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The ontogeny of the human immune system is sensitive to nutrition even in the very early 
embryo, with both deficiency and excess of macro- and micronutrients being potentially 
detrimental. Neonates are particularly vulnerable to infectious disease due to the imma-
turity of the immune system and modulation of nutritional immunity may play a role in 
this sensitivity. This review examines whether nutrition around the time of conception, 
throughout pregnancy, and in early neonatal life may impact on the developing infant 
immune system.
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iNTRODUCTiON

Nearly 3 million deaths occur annually in children less than 30 days old, principally in low and 
middle-income countries (1). Improvements in neonatal mortality rate have proved difficult to 
achieve. Low-cost, easily implementable interventions are urgently needed.

Infections directly account for approximately one-third of neonatal deaths and are likely to 
contribute to deaths from other causes such as prematurity and in cases where babies are stillborn 
(1). Neonates show heightened susceptibility to infectious diseases due to a functionally immature 
immune system (2). Innate immune components are compromised by impaired mucosal surface 
integrity (3), lower levels of complement proteins (4), and reduced phagocytic capacities (5). Adaptive 
immune responses to pathogens are attenuated compared to adult responses, with children under 
2 months old tending toward more regulatory responses with strong Th-2 and Th-17 cell polarization 
and weak Th-1 polarization (2, 6, 7). This is partly necessary to produce a tolerogenic environment, 
stopping rejection at the maternofetal interface and reducing reactions to self-antigens, and partly 
due to lack of primary exposure to antigens necessary to build up the adaptive immune responses. 
This functional immaturity of responses leaves the neonate particularly vulnerable to infectious 
pathogens. Decades worth of research has been directed at identifying interventions to improve 
neonatal immune responses to infections.

Various organs are sensitive to nutrition during embryonic and fetal development. Nutritional 
status can have short-term impacts on both fetal and childhood growth and development and longer 
term influences on adult health. Infants born following periods of nutritional deprivation, such 
as the Dutch Hunger Winter and identified in The Hertfordshire cohort, show increased risks of 
coronary heart disease, stroke, type-2 diabetes and metabolic syndrome when subsequently exposed 
to periods of nutrient sufficiency (8, 9). The concept that undernutrition during gestation may con-
tribute to adult disease by having permanent effects on the structure, function and metabolism of 
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the developing fetus, is known as the Developmental Origins of 
Health and Disease (DOHaD) theory. It has subsequently been 
shown to extend to a range of other diseases including psychiatric 
illnesses and cancers (10). Excess macronutrient consumption 
in mothers has also been associated with long-term sequelae in 
their offspring (11). Micronutrient deficiencies have long been 
known to have impacts on organogenesis, with iodine deficiency 
leading to congenital hypothyroidism (12) and folate deficiency 
increasing the risk of neural tube defects (13). Therefore, it has 
been hypothesized that the developing immune system is likely to 
be similarly sensitive to nutrition and that optimizing a mother’s 
nutritional state during pregnancy will have long-term benefits 
for the immune responses during the neonatal period and beyond.

Early human evidence that nutritional factors during gestation 
might specifically influence adult immune responses came from 
longitudinal studies carried out in The Gambia in the 1990s (14). 
The Gambia has a strong bimodal seasonality that has major 
effects on the nutritional status of the population. The dry season, 
running from November to June, is a time of relative nutrient 
security. With the previous seasons crops being harvested, 
macronutrients are in greater supply and manual labor levels tend 
to be lower. In contrast, the rainy season, running from July to 
October, is characterized by declining levels of food availability 
and higher manual labor demands as the next season’s crops are 
planted but the previous seasons supply is running short. This 
leads to deficits of both energy and micronutrient intakes that are 
particularly pronounced for women, who bare the brunt of much 
of the agricultural work (15). Analysis of demographic surveil-
lance data available for the population from the 1940s revealed 
that people born during the “hungry” rainy season had a three-
fold higher risk of mortality from infectious diseases as adults 
than those born during the dry season (14). These findings were 
independent of subsequent nutritional status, as demonstrated 
by anthropometric and hematological status at 18 months of age, 
suggesting that the effector of these changes occurred earlier on 
in development. These data suggested that environmental factors, 
most likely nutrition, during conception, gestation and early 
postnatal life can have marked effects on the immune system that 
are stable, durable and not susceptible to modification by later 
improvements in nutritional status.

Nutrient intake of the mother and neonate is theoretically 
amenable to modification via supplements, which represent low-
cost, easily implementable public health interventions. As such, 
there has been huge interest in the provision of nutritional sup-
plements during gestation and early infancy to improve neonatal 
outcomes. This review summarizes the evidence regarding the 
impact of early life nutrition on biochemical immune markers 
and clinical infectious diseases outcomes in neonates.

POTeNTiAL MeCHANiSMS FOR 
NUTRiTiONAL iNFLUeNCeS ON THe 
DeveLOPiNG NeONATAL iMMUNe 
SYSTeM

Studies in older children and adults have demonstrated the 
important influence that different nutrients have on the immune 

system. These effects, and the impacts of deficiencies on sus-
ceptibility to infectious diseases, are summarized in Table  1. 
Although the influence of nutrients on the developing immune 
system in utero and in early neonatal life may be similar to that 
of older children and adults, the impact of the nutritional state of 
the mother on the neonatal immune system is less well described.

Mother’s nutritional status may hypothetically affect the neo-
natal immune system by influencing:

•	 The mother’s own immune system: Optimizing maternal 
nutrition could directly enhance the neonatal immune system 
by increasing the quality and quantity of antibody and other 
immune factors available for passive transfer across the 
placenta and in breast milk. It could also indirectly improve 
neonatal immunity, by reducing the likelihood of maternal 
infections that may lead to preterm birth, a known cause of 
IgG deficiency in neonates due to reduced third-trimester 
antibody transfer (57). Increased maternal infections may also 
influence neonatal immune development via effects on the 
hypothalamic–pituitary–adrenal (HPA) axis (see below).

•	 Placentation: Maternal nutrient availability has been shown in 
animal and human studies to affect placentation, with affects 
on size, morphology, nutrient transfer receptors and vascular 
flow (58–63). This may theoretically affect passive transfer of 
antibodies and other immune factors to the fetus as well as 
altering the efficiency of nutrient transfer for fetal immune 
system development.

•	 The maternal HPA axis: The HPA axis is activated in times of 
low nutrient availability [particularly protein-energy malnu-
trition (64) and zinc deficiency (65, 66)] leading to increased 
circulating glucocorticoids. Increased cortisol levels can lead 
to both immunosuppression and altered placental function in 
the mother, with downstream effects for the fetus as described 
above, as well as directly impacting on the fetal immune system 
via actions on its own HPA axis.

