
Supplementary material. Tractable Bayesian variable selection:

beyond normality

1. IMOM PRIOR

The product iMOM prior density on θγ (Johnson and Rossell 2012) is given by

pI(θγ | ϑ, γ) =
∏
γj=1

(gθϑ)
1
2

√
πθ2

j

exp
{
−gθϑ
θ2
j

}
, (1)

where by default gθ = 0.133 assigns p(|θ/ϑ1/2| > 0.2) = 0.99. Regarding the asymmetry parameter

α̃ = atanh(α), the prior is pI(α̃ | γp+1 = 1) = α̃−2√gα/πe−gα/α̃2 , and the default prior dispersions

are gα = 0.033 to obtain P (|α̃| ≥ 0.1) = 0.99 and gα = 0.136 for P (|α| ≥ 0.2) = 0.99.

2. PROOFS

For simplicity, we drop γ from the notation in the proof of Propositions 1-4 and Corollay 1, given

that all arguments are conditional on a given model γ.

2.1 Proof of Proposition 1

We start by stating a useful lemma stating that positive definite hessian plus continuous gradient

guarantees concavity.

Lemma 1. Let f(θ) be a function with continuous gradient g(θ), for all θ, and negative definite hes-

sian H(θ) almost everywhere with respect to the Lebesgue measure. Then, f(θ) is strictly concave.

If H(θ) is negative semidefinite, then f(θ) is concave.

Proof. Let θ1 and θ2 be two arbitrary values and denote θw = (1 − w)θ1 + wθ2 where w ∈ [0, 1].

Define h(w) = −f(θw), to show that f(θ) is concave it suffices to see that h(w) is convex for
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arbitrary (w, θ1, θ2). Straightforward algebra shows that ∂
∂wh(w) = −g(θw)(θ2 − θ1) and further

derivation shows that

∂2

∂w2h(w) = −(θ2 − θ1)TH(θw)(θ2 − θ1) > 0,

since H(θ) is negative definite (≥ 0 for negative semidefinite).

The second derivative ∂2

∂w2h(w) > 0 almost everywhere and the first derivative ∂
∂wh(w) is con-

tinuous, which implies that ∂
∂wh(w) is strictly increasing in w and hence h(w) is strictly convex

(non-strictly convex when H(θ) is negative semidefinite).

Proof of Proposition 1, Part (i)

The gradient g1(θ, ϑ, α) follows from straightforward algebra, which is obviously continuous

with respect to ϑ ∈ R+ and α ∈ [−1, 1]. To see continuity of g1(θ, ϑ, α) with respect to θ, consider

increasing a single θj for some j ∈ {1, . . . , p} and fix the remaining elements in θ, which we denote

θ(−j). Also denote xi(−j) the subvector of xi obtained by removing xij . Clearly, logL1(θ, ϑ, α) is

quadratic in θj with coefficients that stay constant until θj increases beyond a value t such that

an observation i∗ is added to or removed from A(θ), i.e. yi∗ < xTi∗(−j)θ(−j) + xi∗jθj for θj ≤ t and

yi∗ > xTi∗(−j)θ(−j) + xi∗jθj for θj > t. Taking the limit of the contribution of i∗ to log (L1(θ, ϑ, α))

as either θj → t− or θj → t+ we obtain

lim
θj→t+

(yi∗ − xi∗θi)2

(1 + α)2 = lim
θj→t−

(yi∗ − xi∗θi)2

(1− α)2 = 0,

i.e. log (L1(θ, ϑ, α)) is continuous. Similarly, taking the limits for the contribution to the first

partial derivative with respect to θj gives

lim
θj→t+

2(yi∗ − xi∗θi)
(1 + α)2 = lim

θj→t−
2(yi∗ − xi∗θi)

(1− α)2 = 0,

which proves that g1(θ, ϑ, α) is continuous.

Proof of Proposition 1, Part (ii)

The form of H1(θ, ϑ, α) follows from easy algebra.
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Proof of Proposition 1, Part (iii)

We start by noting that the maximum of the asymmetric-normal log-likelihood with respect to

(θ, α) does not depend on ϑ, hence we simply need to see that

H =

 XTW 2X 2XTW
3(y −Xθ)

2(y −Xθ)TW 3
X 3(y −Xθ)TW 2(y −Xθ)

 , (2)

is positive definite for almost all (θ, α). Once we show this, by Part (i) and Lemma 1 we have that

there is a unique maximum.

To see that H is positive definite, we shall show that all its leading principal minors are positive.

Note that XTW 2X is the gram matrix corresponding to WX and is hence positive definite when

rank(WX) = p, or equivalently when rank(X) = p given that the effect of W is to simply re-scale

the rows of X. If rank(WX) < p then XTW 2X is positive semidefinite. Therefore, we just need to

check that det(H) > 0. Now, the usual formula for determinant based on submatrices gives that

det(H) = det(XTW 2X)det(B), where B =

3(y −Xθ)TW 4(y −Xθ)− 4(y −Xθ)TW 3
X(XTW 2X)−1XTW

3(y −Xθ)

= 3(y −Xθ)TW 2
(
I − 4

3WX(XTW 2X)−1XTW )
)
W 2(y −Xθ), (3)

is a scalar, I is the n × n identity matrix, as usual W is an n × n diagonal matrix with entries

1/(1±α)2 where the ± depends on whether i ∈ A(θ) or i 6∈ A(θ), and similarly W is diagonal with

entries ±(1± α). All that is left is to see that B > 0. For ease of notation let us define Z = WX,

given that WW = diag(1/(1± α)2) = W 2 we can write

B = 3(y −Xθ)TW 2
(
I − 4

3Z(ZTZ)−1ZT )
)
W 2(y −Xθ) =

4(y −Xθ)TW 2(I − Z(ZTZ)−1ZT )W 2(y −Xθ)− (y −Xθ)TW 2W 2(y −Xθ) > 0

⇔ 4(y −Xθ)TW 2(I − Z(ZTZ)−1ZT )W 2(y −Xθ)
(y −Xθ)TW 2W 2(y −Xθ) − 1 > 0. (4)
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To complete the proof, note that a = W 2(y−Xθ) ∈ Rn is simply a vector and that the hat matrix

Z(ZTZ)−1ZT is symmetric and idempotent, which implies that it has rank(Z) eigenvalues equal to

1 and n−rank(Z) eigenvalues equal to 0. Thus I−Z(ZTZ)−1ZT has n−rank(Z) eigenvalues equal

to 1 and the remaining rank(Z) eigenvalues equal to 0. Given that n > rank(Z) by assumption,

I − Z(ZTZ)−1ZT has at least one non-zero eigenvalue, which allows us to bound

mina∈Rn
a(I − Z(ZTZ)−1ZT )a

aTa
≥ 1,

which from (4) gives that B ≥ 3 and hence that H is positive definite.

2.2 Proof of Proposition 2

Parts (i) and (ii) follow from straightforward algebra. For Part (iii) we first show that logL2(θ, ϑ, α)

is (non-strictly) concave in (θ, α) and then that when rank(X) = p it is strictly concave. To see

non-strict concavity note that −|yi−xTi θ|/(
√
ϑ(1 +α)) = −max{yi−xTi θ, xTi θ−yi}/(

√
ϑ(1 +α)) is

the maximum of two (non-strictly) concave functions in (θ, α) and hence also concave, from which

it follows that L3(θ, ϑ, α) is a sum of concave functions and thus concave.

For ease of notation let η = (θ, ϑ, α), we now show that logL2(η) is stricly concave at any

arbitrary η1 = (θ1, ϑ, α1) as long as rank(X) = p. It is useful to note that H2(θ, ϑ, α) is strictly

negative definite in α, as the corresponding minor −2|W 3(y −Xθ)|/
√
ϑ < 0. From the definition

of concavity and continuity of the log-likelihood, if logL2(η) were concave but non-strictly concave

at η = η1 then for some η2 = (θ2, ϑ, α2) 6= η1 we would have that logL2(aη1 + (1 − a)η2) =

a logL2(η1) + (1 − a) logL2(η2) for all a ∈ [0, 1], i.e. logL2(η) would be locally linear (in fact,

constant) along the direction defined by η2 − η1, and in particular logL2(η1) = logL2(η2). From

its form

logL2(η) = −n2 log(ϑ)− 1
ϑ

(∑
i∈A(θ) |yi − xTi θ|

1 + α
+
∑
i 6∈A(θ) |yi − xTi θ|

1− α

)
,

is locally linear in θ but clearly non-linear in α, implying that α2 = α1. More formally, it is easy

to see that for fixed θ1 6= θ2 the roots of logL2(η1) = logL2(η2) in terms of α2 are given by the

roots of a quadratic polynomial that are not linear in θ2, thus the only possible linear solution is
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α2 = α1. The problem is hence reduced to showing that there is no θ2 sufficiently close to θ1 such

that

|W (y −Xθ1)| = |W (y −Xθ2)|, (5)

where | · | denotes the L1 norm and as usual W is a diagonal matrix with (i, i) element (1 +α)−1 if

i ∈ A(θ1) and (1−α)−1 if i 6∈ A(θ1), where we note that A(θ2) = A(θ1) for θ2 sufficiently close to θ1

and thus the same weighting matrix W can be used in left and right hand sides of (5). Expression

(5) is the L1 error function featuring in median regression with re-scaled ỹ = Wy and X̃ = WX,

which is concave as long as p = rank(WX) = rank(X), as we wished to prove.

2.3 Proof of Proposition 3

Two-piece normal errors (k = 1)

The proof strategy is as follows: we first show that the average log-likelihood Mn(θγ , ϑ, α) =
1
n

logL1(θγ , ϑ, α) converges to its expected value M(θγ , ϑ, α) uniformly across (θγ , ϑ, α) ∈ Γ, and

later show thatM(θγ , ϑ, α) has a unique maximum (θ∗γ , ϑ∗γ , α∗γ), which jointly satisfy the conditions

in Theorem 5.7 from van der Vaart (1998) for consistency of (θ̂γ , ϑ̂γ , α̂γ) P−→ (θ∗γ , ϑ∗γ , α∗γ).

We remark that Condition A3 is met for instance by deterministic sequences {xi} satisfying

the stated positive-definiteness condition and also by xi
i.i.d.∼ Ψ as long as E(x1x

T
1 ) = Σ for some

positive definite Σ, since then n−1XTX
a.s.−→ Σ by the strong law of large numbers, and given that

eigenvalues are continuous functions of XTX by the continuous mapping theorem XTX is positive

definite almost surely as n→∞. Finally, Γ is assumed to contain the maximizer (θ∗γ , ϑ∗γ , α∗γ).

By the law of large numbers and the i.i.d. assumption, we have thatMn(θγ , ϑ, α) P→M(θγ , ϑ, α),
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for each (θγ , ϑ, α) ∈ Γ. Next, we prove that the limit M is finite for all (θγ , ϑ, α) ∈ Γ.

|M(θγ , ϑ, α)| =
∣∣∣E [log s1(y1|xT1 θγ , ϑ, α)

] ∣∣∣ ≤ E
[
| log s1(y1|xT1 θγ , ϑ, α)|

]
=

∫ ∫
| log s1(y1|xT1 θγ , ϑ, α)|dS0(y1|x1)dΨ(x1)

=
∫ ∫

y1<xT1 θγ

∣∣∣∣∣ log 1√
ϑ
φ

(
y1 − xT1 θγ√
ϑ(1 + α)

) ∣∣∣∣∣dS0(y1|x1)dΨ(x1)

+
∫ ∫

y1≥xT1 θγ

∣∣∣∣∣ log 1√
ϑ
φ

(
y1 − xT1 θγ√
ϑ(1− α)

) ∣∣∣∣∣dS0(y1|x1)dΨ(x1).

