg (0.02 mg per dose of 200 µl for mice of a mean weight of 20 g). For LAmB, additional doses of 6.25, 12.5 and 25 mg/kg were similarly prepared. The dilutions were prepared one day before starting the experiment and stored at 4 °C.

Parasites. L. major MHOM/SA85/JISH118 parasites were cultured in Schneider’s insect medium (Sigma, UK) supplemented with 10% heat-inactivated fetal calf serum (HiFCS, Sigma, UK). These parasites were passaged each week at a 1:10 ratio of the existing culture to fresh medium in 25-ml culture flasks without a filter and incubated at 26 °C. For infection of mice, stationary-phase parasites (as confirmed by light microscopy) were centrifuged for 10 min at 2100 rpm at 4 °C. The supernatant was removed, and the pellet was resuspended in...
pure Schneider’s insect medium. The number of cells was estimated by microscopic counting with a Neubauer hemocytometer.

In vivo L. major models of CL. Female BALB/c mice around 6 to 8 weeks old were purchased from Charles River Ltd. (Margate, UK). These mice were kept in humidity- and temperature controlled rooms (55 to 65% and 25 to 26 °C, respectively) and fed water and rodent food *ad libitum*. After acclimatization for 1 week, mice were randomized and subcutaneously (s.c.) injected in the shaven rump above the tail with 200 µl of a parasite suspension containing 4 x 10^7 low-passage-number (p< 5), stationary-phase *L. major* promastigotes in RPMI medium. Uninfected mice received a similar, but parasite-free injection of 200 µl RPMI medium instead. Twelve days later, when a 4- to 5-mm non-ulcerating nodule had formed on the rump of infected animals, mice were allocated to the different experimental groups to ensure comparable lesion sizes.

Ethics statement. All animal experiments were conducted under license X20014A54 according to UK Home Office regulations under the Animals (Scientific Procedures) Act 1986 and EC Directive 2010/63/E.

Single-dose PK study. Uninfected and *L. major*-infected BALB/c mice (n = 4-5 per group) each received LAmB or DAmB at 1 mg/kg of body weight over a 1-2 minute period by an intravenous bolus (200 µl). Plasma, rump (lesion site) and back (control site) skin samples were collected at 0.5, 2, 6, 24 and 48 hours post-infusion.

Multiple-dose PK and PD study. *L. major*-infected BALB/c mice (n = 4-5 per group) each received LAmB or DAmB at 1 mg/kg or 5% dextrose over a 1-2 minute period by an intravenous bolus (200 µl) on days 0, 2, 4, 6 and 8. Skin samples from rump (lesion site) and back (control site) were collected on day 10 (48 hours after the 5th and last drug administration). This day 10 time point of sacrifice allowed direct comparison with the outcomes of the single-dose PK study (last time point: 48 hours). The alternate day dosing regimen was based on earlier data on the efficacy of LAmB in the *L. major*-BALB/c model of CL (12). The PD methodology can be found in the following section.

Dose-concentration-response study. *L. major*-infected BALB/c mice (n = 4-5 per group) each received LAmB (IV) at 0, 6.25, 12.5 or 25 mg/kg on day 0, 2, 4, 6 and 8. Lesion size was measured daily in two dimensions (length and width) using digital callipers and the mean size (average of length and width) was calculated. On day 10, rump (lesion site) and back (control site) skin samples were collected and parasite load was evaluated. The methodology
to extract parasite DNA from lesions and quantify parasite load by qPCR has already been
described in full detail earlier (13).

Skin sample collection and preparation. After sacrificing mice (CO₂), skin was harvested
by surgical removal from the areas containing the localized CL lesion (at the parasite
inoculation site on the rump above the tail, ‘lesion-site’) and CL-uninfected skin on the back
(‘control site’). The skin tissue was cut into fine, long pieces and placed into SureLock
microcentrifuge tubes (StarLab, UK) together with 1 spatula (about 100 mg) of 2
zirconium oxide beads (Next Advance, UK) and 1 ml phosphate buffered saline (PBS, 0.9%
NaOH and pH 7.4, Sigma, UK). Samples were ground using a Bullet Blender Storm 24
(NextAdvance, UK) set at speed 12 for 20 minutes to obtain a smoothly flowing homogenate
and stored at -80 °C until further use. The homogenate (50 µl) was added to 250 µl of a
mixture of 84:16 methanol:DMSO (HPLC grade, Fisher Chemical, UK) containing 200
ng/ml tolbutamide (analytical standard, Sigma, UK) internal standard for drug extraction and
protein precipitation in 96-well plates. Plates were shaken for 10 minutes at 200 rpm and
centrifuged for 15 minutes at 6600 rpm at 4 °C. 150 µl supernatant was collected and stored
at -80 °C until analysis. Blanks with and without internal standard as well as calibration
samples with known concentrations of AmB (similarly extracted and prepared after spiking
45 µl blank skin homogenate (derived from untreated BALB/c mice) with 5 µl working
solutions of known AmB concentrations in 1% SDS (Sigma)) were included.