•	 The maternal gut microbiome: The human intestinal tract con-
tains more than 1014 bacteria and other organisms (67). These 
commensal microflora have evolved a complex symbiotic 
relationship with humans, and are increasingly recognized 
as essential for many aspects of human health (68). Nutrient 
intake influences the composition of the gut microbiota, which 
in turn can influence the availability of nutrients for absorp-
tion from food (69–71). The gut microbiome is crucial for the 
development and functioning of the mucosal immune system 
(72). Healthy gut flora help to promote mucosal tolerance to 
non-pathogenic antigens, reduce the overgrowth of pathogenic 
microorganisms and enhance absorption of nutrients that are 
potentially important for systemic immune system develop-
ment (68). Dysbiosis (altered microbiome) has been associated 
with increased risk of immune-mediated diseases such as 
allergy, asthma, and inflammatory bowel diseases, as well as 
increased risk of infections (73). Animal models suggest that 
the immune development of the offspring may be influenced 
by the maternal microbiota in the following ways [reviewed 
in detail in Ref (74)]: (1) alteration of nutrient uptake having 
direct effects on maternal immunity and hence the availability 
of antibodies and immune factors for transfer to the offspring, 
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TAbLe 1 | Nutrients and their effects on immunity.

Nutrient effect on immunity effect of deficiency on clinical immune outcomes Reference

Protein energy Innate Increased bacterial, viral, and fungal infections (16, 17)
Epithelial integrity
Complement levels
NK-cell activity
Adaptive
T-lymphocyte number and function, particularly Th1-type cytokines
Delayed type hypersensitivity
Effect on B-lymphocytes less clear

n-3 PUFAs Activity is largely immunosuppressant with reductions in: Theoretical increases in inflammatory-mediated diseases 
and allergy. Trials suggest that supplementation reduces 
the risks of inflammatory-mediated diseases such as 
rheumatoid arthritis and improves responses to infectious 
disease

(18–25)
Innate
Leukocyte chemotaxis and adhesion
NK-cell function
Innate cytokine production
Adaptive
T-lymphocyte signaling

Vitamin A Innate Increased susceptibility to infections, particularly diarrhea, 
respiratory infections and measles. Supplementation 
of children from 6 months to 5 years in areas at risk of 
deficiency reduces all cause mortality, diarrhea incidence 
and mortality and measles incidence and morbidity on 
meta-analysis

(26–28)
Epithelial integrity
Neutrophil, monocyte, macrophage, and NK-cell number and function
Adaptive
T-lymphocyte differentiation and migration
T-lymphocyte numbers, especially CD4
B-lymphocyte numbers
Antibody production and may affect the balance of production of different 
IgG subclasses

B vitamins Vitamin B2 (riboflavin) (29–39)
Phagocyte activation
Vitamin B6
Dendritic cell function
Lymphocyte maturation and growth
T-lymphocyte activity and delayed type hypersensitivity
B-lymphocyte activity and antibody production
Vitamin B9 (folate)
Epithelial integrity
NK-cell activity
T-lymphocyte proliferation and response to mitogenic activation
Cytotoxic T-lymphocyte activity
Vitamin B12
NK-cell activity
CD8+ T-cell activity
B-lymphocyte activity and antibody production

Vitamin C Innate Association with increased incidence and severity of 
pneumonia. Supplementation in the elderly shows 
possible reductions in pneumonia incidence and duration

(40)
Epithelial integrity
Phagocyte production
Antioxidative functions
Adaptive
T-lymphocyte maturation
Interferon production

Vitamin D Innate Increased susceptibility to infections, particularly of the 
respiratory tract. Meta-analysis shows reduced acute 
respiratory tract infections when routine supplementation 
is given in the context of deficiency

(41–43)
Macrophage activity (cathelecidin antimicrobial peptide expression, 
induction of reactive oxygen intermediaries, activation of autophagy)
Adaptive
T-lymphocyte number and function
Th1/Th2 balance skewed to Th2
Unclear effect on B-lymphocytes (in humans)

Vitamin E Innate Supplementation is suggested to lead to reduced 
respiratory tract infections in the elderly

(37, 44, 45)
Epithelial barrier integrity
NK-cell activity
Adaptive
T-lymphocyte proliferation and function
Delayed type hypersensitivity reactions
Vaccine-mediated antibody responses
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Nutrient effect on immunity effect of deficiency on clinical immune outcomes Reference

Zinc Innate Increased bacterial, viral and fungal infections: particularly 
diarrhea and pneumonia. Routine supplementation of 
children in at-risk areas leads to reductions in duration 
of diarrhea and incidence of pneumonia, in children 
>6 months on meta-analysis, but not in children 
2–6 months old

(46–50)
Epithelial barrier integrity
Proinflammatory cytokine production
Neutrophil oxidative burst
NK-cell function
Adaptive
T-cell maturation and proliferation
Th1/Th2 balance skewed to Th1

Selenium Adaptive Increased viral virulence (51–54)
CD4+ T-lymphocyte proliferation and function

Iron Innate May enhance or protect from infections with  
bacteria, viruses, fungi and protozoa depending on the 
level of iron. Although supplementation may theoretically 
enhance immunity to infectious diseases, untargeted 
supplementation may increase availability of iron for 
pathogen growth and virulence and increase susceptibility 
to, particularly, malaria and bacterial sepsis

(55, 56)
Neutrophil, NK-cell, and macrophage activity
Innate cytokine production
Adaptive
T-lymphocyte numbers
No apparent effect on B-lymphocyte number and function
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(2) alteration of the repertoire of antibodies passively trans-
ferred to the neonate, which may alter the degree of mucosal 
tolerance in the neonate, and hence its own microbiome 
composition (75, 76), (3) bacterial metabolites derived from 
the microbiota may be transferred to offspring across the 
placenta and in breastmilk and may impact on the offspring’s 
developing immune system (77), and (4) organisms from the 
maternal microbiota can be found in placental tissue (78) and 
this exposure may impact directly on the developing infant 
immune system and indirectly by altering gestational length.

The mother’s nutritional status may also affect the neonatal 
immune system by directly altering the nutrients available to the 
developing embryo/fetus. This may theoretically have long-term 
effects on offspring immunity via:

•	 Epigenetic modification: Epigenetic modification is the process 
by which stable alterations to gene expression, and thus the 
phenotype of cells, are induced without changes to the primary 
DNA sequence (79, 80). These modifications may be altered 
in response to environmental factors, persist following cell 
division, and, in some cases, are heritable—providing a means 
by which the environment may have permanent and multigen-
erational impacts on phenotype (81). The three main types of 
epigenetic modification are (1) DNA methylation; where the 
degree of methylation at, primarily, CpG dinucleotide rich sites 
in gene-specific promoters affects the degree of expression of 
that gene, (2) histone modification; where the accessibility of 
promoter regions of genes to transcription machinery is altered 
by additions to protein tails, affecting the degree to which DNA 
transcription occurs, and (3) non-coding RNAs, where small 
lengths of RNA bind to target mRNA, altering its subsequent 
translation (81). Of these, DNA methylation has emerged as a 
strong candidate effector mechanism to explain the DOHaD 
theory as it largely occurs during embryogenesis or early 
postnatal life, and produces durable effects (82). Alterations in 
DNA methylation of key metabolic genes induced by famine 
exposure in early life persist for at least six decades (83, 84). 