For the first term in the last inequality we obtain, by integrating over the whole space, assumption

A4 with j = 2, and the triangle inequality, the following upper bound

∫ ∫ ∣∣∣∣∣ log 1√
ϑ
φ

(
y1 − xT1 θγ√
ϑ(1 + α)

) ∣∣∣∣∣dS0(y1|x1)dΨ(x1)

≤ | log
√

2πϑ|+
∫ ∫ (y1 − xT1 θγ)2

2ϑ(1 + α)2 dS0(y1|x1)dΨ(x1) <∞.

Analogously for the second term. Now, let ϑ = ϑ? be an arbitrary fixed value for the (squared)

scale parameter. The aim now is to first show that the average log-likelihood Mn(θγ , ϑ?, α) =

n−1 logL1(θγ , ϑ?, α) converges to its expected valueM(θγ , ϑ?, α) uniformly in (θγ , α), which implies

that (θ̂γ , α̂γ) P−→ (θ∗γ , α∗γ), and to then exploit that ϑ̂γ and ϑ∗γ have simple expressions to show that

ϑ̂γ
P−→ ϑ∗γ . To see thatMn(θγ , ϑ?, α) converges toM(θγ , ϑ?, α) uniformly in (θγ , α) we use the result

in Proposition 1 that for positive-definite XTX (which holds for n > n0) we have thatMn(θγ , ϑ?, α)

is a sequence of concave functions in (θγ , α), which by the convexity lemma in Pollard (1991) (see

also Theorem 10.8 from Rockafellar (2015)) implies that

sup
(θγ ,α)∈K

|Mn(θγ , ϑ?, α)−M(θγ , ϑ?, α)| P−→ 0, (6)

for each compact set K ⊆ Γ, and also that M(θγ , ϑ?, α) is finite and concave in (θγ , α) and thus

has a unique maximum (θ∗γ , α∗γ). That is, for a distance measure d() and every ε > 0 we have

sup
d((θ∗

γ ,ϑ
?,α∗

γ),(θ,ϑ?,α))≥ε
M(θγ , ϑ?, α) < M(θ∗γ , ϑ?, α∗γ). (7)
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The consistency of (θ̂γ , α̂γ) P−→ (θ∗γ , α∗γ) follows directly from (6) and (7) together with Theorem

5.7 from van der Vaart (1998). To see that ϑ̂γ
P−→ ϑ∗γ , note first that from

M(θγ , ϑ?, α) = − log
(√

2πϑ?
)
− 1

2ϑ?
∫ [(y1 − xT1 θγ)2

(1 + α)2 I(y1 < xT1 θγ) (8)

+ (y1 − xT1 θγ)2

(1− α)2 I(y1 ≥ xT1 θγ)
]
dS0(y1|x1)dΨ(x1),

we see that (θ∗γ , α∗γ) does not depend on ϑ?, thus (θ∗γ , α∗γ) is a global maximum. From (8)M(θ∗γ , ϑ, α∗γ)

trivially has the maximizer

ϑ∗γ =
∫ [(y1 − xT1 θ∗γ)2

(1 + α∗γ)2 I(y1 < xT1 θ
∗
γ) +

(y1 − xT1 θ∗γ)2

(1− α∗γ)2 I(y1 ≥ xT1 θ∗γ)
]
dS0(y1|x1)dΨ(x1),

and from the likelihood equations we have that

ϑ̂γ = 1
n

(
n∑
i=1

(yi − xTi θ̂γ)2

(1 + α̂γ)2 I(yi ≤ xTi θ̂γ) + (yi − xTi θ̂γ)2

(1− α̂γ)2 I(yi > xTi θ̂γ)
)
. (9)

In order to simplify notation, let us define

ρ(yi, xi, θγ , α) = (yi − xTi θγ)2

(1 + α)2 I(yi ≤ xTi θγ) + (yi − xTi θγ)2

(1− α)2 I(yi > xTi θγ).

Then, by the triangle inequality

∣∣∣ϑ̂γ − ϑ∗γ∣∣∣ ≤
∣∣∣∣∣ϑ̂γ − 1

n

n∑
i=1

ρ(yi, xi, θ∗γ , α∗γ)
∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

ρ(yi, xi, θ∗γ , α∗γ)− ϑ∗γ

∣∣∣∣∣ .
For the second term it follows, by the law of large numbers, that

∣∣∣∣∣ 1n
n∑
i=1

ρ(yi, xi, θ∗γ , α∗γ)− ϑ∗γ

∣∣∣∣∣ P→ 0.
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For the first term we have

∣∣∣∣∣ϑ̂γ − 1
n

n∑
i=1

ρ(yi, xi, θ∗γ , α∗γ)
∣∣∣∣∣ =

∣∣∣Mn(θ̂γ , 1/2, α̂γ)−Mn(θ∗γ , 1/2, α∗γ)
∣∣∣

≤
∣∣∣Mn(θ̂γ , 1/2, α̂γ)−M(θ̂γ , 1/2, α̂γ)

∣∣∣
+

∣∣∣M(θ̂γ , 1/2, α̂γ)−M(θ∗γ , 1/2, α∗γ)
∣∣∣

+
∣∣∣M(θ∗γ , 1/2, α∗γ)−Mn(θ∗γ , 1/2, α∗γ)

∣∣∣
≤ 2 sup

(θγ ,α)∈Γ
|Mn(θγ , 1/2, α)−M(θγ , 1/2, α)|

+
∣∣∣M(θ̂γ , 1/2, α̂)−M(θ∗γ , 1/2, α∗γ)

∣∣∣ .
By using (6), the consistency of (θ̂γ , α̂γ), and the continuous mapping theorem it follows that∣∣∣∣ϑ̂γ − 1

n

∑n
i=1 ρ(yi, xi, θ∗γ , α∗γ)

∣∣∣∣ P→ 0. Consequently, ϑ̂ P→ ϑ∗γ , which completes the proof.

Two-piece Laplace errors (k = 2)

The proof strategy is analogous to that with k = 1. Denote Mn(θγ , ϑ, α) = 1
n

logL2(θγ , ϑ, α).

By the law of large numbers, we have that Mn(θγ , ϑ, α) P→ M(θγ , ϑ, α), for each (θγ , ϑ, α) ∈ Γ.

Moreover,

|M(θγ , ϑ, α)| =
∣∣∣E [log s2(y1|xT1 θγ , ϑ, α)

] ∣∣∣ ≤ E
[
| log s2(y1|xT1 θγ , ϑ, α)|

]
=

∫
| log s2(y1|xT1 θγ , ϑ, α)|dS0(y1|x1)dΨ(x1)

=
∫
y<xT θγ

∣∣∣∣∣ log 1√
ϑ
f

(
y1 − xT1 θγ√
ϑ(1 + α)

) ∣∣∣∣∣dS0(y1|x1)dΨ(x1)

+
∫
y1≥xT1 θγ

∣∣∣∣∣ log 1√
ϑ
f

(
y1 − xT1 θγ√
ϑ(1− α)

) ∣∣∣∣∣dS0(y1|x1)dΨ(x1),

where f(z) = 0.5 exp(−|z|). For the first term in the last inequality we have, by integrating over

the whole space and the triangle inequality, the following upper bound

∫ ∣∣∣∣∣ log 1√
ϑ
f

(
y1 − xT1 θγ√
ϑ(1 + α)

) ∣∣∣∣∣dS0(y1|x1)dΨ(x1)

≤ | log 2
√
ϑ|+

∫ |y1 − xT1 θγ |√
ϑ(1 + α)

dS0(y1|x1)dΨ(x1) <∞,
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where the finiteness follows by assumption A4 with j = 1. An analogous result is obtained for the

second term. Now, let ϑ = ϑ? be an arbitrary fixed value for the (squared) scale parameter. From

Proposition 2, it follows that for positive-definite XTX (which is guaranteed by assumption A2, for

n > n0) we have that Mn(θγ , ϑ?, α) is concave in (θ, α), which by the convexity lemma in Pollard

(1991) implies that

sup
(θγ ,α)∈K

|Mn(θγ , ϑ?, α)−M(θγ , ϑ?, α)| P−→ 0, (10)

for any compact set K ⊆ Γ, and also that M(θγ , ϑ?, α) is concave in (θγ , α) and thus has a unique

maximum (θ∗γ , α∗γ). That is, for a distance measure d() and every ε > 0 we have

sup
d((θ∗

γ ,ϑ
?,α∗

γ),(θγ ,ϑ?,α))≥ε
M(θγ , ϑ?, α) < M(θ∗γ , ϑ?, α∗γ). (11)

The consistency of (θ̂γ , α̂γ) P−→ (θ∗γ , α∗γ) follows directly from (10) and (11) together with Theorem

5.7 from van der Vaart (1998). To see that ϑ̂γ
P−→ ϑ∗γ , note first that from

M(θγ , ϑ?, α) = − log
(
2
√
ϑ?
)
− 1√

ϑ?

∫ [ |y1 − xT1 θγ |
1 + α

I(y1 < xT1 θγ) (12)

+ |y1 − xT1 θγ |
1− α I(y1 ≥ xT1 θγ)

]
dS0(y1|x1)Ψ(x1),

we see that (θ∗γ , α∗γ) does not depend on ϑ?, thus (θ∗γ , α∗γ) is a global maximum. From (8)M(θ∗γ , ϑ, α∗γ)

trivially has the maximizer

ϑ∗γ =
{∫ [ |y1 − xT1 θ∗γ |

1 + α∗γ
I(y1 < xT1 θ

∗
γ) +

|y1 − xT1 θ∗γ |
1− α∗γ

I(y1 ≥ xT1 θ∗γ)
]
dS0(y1|x1)dΨ(x1)

}2

,

and from the likelihood equations we have that

ϑ̂γ =
[

1
n

(
n∑
i=1

|yi − xTi θ̂γ |
1 + α̂γ

I(yi ≤ xTi θ̂γ) + |yi − x
T
i θ̂γ |

1− α̂γ
I(yi > xTi θ̂γ)

)]2

. (13)
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Let us define

ρ(yi, xi, θγ , α) = |yi − x
T
i θγ |

1 + α
I(yi ≤ xTi θγ) + |yi − x

T
i θγ |

1− α I(yi > xTi θγ).

Then, by the triangle inequality

∣∣∣∣√ϑ̂γ −√ϑ∗γ∣∣∣∣ ≤
∣∣∣∣∣
√
ϑ̂γ −

1
n

n∑
i=1

ρ(yi, xi, θ∗γ , α∗γ)
∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

ρ(yi, xi, θ∗γ , α∗γ)−
√
ϑ∗γ

∣∣∣∣∣ .
For the second term in the right-hand side of the last equation, it follows, by the law of large

numbers and the continuous mapping theorem, that

∣∣∣∣∣ 1n
n∑
i=1

ρ(yi, xi, θ∗γ , α∗γ)−
√
ϑ∗γ

∣∣∣∣∣ P→ 0.

