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Summary
Wedescribe some simple techniques for investigating two key assumptions of the self-controlled
case series (SCCS) method, namely that events do not influence subsequent exposures, and that
events do not influence the length of observation periods. For each assumption we propose
some simple tests based on the standard SCCS model, along with associated graphical displays.
The methods also enable the user to investigate the robustness of the results obtained using
the standard SCCS model to failure of assumptions. The proposed methods are investigated by
simulations, and applied to data onmeasles, mumps and rubella vaccine, and antipsychotics.
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1 INTRODUCTION
The self-controlled case series (or SCCS) method is used to investigate the potential association between an exposure and an acute adverse event
of interest. (1, 2, 3, 4) In this method, estimation is conditional on the total number of events observed for each individual over a pre-defined period
of observation. In consequence, only cases (that is, individuals who have experienced at least one event) are included in the analysis, and all time-
invariant confounders that act multiplicatively on the baseline incidence are automatically controlled. The method has proved to be particularly
useful for investigating adverse events following vaccination (5) or infection, and is increasingly being used in other areas of pharmacoepidemiology,
(6) notably when there is concern about confounding. (7)
Unlikemanyothermore traditional analysismethods, such as cohort and case-controlmethods, the SCCSmethodmakes use of information after

the acute adverse event of interest. In order for the SCCS method to produce unbiased estimates of the association between exposure and event,
two assumptions are required: that occurrence of an event does not influence subsequent exposures, and that it does not influence the end of the
period of observation. In pharmacoepidemiology, an eventmay alter subsequent exposure if it is a contra-indication to treatment, so no exposure is
possible after the event. Conversely, an event may increase post-event exposure if a medication exposure is prescribed as a direct consequence of
the event; for example, such a situation might arise if the events were falls and the exposures were a pain-relief medication that may be prescribed
after a painful fall. The assumption that events do not influence the period observed might be violated if the adverse event carries substantial
mortality, as in the case of stroke or myocardial infarction, so the event date and observation end date are not always independent. (8) Note that
the timing of mortality unrelated to the adverse event is independent of the event time and does not violate SCCSmodel assumptions.
These two assumptions are required because the SCCSmethod conditions on the exposure history throughout the observation period for each

case, and on that observation period. In particular, this may involve conditioning on exposures and observation time after an event: this feature
distinguishes the SCCSmethod frommost othermethods used in epidemiology, including the case-crossovermethod, (7, 9) an alternative case-only
method.



2 Whitaker ET AL

The assumption that exposures should not depend on prior events is equivalent to requiring that the exposure should be external, or exogenous
(10); this equivalence was previously discussed. (3) The assumption that observation periods should not depend on events is a type of non-
informative censoring assumption: if it fails, then the end of observationmay carry information about event times. However, unlike the censoring of
the outcome event usually encountered in survival analysis, (10) censoring here is of the planned end of observation, after an event has occurred.
These assumptions relate specifically to the event process, the exposure process and the observation process, and are quite separate from issues

of confounding by additional variables. Time-invariantmultiplicative confounders factor out of the SCCS likelihood, and are thus adjusted automat-
ically. Time-varying confounders, (11) on the other hand, can affect the results obtained in SCCS studies, and need to be included in themodel along
with age or calendar time. However, this is not the issue considered in the present paper.
Variants of the SCCSmethod have been proposed for situations in which either of the two assumptions described above is violated. (12, 13, 14)

However, it would also be useful to have simple methods of analysis to identify when the assumptions are violated, and whether results obtained
using the standardmethod of analysis are likely to be robust to such violations.
In this paper we propose some simple sensitivity analyses to check these assumptions, and to investigate the robustness of the results to their

failure. The methods we propose are all based on the original standard SCCSmethod, (1, 2) so are straightforward to apply: they can be used prior
to trying more complex elaborations of the method designed to cater for circumstances in which the assumptions do not hold. (12, 13, 14)We also
highlight some graphical tools to display salient features of the data.
In Section 2 we present the key features of the SCCSmethod, including the SCCS likelihood. In Section 3 we discuss the assumption that events

do not influence subsequent exposures. In Section 4, we discuss the assumption that events do not influence the observation period. In Section 5
we present an evaluation of the proposed methods by simulation. Section 6 contains some applications to real data followed by final remarks in
Section 7.