Epigenetic modification could theoretically have similar long-
term impacts on the expression of genes important for the 
immune system.

•	 Organogenesis and lymphopoiesis: The process by which organs 
develop during embryonic and fetal life is highly sensitive to 
environmental influences. It has long been known that expo-
sure to adverse factors at critical windows of organogenesis 
can lead to permanent changes in organ growth and function. 
Development of the infant immune system is likely to be simi-
larly susceptible to environmental influences, including nutrient 
levels. In older children, both the thymus and hematopoietic 
branches of immunity are acutely sensitive to undernutrition, 
with reductions in thymus size and blood cell functioning 
shown to occur in both acute and chronic starvation conditions 
(85). As both immune compartments undergo massive expan-
sion during the gestational period, with the thymus being at its 
largest as a proportion of body size at birth, it is highly plausible 
that nutritional conditions in utero would impact on the neona-
tal immune system. Studies in animals support a link between 
maternal macro/micronutrient deficiency and reduced thymic 
size and function (86–88), which may not be fully reversible by 
later improvements in nutrition (89).

•	 Immunoregulatory mechanisms, e.g., the neonatal HPA axis: 
Maternal cortisol levels (which may be altered by nutrient 
availability, see above), can influence the development of the 
fetal HPA axis, with long-term consequences for neuroendo-
crine-immune interactions (90, 91). Although the developing 
fetus is generally protected from maternal cortisol fluctuations 
by the function of 11 B-hydroxysteroid dehydrogenase in the 
placenta, levels of this enzyme are decreased by undernutrition 
(92). Evidence from animal studies suggests that stimulation of 
the fetal HPA axis can lead to lower lymphocyte proliferation, 
reduced NK-cell activity, and reduced antibody responsiveness 
in offspring (93), as well as increasing the responsiveness of 
the HPA axis to stressors later in life. These effects are hypoth-
esized to be mediated through epigenetic programming of 
glucocorticoid receptors (91).

TAbLe 1 | Continued
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FiGURe 1 | Conceptual framework for the potential interactions between maternal and early neonatal nutrition and the developing infant immune system.
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•	 The neonatal gut-microbiome: The neonatal gut microbiome is 
strongly influenced by the maternal microbiome. Colonization 
of the gastrointestinal tract occurs around the time of birth 
(and possibly even earlier) with organisms acquired from the 
mother’s gastrointestinal tract, vagina, skin, and breast milk, 
and is influenced by delivery type, gestational age, and feeding 
method among other factors (94). Modification of the maternal 
microbiome may thus be hypothesized to influence the devel-
oping neonatal immune system both directly, by altering the 
neonatal microbiome composition, and indirectly, by altering 
the nutrient status of the mother and hence the availability of 
nutrients for immune system development during fetal life.

A conceptual framework for the potential influences of early 
life nutrition on the developing infant immune system is shown 
in Figure  1. Evidence for such effects occurring in humans is 
discussed below.

eviDeNCe FOR THe iNFLUeNCe OF 
PRe- AND PeRiCONCePTiONAL 
NUTRiTiON ON THe iNFANT iMMUNe 
SYSTeM

epigenetic Modification of the early 
embryo
Specific evidence for the impact of periconceptional nutrition on 
later immune functioning through epigenetic modifications has 
been suggested from the previously described Gambian cohort. 
The plasma levels of 1-carbon metabolites crucial for DNA 
methylation undergo seasonal variations in pregnant women. 

Higher levels of folate, methionine, and riboflavin, and reduced 
homocysteine levels occur in the nutritionally challenged rainy 
season (95–97). Although counterintuitive, this may be due to 
increased consumption of green leafy vegetables during this 
period, due to the need to food diversify (98). The increased level 
of these methyl-donor intermediaries correlates with increases in 
DNA methylation seen at metastable epialleles (MEs) (see Box 1) 
in children conceived in the rainy season (and thus born in the 
dry season, correlating with reduced later infectious disease 
mortality) (96, 99). A metastable epiallele VTRNA2-1, involved 
in tumor suppression and viral immunity, has been identified that 
is differentially methylated according to season of conception 
(and hence nutritional status), and is stable for at least 10 years 
(100). This provides the first in-human evidence that pericon-
ceptional nutrition could directly influence subsequent immune 
functioning. Although the clinical relevance of the variability in 
methylation of this ME in susceptibility to infections has yet to 
be proven, it provides a tantalizing suggestion that the seasonal 
variation in adult infectious disease mortality is mediated, at least 
in part, through nutritionally sensitive epigenetic modifications.

A number of epidemiological studies have now linked DNA 
methylation status at the promoter region of inflammatory 
mediators to nutritional status in pre- and early postnatal life 
(107–109), although the timing of nutritional influences causing 
these epigenetic modifications is difficult to prove. Methylation 
status of these genes has been correlated with later markers of 
biochemical inflammation, though effects on clinical outcomes 
have yet to be shown (107). Intriguingly, animal models have 
shown that alterations to paternal diet can alter DNA methyla-
tion in offspring, with resultant phenotypic changes increasing 
the risk of obesity and metabolic syndromes (110–113). The 
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bOx 1 | Metastable epialleles. A tool for investigating the influence of the 
periconceptional environment on offspring epigenomes.

The inherent tissue specificity of many epigenetic changes creates challenges 
for the study of the influence of epigenetic modifications on adult phenotypes 
(99). While epidemiological association studies between gene variants and 
risk of disease may use easily obtainable peripheral blood draws, studies 
investigating epigenetic influences on disease etiology may require tissue-
specific samples that are often not as accessible. Metastable epialleles (MEs) 
are regions of DNA where methylation is established stochastically in the early 
embryo and is subsequently maintained throughout all three germ-layer line-
ages (101). Thus, methylation of MEs occurring in the early embryonic period 
(pregastrulation) may be determined from peripheral blood samples.

Differential methylation of MEs in mice has been shown to have dramatic 
phenotypic consequences including alterations in fur color (102), tail-kinking 
(4, 103), and propensity to obesity (104). Methylation of murine MEs is 
strongly influenced by maternal nutrition and other environmental factors in 
the periconceptional period (105, 106). MEs in humans may have effects on 
adult disease and provide an easily accessible method of investigating the 
epigenetic pathways that may be involved in the DOHaD theory.
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potential transgenerational influence of paternal diet on the 
health outcomes of offspring has also been suggested in humans 
from epidemiological studies carried out in Sweden. These 
showed a correlation between reduced food availability during 
the father’s, and even grandfather’s, preadolescence and increased 
life expectancy, with reduced risk of cardiovascular and diabetes-
related mortality (114). Other studies have linked early onset 
of paternal obesity with increased liver enzymes and long-term 
changes in percentage body fat in offspring. These effects are 
likely to be mediated by epigenetic modification of spermatozoa, 
and may be sex specific (115). Thus, it may be that paternal diet is 
also ultimately shown to produce lasting effects on the immune 
system of offspring.