For the first term we have

∣∣∣∣∣
√
ϑ̂γ −

1
n

n∑
i=1

ρ(yi, xi, θ∗γ , α∗γ)
∣∣∣∣∣ =

∣∣∣Mn(θ̂γ , 1, α̂γ)−Mn(θ∗γ , 1, α∗γ)
∣∣∣

≤
∣∣∣Mn(θ̂γ , 1, α̂γ)−M(θ̂γ , 1, α̂γ)

∣∣∣
+

∣∣∣M(θ̂γ , 1, α̂γ)−M(θ∗γ , 1, α∗γ)
∣∣∣

+
∣∣∣M(θ∗γ , 1, α∗γ)−Mn(θ∗γ , 1, α∗γ)

∣∣∣
≤ 2 sup

(θγ ,α)∈Γ
|Mn(θγ , 1, α)−M(θγ , 1, α)|

+
∣∣∣M(θ̂γ , 1, α̂γ)−M(θ∗γ , 1, α∗γ)

∣∣∣ .
By using (10), the consistency of (θ̂γ , α̂γ), and the continuous mapping theorem it follows that∣∣∣∣√ϑ̂γ − 1

n

∑n
i=1 ρ(yi, xi, θ∗γ , α∗γ)

∣∣∣∣ P→ 0. Consequently, ϑ̂γ
P→ ϑ∗γ , which completes the proof.

2.4 Proof of Proposition 4

Two-piece normal errors (k = 1)

The proof technique consists of showing first that ṁη(y1, x1) is dominated by an L2 function (square

integrable), K(y1, x1), for η in a neighborhood of η∗γ . Then, we prove that the function Pmη admits

a second-order Taylor expansion at η∗γ and that the matrix Vη∗
γ
is nonsingular. Finally, we appeal
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to the consistency result in Proposition 3 in order to apply Theorem 5.23 of van der Vaart (1998)

to prove the asymptotic normality of η̂γ .

We first note that under assumptions A1–A4, where A4 is assumed to be satisfied for j = 4

throughout, Proposition 3 implies the existence and uniqueness of η∗γ . The gradient of mη(y1, x1),

which is given by (i) in Proposition 1 (with n = 1), is bounded for all η ∈ Γ and for each (y1, x1),

due to the compactness of Γ. Now, a direct application of the Minkowski inequality implies that

||ṁη(y1, x1)|| is upper bounded by the sum of the absolute values of the entries of ṁη(y1, x1).

Let us now define K(y1, x1) = supη∈Bη∗
γ
||ṁη(y1, x1)||, where Bη∗

γ
⊂ Γ is any neighborhood of η∗γ ,

whose projection over θ coincides with Bθ∗
γ
. Thus, from the expression of ṁη(y1, x1) together with

assumption A4, it follows that

∫
K(y1, x1)2dS0(y1|x1)dΨ(x1) <∞,

Then, by using the mean value theorem and the Cauchy-Schwartz inequality, it follows that for

η1, η2 ∈ Bη0 , with probability 1,

|mη1(y1, x1)−mη2(y1, x1)| = |ṁη?(y1, x1)T (η1 − η2)|

≤ ||ṁη?(y1, x1)|| · ||η1 − η2||

≤ K(y1, x1) · ||η1 − η2||,

where η? = (1− c)η1 + cη2, for some c ∈ (0, 1).

Now, for each x1:

Pmη|x1 = E[mη|x1] = −1
2 log(2π)− 1

2 log(ϑ)

− 1
2ϑ(1 + α)2

∫ xT1 θγ

−∞
(y1 − xT1 θγ)2dS0(y1|x1)

− 1
2ϑ(1− α)2

∫ ∞
xT1 θγ

(y1 − xT1 θγ)2dS0(y1|x1).

11



Thus, the gradient of Pmη|x1 is given by

∂

∂θγ
Pmη|x1 = − x1

ϑ(1 + α)2 I1 + x1
ϑ(1− α)2 I2,

∂

∂ϑ
Pmη|x1 = − 1

2ϑ + I3
2ϑ2(1 + α)2 + I4

2ϑ2(1− α)2 ,

∂

∂α
Pmη|x1 = I3

ϑ(1 + α)3 −
I4

ϑ(1− α)3 ,

Then, the second derivative matrix is given by

∂2

∂θ2
γ

Pmη|x1 = −x1x
T
1 [(1 + α)2 − 4αS0(xT1 θγ |x1)]

ϑ(1− α2)2 ,

∂2

∂ϑ2Pmη|x1 = 1
2ϑ2 −

I3
ϑ3(1 + α)2 −

I4
ϑ3(1− α)2 ,

∂2

∂α2Pmη|x1 = − 3I3
ϑ(1 + α)4 −

3I4
ϑ(1− α)4 ,

∂2

∂ϑ∂θγ
Pmη|x1 = x1

ϑ2(1 + α)2 I1 −
x1

ϑ2(1− α)2 I2,

∂2

∂α∂θγ
Pmη|x1 = 2x1

ϑ(1 + α)3 I1 + 2x1
ϑ(1− α)3 I2,

∂2

∂ϑ∂α
Pmη|x1 = − I3

ϑ2(1 + α)3 + I4
ϑ2(1− α)3 ,

where I1 =
∫ xT1 θγ
−∞ S0(y1|x1)dy1, and I2 =

∫∞
xT1 θγ

[1− S0(y1|x1)] dy1, I3 =
∫ xT1 θγ
−∞ (y1−xT1 θγ)2dS0(y1|x1),

and I4 =
∫∞
xT1 θγ

(y1 − xT1 θγ)2dS0(y1|x1). These entries are finite for all η ∈ Γ by assumption A4.

Note that Pmη = E[Pmη|x1 ], where the expectation is taken over x1. Assumptions A1–A4 together

with Proposition (3) imply that Pmη is finite and that this expectation is concave and has a unique

maximum at η∗γ . From assumption A5,

∂

∂θγ
Pmη

∣∣∣∣∣
η=η∗

γ

= E
[
∂

∂θγ
Pmη|x1

] ∣∣∣∣∣
η=η∗

γ

= 0,

∂

∂α
Pmη

∣∣∣∣∣
η=η∗

γ

= E
[
∂

∂α
Pmη|x1

] ∣∣∣∣∣
η=η∗

γ

= 0,

which in turn imply that ∂2

∂ϑ∂θγ
Pmη = 0 and ∂2

∂ϑ∂α
Pmη = 0 at η = η∗γ . Thus, the matrix of

12



second derivatives evaluated at η∗γ has the following structure:

Vη =



∂2

∂θ2
γ

Pmη 0 ∂2

∂ϑ∂α
Pmη

0 ∂2

∂ϑ2Pmη 0
∂2

∂ϑ∂α
Pmη 0 ∂2

∂α2Pmη

 .

Consequently, the determinant of this matrix is given by

detVη = ∂2

∂ϑ2Pmη × det


∂2

∂θ2
γ

Pmη
∂2

∂ϑ∂α
Pmη

∂2

∂ϑ∂α
Pmη

∂2

∂α2Pmη

 .

The determinant on the right-hand side of this expression, evaluated at η∗γ , is non-zero since the

Pmη is concave with respect to (θγ , α), as shown in Proposition 3. Moreover, the fact that the first

derivative ∂

∂ϑ
Pmη = 0 at η = η∗γ together with the fact that η∗γ is the unique maximizer implies

that ∂2

∂ϑ2Pmη 6= 0. Consequently, the matrix of second derivatives of Pmη is nonsingular at η∗γ .

The asymptotic normality result follows by Theorem 5.23 from van der Vaart (1998).

Two-piece Laplace errors (k = 2)

First, we note that under assumptions A1–A4, where j = 2 in A4 throughout, Proposition 3 implies

the existence and uniqueness of η∗γ . The gradient of mη(y1, x1), which is given by (i) in Proposition

2 (with n = 1), is bounded for almost all η ∈ Γ and for each (y1, x1), due to the compactness of Γ.

Now, a direct application of the Minkowski inequality implies that ||ṁη(y1, x1)|| is upper bounded

almost surely by the sum of the absolute values of the entries of ṁη(y1, x1). Let us now define

K(y1, x1) = supη∈Bη∗
γ
||ṁη(y1, x1)||, where Bη∗

γ
⊂ Γ is any neighborhood of η∗γ , whose projection

over θγ coincides with Bθ∗
γ
. Thus, from the expression of ṁη(y1, x1) together with assumption A4,

it follows that

∫
K(y1, x1)2dS0(y1|x1)dΨ(x1) <∞,

13



Then, by using the mean value theorem and the Cauchy-Schwartz inequality, it follows that for

η1, η2 ∈ Bη∗
γ
, with probability 1,

|mη1(y1, x1)−mη2(y1, x1)| = |ṁη?(y1, x1)T (η1 − η2)|

≤ ||ṁη?(y1, x1)|| · ||η1 − η2||

≤ K(y1, x1) · ||η1 − η2||,

where η? = (1− c)η1 + cη2, for some c ∈ (0, 1).

Now, for each x1:

Pmη|x1 = E[mη|x1] = − log(2)− 1
2 log(ϑ)− 1√

ϑ(1 + α)

∫ xT1 θγ

−∞
S0(y1|x1)dy1

− 1√
ϑ(1− α)

∫ ∞
xT1 θγ

1− S0(y1|x1)dy1.

Then, the gradient of Pmη|x1 is given by

∂

∂θγ
Pmη|x1 = −x1S0(xT1 θγ |x1)√

ϑ(1 + α)
+ x1[1− S0(xT1 θγ |x1)]√

ϑ(1− α)
,

∂

∂ϑ
Pmη|x1 = − 1

2ϑ + I1
2ϑ3/2(1 + α)

+ I2
2ϑ3/2(1− α)

,

∂

∂α
Pmη|x1 = I1√

ϑ(1 + α)2
− I2√

ϑ(1− α)2
,

where I1 =
∫ xT1 θγ
−∞ S0(y1|x1)dy, and I2 =

∫∞
xT1 θγ

1− S0(y1|x1)dy1, which are finite by assumption A4.
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Then, the second derivative matrix is given by

∂2

∂θ2
γ

Pmη|x1 = −2x1x
T
1 s0(xT1 θγ |x1)√
ϑ(1− α2)

,

∂2

∂ϑ2Pmη|x1 = 1
2ϑ2 −

3I1
4ϑ5/2(1 + α)

− 3I2
4ϑ5/2(1− α)

,

∂2

∂α2Pmη|x1 = − 2I1√
ϑ(1 + α)3

− 2I2√
ϑ(1− α)3

,

∂2

∂ϑ∂θγ
Pmη|x1 = x1S0(xT1 θγ |x1)

2ϑ3/2(1 + α)
− x1[1− S0(xT1 θγ |x1)]

2ϑ3/2(1− α)
,

∂2

∂α∂θγ
Pmη|x1 = x1S0(xT1 θγ |x1)√

ϑ(1 + α)2
+ x1[1− S0(xT1 θγ |x1)]√

ϑ(1− α)2
,

∂2

∂ϑ∂α
Pmη|x1 = − I1

2ϑ3/2(1 + α)2 + I2
2ϑ3/2(1− α)2 .