2 THE SCCSMETHOD
Suppose that individual i in a given cohort is followed up during an observation period (ai, bi], for the occurrence of an event of interest. Individual i
may experience ni ≥ 0 events over this observation period. Individual imay also experience exposures: at time t ∈ (ai, bi], the exposure history at
t is xti . In the simplest standard SCCSmodel, (1, 2) xti includes a single categorical exposure function on (ai, t] taking levels k, k = 0 corresponding
to the unexposed reference level and k = 1, 2, ..,K corresponding to risk levels following the onset of exposure(s). This may be represented by a
time-varying factor xi(t). We let xi = x

bi
i denote the exposure history up to the end of observation, bi. The event rate is λi(t|xti).

Over the observation period, individual i’s event rate ismodified by age (or calendar time or othermeasured temporal factors), exposure history,
and fixed factors specific to the individual.We assume that these influences are captured by the followingmultiplicative incidencemodel:

λi(t|xti) = φiψ(t) exp{xi(t)T β}.

Here φi represents the combined effect of individual-specific factors, ψ(t) is the effect of age (or time), assumed to be common to all individuals in
the cohort, and xi(t) is a vector of exposures at age (or time) t derived from xti . The focus of inference is the vector parameter β, which is the log
relative incidence associated with exposure.
So far we have defined a cohort model to represent the event rate. The SCCSmethod bases estimation of β on a likelihood that involves only the

caseswithin that cohort, that is, those individuals that experience one ormore events during the observation period. Suppose that there areN such
cases. To avoid a proliferation of indices, we re-use i and label the cases i = 1, . . . , N . Case imight experience ni ≥ 1 events, so the total number
of events isM =

∑N
i=1 ni. The ni events for case i occur at times tij , j = 1, . . . , ni in (ai, bi].

The SCCS likelihood is then
L =

N∏
i=1

∏ni
j=1 ψ(tij) exp{xi(tij)

T β}( ∫ bi
ai
ψ(t) exp{xi(t)T β}dt

)ni
.

Note that the individual-specific term φi has factored out: the method adjusts automatically for time-invariant random and fixed effects that act
multiplicatively on the event rate. The SCCS likelihoodmay be derived from amodel for the underlying cohort by conditioning, for each case, on the
observation period (ai, bi], the exposure historyxi up to bi, and the number of eventsni in the observation period. Themethod is also valid for non-
recurrent events (so ni = 1), in the limit where the φi → 0, which in practice requires events to be uncommon: this is a rare disease assumption.
Further details of this derivation have been given previously. (1, 3)
Several modelling approaches are available to represent the age (or time) effect ψ(t). For simplicity, we shall refer to the ψ(t) as age effects

fromnowon, thoughψ(t) could alternatively represent calendar time, typically used to capture seasonal variation, or time since first diagnosis. The
simplest models agewith piecewise constant functions, (1) which we refer to as the standard SCCSmodel. Alternatives include the semiparametric
model where ψ(t) is left unspecified, (3) fractional polynomial methods in which age (or time) effects are piecewise constant but smoothed by
fractional polynomials, (15) and fully smoothed spline-based models in which age (or time) is represented by a linear combination of M-splines.
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(16, 18) Additionally, alternative methods are available for modelling the exposure effects using splines. (17, 18) However, the methods proposed
in this paper are based on the standard SCCS model with piecewise constant functions representing both age and exposure. An example of an
individuals observation period split into age and exposure groups as in a standard SCCS set up is shown in figure 1 .

biai

age groups

exposure risk periods

FIGURE 1 Example standard SCCS observation period for one case with two exposures and four age groups.