Although most human studies have focused on DNA meth-
ylation as a mediator of long-term effects of periconceptional 
environment on the health of off-spring, animal studies suggest 
that histone modification (116) and microRNAs (117, 118) may 
also play a role in the developmental origins of disease, though 
their importance in immune system development has yet to be 
investigated. Thus, it appears likely that immune system func-
tioning is influenced by interacting and overlapping epigenetic 
modifications induced by nutritional status, and other environ-
mental factors, occurring around the time of conception, during 
gestation and in early postnatal life.

Placentation
Although evidence for the importance of several micronutrients 
including vitamin D, zinc, folate, calcium, and iron on placental 
growth and function exists (58, 59), studies directly investigating 
the effects of periconceptional maternal nutrition on placentation 
and subsequent fetal immunity are limited. One study that rand-
omized non-pregnant women of child-bearing age to a multiple-
micronutrient (MMN) supplementation or placebo and followed 
up subsequent pregnancies, showed minimal improvements in 
placental vascular function with MMN supplementation, but no 
improvements in other markers of placental function (plasmino-
gen activation inhibitor 1 and 2 ratio) and transfer of maternal 
measles antibody at birth (119).

eviDeNCe FOR THe iNFLUeNCe OF 
GeSTATiONAL NUTRiTiON ON THe 
iNFANT iMMUNe SYSTeM

Macronutrients
Protein Energy
The relationship between maternal nutrition and fetal growth is 
complex, involving maternal metabolic and endocrine, as well as 
placental, functioning (2, 120). However, the neonatal presenta-
tion of protein-energy malnutrition is assumed to be infants who 
are born small-for-gestational age (SGA). Infants born SGA or 
low-birth weight (LBW) have an increased risk of infectious mor-
tality in the neonatal period and beyond (121–124). SGA/LBW 
infants show altered immunology, with lower complement and 
IgG (125), lower plasmacytoid dendritic cells, higher NK-cells 
and higher IgM (126), and higher inflammatory activation and 
T-cell turnover (127), compared to those delivered at an appro-
priate weight. Gambian infants born in the nutritionally deprived 
rainy season (a presumptive marker of reduced macronutrient 
supply in late gestation) show smaller neonatal thymus size (128), 
and have some changes to thymic function (129). These immune 
changes do not appear to be long lasting, however, and a seasonal 
effect of infectious disease incidence may contribute to these 
findings (130, 131). Intrauterine growth restriction has been 
associated with reduced vaccine responses in childhood, though 
inconsistently (132–135).

Given the suggested link between macronutrient deficiencies 
and neonatal morbidity, a number of maternal protein sup-
plementation strategies have been evaluated (136). Balanced 
protein energy supplementation (containing up to 20% of energy 
as protein) leads to modest increases in birth weight (up to 324 g)  
(137), and reduces the number of SGA infants born by around 
a third (136). Reductions in neonatal deaths as a result of 
supplementation have not been clearly shown, however, with 
meta-analysis of the three published studies reporting neonatal 
mortality showing only non-significant improvements in neonatal 
outcomes (136, 138–140). Even if these non-significant reductions 
in mortality are true findings, the causal mechanisms underlying 
such effects are unknown, with reductions in prematurity likely 
to play a significant role. No clear link between maternal protein 
energy supplementation and improvement in neonatal immunity 
has been demonstrated. Maternal protein supplementation has 
no proven impact on later vaccine responses, mucosal immunity 
and delayed-type hypersensitivity reactions (130) or thymus size 
(141), although impacts on thymic function at the cellular level 
were not assessed. The lack of substantial demonstrable neonatal 
benefits from maternal protein energy supplementation may 
reflect the heterogeneous etiologies of SGA and LBW, with factors 
such as poor placentation and environmental toxin exposure not 
addressed by supplementation. It may also be due to challenges 
with targeting the intervention to the most at-risk subjects within 
populations. Subgroup analysis of supplementation studies sug-
gest that the intervention is only beneficial when provided to 
malnourished individuals, and that high protein supplements 
may even impair fetal growth when given in the context of 
adequate diets (136).
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Lipids
Maternal PUFA supplementation during gestation is associated 
with reductions in preterm births and small increases in birth 
weight (142) on systematic review. However, impacts on the 
immune system are less clear. Most research has been directed 
on the effect of fish-oil supplementation on reduction in atopy 
risk in offspring. Systematic reviews have suggested reductions in 
offspring IgE-mediated allergy and eczema following gestational/
lactational n-3 PUFA supplementation, though the duration of 
these effects is not clear and the relative importance of the tim-
ing of supplementation during gestation or lactation is difficult 
to determine (143, 144). Murine studies suggest that n-3 PUFA 
supplementation of mothers can improve offspring responses to 
infections, with enhanced vaccination responses shown in mice 
fed high n-3 PUFA diets during gestation and lactation (145). In 
humans, docosahexaenoic acid (DHA) supplementation during 
gestation and lactation was associated with reductions in CD8+ 
T-cells, increases in naive CD4CD45RA+ helper cells and reduc-
tions in lymphocyte IFNγ production (146). However, this trial 
did not show changes to immunoglobulin levels, vaccination 
responses or clinical outcomes and may have been confounded 
by the high baseline dietary DHA levels of all participants. One 
trial of prenatal DHA supplementation has shown reduction in 
incidence and duration of cold symptoms during infancy (147). 
No significant evidence of reductions in neonatal outcomes such 
as sepsis, morbidity or mortality have been shown in systematic 
review of human studies, though adequately powered trials to 
assess these outcomes are lacking (148).

Micronutrients
Micronutrient deficiencies are estimated to affect approximately 
2 billion people worldwide. They are often particularly severe in 
women of reproductive age due to the high demands of preg-
nancy and lactation (149). Optimization of micronutrient levels 
in pregnant women has therefore been proposed as a strategy to 
enhance neonatal immunity.