Plasma sample collection and preparation. Blood samples were taken from live animals by
needle pricks in the lateral tail veins and collected in Eppendorf tubes preloaded with heparin
(2 µl of a 1000 units/ml stock (aq)). After centrifugation at 6500 rpm at 4 °C for 10 minutes,
the supernatant plasma was collected in new tubes. Plasma samples for which concentrations
of AmB above the upper limit of quantification were expected, were first diluted with drug-
free blank plasma derived from untreated BALB/c mice. 20 µl plasma was added to 100 µl of
a 200 ng/ml tolbutamide internal standard in 84:16 methanol:DMSO. Supernatant (60 µl) was
collected and further treated as described for skin samples. Again, blanks with and without
internal standard and calibration standards (similarly extracted and prepared after spiking 18
µl blank plasma (derived from untreated BALB/c mice) with 2 µl working solutions of
known AmB concentrations in 1% SDS (Sigma)) were included.

LC-MS/MS quantification of AmB. The LC-MS/MS methodology to quantify AmB levels
in experimental leishmaniasis samples has been described earlier by Voak et al. (14).
Analysis was conducted at Pharmidex Pharmaceutical Services Ltd. (Stevenage, UK). The lower limit of quantification was 1 ng/ml.

Pharmacokinetic parameters. Single dose PK parameters were estimated assuming noncompartmental analysis in WinNonlin. AUC_{0-48h} values for skin were calculated using GraphPad Prism version 7.02.

Statistical analysis. Differences among lesion sizes and parasite loads in the groups were assessed by using one-way analysis of variance (ANOVA) assuming Gaussian distribution followed by Tukey’s multiple-comparison test. Data is presented as means and standard error of the mean (SEM). A p-value < 0.05 was considered statistically significant. All analyses were performed using GraphPad Prism version 7.02.

RESULTS

Single dose plasma and skin PK in healthy and *L. major*-infected mice

Plasma concentration-versus-time plots after intravenous (IV) administration of a single dose of 1 mg/kg LAmB or DAmB to uninfected and *L. major*-infected mice are shown in figure 1a and 1b, respectively. 1 mg/kg was used as it is the highest tolerated single dose of DAmB which does not cause signs of acute toxicity (data from pilot studies not shown). Plasma PK were similar between uninfected and infected mice for the two AmB formulations, with comparable C_{max}, AUC, Cl, T_{1/2} and Vd (table 1). However, the plasma profiles for LAmB and DamB individually were significantly different. Compared to DAmB, LAmB achieved a higher plasma peak and systemic exposure (C_{max} and AUC around 10- and 3-fold greater, respectively), but showed a shorter half life and lower clearance and volume of distribution. It should be noted that the terminal phase for LAmB was not clearly defined.

AmB exposure in the rump (lesion site) and back (control site) skin, expressed as AUC_{0.5-48h}, are shown in table 2. In uninfected animals, similar drug distribution profiles in the healthy rump (fig 1c) and back (figure 1e) tissues were obtained. Compared to DAmB, LAmB gave similar drug peak levels around 60 ng/g, but at earlier time points (after 30 minutes versus 2-6 hours) and only half the total exposure. The rump-to-back AUC_{0.5-48h} ratios (1.3 for DAmB, 1.5 for LAmB) indicate that there are limited differences in skin drug exposure based on anatomical location in uninfected mice. In contrast, in *L. major*-infected animals, the presence of the localized cutaneous lesion on the rump (figure 1d) strongly enhanced drug accumulation for both formulations in comparison to the CL-uninfected back skin of the...
same mice (figure 1f). Based on the rump-to-back AUC_{0.5-48h} ratios, AmB levels are 6-fold higher for LAmB and 8-fold higher for DAmB. Compared to DAmB, LAmB had a similar peak concentration in skin (132 ± 28 versus 159 ± 8 µg/g) at later time points (24 h versus 6 h), showing a trend of slower drug accumulation into and elimination from the lesion. AmB levels in the rump and back tissue for both formulations in infected mice was around 5-fold higher than in uninfected mice. Changes in AmB plasma concentrations after 1 mg/kg LAmB or DAmB infusion are not reflective for those in skin tissues. No adverse effects at this dose level were observed for either formulation.