For the parameter β to retain the same interpretation as in the cohort model, two key assumptions are required, namely that the observation
period (ai, bi] and the exposure history xi are unaffected by the occurrence and timing of events. These are non-trivial assumptions, specific to the
SCCSmethod.We consider them in turn in the following sections.

3 EVENT-DEPENDENT EXPOSURES
The impact of event-dependent exposures on the log relative incidence parameter β is predictable. If occurrence of an event increases the chance
of a subsequent exposure, we would expect β to be biased downward. Conversely, if occurrence of an event reduces the chance of a subsequent
exposure, β would be biased upwards. (12) Situations like this commonly arise: for example, the adverse event may be a contra-indication to the
exposure, occurrence of an adverse event may result in delayed vaccination; or a period of hospitalizationmay alter the treatment regime.

3.1 A test for event-dependent exposures
Suppose that the impact of an event on the exposure process occurs in a time interval of duration τ after the event. Then, if events precipitate
exposures, we would expect an excess of exposures in the interval (t, t + τ ] where t is the time of event. Equivalently, we would expect an excess
of events in the interval [v − τ, v)where v is the time of the exposure onset. Similarly, if events inhibit exposures in an interval of length τ after the
event, wewould expect a dearth of exposures in (t, t+ τ ], and equivalently a dearth of events in [v − τ, v).
This can easily be tested by extending the SCCS model to include a pre-exposure ‘risk’ period of duration τ prior to each exposure. Overlaps

with other risk intervals can be dealt with either by giving precedence to the most recently started risk period, or by giving precedence to the pre-
exposure risk period, or by treating the overlap as a new risk periodwith its own parameter. The SCCSmodel is fitted in the usual way, with an extra
parameter θ for the log relative incidence in the pre-exposure period.
In certain circumstances, the parameter θ has a direct interpretation as the log relative incidence of exposure in a time interval of duration τ after

an event. This has been elucidated previously. (3) Briefly, when events are rare so that the probability of two events occurring within a time interval
of duration τ is small, the SCCS likelihood incorporating the effect of event-dependent exposures is approximately

L '
N∏
i=1

∏ni
j=1 ψ

∗(tij) exp{xi(tij)T β + zi(tij)θ}( ∫ bi
ai
ψ∗(t) exp{xi(t)T β + zi(t)}dt

)ni
.

where zi(t) is the number of exposures in (t, t+ τ), andψ∗(t) = ψ(t)when θ = 0.When τ is small, the number of exposures in an interval of length
τ is typically 0 or 1. Then the covariate zi(t) is equivalent to specifying a pre-exposure ‘risk’ period of length τ . Thus, at least for small values τ , the
parameter θ can be interpreted as the log relative incidence of an exposure in an interval τ after an event.

3.2 Graphical representations
We highlight several graphs to explore event-dependence of exposures, the first of which has been used by several authors. (19, 20) This plots the
distribution of the interval tij − vik between exposure and event times, for each combination of events j and exposures k within case i, where
j = 1, . . . , ni, k = 1, . . . ,mi, and i = 1, . . . , N . Thus, this is a histogramof the values tij − vik , whichwe refer to as the exposure-centered interval
plot. Positive values correspond to events after an exposure, negative values to events before an exposure. Only cases in individuals with at least
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one exposure are included in this graph. If multiple exposures need to be differentiated – as may be the case with different doses of a vaccine – this
can be achieved by different shadings on the same exposure-centered interval plot, or by using separate plots for the different exposures. If a peak
or trough in events prior to exposure is apparent, the presence of short-term event-dependent exposures is indicated.
The observation periods and ages at exposure typically vary between cases. Consequently, the numbers of exposed events under observation

can vary substantially in different parts of the interval plot. Therefore a further plot, indicating the total number under observation at each time,
may help interpretation. Since an event time for case i can take any value in (ai, bi], the interval tij − vik can take any value in (ai − vik, bi − vik].
Let Iik(t) be the indicator function for the interval (ai − vik, bi − vik], taking the value 1 if t ∈ (ai − vik, bi − vik] and 0 otherwise. Then let

S(t) =
N∑
i=1

mi∑
k=1

ni × Iik(t).