These entries are finite for all η ∈ Γ by assumption A4. Note that Pmη = E[Pmη|x1 ], where the

expectation is taken over x1. Assumptions A1–A4 together with Proposition 3, imply that Pmη is

finite and that this expectation is concave and has a unique maximum at η∗γ . From assumption A5,

∂

∂θγ
Pmη

∣∣∣∣∣
η=η∗

γ

= E
[
∂

∂θγ
Pmη|x1

] ∣∣∣∣∣
η=η∗

γ

= 0,

∂

∂α
Pmη

∣∣∣∣∣
η=η∗

γ

= E
[
∂

∂α
Pmη|x1

] ∣∣∣∣∣
η=η∗

γ

= 0,

which in turn imply that ∂2

∂ϑ∂θγ
Pmη = 0 and ∂2

∂ϑ∂α
Pmη = 0 at η = η∗γ . Thus, it follows that the

matrix of second derivatives evaluated at η∗γ has the structure:

Vη =



∂2

∂θ2
γ

Pmη 0 ∂2

∂ϑ∂α
Pmη

0 ∂2

∂ϑ2Pmη 0
∂2

∂ϑ∂α
Pmη 0 ∂2

∂α2Pmη

 .
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Consequently, the determinant of this matrix is given by

detVη = ∂2

∂ϑ2Pmη × det


∂2

∂θ2
γ

Pmη
∂2

∂ϑ∂α
Pmη

∂2

∂ϑ∂α
Pmη

∂2

∂α2Pmη

 .

The determinant on the right-hand side of this expression, evaluated at η∗γ , is non-zero since the

Pmη is concave with respect to (θγ , α), as shown in Proposition 3. Moreover, the fact that the first

derivative ∂

∂ϑ
Pmη = 0 at η = η∗γ together with the fact that η∗γ is the unique maximizer implies

that ∂2

∂ϑ2Pmη 6= 0. Consequently, the matrix of second derivatives of Pmη is nonsingular at η∗γ .

The asymptotic normality result follows by Theorem 5.23 from van der Vaart (1998).

2.5 Proof of Corollary 1

The result when εi ∼ L(0, ϑ) follows directly from Pollard (1991) Theorem 1, hence it suffices to find

the expression for f0 under each assumed residual distribution. The median for a general two-piece

distribution with a mode at 0 is given by
√
ϑ(1+α)F−1

(
1

2(1+α)

)
if α > 0 and

√
ϑ(1−α)F−1

(
(1−2α)
2(1−α)

)
if α ≤ 0, where F (·) is the cdf of the standard underlying distribution with mode 0, ϑ = 1 (Arellano-

Valle et al. (2005), Expression (9)).

When εi ∼ N(0, ϑ) we have m = 0 and hence f0 = N(0; 0, ϑ) = 1/(
√

2πϑ). When εi ∼

AN(0, ϑ, α) we havem =
√
ϑ(1+α)Φ−1(0.5/(1+α)) if α > 0 andm =

√
ϑ(1−α)Φ−1(0.5(1−2α)/(1−

α)) if α < 0, where Φ−1(·) is the inverse standard cdf, and hence f0 = exp
{
−1

2

(
Φ−1

(
0.5

1+|α|

))2
}

1√
2πϑ .

For the Laplace and Asymmetric Laplace, we note that the inverse cdf of the standard Laplace distri-

bution evaluated at a quantile q ∈ [0, 1] is F−1(q) = log(2q) if q < 0.5 and F−1(q) = − log(2(1−q))

if q ≥ 0.5. When εi ∼ L(0, ϑ) we have m = 0 and f0 = 1/(2
√
ϑ). Finally, when εi ∼ AL(0, ϑ, α) we

have m = −
√
ϑ(1 + α) log(1 + α) if α > 0 and m =

√
ϑ(1 − α) log(1 − α) if α < 0, from which it

follows that f0 = 1
2
√
ϑ

exp {− log(1 + |α|)} = 1
2
√
ϑ(1+|α|) .

The results for the true Normal model follows by using classic asymptotic results on least square

estimators (see e.g. Newey and Powell (1987))
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2.6 Proof of Proposition 5

We provide the proof for the asymmetric Normal and asymmetric Laplace (α 6= 0), their sym-

metric counterparts follow as particular cases. ηγ = (θγ , ϑγ , αγ) denotes the parameter vector

under model γ, η̂γ the MLE and η̃γ the posterior mode for a given observed (y,X). Further,

Mk(ηγ) = E(logLk(ηγ)) where the expectation is with respect to the data-generating truth and

η∗γ = arg maxη∈Γγ Mk(ηγ) is the optimal parameter value under γ. We wish to characterize the

asymptotic behaviour of the Laplace-approximated Bayes factors

p̂(y | γ)
p̂(y | γ∗) = elogLk(η̃γ)−logLk(η̃γ∗ ) × p(η̃γ | γ)

p(η̃γ∗ | γ∗) × (2π)
pγ−pγ∗

2 × |Hk(η̃γ∗)|
1
2

|Hk(η̃γ)|
1
2
, (14)

when (y,X) arise from the data-generating model in Condition A1, which may differ from the

assumed model. The term (2π)
pγ−pγ∗

2 is a constant since pγ and pγ∗ are fixed. The expression for

H1 is given by (24) and recall that for H2 we are taking the asymptotic covariance in (26). Hence

|H2(η̃γ)| = npγ
∣∣∣∣ 1nH2(η̃γ)

∣∣∣∣ = npγ

∣∣∣∣∣∣∣∣∣∣∣∣

− 1
nX

TX
1

ϑ̃γ(1− α̃2
γ)

x√
ϑ̃γ(1−α̃2

γ)
0

x√
ϑ̃γ(1−α̃2

γ)
− 1

4ϑ̃2
γ

0

0 0 − 2
1−α̃2

γ

∣∣∣∣∣∣∣∣∣∣∣∣
.

The determinant converges in probability to a negative constant since η̃γ
P−→ η∗γ by Proposition 3,

together with the continuous mapping theorem and the asymptotic Hessian (the limiting −H2) be-

ing positive definite. An analogous argument applies toH1, hence n
pγ−pγ∗

2 |Hk(η̃γ∗)|
1
2 /|Hk(η̃γ)|

1
2

P−→

ã3 for some constant ã3 > 0. In other words, |Hk(η̃γ∗)|
1
2 /|Hk(η̃γ)|

1
2 = Op

(
n
pγ∗ −pγ

2

)
.

The proof strategy is to first show that when Mk(η∗γ)−Mk(η∗γ∗) < 0 (i.e. γ∗ 6⊂ γ) the log-first

term of the right hand in (14) behaves asymptotically in probability as −na1, for some constant

a1 > 0, and the logarithm of the second term converges in probability to a constant a2. Thus,

1
n

log
(
p̂(y | γ)
p̂(y | γ∗)

)
= −a1(1 + op(1)) + 1

n

(
a2 + pγ − pγ∗

2 (a3 − log(n))
)

P−→ −a1

where a3 = log(2π)− log(ã3), as we wish to prove. Subsequently we shall show that whenMk(η∗γ)−

Mk(η∗γ∗) = 0 (the case γ∗ ⊂ γ) the first term is essentially the likelihood ratio test statistic and is
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Op(1), whereas, analogously to the results in Johnson and Rossell (2010) and Rossell and Telesca

(2017), the second term converges to a positive constant under local priors, but it is Op(b̃n) where

b̃n = npγ∗−pγ under the pMOM prior and b̃n = e−c
√
n for some c > 0 under the peMOM prior. This

gives
p̂(y | γ)
p̂(y | γ∗) = eOp(1)Op(b̃n)Op

(
n
pγ∗ −pγ

2

)
= Op(bn)

where bn = n
pγ∗ −pγ

2 for local priors, bn = n3(pγ∗−pγ)/2 for the pMOM prior and bn = e−c
√
nn

pγ∗ −pγ
2

for the peMOM prior, as we wish to prove.

Consider first the case when γ∗ 6⊂ γ, which implies Mk(η∗γ)−Mk(η∗γ∗) < 0. Then by continuity

of p(ηγ | γ) we have that p(η̃γ | γ) P−→ p(η∗γ | γ) ≥ 0, and analogously p(η̃γ∗ | γ∗) P−→ p(η∗γ∗ | γ∗) > 0

(strict positivity is ensured by the assumption of prior positivity at η∗γ∗). Hence p(η̃γ | γ)/p(η̃γ∗ |

γ∗) P−→ a2 for some constant a2 ≥ 0. Note that a2 = 0 when θ∗γ contains some zeroes and hence a

non-local prior would take the value p(η∗γ | γ) = 0, but this gives even faster Bayes factor rates in

favor of γ∗. Regarding logLk(η̃γ)− logLk(η̃γ∗), the law of large numbers and uniform convergence

of logLk to its expected value shown in Proposition 3 give that

1
n

(logLk(η̃γ)− logLk(η̃γ∗)) P−→ (Mk(η∗γ)−Mk(η∗γ∗)) < 0, (15)

hence the constant a1 defined above is a1 = Mk(η∗γ∗)−Mk(η∗γ) > 0.

Next consider the case when γ∗ ⊂ γ, which implies Mk(η∗γ)−Mk(η∗γ∗) = 0. Since η̃γ
P−→ η∗γ by

Proposition 3, we have that under a local prior

p(η̃γ | γ)
p(η̃γ∗ | γ∗)

P−→ p(ηγ | γ)
p(ηγ∗ | γ∗) > 0. (16)

Under a non-local prior we still have p(ηγ∗ | γ∗) > 0 but in contrast p(ηγ | γ) = 0. Thus,

it is necessary to characterize the rate at which the latter term vanishes. Briefly, following the

proof of Theorem 1 in Koenker and Bassett (1982), the fact that logLk converges uniformly to

its expectation (see the proof of our Proposition 3) and consistency of η̃γ
P−→ η∗γ give that logLk

can be approximated by a quadratic function plus a term that is op(1). Then, the argument

leading to Rossell and Telesca (2017), Proposition 2(i), gives that θ̃γj − θ̂γj = Op(1/n) and thus

18



θ̃γj = Op(n−1/2) under the pMOM prior pM , whereas θ̃γj = Op(n−1/4) under the peMOM prior pE .

It follows that πM (θ̃γ) = Op(1)
∏
θ∗
γj 6=0 θ̃

2
γj = Op(n−(pγ−pγ∗ )), and πE(η̃) = Op(1)

∏
θ∗
γj 6=0 e

Op(1)/θ̃2
γ =

Op(e−c
√
n) for some c > 0, as desired.

To conclude the proof, since logLk(η̃γ)− logLk(η̃γ∗) = λ(y) + op(1) where λ(y) = logLk(η̂γ)−

logLk(η̂γ∗) is the likelihood ratio (LR) statistic, it only remains to show that λ(y) = Op(1).

The strategy is to see that λ(y) = λ(y;ϑ∗γ)(1 + op(1)), where λ(y;ϑ∗γ) = logLk(θ̂γ , ϑ∗γ , α̂γ) −

logLk(θ̂γ∗ , ϑ∗γ , α̂γ) is the LR obtained by plugging in the oracle ϑ∗γ = ϑ∗γ∗ , then use classical results

to prove that λ(y;ϑ∗γ) = Op(1). Taking derivatives of the likelihoods (Expressions (3) and (4) in

the main paper) shows that for k = 1 the MLE must satisfy

ϑ̂γ = 1
n

 ∑
i∈A(θ)

(yi − xTi θ̂γ)2

(1 + α̂)2 +
∑

i 6∈A(θ)

(yi − xTi θ̂γ)2

(1− α̂)2

 = 1
n

(y −Xγ θ̂γ)TW 2
θ̂γ ,α̂

(y −Xγ θ̂γ),

whereas for k = 2 it satisfies

ϑ̂
1
2
γ = 1

n

 ∑
i∈A(θ)

|yi − xTi θ̂γ |
(1 + α̂) +

∑
i 6∈A(θ)

|yi − xTi θ̂γ |
(1− α̂)

 = 1
n
|W

1
2
θ̂γ ,α̂

(y −Xγ θ̂γ)|.