Specific Micronutrient Supplementation during 
Gestation
Zinc
Overt zinc deficiency is now rare but moderate deficiency is 
common worldwide (150). Zinc supplementation of mothers 
leads to biochemical improvements in their zinc status and that 
of their offspring (151, 152). Thymus size in infants correlates 
with cord-blood zinc levels (153), although a recent study showed 
no impact of maternal zinc supplementation on infant thymic 
size (154). Improved hepatitis B vaccine antibody responses and 
delayed type hypersensitivity reactions to BCG vaccination have 
been shown following maternal zinc supplementation (154), 
but no effect on haemophilus influenza B conjugate vaccine 
responses has been found (155). Theses studies suggest some 
influence of maternal zinc supplementation on infant immune 
development, but the clinical impact of this is uncertain.  
A recent systematic review of 21 trials (>17,000 mother–infant 
dyads) suggests no benefit of maternal zinc supplementation 
for IUGR, LBW, stillbirth, and neonatal death, though small 
reductions in preterm birth were shown (156). No significant 

reduction in neonatal infective outcomes, including neonatal 
sepsis, umbilical infections, fever, and necrotizing enterocolitis 
(NEC), was seen but the number of studies reporting these out-
comes was small. One study from Bangladesh showed reduced 
acute diarrheal and impetigo episodes in the first 6 months of life 
following maternal zinc supplementation, though no difference 
in persistent diarrhea, cough, and LRTI (157, 158). A study from 
Indonesia similarly reported reduced diarrheal incidence in 
infants <6 months old following maternal supplementation with 
zinc, but this was at the expense of increased episodes of cough 
(159). Conversely, a study in Peru did not report any benefit for 
diarrheal prevalence (160).

Vitamin D
Vitamin D deficiency is common worldwide due to lack of UV 
exposure in northern latitudes, darker skin pigmentation in 
southern latitudes, covering the skin with clothes, and vegetarian 
diets. There are strong correlations between maternal and umbili-
cal cord vitamin D with deficiency or insufficiency in the mother 
likely to cause deficiency in offspring (161). Systematic reviews 
of supplementation in pregnancy suggest reduced risk of vitamin 
D deficiency in offspring and slight increases in birth weight 
(162, 163). However, no evidence for improvement in any other 
neonatal outcomes including neonatal mortality has been shown 
(162). Impacts of vitamin D deficiency on the developing immune 
system have been shown with reduced thymus size in offspring 
(164) and an association with increased CRP [although this trend 
is reversed with vitamin D sufficiency (>50 nmol/L) (165, 166)]. 
Maternal vitamin D supplementation during gestation results in 
increased Th1 and Th2 cytokine gene expression and reduced 
pattern recognition receptor expression in cord blood, following 
stimulation with PHA (167). Clinically, vitamin D deficiency 
in cord blood has been associated with increased risk of lower 
respiratory tract infections, wheeze, and eczema in a number of 
observational studies, suggesting long-term impacts on immune 
ontogeny, although causation is difficult to prove (168, 169). Of 
four studies assessing the impact of maternal vitamin D sup-
plementation on infant risk of respiratory infections and wheeze 
(170–173), only one showed significant reductions in incidence 
of acute respiratory tract infections in offspring (170). In this 
study the intervention was combined with postnatal vitamin D 
supplements so the contribution of maternal supplementation 
per se is difficult to assess. A recent systematic review of vitamin 
D supplementation in pregnancy and early life did not show any 
reduction in the risk of persistent wheeze, eczema, or asthma, 
though the quality of available evidence was low (174).

Vitamin A
Vitamin A deficiency is associated with increased susceptibility 
particularly to diarrhea, respiratory infections, and measles (27). 
Infants born to mothers with low serum retinol had increased 
all-cause neonatal mortality in a study in Malawi (175). Nepali 
infants born to mothers with xeropthalmia (the clinical mani-
festation of severe vitamin A deficiency) had a 63% increased 
mortality within the first 6 months of life, which was reduced 
following maternal supplementation (176). However, large 
randomized controlled trials of vitamin A supplementation 
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including more than 310,000 mother–infant pairs have failed 
to show benefits for perinatal and all-cause neonatal mortality 
on systematic review, despite reductions in maternal night-
blindness and possible reductions in maternal infections (177). 
There is some evidence, though, that vitamin A supplementa-
tion of women may lead to long-term enhancement of natural 
antibody levels in offspring, perhaps acting through impacts 
on early lymphopoiesis (178). This suggests that long-term 
alterations to the neonatal immune system may occur following 
vitamin A supplementation, but that more sensitive outcome 
measures are required to identify these changes than all-cause 
neonatal mortality.

Iron
Fetal iron acquisition occurs actively across the placenta, mainly 
in the last trimester of pregnancy, and is highly regulated (179, 
180). Direct correlations between maternal and fetal iron status 
are not consistently seen, as neonatal iron levels are likely to be 
preserved at the expense of maternal stores, but severe maternal 
anemia is associated with reductions in neonatal iron (181). Iron 
deficiency is thought to be the most prevalent micronutrient 
deficiency worldwide (182). It occurs particularly in low-income 
countries where diets tend to be low in absorbable iron and 
parasitic burden can be high. Systematic reviews support the 
use of daily or intermittent iron supplementation during preg-
nancy for improvement of maternal iron status and reduction in 
anemia (182, 183). However, no evidence for improvements in 
other maternal or neonatal outcomes has been found. There is a 
current paucity of evidence regarding specific impacts, whether 
beneficial or detrimental, of maternal oral iron supplementation 
on neonatal infection risks (184). Similarly, studies investigating 
a direct impact of fetal iron status on immune system ontogeny 
are lacking.

B-Vitamins, Including Folic Acid
Folate (vitamin B9) has been widely studied as a pregnancy sup-
plement, due to its role in the reduction of neural-tube defects. A 
systematic review of 31 studies, mainly carried out in Europe in 
the 1960s and 1970s, showed a modest increase in birth weight 
(136 g) following maternal folate supplementation, but no reduc-
tion in preterm birth, still-birth, or neonatal death (all cause) 
(185). The impact of folate supplementation in pregnancy on neo-
natal immune parameters and infective outcomes has not been 
investigated. More recently, concerns have been raised that folate 
supplementation given beyond the first trimester, or in excessive 
doses during pregnancy, may be linked to an increased risk of 
allergy/asthma, but the evidence is largely from observational 
studies and is not yet conclusive (186).

Vitamin B12 deficiency is associated with an increased risk 
of preterm birth (187), but its supplementation in pregnancy 
has been little studied. One study in Bangladesh confirmed that 
maternal oral vitamin B12 supplementation during pregnancy 
and lactation led to significant increases in infant B12 levels, but 
this was not associated with improvements in passive transfer 
of influenza antibodies or levels of acute inflammation markers 
(188). A significant reduction in number of infants with raised 
CRP was shown, but the number of infants with the outcome 

was small and the influence of timing of supplementation during 
pregnancy or lactation could not be distinguished.

A systematic review of three randomized controlled trials of 
maternal supplementation with vitamin B6 has been shown to 
result in a significant reduction in mean birth weight (217  g) 
(189). The impact of supplementation on neonatal mortality or 
infections has not been studied (190).

One study of vitamin B2 supplementation during pregnancy 
and lactation exists, which showed modest increases in infant 
riboflavin levels, but did not report neonatal outcomes (191). Sole 
supplementation with other B-vitamins has not been studied in 
the context of pregnancy and their impacts on the developing 
neonatal immune system are unknown.