Now plot S(t) against t. For each t, S(t) is the total number of exposed events under observation at time t after exposure, given the constraints
imposed by the observation periods and exposures. The shape of the plot represents the expected shape of the exposure-centered interval plot
in the absence of any age effect, exposure effect and event-dependent exposure. It may be useful to help interpret whether there is an excess or
dearth of events pre-exposure in the exposure-centered interval plot.
Another useful graph is obtained by plotting the estimated parameter θ against τ , for a range of values of τ , τ1 < · · · < τk . This plot, with confi-

dence limits on the estimates, helps to indicate the extent of possible event-dependence of exposures. To visualise the robustness of the estimates
of the parameter of primary interest,β, the estimated values ofβ obtainedwith pre-exposure periods using different values of τ can also be plotted.

4 EVENT-DEPENDENTOBSERVATIONPERIODS
Unlike event-dependent exposures, the direction of bias if observation periods are event-dependent is generally not easily predictable. (14) We
consider the situation inwhich observationmay be terminated early, early termination being potentially influenced by the event history. To this end
we need somemore notation.
Let b∗i denote the planned end of observation of individual i, as determined by age and calendar time boundaries on case ascertainment. The

actual end of observation, bi, may be less than b∗i . Thus, bi = min{bi, ci}, where ci denotes the age at which the time line of individual i is censored.
If ci < b∗i , then bi = ci and the planned observation period (ai, b∗i ] is censored. If ci ≥ b∗i , then bi = b∗i and the observation period is uncensored.
Censoring could be due to death when events are potentially fatal, or to any other event-dependent cause of end of follow-up. Event-dependent
observation periods arise when the occurrence of an event increases the probability of censoring sufficiently that ci < b∗i . This may (or may not)
induce bias in the parameter β of primary interest. In contrast, end of follow-up due to causes independent of the event will not bias β.

4.1 A robustness test for event-dependent observation periods when censoring information is available
Suppose first that, for each individual i, we have information on both the actual end of observation bi and onwhether observation was censored or
not, that is, on the indicator Ii = I(ci < b∗i ), equal to 1 if ci < b∗i and to 0 otherwise. Thus cases can be classified in two groups: those observed over
the full period (ai, b∗i ] (we shall refer to these as the uncensored cases) and those censored at ci < b∗i (the censored cases). If almost all cases are
in the first category, the intensity of event-dependent censoring is low and can be ignored, and a standard SCCS analysis will be valid. This suggests,
heuristically, a simple sensitivity analysis: compare the results of a standard analysis on all cases, with the results of a standard SCCS analysis on
just the fully observed cases. (4) If the estimates of the exposure-associated parameters β differ, event-dependent observation periods may be a
problem.
More formally, this may be investigated by fitting, first, the standard SCCS model to all cases, and then fitting a model including the interaction

of the exposure effect with the indicator variable Ii. The interaction between the censoring indicator and age is not included, because censoring
may affect age effects evenwhen there is little impact on exposure effects, which are of primary interest. The twomodels are nested, so a likelihood
ratio test can be used to test the interaction. If significant, this suggests that event-dependence of observation periods may affect the estimated
exposure effect.More importantly, however, the estimates of the exposure effect in the two groups can be compared to assess robustness to failure
of the assumption that observation periods are not event-dependent.
A justification of this procedure is as follows. Let hti denote the event history of individual i to time t in (ai, bi]. Let µ(s|hsi ) denote the censoring

hazard at time s, given the event history in (ai, bi] to time s. At age bi the event history for individual i ishbii = {ti1, . . . , tini}. If there are no events
by age s, then hsi = ∅ and µ(s|hsi ) = µ(s) does not depend on the event history in (ai, bi]. The adjusted SCCS likelihood contribution of case imay
bewritten