Plugging ϑ̂γ into the likelihoods gives

λ(y) = −n2 log
(
ϑ̂γ

ϑ̂γ∗

)
= −n2 log

(
1 + ϑ̂γ − ϑ̂γ∗

ϑ̂γ∗

)
= −n2

ϑ̂γ − ϑ̂γ∗

ϑ̂γ∗
(1 + op(1))

= −n2
ϑ̂γ − ϑ̂γ∗

ϑ∗γ∗
(1 + op(1)) = λ(y;ϑ∗γ)(1 + op(1)) (17)

since by Proposition 3 ϑ̂γ∗
P−→ ϑ∗γ∗ > 0 and (ϑ̂γ − ϑ̂γ∗)/ϑ̂γ∗

P−→ 0.

Finally we show that λ(y;ϑ∗γ) = Op(1), which implies λ(y;ϑ∗γ)(1+op(1)) = Op(1) and completes

the proof. For ease of notation when k = 1 define Zn(γ) = (y − Xγ θ̂γ)TW 2
θ̂γ ,α̂

(y − Xγ θ̂γ) and

Z(γ) = (y − Xγ θ̂γ)TW 2
θ∗
γ ,α

∗(y − Xγ θ̂γ), and when k = 2 let Zn(γ) = |W
1
2
θ̂γ ,α̂

(y − Xγ θ̂γ)|, Z(γ) =

|W
1
2
θ∗
γ ,α

∗(y −Xγ θ̂γ)|. Then by definition

λ(y;ϑ∗γ) = Zn(γ∗)− Zn(γ)
2ϑ∗γ

. (18)
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Now, note that Zn(γ) = Z(γ) + Z(γ)(Zn(γ) − Z(γ))/Z(γ) = Z(γ)(1 + op(1)), since Proposition

3 gives that 1
nZn(γ) P−→ ϑγ , 1

nZ(γ) P−→ ϑγ and hence (Zn(γ) − Z(γ))/Z(γ) P−→ 0. Following the

same argument Zn(γ∗) = Z(γ∗)(1 + op(1)), hence

λ(y;ϑ∗γ) = Z(γ∗)− Z(γ) + op(Z(γ∗)− Z(γ))
2ϑ∗γ

= Z(γ∗)− Z(γ)
2ϑ∗γ

(1 + op(1)). (19)

The term (Z(γ∗)− Z(γ))/ϑ∗γ is the LR test statistic for fixed (ϑ∗γ , α∗γ) comparing γ and γ∗ ⊂ γ.

When k = 2 this is a quantile regression LR test statistic, which Koenker and Bassett (1982)

showed to be asymptotically χ2
pγ−pγ∗ (after rescaling by a constant) precisely under our Conditions

A2-A3. When k = 1, (Z(γ∗) − Z(γ))/ϑ∗γ is the LR test statistic for a weighted least squares

problem regressing ỹ = Wθ∗,α∗y on X̃ = Wθ∗,α∗X, which can be shown to be Op(1) under the

conditions in Proposition 4. Briefly, as usual for any γ the total sum of squares can be decomposed

as ỹT ỹ = θ̂Tγ X̃
T
γ X̃γ θ̂γ + (ỹ − X̃γ θ̂γ)T (ỹ − X̃γ θ̂γ), hence Z(γ∗)− Z(γ) =

(ỹ − X̃γ∗ θ̂γ∗)T (ỹ − X̃γ∗ θ̂γ∗)− (ỹ − X̃γ θ̂γ)T (ỹ − X̃γ θ̂γ) = θ̂Tγ X̃
T
γ X̃γ θ̂γ − θ̂Tγ∗X̃T

γ∗X̃γ∗ θ̂γ∗ . (20)

Without loss of generality let X̃γ = (X̃γ∗ , X̃γ\γ∗), where X̃γ\γ∗ are the columns in X̃γ not contained

in X̃γ∗ . Let R = (I − X̃γ∗(X̃T
γ∗X̃γ∗)−1X̃γ∗)X̃γ\γ∗ be orthogonal to the projection of X̃γ onto

X̃γ∗ , then clearly X̃T
γ∗R = 0 and (X̃γ∗ , R) span the column space of X̃γ . Hence θ̂Tγ X̃T

γ X̃γ θ̂γ =

θ̂Tγ∗X̃T
γ∗X̃γ∗ θ̂γ∗ + θ̂TRR

TRθ̂R, where θ̂R = (RTR)−1RT y, giving that Z(γ∗)− Z(γ) = θ̂TRR
TRθ̂R. By

Proposition 4,
√
nθ̂R

D−→ N(0, ϑ∗γV ) for a fixed positive-definite matrix V .

To conclude, our Conditions A3-A4 guarantee 1
nR

TR
P−→ ΣR for some fixed ΣR and by the

continuous mapping theorem
√
nΣ

1
2
Rθ̂R

D−→ N(0, ϑ∗γΣ
1
2
RV Σ

1
2
R). Hence n

ϑ∗
γ
θ̂TRΣRθ̂R

D−→ Q, where

Q = Op(1) is a sum of re-scaled central chi-square random variables with 1 degree of freedom. By

Slutsky’s theorem Z(γ∗)−Z(γ)
ϑ∗
γ

= n
ϑ∗
γ
θ̂TR( 1

nR
TR)θ̂R

D−→ Q, as we wished to prove.
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2.7 Proof of Corollary 2

The proof runs analogous to Rossell and Telesca (2017), Proposition 3(ii). Briefly, the BMA

estimate is E(θi | y) =

E(θi | γ∗, y)p(γ∗ | y) +
∑
γ∗⊂γ

E(θi | γ, y)p(γ | y) +
∑
γ∗ 6⊂γ

E(θi | γ, y)p(γ | y). (21)

Suppose that θ∗i 6= 0. From Proposition 4, the difference between the MLE under γ and

θ∗i is Op(1/
√
n), and it can be shown that the difference between a Laplace approximation to

E(θi | γ, y) and the MLE is Op(1/
√
n) hence E(θi | γ, y) − θ∗i = Op(1/

√
n). Since p(γ∗ | y) P−→ 1

by Proposition 5, we have that E(θi | γ∗, y)p(γ∗ | y) = θ∗i +Op(1/
√
n). If θ∗i = 0 then by definition

E(θi | γ∗, y)p(γ∗ | y) = 0.

Consider the second term in (21) where γ∗ ⊂ γ,

p(γ | y) ≤ 1/(1 +Bγ∗,γp(γ∗)/p(γ)) < Bγ,γ∗p(γ)/p(γ∗) = Op(b(k)
n )p(γ)/p(γ∗) ≤ Op(b(k)

n )r+,

where Bγ∗,γ is the Bayes factor between γ∗ and γ. From Proposition 5, we have that b(k)
n =

n−(pγ−pγ∗ )/2 for a local prior, b(k)
n = n−3(pγ−pγ∗ )/2 for the pMOM prior, and b

(k)
n = e−c

√
n, for

some c > 0, for the peMOM and piMOM priors. Also, E(θi | γ, y) = θ∗i + Op(1/
√
n). Therefore,

if θ∗i 6= 0, we have E(θi | γ, y)p(γ | y) = Op(b(k)
n )r+. If θ∗i = 0, then E(θi | γ, y)p(γ | y) =

Op(b(k)
n /
√
n)p(γ)/p(γ∗) ≤ Op(b(k)

n /
√
n)r+. The case for γ∗ 6⊂ γ proceeds similarly by noting that

by Proposition 5 we have Bγ,γ∗r− = Op(e−cn)r− = Op(b(k)
n ) for some c > 0, since e−cnr− = O(b(k)

n )

by assumption.

Combining the previous results it follows that, if θ∗i 6= 0, then

E(θi | y) = θ∗i +Op(1/
√
n) +Op(b(k)

n )r+ = θ∗i +Op(1/
√
n), (22)

since b(k)
n r+ = Op(1/

√
n) by the assumption that r+ does not increase with n. Conversely if θ∗i = 0,

then

E(θi | y) = Op(b(k)
n /
√
n)r+, (23)
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giving the desired result.

3. APPROXIMATIONS TO THE INTEGRATED LIKELIHOOD

For ease of notation, we drop the subindex k denoting the set of active variables and let θ =

(θ1, . . . , θ|k|) be their coefficients. Both the Laplace and Importance Sampling approximations

require maximizing and evaluating the hessian of hl(θ, ϑ, α̃) = logL(θ, ϑ̃, α̃) + log p(θ, ϑ̃, α̃), where

L(·) and p(·) are the appropriate likelihood and prior density. Denote by gl(θ, ϑ̃, α̃) the gradient of

hl(·) and by Hl(θ, ϑ̃, α̃) its hessian, Algorithm 1 finds the posterior mode.

Algorithm 1. Posterior mode via Newton-Raphson

1. Initialize (θ(0), ϑ̃(0), α̃(0)) = (θ̂, log(ϑ̂), atanh(α̂)) where (θ̂, ϑ̂, α̂) is the MLE given by Algorithm

1. Set t = 1 and repeat Steps 2-3 until e is below some small tolerance (default 10−5).

2. Update (θ(t), ϑ̃(t), α̃(t)) =

(θ(t−1), ϑ̃(t−1), α̃(t−1))−H−1
l (θ(t−1), ϑ̃(t−1), α̃(t−1))gl(θ(t−1), ϑ̃(t−1), α̃(t−1)).

3. Compute e = ||(θ(t), ϑ̃(t), α̃(t)) − (θ(t−1), ϑ̃(t−1), α̃(t−1))||∞ where ||z||∞ is the largest element

of z in absolute value. Set t = t+ 1.

As usual, in the event that (θ(t), ϑ̃(t), α̃(t)) does not increase hl(·), Step 2 can be adjusted by

adding a constant λ to the diagonal of Hl(·), which for large λ gives the direction of the gradient

and is guaranteed to decrease hl(·). However, we observed that this is extremely rare in practice.

Usually, the simple Newton step increases hl(·) at each iteration and converges to the maximum in

a few iterations.

Both gl(·) and Hl(·) are the sum of a term coming from the log-likelihood plus a term coming

from the log-prior density. The exact expressions are given below separately.

As an alternative to Algorithm 1, we also provide Algorithm 2 based on Coordinate Descent

(i.e. successive univariate optimization). Note that the Newton steps to update θj and α are in

the direction of the gradient and are hence guaranteed to increase the objective function for small

enough λ. Step 2 takes advantage of the fact that the maximizer with respect to ϑ̃ for fixed (θ, α)

is available in closed form.
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Algorithm 2. Posterior mode via CDA

1. Initialize θ(0) to the least squares estimate, α(0) = 0, t = 0.

2. For the MOM prior set ϑ̃(t) = log (s/(n+ p+ 3aϑ)), where

s =

bϑ + θ(t)T θ(t) +
∑

i∈A(θ)

(yi − xTi θ(t))2

(1 + α(t))2 +
∑

i 6∈A(θ)

(yi − xTi θ(t))2

(1− α(t))2

 .
For eMOM and iMOM use a Newton-Raphson step.

3. For j = 1, . . . , p

(a) Set λ = 1 and θ∗ = θ
(t−1)
j −λg∗/h∗, where g∗ and h∗ are the first and second derivatives

of f(θj) = logL1(θ(t−1)
1 , . . . , θ

(t−1)
j−1 , θj , θ

(t)
j+1, . . . , θ

(t)
p , ϑ(t), α) + log p(θj | ϑ) evaluated at

θj = θ
(t−1)
j .