Other Vitamins and Trace Elements
A number of other micronutrients with known immunomodu-
latory effects in adults have been little studied in neonates. 
Longitudinal studies of the influence of maternal diet on infant 
respiratory outcomes have suggested inverse associations between 
maternal vitamin E intake and infant asthma/wheeze (192–194), 
however, this has not been borne out in randomized controlled 
trials of maternal supplementation (195). Maternal selenium 
deficiency leads to low selenium status of neonates and is associ-
ated with reduced circulating adaptive immune cells and in vitro 
thymocyte activation (196). Observational studies have associ-
ated maternal selenium deficiency with enhanced risk of infant 
infections in the first 6 weeks of life, but these studies are at high 
risk of confounding (197). One supplementation study of sele-
nium in HIV positive mothers showed a possible reduced risk of 
all-cause child mortality after 6 weeks of life, but a non-significant 
increase in fetal deaths (198). No studies have yet investigated 
maternal vitamin C, vitamin E, or selenium supplementation for 
neonatal immune outcomes specifically. There is also no current 
evidence for reductions in the more gross markers that may be 
associated with neonatal immune function (IUGR, LBW, preterm 
birth, perinatal, or neonatal death) from supplementation in 
pregnancy of vitamin C (199), vitamin E (200), copper (201), or 
selenium (198).

Multiple Micronutrient Supplementation during 
Gestation
When micronutrient deficiencies exist they are often multiple, 
due to poor quantity and diversity of available foodstuffs (149). 
Identification and targeted treatment of specific deficiencies in 
pregnant women is expensive and programmatically challenging. 
Therefore many studies aiming to enhance micronutrient levels 
in pregnancy use multiple micronutrient (MMN) supplements 
that provide the recommended daily allowance of all vitamins 
and minerals in one tablet (202). However, the evidence sup-
porting the use of MMNs for neonatal outcomes in general, 
and neonatal immunity specifically is not clear. Meta-analysis 
of studies involving more than 135,000 women showed modest 
increase in birth weight (22–54 g), with corresponding reduction 
in babies born SGA or LBW, following MMN supplementation 
compared to standard iron and folic acid supplementation (203). 
These improved birth outcomes did not translate into improve-
ments in neonatal and infant morbidity/mortality including from 
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infectious disease (204). No MMN supplementation studies to 
date have investigated neonatal immune parameters specifically, 
although one randomized controlled trial from The Gambia is 
due to report shortly (205).

Probiotics, Prebiotics, and Synbiotics
Studies of maternal supplementation with probiotics (live 
microorganisms that contribute to a “healthy” gut microbiota), 
prebiotics [nutrients that promote growth of healthy bacteria, 
such as non-digestible oligosaccharides (206)], and synbiotics (a 
combination or pro- and prebiotics), for modulation of the neo-
natal immune system have been conducted in humans, but are 
relatively limited. A number of randomized controlled trials have 
shown that maternal consumption of probiotics or synbiotics can 
lead to measurable changes in the composition of their offspring’s 
microbiome (207–210) and to changes in immune markers in the 
mother (211). However, alterations in infant immune markers 
following maternal supplementation, such as vaccine responses 
and cytokine levels, have been harder to show (212). Reduced 
incidence of eczema, though not asthma and wheeze, in infants 
has been suggested from systematic reviews of trials of prenatal 
supplementation but the effects may not be durable (72, 213–216). 
One small trial has shown reduced gastrointestinal infections in 
infants born to mothers supplemented with probiotics (211), and 
another a reduction in respiratory infections (217), but these 
findings need to be confirmed in larger studies.

eviDeNCe FOR THe iNFLUeNCe OF 
eARLY POSTNATAL NUTRiTiON ON THe 
iNFANT iMMUNe SYSTeM

The major nutritional influence on neonatal immunity is breast 
milk, which contains immunological components such as anti-
bodies, anti-inflammatory cytokines and other antimicrobial fac-
tors, as well as the macro and micronutrients to support neonatal 
immune system development (218). Its benefits over formula 
milk for protection against various infections, atopy, and allergy 
are well reviewed elsewhere (219, 220). Here, we focus on the 
potential impact of supplementary nutritional interventions for 
the breastfeeding mother and neonate on the developing neonatal 
immune system.

Lactational Supplementation
The composition of breast milk is highly regulated according to 
the neonate’s needs with the concentrations of many components 
maintained independently of maternal nutritional status and 
diet (221). Some immunomodulatory micronutrients, such 
as iron, folate and zinc (222, 223) and macronutrients such as 
arachadonic acid (224, 225) are not altered in the breast milk 
according to maternal diet. Therefore, maternal supplementa-
tion of these nutrients would likely have little or no impact on 
neonatal immune outcomes and they are not discussed further 
in this section. However, some immunoactive nutrients in breast 
milk are impacted by diet and their concentrations in milk vary 
worldwide. These include vitamin A, vitamin D, B vitamins, 
selenium, and PUFAs, particularly DHA (34, 221).

Micronutrient Supplementation of Lactating Mothers
Vitamin A
Vitamin A is not only necessary for the developing neonatal 
immune system, its presence in breast milk is also important for 
the regulation of a number of breast milk proteins important 
for host defense (226). Infants are born with low vitamin A 
stores in the liver, and breast milk is the main source of vitamin 
A for infants during the first 6 months of life (227). Numerous 
reports have shown decreased breast milk vitamin A concen-
tration with maternal deficiency, and increased concentrations 
with high exogenous vitamin A levels (228, 229). However, the 
results of postnatal maternal vitamin A supplementation stud-
ies for neonatal outcomes have been inconclusive. Systematic 
reviews of both lower dose (200,000  IU) and higher dose 
(400,000 IU) postpartum maternal vitamin A supplementation 
have shown only small increases in breast milk retinol concen-
trations (230) and a lack of supporting evidence for reduced 
infant morbidity (including from infections) to 6 months of age 
(230, 231). As a result, WHO no longer recommends routine 
postpartum vitamin A supplementation for women in low- and 
middle-income countries (WHO 2017). Studies on the effects 
of postpartum vitamin A supplementation on immunological 
outcomes specifically are limited and inconclusive. Studies 
variously report increases and no change to sIgA following 
postpartum vitamin A supplementation (226, 232). Further 
studies looking at a wider array of immunological parameters, 
and altering the timing of vitamin A supplementation are ongo-
ing (226).

Vitamin D
Vitamin D deficiency is relatively common in breastfed infants, 
with low concentrations in milk even from vitamin D sufficient 
mothers (233). Studies investigating maternal postpartum sup-
plementation have shown variable results, though on balance 
suggest supplementation may enhance infant vitamin D status 
(234–238). At present, however, direct neonatal supplementation 
of with vitamin D is the preferred method of enhancing neonatal 
vitamin D status (see below). Studies investigating the impact of 
vitamin D supplementation in breast-feeding women for neonatal 
immunological outcomes are lacking.