Multiple dose skin PK and PD in *L. major*-infected mice

Skin distribution after multiple dosing of either LAmB or DAmB (1 mg/kg on day 0, 2, 4, 6 and 8) in CL-infected mice is shown in figure 2. On day 10, intralesional levels for LAmB (542 ± 46 ng/g) were 3-fold higher than for DAmB (170 ± 18 ng/g, p<0.0001). Comparing these concentrations 48 hours after the last dosing to those found during earlier single dose PK studies at the same time point (see figure 1c and 1d – LAmB: 110 ± 17 ng/g; DAmB: 92 ± 4 ng/g), a gradual and linear drug accumulation in the target tissue during treatment can be assumed for LAmB but not for DAmB. Again, AmB levels in the lesion were significantly higher compared to those in the healthy back skin for LAmB (x 20, p<0.0001) and DAmB (x 12, p<0.0001).
We then compared the resulting efficacy outcomes for LAmB and DAmB after complete 5 x 1 mg/kg treatment. A small reduction in day 10 lesion size compared to the untreated (5% dextrose) group (9.9 ± 0.8 mm) was found for LAmB (9.4 ± 0.2 mm) and DAmB (8.7 ± 0.6), but in both cases the difference was not significant (p=0.83 and 0.34, respectively). A lower relative parasite load was also found for LAmB (2.0 ± 0.6 × 10^7 parasites/g) and DAmB (6.1 ± 3.4 × 10^7 parasites/g), but again without a statistically significant difference compared to the control (1.6 ± 0.5 × 10^8 parasites/g, p=0.12 and 0.23 respectively). As expected, both formulations show some antileishmanial efficacy at 5 x 1 mg/kg, but the toxicity limit of DAmB (1 mg/kg) does not allow a meaningful comparison at clinically relevant dose levels. Because of this, we only further investigated the dose-concentration-response relationship at higher doses for LAmB.

Dose-concentration-response of LAmB in L. major-infected mice

After L. major-infected mice received 5 doses of LAmB at either 0, 6.25, 12.5 or 25 mg/kg LAmB (on days 0, 2, 4, 6 and 8), the dose level was related to the resulting day 10 intralesional AmB concentrations (figure 3a) as well as response indicated by lesion size and parasite load (figure 3b and 3c respectively). Figure 3d shows the non-linear fit sigmoidal dose-response curve plotting the logarithm of these intralesional AmB levels versus relative reductions in parasite load and lesion size compared to the untreated controls (0 mg/kg). The calculated dose required to achieve 50% (ED$_{50}$) and 90% of maximum effect (ED$_{90}$) was 9.16 and 16.73 mg/kg for lesion size. For parasite load, ED$_{50}$ was 7.55 and ED$_{90}$ was 9.16 mg/kg. We observed a linear dose-concentration-response relationship up to 12.5 mg/kg. Between the 0 and 12.5 mg/kg range, correlation was strong between dose-concentration (linear regression goodness of fit R2=0.99) and concentration-response (R2=0.99 and 0.91 for relative reduction in parasite load and lesion size, respectively). Little additional efficacy was found by doubling the dose from 12.5 to 25 mg/kg, while intralesional AmB levels increased nonlinearly by 5-fold; this resulted in only a small additional reduction in lesion size and parasite load. This indicates that at 25 mg/kg, the near-maximum efficacy of LAmB for this specific treatment regimen had been reached. Significant reductions in parasite load and lesion size (P<0.05) were found between the control and treated groups at all three dose levels. Doubling of the LAmB dose from 6.25 to 12.5 to 25 mg/kg range resulted in a further
decrease in parasite load and lesion size, but the differences among the groups were not
significant (p>0.05).

DISCUSSION

The pharmacokinetics and pharmacodynamics of many drugs currently used in the treatment
of CL, including different formulations of AmB, are poorly understood (15). We have
investigated the single- and multiple-dose skin distribution of AmB following dosing with
either the unilamellar liposome AmBisome® (LAmB) or the micellar deoxycholate salt form
Fungizone® (DAmB). Significant differences in pharmacokinetics were observed between L.
major-infected and uninfected animals, as well as between the two drug formulations.