(b) If f(θ∗) > f(θ(t−1)
j ) set θ(t)

j = θ∗, else set λ = 0.5λ and repeat Step 3-(1).

4. Let α̃∗ = α̃(t−1) − λg∗/h∗, where g∗ and h∗ are the first and second derivatives of f(α̃) =

logL1(θ(t), ϑ(t), α̃) + log p(α̃) at α̃ = α̃(t−1). If f(α∗) > f(α(t−1)) set α(t) = α∗, else set

λ = 0.5λ and repeat Step 4.

5. Compute e = max |(θ(t), ϑ̃(t), α̃(t))− (θ(t−1), ϑ̃(t−1), α̃(t−1))|. If e < 10−5 stop, else set t = t+ 1

and go back to Step 1.

3.1 Derivatives of the log-likelihood

Two-piece Normal Under the re-parameterization ϑ̃ = log(ϑ), α̃ = atanh(α) the two-piece Normal

log-likelihood (3) has gradient


1

exp(ϑ̃)X
TW (y −Xθ)

−n
2 + 1

2 exp(ϑ̃)(y −Xθ)TW (y −Xθ)
1

2 exp(ϑ̃)(y −Xθ)TW ?(y −Xθ)

 ,

23



where as usual W = diag(w), wi = [1 + tanh(α̃)]−2 if i ∈ A(θ) and wi = [1− tanh(α̃)]−2 if i 6∈ A(θ),

and W ? = diag(w∗) with w?i = − 2sech2(α̃)
(tanh(α̃)+1)3 if i ∈ A(θ) and w?i = 2sech2(α̃)

(1−tanh(α̃))3 if i 6∈ A(θ). Its

Hessian is given by

−e−ϑ̃


XTWX XTW (y −Xθ) XTW ?(y −Xθ)

1
2(y −Xθ)TW (y −Xθ) −1

2(y −Xθ)TW ?(y −Xθ)
1
2(y −Xθ)TW ??(y −Xθ)

 , (24)

where W ?? = diag(w??), with w??i = 2e−4α̃ (e2α̃ + 2
)
if i ∈ A(θ) and w??i = 2e2α̃ + 4e4α̃ if i 6∈ A(θ).

Two-piece Laplace The asymmetric Laplace logL2(θ, ϑ̃, α̃), where ϑ̃ = log(ϑ), α̃ = atanh(α) has

gradient 
−e−ϑ̃/2XTw

−n
2 + 1

2e
−ϑ̃/2wT |y −Xθ|

e−ϑ̃/2|y −Xθ|Tw∗

 ,

and hessian

e−ϑ̃/2 ×


0 1

2X
Tw XTw∗

1
2w

TX −1
4w

T |y −Xθ| −1
2 |y −Xθ|

Tw∗

(XTw∗)T −1
2 |y −Xθ|

Tw∗ −2|y −Xθ|Tw∗

 , (25)

where wi = wi = (1 + α)−1, w∗i = w∗i = e−2α if i ∈ A(θ), and wi = (1− α)−1, wi = −wi w∗i = e2α,

w∗i = −w∗i if i 6∈ A(θ). Naturally, symmetric Laplace errors are the particular case α = 0 and give

wi = w∗i = 1.

Expected two-piece Laplace log-likelihood We derive L2 = E(logL2(η)), where η = (θ, ϑ, α) and

its derivatives under the data-generating model yi = xTi θ0 + εi, for some θ0 ∈ Rp where εi are

independent across i = 1, . . . , n and arise from an arbitrary probability density function s0(yi|xi).

After some algebra and noting that εi = yi − xTi θ0 gives
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L2 =
∫

logL2(η)s0(ε|x)dε = −n log(2)− n

2 log(ϑ) −
∑n
i=1

1√
ϑ(1 + α)

∫ xTi (θ−θ0)
−∞ S0(εi)dεi

−
∑n
i=1

1√
ϑ(1− α)

∫∞
xTi (θ−θ0) 1− S0(εi)dεi,

where S0(εi) = S0(εi|0) is the cumulative probability function associated to s0(εi) = s0(εi|0), where

0 indicates a zero covariate vector. Then taking derivatives we obtain

∂

∂θ
L2 =

n∑
i=1
−xiS0(xTi (θ − θ0))√

ϑ(1 + α)
+ xi[1− S0(xTi (θ − θ0))]√

ϑ(1− α)
,

∂

∂ϑ
L2 =

n∑
i=1
− 1

2ϑ + Ii1
2ϑ3/2(1 + α)

+ Ii2
2ϑ3/2(1− α)

,

∂

∂α
L2 =

n∑
i=1

Ii1√
ϑ(1 + α)2

− Ii2√
ϑ(1− α)2

,

where Ii1 =
∫ xTi (θ−θ0)
−∞ S0(εi)dεi, Ii2 =

∫∞
xTi (θ−θ0) 1− S0(εi)dεi. The second derivatives are

∂2

∂θ2L2 = −
n∑
i=1

2xixTi s0(xTi (θ − θ0))√
ϑ(1− α2)

,

∂2

∂ϑ2L2 =
n∑
i=1

1
2ϑ2 −

3Ii1
4ϑ5/2(1 + α)

− 3Ii2
4ϑ5/2(1− α)

,

∂2

∂α2L2 = −
n∑
i=1

2Ii1√
ϑ(1 + α)3

− 2Ii2√
ϑ(1− α)3

,

∂2

∂ϑ∂θ
L2 =

n∑
i=1

xiS0(xTi (θ − θ0))
2ϑ3/2(1 + α)

− xi[1− S0(xTi (θ − θ0))]
2ϑ3/2(1− α)

,

∂2

∂α∂θ
L2 =

n∑
i=1

xiS0(xTi (θ − θ0))√
ϑ(1 + α)2

+ xi[1− S0(xTi (θ − θ0))]√
ϑ(1− α)2

,

∂2

∂ϑ∂α
L2 = −

n∑
i=1

Ii1
2ϑ3/2(1 + α)2 + Ii2

2ϑ3/2(1− α)2 .

Simple inspection reveals that (∂/∂θ)L2 = 0 implies (∂2/∂θ∂ϑ)L2 = 0, and likewise (∂/∂α)L2 =

0 implies (∂2/∂θ∂α)L2 = 0. Since the maximum likelihood estimator (θ̂, ϑ̂, α̂) converges in prob-
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ability to the maximizer of L2, these second derivatives evaluated at (θ̂, ϑ̂, α̂) also converge in

probability to 0.

We wish to find an asymptotic expression for the remaining second derivatives evaluated at

(θ̂, ϑ̂, α̂) when the data-generating truth is εi ∼ AL(xTi θ0, ϑ0, α0) for some (θ0, ϑ0, α0). Given that

(θ̂, ϑ̂, α̂) P−→ (θ0, ϑ0, α0), the expressions above require evaluating the density of an asymmetric

Laplace s0(0) = 1/(2
√
ϑ0) and its cumulative probability function S0(0) = (1 + α0)/2. Similarly,

direct integration gives Ii1 =
√
ϑ0(1 + α0)2/2 and Ii2 =

√
ϑ0(1− α0)2/2.

∂2

∂θ2L2
P−→−XTX

1
ϑ0(1− α2

0)
,

∂2

∂ϑ2L2
P−→ n

2ϑ2
0
− 3n(1 + α0)

8ϑ2
0

− 3(1− α0)
8ϑ2

0
= − n

4ϑ2
0
,

∂2

∂α2L2
P−→− n

1 + α0
− n

1− α0
= − 2n

1− α2
0
,

∂2

∂α∂θ
L2

P−→ nx√
ϑ0

( 1
2(1 + α0) + 1

2(1− α0)

)
= nx√

ϑ0(1− α2
0)
. (26)

3.2 Derivatives of the log-prior density

The log-prior density is log p(θ, ϑ̃) = log p(θ | ϑ̃) + log p(ϑ̃) when α̃ = 0 under the assumed model

and log p(θ, ϑ̃, α̃) = log p(θ, ϑ̃) + log p(α̃) when α̃ 6= 0, where p(θ | ϑ̃) and p(α̃) are the pMOM,

piMOM or peMOM priors and p(ϑ̃) = IG(eϑ̃; aϑ/2, bϑ/2)eϑ. For ease of notation let θ−a be the

vector with elements θ−ai for i = 1, . . . , |k|.

pMOM prior Straightforward algebra gives
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∇ log pM (θ, ϑ̃, α̃) =


2θ−1 − θe−ϑ̃/gθ

−3|k|+aϑ
2 + (θT θ/gθ + bϑ)e−ϑ̃/2

2α̃−1 − α̃g−1
α

 ,

∇2 log pM (θ, ϑ̃, α̃) =


diag(−2θ−2 − e−ϑ̃/gθ) θe−ϑ̃/gθ 0

θT e−ϑ̃/gθ −e−ϑ̃(θT θ/gθ + bϑ)/2 0

0 0 −2α̃−2 − g−1
α

 ,

piMOM prior We obtain

∇ log pI(θ, ϑ̃, α̃) =


−2θ−1 + 2gθeϑ̃θ−3

(|k| − aϑ)/2 + bϑe
−ϑ̃/2− gθeϑ̃

∑
i θ
−2
i

−2α̃−1 − 2gαα̃−3

 ,

∇2 log pI(θ, ϑ̃, α̃) =


diag(2θ−2 − 6gθeϑ̃θ−4) 2gθeϑ̃θ−3 0

(−2gθeϑ̃θ−3)T −bϑe−ϑ̃/2− eϑ̃gθ
∑
i θ
−2
i 0

0 0 2α̃−2 + 6gαα̃−4

 .

peMOM prior We obtain

∇ log pE(θ, ϑ̃, α̃) =


2gθeϑ̃θ−3 − θe−ϑ̃g−1

θ

−(|k|+ aϑ)/2 + (bϑ + θT θ/gθ)e−ϑ̃/2− gθeϑ̃
∑
i θ
−2
i

2gαα̃−3 − α̃g−1
α

 ,

and ∇2 log pE(θ, ϑ̃, α̃) =


diag(−6gθeϑ̃θ−4 − e−ϑ̃g−1

θ ) 2gθeϑ̃θ−3 + θe−ϑ̃g−1
θ 0

(2gθeϑ̃θ−3 + θe−ϑ̃g−1
θ )T −(bϑ + θT θ/gθ)e−ϑ̃/2− eϑ̃gθ

∑
i θ
−2
i 0

0 0 −6gαα̃−4 − g−1
α

 .
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3.3 Quadratic approximation to asymmetric Laplace log-likelihood

The goal is to approximate the curvature of the one-dimensional function f(λ) = logL2(θλ, ϑ̂, α̂)

around λ = 0, where θλ = (θ̂1, . . . , θ̂j−1, θ̂j + λ, θ̂j+1, . . . , θ̂p) is fixed to the maximum likelihood

estimator except for the jth regression parameter, which is a function of λ ∈ R. Given that f(0)

is known and that its derivative at λ = 0 is 0 (θ̂ is a maximum) we seek h∗j < 0 such that

f(λ)− f(0) ≈ 0.5h∗jλ2. Our strategy is to evaluate f(λk) on a grid λk for k = 1, . . . ,K and use the

least-squares estimate h∗j = 2
∑K
k=1 λ

2
k(f(λk) − f(0))/

∑K
k=1 λ

4
k, where the form of logL2 gives the

simple expression

f(λk)− f(0) = − 1√
ϑ̂

n∑
i=1
|ri − λkxij |

( I(ri ≤ λkxij)
1 + α̂

+ I(ri > λkxij)
1− α̂

)
,

and ri = yi − xTi θ̂. Once h∗1, . . . , h∗p have been obtained we let D = diag(h∗1/h̄11, . . . , h
∗
p/h̄pp)

where H = (XTX)/(ϑ̂(1 − α̂2)) is the asymptotic hessian under asymmetric Laplace errors, and

we approximate the hessian of logL2(θ, ϑ̂, α̂) around θ = θ̂ with H∗ = D
1
2HD

1
2 . The construction

ensures that the diagonal elements in H∗ are h∗1, . . . , h∗p, i.e. the quadratic approximation matches

the actual curvature of logL2 along each canonical axis. From Section 4 the correlation struc-

ture borrowed from H remains asymptotically valid as long as the residuals are independent and

identically distributed, however in our experience the approximation usually suffices for practical

purposes even when these assumptions is violated.