B-Vitamins
B-vitamins levels in the breast milk are largely amenable to 
improvements with supplementation of the mother (with the 
exception of folate) (34, 239), but there are no studies looking at 
the impact of lactational B-vitamin supplementation on neonatal 
immune outcomes.

Selenium
Selenium levels in breast milk are sensitive to dietary intake (240) 
and can be increased by supplementation (240, 241) [although 
these effects have not been consistently shown (197, 242)] and 
alter infant selenium status (243). Although selenium deficiency 
in infants has been associated with increased risk of respiratory 
infections in the first 6 weeks of life (197), large studies investigat-
ing maternal postpartum selenium supplementation for infant 
infectious morbidity have not been conducted.
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Multiple Micronutrients
Given the high prevalence of coexisting micronutrient deficien-
cies world-wide, there is a surprising lack of studies investigating 
the impact of multiple micronutrient supplements in breastfeed-
ing mothers for infant outcomes (34). Only two small trials (52 
women total) have compared MMN supplementation with noth-
ing/placebo in breast feeding mothers, and reported on neither 
infant morbidity nor immunological outcomes (34, 232).

Lipid Supplementation of Lactating Mothers
The concentration of PUFAs, particularly DHA, in breast milk is 
highly affected by maternal diet (244), and PUFA supplementa-
tion increases levels in breast milk (245). Breast milk n3:n6 ratios 
have been associated with risk of allergy and atopy in infants in 
observational studies (246–248) although not consistently (249). 
Fish oil supplements provided during lactation alter cytokine 
production in the infant for at least 2.5  years, favoring faster 
immune maturation and Th1 polarization (250). Given the 
increasing existence of imbalanced n3:n6 ratios in westernized 
diets, there has been interest in providing PUFA supplements to 
lactating women for allergy prevention in infants, although con-
cerns exist about potential negative impacts on infectious disease 
susceptibility (251, 252). However, at present only two studies 
(667 participants) have investigated postnatal maternal PUFA 
supplementation specifically, and although persisting alterations 
in cytokines have been shown, the studies were underpowered to 
detect differences in infant atopic disease or infectious morbidity 
(143, 250).

Probiotic, Prebiotic, and Synbiotic Supplementation 
of Lactating Mothers
Supplementation of lactating mothers with probiotics has been 
associated with alterations to breast milk cytokines and infant 
fecal IgA (253), and changes to the breast milk and infant micro-
biomes (254). Studies supplementing mothers with probiotics 
during lactation suggest a reduced risk of dermatitis, but inter-
ventions tended to combine pre- and postnatal supplementation, 
so the specific impact of lactational supplementation is difficult 
to determine (255). As with prenatal maternal supplementation, 
effects on infant immune outcomes following lactational sup-
plementation require further evaluation (72, 256).

Neonatal Supplementation
Direct supplementation with crucial nutrients in the neonatal 
period has also been assessed as a strategy to protect infants from 
deficiency. However, in the majority of cases, despite improve-
ments in the nutrient status of infants, no clear evidence for 
improvements in clinical or biochemical immune outcomes has 
been shown.

Micronutrient Supplementation of the Neonate
Zinc
Zinc use in older infants has been associated with reductions 
in diarrhea duration (48) and lower respiratory tract infections 
incidence (47), but results following supplementation in the 
neonatal period have been more equivocal (257–261). One small 
study of zinc supplementation as an adjunct to antibiotics in 

neonates with sepsis showed a reduction in treatment failures and 
a non-significant 43% reduction in mortality (262). A larger study 
to investigate this is currently ongoing (263). Studies directly 
investigating the impact of neonatal zinc supplementation on 
immunological markers are limited. Routine zinc supplementa-
tion has not been associated with improvements in OPV serocon-
version rates (264), although its use as an adjunct to antibiotics 
in neonatal sepsis has been associated with significantly reduced 
serum calprotectin, IL-6, and TNFα and a non-significant reduc-
tion in mortality (265).

Vitamin D
Vitamin D supplementation is recommended routinely in many 
countries for its impact on calcium and bone metabolism, but 
large-scale evidence for postnatal supplementation on any 
immunological disease outcomes (infection or allergy) is lacking 
(266). A recent systematic review of supplementation in children 
below 5  years of age did not show reductions in diarrhea and 
pneumonia incidence despite raised vitamin D levels in supple-
mented children, though supplementation in the neonatal period 
was not looked at specifically (42). One trial of maternal and 
infant vitamin D supplementation has suggested lower numbers 
of respiratory infection primary care visits following high dose 
maternal and infant supplementation, compared to low dose 
(170). A large trial to investigate immunological outcomes fol-
lowing neonatal vitamin D supplementation in breastfed infants 
is currently underway (266).

Vitamin A
Vitamin A supplementation in children from low- and middle-
income countries aged 6  months to 5  years is associated with 
reductions in all-cause mortality of around one-third on 
systematic review (28). In contrast, a large systematic review 
of trials including more than 168,000 infants from low- and 
middle-income countries did not show any benefit of vitamin 
A supplementation when given in the neonatal period (267). 
Effects of supplementation may differ by underlying vitamin A 
status of the population, as reductions in all-cause mortality were 
suggested in the South Asian studies but not in the African stud-
ies. The African studies also showed concerning side-effects with 
increased transient bulging of the fontanelle and interactions of 
vitamin A with routine immunizations, particularly in female 
infants (268, 269). Studies investigating the effects of neonatal 
vitamin A on immunological parameters are limited. One study 
conducted in Guinea Bissau showed no effect of neonatal vitamin 
A supplementation on BCG vaccination responses at 6 months of 
age (270), although some evidence of reduced TNFα and IL-10 
production in girls who have not received DTP vaccination (271). 
Two RCTs are currently ongoing to specifically investigate the 
effects of neonatal vitamin A supplementation on the immune 
system, but these have yet to report (226, 272). Routine vitamin 
A supplementation in children below 6 months of age is not cur-
rently recommended.

Iron
The provision of iron supplements to neonates deserves special 
mention due to its potential for increasing susceptibility to 
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infections by enhancing iron availability for pathogens (55). 
Studies conducted in the 1970s showed that injecting neonates 
with iron dextran at birth significantly increased the risk of 
Escherichia coli meningitis and sepsis (273) and enhanced in vitro 
bacterial growth (274, 275). This may have been partly due to the 
mode of delivery, as parenteral iron administration is not subject 
to regulated uptake in the gut and therefore may overwhelm iron 
homeostatic mechanisms in iron replete children, but similar con-
cerns exist with the untargeted provision of oral iron supplements. 
Older children given iron supplements from 4 months of age have 
increased risk of gastrointestinal infections (276), adult studies 
show increased in vitro bacterial growth in serum after oral iron 
supplementation (277) and there are suggestions that malaria risk 
is increased when oral iron is provided to iron replete children 
in endemic countries (55, 278). Human breast milk contains 
low levels of iron and has specific iron chelating agents such as 
lactoferrin. Our group and others have also shown that serum 
iron drops rapidly and profoundly in the first 12 h of life that and 
persists at low levels for at least 4 days. This low serum iron is 
associated with reduced ex vivo bacterial growth (279, 280). Taken 
together, this evidence suggests that humans may have evolved to 
mitigate against the enhanced pathogen susceptibility and oxida-
tive stress that results from high iron loads. Therefore provision 
of exogenous iron to the neonate, except in specific situations 
where severe iron deficiency anemia has been diagnosed, may 
do more harm than good. In fact, there is increasing interest in 
novel therapeutics, such as lactoferrin and hepcidin agonists, that 
reduce serum iron in the context of neonatal infections (281–283). 
However, as preterm and growth-restricted infants have lower iron 
stores from birth, routine iron supplementation is often given, 
starting from 4 weeks of age, in high-income countries (284). In 
these settings, where infectious disease burden is low, no adverse 
infective outcomes have been shown on systematic review (285).