We observed an important impact of the CL infection on skin accumulation for both LAmB
and DAmB. Drug levels in the localized lesion were over 5-to-20 fold elevated compared to
those in the healthy skin tissue of the same infected mice, as well as in uninfected animals.
The pathological condition of CL-infected skin, mainly caused by the severe localized
inflammatory immune response against the Leishmania parasites multiplying within dermal
macrophages, may explain this phenomenon. After intravenous administration, DAmB
dissociates from the colloidal micelles and over 95% of AmB binds to plasma proteins (16) to
from a high molecular weight association. LAmB also interacts with proteins and while 90%
of AmB remains stably intercalated in the 60-80 nm sized liposomes (4, 16), coating by
opsonins makes the liposomes prone to ingestion by phagocytes in systemic circulation and
the reticuloendothelial system in liver and spleen (17). While these complexes have impaired
extravasation in healthy skin (continuous endothelium with small vessel pores of a 6-12 nm
diameter (18)), the leaky vasculature at the infection site (increased permeability, disease-
inflicted capillary damage) could enhance local drug accumulation (19). Another factor,
especially for LAmB, is the migration of phagocytic monocytes, which can serve as potential
drug reservoirs, from the bloodstream to the infection site. This is a characteristic of the
early-stage and acute immune response against Leishmania (20, 21), causing small, non-
ulcerated CL nodules (as observed in our L. major-infected mice 12-days post-inoculation).
Little is known about the elimination of AmB from the target site by local metabolism or
lymphatic drainage. However, the latter has been hypothesized as a reason behind the much lower activity of liposomal formulations of AmB (12) and sodium stibogluconate (22) when injected intralesionally compared to intravenously. The impact of these individual physiological processes on local drug distribution in skin is difficult to estimate using the current methodology, which is based on total drug levels and unable to distinguish between intra- or extracellular, as well as free, protein-bound or liposome-encapsulated AmB.

Furthermore, the general limitations of tissue homogenates apply, such as loss of spatial drug disposition within the compartments of the organ of interest. Novel techniques, such as microdialysis and MALDI MS imaging, have untapped potential in pharmacological CL research to respectively measure unbound concentrations in the dermal interstitial fluid (23) or study drug disposition within the cellular architecture of infected skin (24). These findings about AmB accumulation in diseased tissue could also be relevant in the treatment of deep cutaneous mycoses (such as invasive candidiasis), where the pathogen, like *Leishmania*, is located in the dermis (25), instead of the superficial portions of the epidermis where most fungi typically reside.

Comparing the pharmacokinetics of the individual two AmB formulations, we saw significant differences between LAmB and DAmB, consistent with previous studies (14, 26-28). Plasma concentrations and exposure were much higher for LAmB over DAmB and not reflective of changes in skin tissue levels for either formulation. Drug concentrations at the target site were similar after single intravenous dosing of the individual AmB formulations, but 3-fold higher for LAmB than for DAmB following 5-time administration of the same dose.

Recently, Imam and colleagues (28) also investigated the distribution of LAmB and DAmB in *L. major*-infected BALB/c mice, but skin was not evaluated in this study. Increased accumulation of liposomes in inflammatory over healthy sites has also been described for subcutaneous tumours (29), bacterial skin abscesses (30, 31) and fungal infections (32). The so-called ‘enhanced permeation and retention effect’, increased drug accumulation at sites of leaky vasculature and defective lymphatic drainage, has been coined as the rationale behind nanoparticle-based drug delivery in cancer and inflammation (19). The data and our understanding of CL histopathology suggest that this effect can also be exploited as a passive targeting strategy in this context, by encapsulation of antileishmanial drugs in small (< 100 nm), stable (tightly packed phospholipids with cholesterol), unilamellar liposomes (17) similar to AmBisome®. Indeed, several promising results have already been achieved with nanoparticles of AmB and other drugs for the treatment of CL (28, 33-38).
Finally, we evaluated how drug concentrations at the infection site after LAmB treatment relate to outcomes. After administration of five consecutive doses, the 1 mg/kg dose of LAmB (as well as DAmB, for which this is the tolerated maximum) proved to be too low to be therapeutic, but a linear dose-concentration-response effect was found for 6.25 and 12.5 mg/kg. The clear correlation between intralesional drug levels and treatment outcomes can be explained by the known concentration-dependent manner in which AmB exerts its antimicrobial activity (39). Interestingly, for doubling the LAmB dose from 12.5 to 25 mg/kg, intralesional AmB levels increased by over 5-fold. This could be due to the known phenomenon of saturation of AmB uptake and clearance mechanisms in the organs of the reticuloendothelial system, possibly resulting in higher plasma exposure and increased distribution to other tissues (40). However, little additional efficacy for 25 compared to 12.5 mg/kg was observed. Both these doses were able to achieve a near-100 % reduction in parasite load but not lesion size, indicating the need for longer treatment as the host’s response to parasite elimination in the skin appears to be delayed. Results are in line with published data (12, 41) and suggest the clinical superiority of LAmB over DAmB in CL based on enhanced intralesional accumulation of the liposome, as well as already known factors such as better tolerability and potentially shorter treatment courses. Further PK PD analysis of LAmB is required to inform optimized clinical dose regimens, especially for the different complex forms of CL, as there are known differences in species-specific drug sensitivity (42), histopathology (20) and immunology (21). It is currently unknown to what degree our observations about skin accumulation of LAmB in the L. major-BALB/c model are translatable to human CL, but understanding of preclinical PK and PD relationships should improve the use and development of antileishmanial drugs.