Li =

∏ni
j=1

[
ψ(tij) exp{xi(tij)T β}

]
µ(bi|hbii )IiS(bi|hbii )∫ bi

ai

∫ bi
s1
· · ·
∫ bi
sni

∏ni
j=1

[
ψ(sj) exp{xi(sj)T β}

]
µ(bi|s1, . . . , sni )

IiS(bi|s1, . . . , sni )dsni . . . ds2ds1
,
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where

S(y|hy) = exp
(
−

y∫
ai

µ(s|hs)ds
)
,

and
S(y|s1, . . . , sni ) = exp

(
−

y∫
ai

µ(s|{s1, . . . , sni} ∩ (ai, s])ds
)
.

In general, the likelihood contributionLi differs according to the value of Ii. For example, if case i is censored, so that Ii = 1, thenLi involves the
term µ(bi|hbii ) in its numerator, but not if case i is uncensored (Ii = 0). This difference is what the proposed test is designed to pick up. On the
other hand, if µ(s|hsi ) = µ(s) for all s in (ai, bi], then the difference between the contributions for censored and uncensored cases disappears. The
denominator ofLi becomes

bi∫
ai

bi∫
s1

· · ·
bi∫

sni

ni∏
j=1

[
ψ(sj) exp{xi(sj)T β}

]
µ(bi|s1, . . . , sni )

IiS(bi|s1, . . . , sni )dsni . . . ds2ds1

= (ni!)
−1 ×

( bi∫
a1

ψ(s) exp{xi(s)T β}ds
)ni

and the likelihood contribution reduces to that of a standard SCCS likelihoodwith age effectψ(t) and exposure effect β.
If the estimates of β differ substantially between censored and uncensored cases, or according to whether censored cases are included or

excluded, more detailed investigations and an adjusted SCCSmethodmay be required. (14)

4.2 A test for the identification of event-dependent observation periods when censoring information is not
available
Suppose now that information on whether or not the observation period has been censored is unavailable. In this case, I(ci < bi) is not known,
and the test described above cannot be done – and nor can an adjusted SCCS method be applied. (14) However, another approach can be used to
identify if event-dependent observation periods are present.
If events precipitate the end of the observation period, wewould expect to observe a higher than usual rate of occurrence of events in the period

just before the end of observation. A simple test for this is to include an additional, terminal risk period, of duration κ say, just before the end of
observation. Thus, we include in themodel the additional, terminal risk period (bi − κ, bi]. It makes sense to try different values of κ.
Note however that the presence of event-dependent censoring of observation periods does not imply that the exposure parameter of interest,

β, is biased. Thus, suppose that
µ(t|hti) = µ(t) + ‖hti‖θ,

where ‖hti‖ is the number of events for individual i that have occurred prior to t in (ai, bi]. In other words, the censoring hazard is µ(t) before the
first event, and µ(t) + kθ between the kth and (k + 1)th events. It then follows that

µ(bi|hbii ) = µ(bi|s1, . . . , sni ) = µi(bi) + niθ,

S(bi|hbii ) = e−nibiθ ×
ni∏
j=1

eθtij × exp
(
−

bi∫
ai

µ(s)ds
)
,

and
S(bi|s1, . . . , sni ) = e−nibiθ ×

ni∏
j=1

eθsj × exp
(
−

bi∫
ai

µ(s)ds
)
.

The adjusted SCCS likelihood contribution for case i is then identical whether the case is censored or uncensored, and equal to
Li =

∏ni
j=1 ψ

∗(tij) exp{xi(tij)T β}( ∫ bi
ai
ψ∗(s) exp{xi(s)T β}ds

)ni
,

where ψ∗(t) = ψ(t) exp(θt). ThusLi is a standard SCCS likelihood contribution and will yield unbiased estimates of β, though the estimate of the
age effect is likely to be seriously upwardly biased (if θ > 0), especially at older ages.
This example serves to emphasize the key point that failure of the assumption that observation periods are event-dependent does not imply