The problem has been thus reduced to choosing the grid λ1, . . . , λK . One naive option is to

take the n points of non-differentiability λ = ri/xij , however, by the nature of least squares, this

strategy tends to approximate better f(λ) for large λ2 and we are interested in local approximations

around λ = 0, further evaluating f(λ) at n points requires O(n2) operations for each j = 1, . . . , p

and is thus computationally costly. Instead we evaluate f(λ) only at the K = 2 points given by

the endpoints of the asymptotic 95% confidence interval λ = {−1.96vj , 1.96vj) where vj is the

jth diagonal element in H
−1. This simple strategy ensures that the approximation holds locally

around λ = 0 in the sense of having non-negligible likelihood, requires only O(n) operations and

we have observed to deliver reasonably accurate approximations in practice. Our approximation is

similar in spirit to the rank-based score test inversion used to obtain confidence intervals in quantile

28



regression, which has been amply described to deliver fairly precise intervals, with the important

difference that rank inversion requires an ordering of observations that scales poorly with p and n.

Supplementary Figure 1S shows an example with the likelihood L2 (scaled to (0, 1)) and the

two quadratic approximations based on the asymptotic covariance and its least-squares adjustment

for an intercept-only model (p = 1) and n = 200. When residuals were truly generated from

an asymmetric Laplace (left panel) the two quadratic approximations were essentially identical,

however under truly normally distributed residuals the asymptotic covariance over-estimated the

curvature.

[Figure 1 about here.]

4. SUPPLEMENTARY RESULTS

[Table 1 about here.]

[Table 2 about here.]

4.1 Simulation study with identically distributed errors

[Table 3 about here.]

[Table 4 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Table 5 about here.]

[Table 6 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]
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[Figure 7 about here.]

We assessed the sensitivity of the results of the p = 6 simulation study in Section 6.1 of the

main paper to the prior on the asymmetry coefficient by setting gα such that P (|α| > 0.1) = 0.99.

Supplementary Table 3S summarizes the inference on the error distribution and Supplementary

Figure 2S the marginal variable inclusion probabilities. The latter were virtually identical to those

in Figure 2 obtained under gα such that P (|α| > 0.2) = 0.99, showing that variable inclusion is

robust to moderate changes in gα.

We also assessed the accuracy of the Laplace approximations to the integrated likelihood p(y |

γ) by comparing the results with those obtained with the importance sampling estimates with

B = 10, 000 draws described in Section 5 of the main paper. Supplementary Figure 3S displays

the results for gα = 0.357. These are extremely similar to those based on Laplace approximation

in Figure 2.

Supplementary Figure 6S shows analogous results for p = 100, with gα = 0.357 and p(y | γ)

estimated via Laplace approximations.

4.2 Simulation study with non-identically distributed errors

[Table 7 about here.]

[Table 8 about here.]

[Figure 8 about here.]

[Table 9 about here.]

Supplementary Table 7S shows the mean average posterior probability assigned to the Normal,

asymmetric Normal, Laplace and asymmetric Laplace models under the heteroskedastic simulation

(Section 6.2, main manuscript).

Supplementary Figure 8S shows marginal variable inclusion probabilities under the hetero-

asymmetric simulation.

Supplementary Table 9S reports true and false positives for our simulation study mimicking

Grünwald and van Ommen (2014) described in Section 6.2 of the main manuscript.
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4.3 DLD data

[Table 10 about here.]

[Table 11 about here.]

Supplementary Table 10S shows the six genes with largest marginal inclusion probabilities

p(γj = 1 | y) when conditioning on Normal errors and when inferring the error distribution.

The figures were similar for the four top genes, but the Normal model assigned somewhat higher

probability to FBXL19 substantially lower probability to MTMR1.
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εi ∼ N(0, 4) εi ∼ AN(0, 4,−0.5)
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Figure 2S: Sensitivity analysis with gα = 0.087. P (θi 6= 0 | y) for p = 5, ϑ = 2, θ = (0.5, 1, 1.5, 0, 0),
n = 100, ρij = 0.5. Black circles show the mean.
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Figure 4S: P (θi 6= 0 | y) for p = 100, ϑ = 1, θ = (0, 0.5, 1, 1.5, 0, . . . , 0), n = 100, ρij = 0.5. Black
circles show the mean.
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εi ∼ N(0, 4) εi ∼ AN(0, 4,−0.5)
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Figure 5S: P (θi 6= 0 | y) for p = 500, ϑ = 1, θ = (0, 0.5, 1, 1.5, 0, . . . , 0), n = 100, ρij = 0.5. Black
circles show the mean.
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εi ∼ N(0, 4) εi ∼ AN(0, 4,−0.5)
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Figure 6S: P (θi 6= 0 | y) for p = 100, ϑ = 2, θ = (0, 0.5, 1, 1.5, 0, . . . , 0), n = 100, ρij = 0.5. Black
circles show the mean.
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εi ∼ N(0, 4) εi ∼ AN(0, 4,−0.5)
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Figure 7S: P (θi 6= 0 | y) for p = 500, ϑ = 2, θ = (0, 0.5, 1, 1.5, 0, . . . , 0), n = 100, ρij = 0.5. Black
circles show the mean.
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εi ∼ Normal εi ∼ ANormal
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Figure 8S: P (θi 6= 0 | y) for simulation with constant ϑ = 0 and varying tanh(αi) ∼
N(atanh(ᾱ, 1/42)), where ᾱ = 0 for Normal and Laplace and ᾱ = −0.5 for ANormal and ALaplace.
P (θi 6= 0 | y) for p = 6, θ = (0, 0.5, 1, 1.5, 0, 0), n = 100, ρij = 0.5. Black circles show the mean.
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Simulation truth εi ∼ AN(0, 4, α)
Fitted model α = 0 α = −0.25 α = −0.5 α = −0.75

Normal 76.99 98.84 103.84 101.25
ANormal 92.08 86.10 102.60 115.64
Laplace 90.58 92.84 97.90 93.13
ALaplace 122.64 121.12 124.69 131.50

Simulation truth εi ∼ AL(0, 4, α)
Fitted model α = 0 α = −0.25 α = −0.5 α = −0.75

Normal 76.62 96.05 99.85 97.78
ANormal 81.77 82.74 92.67 104.76
Laplace 90.29 93.42 92.88 91.25
ALaplace 117.30 113.69 115.08 122.79

Table 1S: CPU time (10−4 seconds) on 3.4GHz Intel i7, 32Gb RAM, Windows 10. p = 6, ϑ = 4,
θ = (0, 0.5, 0.75, 1, 0, . . . , 0), n = 100, ρij = 0.5.
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Simulation truth
N(0, 4) AN(0, 4,−0.5) L(0, 4) AL(0, 4,−0.5)

Normal 6.9 29.7 6.4 32.9
ANormal 52.9 21.9 41.3 22.2
Laplace 17.0 28.2 14.6 26.6
ALaplace 57.7 26.4 26.7 22.4
Inferred 6.1 22.6 13.5 23.0

Table 2S: CPU time (seconds) on 8GB RAM Mac laptop with 1.6GHz Intel i5 processors running
OS X 10.11.6 p = 100, ϑ = 2, θ = (0, 0.5, 0.75, 1, 0, . . . , 0), n = 100, ρij = 0.5.
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Truth Average p(γp+1, γp+2 | y)
γp+1 = γp+2 = 0 γp+1 = 1, γp+2 = 0 γp+1 = 0, γp+2 = 1 γp+1 = γp+2 = 0

p = 6, gα = 0.357, Laplace p(γ | y)
N(0, 2) 0.91 0.02 0.06 0.00
AN(0, 2,−0.5) 0.11 0.81 0.01 0.06
L(0, 2) 0.14 0.00 0.84 0.02
AL(0, 2,−0.5) 0.02 0.12 0.01 0.85

p = 6, gα = 0.357, Monte Carlo p(γ | y)
N(0, 2) 0.91 0.02 0.06 0.00
AN(0, 2,−0.5) 0.11 0.81 0.01 0.07
L(0, 2) 0.12 0.01 0.85 0.02
AL(0, 2,−0.5) 0.02 0.12 0.01 0.85

p = 6, gα = 0.087, Laplace p(γ | y)
N(0, 2) 0.87 0.07 0.06 0.01
AN(0, 2,−0.5) 0.07 0.86 0.01 0.07
L(0, 2) 0.13 0.01 0.79 0.07
AL(0, 2,−0.5) 0.01 0.13 0.01 0.85

Table 3S: Simulation study for p = 6. Posterior probability of the 4 error distributions under ϑ = 2,
θ = (0, 0.5, 1, 1.5, . . . , 0), n = 100, ρij = 0.5.
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Truth Average p(γp+1, γp+2 | y)
γp+1 = γp+2 = 0 γp+1 = 1, γp+2 = 0 γp+1 = 0, γp+2 = 1 γp+1 = γp+2 = 0

p = 101, ϑ = 1
N(0, 2) 0.91 0.01 0.08 0.00
AN(0, 2,−0.5) 0.03 0.86 0.00 0.11
L(0, 2) 0.15 0.01 0.83 0.02
AL(0, 2,−0.5) 0.00 0.13 0.01 0.86

p = 101, ϑ = 2
N(0, 2) 0.89 0.01 0.10 0.00
AN(0, 2,−0.5) 0.02 0.89 0.00 0.09
L(0, 2) 0.15 0.01 0.82 0.02
AL(0, 2,−0.5) 0.00 0.16 0.01 0.83

p = 501, ϑ = 1
N(0, 2) 0.85 0.00 0.14 0.00
AN(0, 2,−0.5) 0.01 0.85 0.01 0.14
L(0, 2) 0.18 0.00 0.80 0.02
AL(0, 2,−0.5) 0.00 0.15 0.00 0.84

p = 501, ϑ = 2
N(0, 2) 0.83 0.00 0.16 0.00
AN(0, 2,−0.5) 0.00 0.87 0.00 0.12
L(0, 2) 0.19 0.00 0.79 0.01
AL(0, 2,−0.5) 0.00 0.22 0.00 0.77

Table 4S: Simulation study for p = 101, 501. Posterior probability of the 4 error distributions under
gα = 0.357, θ = (0, 0.5, 1, 1.5, . . . , 0), n = 100, ρij = 0.5. Laplace approximation to p(y | γ) was
used.
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p = 100 p = 500
p(γ0 | y) p(γ̂ = γ0) FP TP p(γ0 | y) p(γ̂ = γ0) FP TP