In summary, intravenous LAmB has potent and dose-dependent in vivo activity against CL due to relatively high drug accumulation within the lesion, which is enhanced by the inflamed state of the infected target tissue and the pharmacokinetic properties of the liposomal formulation.

FIGURE LEGENDS

Figure 1: Single dose pharmacokinetics of Fungizone® (DAmB, ●) and AmBisome® (LAmB, ○). Uninfected and L. major-infected BALB/c mice received one intravenous dose (1 mg/kg of body weight) of a formulation, after which amphotericin B (AmB) levels in plasma (a, b) and skin at multiple time points were determined. Two skin sites per animal were included: the rump (parasite inoculation site where the localized CL lesion is present in
infected (d), but not in uninfected (c) mice) and the back (lesion-free control site in both infected (f) and uninfected (e) animals). Each point represents the mean ± SEM (n=4-5 per group).

Figure 2: Multiple dose skin pharmacokinetics of Fungizone® (DAmB) and AmBisome® (LAmB). L. major-infected BALB/c mice received intravenous doses of 1 mg/kg of body weight on days 0, 2, 4, 6 and 8. On day 10 (48 hours after the last dosing), skin samples were collected for amphotericin B (AmB) analysis. The CL lesion was localized on the rump, while the back skin served as a lesion-free, healthy control site. Each point represents the mean ± SEM (n=4-5 per group). Differences were analysed using 1-way ANOVA followed by Turkey’s multiple comparison tests and considered significant if p<0.05 (*) or not significant (ns) if not.

Figure 3: Dose-concentration-response relationship of AmBisome® (LAmB) in experimental CL. L. major-infected mice received five doses of either 5% dextrose (0 mg/kg, untreated control), 6.25, 12.5 and 25 mg/kg LAmB (IV). On day 10, resulting intralesional amphotericin B levels (3a), lesion size (3b) and parasite load (3c) were evaluated. Outcomes are linked in a logarithmic-scale dose-response curve plotting drug concentrations against relative reduction in lesion size and parasite load (3d, non-linear fit with variable slope). Each point represents the mean ± SEM (n=4-5 per group). Differences among day 10 outcomes were analysed using 1-way ANOVA followed by Turkey’s multiple comparison tests and considered significant if p<0.05 (*), p<0.01 (**), p<0.001 (***), p<0.0001 (****) or not significant (ns) if not.

TABLES

TABLE 1 Pharmacokinetic profile of Fungizone® and AmBisome® in uninfected and L. major-infected mice after a single intravenous 1 mg/kg dose. Values for pharmacokinetic parameters are calculated from the plasma PK profiles seen in figure 1 (a, b).
TABLE 2 Skin distribution of Fungizone® and AmBisome® in uninfected and *L. major*-infected mice after a single intravenous 1 mg/kg dose. AUC_{0.5-48h} values are calculated from skin profiles seen in figure 1 (c, d, e, f).

<table>
<thead>
<tr>
<th>Skin site</th>
<th>Fungizone® (DAmB)</th>
<th>AmBisome® (LAmB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uninfected</td>
<td>Infected</td>
</tr>
<tr>
<td>Rump (lesion site)</td>
<td>1586 ± 495</td>
<td>6035 ± 273</td>
</tr>
<tr>
<td>Back (control site)</td>
<td>1269 ± 190</td>
<td>710 ± 194</td>
</tr>
<tr>
<td>Rump-to-back ratio</td>
<td>1.3</td>
<td>8.5</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

Gert-Jan Wijnant’s doctoral project is part of the EuroLeish.Net Training Network (www.euroleish.net) and has received funding from the European Horizon’s 2020 Research
and Innovation Programme under the Marie Sklodowska-Curie grant agreement number 642609. The authors are grateful to Karin Seifert and Andrew Voak for helpful discussions.

REFERENCES