Other Vitamins and Trace Elements
Parenteral selenium supplementation of very LBW infants in 
NICU has been shown to increase selenium levels and reduce the 
incidence of neonatal sepsis, but systematic review of available 
evidence does not show improvements in survival (286, 287). 
No similar studies of oral supplementation in normal weight, 
term, breastfed infants in areas of selenium deficiency have been 
conducted. Studies looking at the effects of neonatal selenium, 
B-complex vitamins, vitamins C and E, or combined micronutri-
ent supplements on immunological parameters specifically are 
lacking.

Probiotic, Prebiotic, and Synbiotic Supplementation 
in the Neonate
Interest in the provision of probiotics, prebiotics, or synbiotics 
directly to neonates that are at risk of dysbiosis of the gut micro-
biome has exploded in recent years (255). Preterm infants are 
at particular risk of dysbiosis, not only due to gut immaturity, 
but because they often have reduced or delayed enteral feeds and 
increased exposure to antibiotics. Failure to establish normal gut 
flora is linked to higher risk of NEC and nosocomial sepsis (288). 
Systematic review of studies providing probiotics to low-birth 
weight infants in neonatal units, suggest a reduction in grade II or 

III NEC and all-cause mortality, though no significant reductions 
in sepsis (289, 290). Not all studies have shown clear benefits for 
NEC, however, and multistrain probiotics appear more beneficial 
than single strain organisms (291). Prebiotic supplements have 
not been shown to result in significant reduction in NEC, all-
cause mortality or sepsis when given to preterm infants (292). 
The long-term health implications of use of pre- and probiotic 
supplements in preterm infants are not currently known. 
Provision of probiotics and prebiotics to formula fed infants, in 
attempts to produce a gut microbiome profile similar to breastfed 
infants, has also been extensively studied. Although beyond the 
scope of this review, these studies suggest reductions in atopic 
disease (though few studies have follow-up of sufficient duration 
to assess long-term effects) (293) and some limited evidence on 
systematic review for reductions in gastrointestinal and respira-
tory infections (294, 295). More excitingly, a recent randomized 
controlled trial in breastfed infants in rural India showed that 
synbiotic administration during the first 7  days of life led to a 
40% reduction in sepsis and all-cause mortality in the first 60 days 
of life (296). This suggests that in certain  situations even the 
breastfed microbiome may be altered for immunological benefits 
in the early neonatal period. However, further studies to examine 
the effect of different strains, dosages and durations, as well as 
the long-term consequences of synbiotic administration, will be 
needed before synbiotics could be considered as a public health 
intervention for neonatal sepsis.

SUMMARY

Despite multiple animal and human studies associating nutrient 
deficiencies with adverse immunological outcomes, there is strik-
ingly little evidence to suggest nutritional supplementation dur-
ing gestation and early infancy has benefits for neonatal responses 
to infection or allergic disease prevention.

There are a number of plausible explanations for the lack of 
significant and consistent impacts of individual or combined 
nutrient supplements on neonatal outcomes. First, it may reflect 
the heterogeneity of the studied populations in-terms of their 
underlying nutritional status. Improvements in clinical outcomes 
are likely to be most where deficiencies are highest. The transfer of 
many nutrients across the placenta, such as vitamin A (177) and 
iron (179), occurs actively and is regulated by the fetus, mean-
ing that even in the context of maternal insufficiency the fetus 
remains relatively protected. As a result, maternal supplementa-
tion might only benefit infants born to mothers with critical 
deficiencies. Large population studies including non-deficient 
participants will have reduced power to detect clinical benefit. 
Maternal vitamin A supplementation, for instance, had larger 
effects on maternal and neonatal outcomes in Nepal (297), where 
severe deficiency is common, compared to Ghana (298) and 
Bangladesh (299) where levels of deficiency are more moderate 
(177). Second, in many studies iron and folate were provided to 
mothers in the non-intervention arm. As these can also impact 
on neonatal infective outcomes, this may have confounded the 
results (156). Third, the optimal level of supplementation of 
micro- and macronutrients for neonatal outcomes is not known 
and dosages often differ between studies (300). Micronutrients 
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have nutrient–nutrient interactions that may alter the availability 
of other immunity modulating nutrients and have a rate-limiting 
effect on immune development (301). High levels of iron, zinc, 
and protein, for instance, can have counterintuitively negative 
effects on the immune system, and may have detrimental out-
comes when given to sufficient women (302). If this is the case, 
then population-based treatment as a public health intervention 
becomes challenging and less measurably effective. Fourth, it may 
be that the onset of maternal supplementation in the studies was 
too late in gestation to have lasting effects on immune system 
development. Supplementation was commenced after 12 weeks 
of age in many studies, which would miss an early programming 
effect of nutrients if one exists. As a number of supplementation 
studies reported improvements in mothers nutrient status follow-
ing supplementation, but no improvements in clinical outcome 
for the offspring, it would be interesting to know whether this 
enhanced nutritional status had positive impacts on future preg-
nancies, by improving nutrient status during the periconceptional 
period. Lastly, despite the large number of studies investigating 
maternal nutrient supplementation, those designed specifically to 
look at the effects on neonatal immune development and infec-
tious/allergic disease outcomes are limited and further research 
with more sensitive outcome markers is warranted.

Although the evidence for the benefits of nutritional supple-
ments in pregnancy and early infancy has so far been disappoint-
ing, some exciting possibilities remain. The persisting epigenetic 
changes induced by nutritional factors around the time of 
conception, which may impact on immune functioning in later 
life, warrants further study to assess their impact on neonatal 

infections, allergy and the amenability to supplementation. The 
potential benefit of probiotics and synbiotics for infectious disease 
and allergic outcomes in infancy is also extremely exciting. The 
World Allergy Organisation has recently recommended probiotic 
use during gestation, lactation and early life for infants at high risk 
of atopic disease (303), but further work to determine the most 
effective strains, dosage and duration, and whether these vary by 
geographical region, will be needed before their widespread use 
as a public health intervention against neonatal infections can be 
recommended.
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