Truly ε ∼ N(0, 1)
Normal 0.46 0.63 0.1 2.7 0.26 0.37 0.2 2.4
Two-piece Normal 0.43 0.63 0.2 2.7 0.24 0.38 0.3 2.4
Laplace 0.26 0.42 0.5 2.6 0.12 0.19 0.8 2.3
Two-piece Laplace 0.23 0.39 0.7 2.6 0.12 0.21 0.9 2.3
Inferred 0.45 0.62 0.2 2.7 0.25 0.37 0.2 2.4
LASSO-LS 0.00 12.4 3.0 0.00 20.4 2.9
LASSO-LAD 0.00 10.2 2.9 0.00 18.7 2.6
LASSO-QR 0.00 10.2 2.9 0.00 18.7 2.6
SCAD 0.07 4.2 2.9 0.01 7.3 2.8

Truly ε ∼ AN(0, 1,−0.5)
Normal 0.38 0.55 0.2 2.6 0.21 0.34 0.5 2.4
Two-piece Normal 0.59 0.73 0.1 2.8 0.40 0.55 0.4 2.6
Laplace 0.20 0.35 0.7 2.5 0.07 0.14 1.2 2.4
Two-piece Laplace 0.33 0.48 0.5 2.7 0.18 0.32 1.1 2.5
Inferred 0.57 0.72 0.1 2.8 0.38 0.52 0.4 2.6
LASSO-LS 0.00 12.4 3.0 0.00 21.9 2.9
LASSO-LAD 0.00 9.8 2.8 0.00 18.1 2.6
LASSO-QR 0.00 9.0 2.9 0.00 15.1 2.7
SCAD 0.07 4.0 2.9 0.03 7.3 2.8

Truly ε ∼ L(0, 1)
Normal 0.11 0.14 0.3 2.0 0.03 0.02 0.6 1.6
Two-piece Normal 0.11 0.15 0.3 2.1 0.04 0.04 1.1 1.7
Laplace 0.29 0.38 0.2 2.4 0.13 0.19 0.4 2.0
Two-piece Laplace 0.28 0.35 0.3 2.4 0.12 0.18 0.5 2.0
Inferred 0.28 0.38 0.2 2.4 0.12 0.18 0.4 2.0
LASSO-LS 0.00 11.3 2.8 0.00 21.4 2.5
LASSO-LAD 0.01 9.7 2.8 0.00 17.8 2.5
LASSO-QR 0.01 9.7 2.8 0.00 17.8 2.5
SCAD 0.02 5.0 2.7 0.00 9.0 2.4

Truly ε ∼ AL(0,−0.5)
Normal 0.07 0.10 0.4 1.9 0.02 0.02 1.1 1.5
Two-piece Normal 0.21 0.27 0.2 2.2 0.11 0.15 0.3 2.0
Laplace 0.16 0.19 0.4 2.1 0.05 0.07 0.7 1.8
Two-piece Laplace 0.43 0.51 0.2 2.5 0.27 0.34 0.4 2.3
Inferred 0.41 0.48 0.2 2.5 0.25 0.33 0.4 2.2
LASSO-LS 0.00 11.6 2.8 0.00 20.1 2.5
LASSO-LAD 0.00 9.9 2.7 0.00 17.5 2.3
LASSO-QR 0.00 9.0 2.8 0.00 15.2 2.5
SCAD 0.01 5.2 2.6 0.01 9.4 2.3

Table 5S: Simulation results under ϑ = 1. γ0: true predictors. γ̂: selected variables. CC: number
of correctly classified variables (

∑p
j=1 I(γ̂j = γ0j)). FP: number of false positives; TP: number of

true positives. LASSO-LAD and LASSO-QR are equivalent when α = 0
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p = 100 p = 500
p(γ0 | y) p(γ̂ = γ0) FP TP p(γ0 | y) p(γ̂ = γ0) FP TP

Truly ε ∼ N(0, 1)
Normal 0.01 0.01 0.4 1.2 0.00 0.00 0.8 0.9
Two-piece Normal 0.01 0.01 0.5 1.2 0.00 0.00 0.9 0.8
Laplace 0.00 0.00 0.7 1.1 0.00 0.00 1.0 0.8
Two-piece Laplace 0.00 0.01 0.8 1.1 0.00 0.00 1.1 0.8
Inferred 0.01 0.01 0.5 1.2 0.00 0.00 0.7 0.9
LASSO-LS 0.00 11.9 2.5 0.00 18.0 2.0
LASSO-LAD 0.00 8.9 2.0 0.00 15.6 1.4
LASSO-QR 0.00 8.9 2.0 0.00 15.6 1.4
SCAD 0.00 6.3 2.3 0.01 10.4 1.8

Truly ε ∼ AN(0, 1,−0.5)
Normal 0.00 0.00 0.5 1.2 0.00 0.00 0.7 0.9
Two-piece Normal 0.01 0.01 0.4 1.4 0.00 0.01 0.7 1.1
Laplace 0.00 0.00 0.9 1.0 0.00 0.00 1.4 0.7
Two-piece Laplace 0.01 0.01 0.7 1.2 0.00 0.00 1.5 1.0
Inferred 0.01 0.01 0.4 1.4 0.00 0.01 0.9 1.0
LASSO-LS 0.00 11.0 2.4 0.00 19.4 1.9
LASSO-LAD 0.00 8.6 1.8 0.00 15.3 1.4
LASSO-QR 0.00 8.1 2.1 0.00 12.8 1.5
SCAD 0.00 6.1 2.1 0.00 10.1 1.8

Truly ε ∼ L(0, 1)
Normal 0.01 0.01 0.4 1.3 0.00 0.00 0.8 0.9
Two-piece Normal 0.01 0.01 0.5 1.3 0.00 0.00 0.9 1.0
Laplace 0.05 0.06 0.4 1.7 0.01 0.01 0.7 1.2
Two-piece Laplace 0.05 0.07 0.4 1.7 0.01 0.01 0.8 1.2
Inferred 0.04 0.04 0.3 1.7 0.01 0.01 0.7 1.2
LASSO-LS 0.00 10.8 2.5 0.00 20.4 2.0
LASSO-LAD 0.01 9.3 2.5 0.00 17.1 2.0
LASSO-QR 0.01 9.3 2.5 0.00 17.1 2.0
SCAD 0.00 5.9 2.2 0.00 10.3 1.8

Truly ε ∼ AL(0,−0.5)
Normal 0.00 0.00 0.5 1.1 0.00 0.00 0.9 0.8
Two-piece Normal 0.02 0.01 0.4 1.5 0.01 0.01 0.6 1.2
Laplace 0.02 0.01 0.6 1.3 0.00 0.01 0.8 1.0
Two-piece Laplace 0.09 0.12 0.3 1.9 0.04 0.05 0.7 1.5
Inferred 0.09 0.10 0.3 1.8 0.04 0.05 0.6 1.4
LASSO-LS 0.00 10.9 2.3 0.00 18.0 1.8
LASSO-LAD 0.00 9.4 2.3 0.00 15.6 1.7
LASSO-QR 0.00 8.3 2.5 0.00 14.0 2.0
SCAD 0.01 5.7 2.1 0.00 10.2 1.6

Table 6S: Simulation results under ϑ = 2. γ0: true predictors. γ̂: selected variables. CC: number
of correctly classified variables (

∑p
j=1 I(γ̂j = γ0j)). FP: number of false positives; TP: number of

true positives. LASSO-LAD and LASSO-QR are equivalent when α = 0
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Truth Average p(γp+1, γp+2 | y)
γp+1 = γp+2 = 0 γp+1 = 1, γp+2 = 0 γp+1 = 0, γp+2 = 1 γp+1 = γp+2 = 0

N(0, ϑi) 0.000 0.000 0.914 0.086
AN(0, ϑi,−0.5) 0.000 0.003 0.096 0.901

L(0, ϑi) 0.000 0.000 0.906 0.094
AL(0, ϑi,−0.5) 0.000 0.000 0.053 0.947

Table 7S: Inference on the error distribution under the p = 6 simulation and heteroskedastic
ϑi ∝ ex

T
i θ errors
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P (γ2 = 1 | y) P (γ3 = 1 | y) P (γ4 = 1 | y) P (γ5 = 1 | y) P (γ6 = 1 | y)
q = 0.05 0.425 0.834 0.961 0.017 0.015
q = 0.25 0.751 0.950 0.996 0.016 0.015
q = 0.5 0.796 0.970 0.999 0.020 0.016
q = 0.75 0.769 0.969 0.999 0.016 0.012
q = 0.95 0.473 0.912 0.987 0.016 0.016

Table 8S: Average marginal P (γj = 1 | y) at multiple quantiles q = 0.05, 0.25, 0.5, 0.75, 0.95 (i.e.
conditioning on asymmetric Laplace errors with fixed α = 2q − 1) under the p = 6 simulation and
heteroskedastic εi ∼ N(0, ϑi), ϑi ∝ ex

T
i θ errors. Simulation truth is θ = (0, 0.5, 1, 1.5, 0, 0)
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TP FP
Zellner, Normal errors 2.8 21.3
pMOM, Normal errors 3.0 12.0
pMOM, inferred errors 2.8 10.5
peMOM, Normal errors 1.9 2.9

Table 9S: Number of true and false positives in non-id example with 0.5 probability of degenerate
(yi, xi) = (0, . . . , 0). p = n = 50, θ∗ = (0.1, 0.1, 0.1, 0.1, 0.1, 0, . . . , 0), ϑ∗ = 2
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Gene symbol Normal Inferred
C6orf226 1.000 1.000
ECH1 1.000 1.000

CSF2RA 1.000 1.000
RRP1B 0.944 0.999
FBXL19 0.993 0.658
MTMR1 0.183 0.467
SLC35B4 0.209 0.332

RAB3GAP2 0.007 0.040

Table 10S: Six genes with largest p(γj = 1 | y) in the DLD dataset under assumed normality and
inferred error distribution.
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α = −0.5
Model P (γ | y)

C6orf226, ECH1, CSF2RA, FBXL19, RRP1B 0.384
SLC35B4, C6orf226, ECH1, CSF2RA, RRP1B 0.349

SLC35B4, C6orf226, MTMR1, ECH1, CSF2RA, RRP1B 0.127
C6orf226, MTMR1, ECH1, CSF2RA, FBXL19, RRP1B 0.049

C6orf226, MTMR1, RAB3GAP2, ECH1, CSF2RA, RRP1B 0.023
α = 0

Model P (γ | y)
C6orf226, MTMR1, ECH1, CSF2RA, FBXL19, RRP1B 0.454

C6orf226, ECH1, CSF2RA, FBXL19, RRP1B 0.258
SLC35B4, C6orf226, MTMR1, ECH1, CSF2RA, RRP1B 0.108

SLC35B4, C6orf226, ECH1, CSF2RA, RRP1B 0.061
C6orf226, MTMR1, RAB3GAP2, ECH1, CSF2RA, RRP1B 0.016

α = 0.5
Model P (γ | y)

C6orf226, ECH1, CSF2RA, FBXL19, RRP1B 0.399
SLC35B4, C6orf226, ECH1, CSF2RA, RRP1B 0.359

SLC35B4, C6orf226, MTMR1, ECH1, CSF2RA, RRP1B 0.120
C6orf226, MTMR1, ECH1, CSF2RA, FBXL19, RRP1B 0.051

SLC35B4, C6orf226, RAB3GAP2, ECH1, CSF2RA, RRP1B 0.008

Table 11S: DLD data. Top 5 models when conditioning on asymmetric Laplace residuals and fixed
α = −0.5, 0, 0.5
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