that the exposure effect is biased. The test proposed in this section is therefore likely to be useful only for ruling out the presence of bias due to
event-dependent observation periods.
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4.3 Graphical representations
A key graphical display when it is suspected that event-dependent censoring of observation periods is present is the histogram of the times from
event to end of observation. Ideally, two histograms can be produced according to whether observation times are censored. Thus, a first histogram
could include just the values ci − ti for individuals with censored time of observation (that is, ci < bi), and a second could include just the values
b∗i − ti for individualswith ci > b∗i . If a spike is apparent close to zero in the censored data histogram, the presence of event-dependent observation
periods is indicated. Alternatively, in the absence of censoring information, the histogram could include all values bi−ti, though this ismore difficult
to interpret. Such histograms indicate nothing about the robustness of estimates.

5 SIMULATIONS
We investigate the various methods proposed to test whether exposures depend on events and whether events affect the end of observation
periods.

5.1 Event-dependent exposures
5.1.1 Method
To investigate the performance of the tests proposed to identify existence of event dependent exposures, we began by fixing the number of cases to
100 and 200, with each case having a fixed start and end of observation period at 0 and 300 days. Ages at start of exposurewere then simulated from
a uniform distribution. All exposure-related risk periods were assigned a length of 10 days. The numbers of exposures per case considered were 1
and 5 (generated so as not to overlap).
Each individual’s observation period was divided into intervals based on the one or five exposure risk periods and age group cut points at 100

and 200 days. Then on the basis of the given true age and exposure related relative incidence values the interval in which the event occurred was
determined using a multinomial distribution. Three different true exposure-related relative incidence values of 1, 2, and 5 were investigated. Age
effects in the three age groupshad relative incidence values of1,2 and3. An age at eventwithin the intervalwhere the event occurredwas simulated
fromauniformdistribution.Once a complete data setwas obtained thisway, it was thenmodified in threeways, to delay, remove and add exposures
after the event day, each with probability 0.5 and 0.9. For the delay scenario, exposures beginning within an interval of τ = 15 and τ = 30 after the
event were delayed by τ days. Also a delay scenario that we label τ =permanent was defined, where all exposures beginning between the event
day and the end of the observation period were delayed by 15 days. For the remove exposures scenario, exposures beginning within an interval τ
after the event day were removed. Values of τ = 15, τ = 30, were assigned and also τ =permanent, where any exposure beginning between the
event day and the end of observation period were removed. For the add exposures scenario, the complete data were modified by adding exactly
one extra exposure in an interval of length τ from age at event. The new exposure start times were generated from a uniform distribution in the
interval between age at event and age at event + τ , where τ = 15, τ = 30 and τ=permanent (i.e the interval between age at event and age at end of
observation period).
Both the complete and modified data were then analyzed by SCCS models with and without pre-exposure periods of length 15, 30 and 60 days.

The threeways of handling overlapping risk periods explained in 3.1were applied. To recap, thesewere to give the exposure risk period precedence,
to give the pre-exposure period precedence and to create a new period where overlaps occur.

5.1.2 Results and evaluation
The bias in the log exposure related relative incidences β due to event-dependent exposures was calculated. The bias was defined as the difference
between themedian(β̂) obtainedwhen amodel without pre-exposure risk periodswas fitted to themodified data (where events affect subsequent
exposures) and median(β̂) for the complete unmodified data (the unbiased gold standard), where (β̂) is the log of the estimated exposure related
relative incidence. The performances of the proposed tests to identify event-dependent exposures were evaluated by calculating the power of the
tests. The power was calculated as the proportion of significant pre-exposure relative incidence estimates at the 5% level of significance. The bias
due to event dependent exposures and the power of the tests proposed in Section 3.1 are presented in Table 1 forn = 200, 5 exposures and a true
relative incidence of 2 (similar results were obtained for RI= 1, 5, and slightly reduced power for n = 100 as expected).
As shown in Table 1 , for the complete unmodified data (labeled Prob=0), the power values, as expected, are close to 5% for the methods with

exposure taking precedence and with a new overlap period. However, for the method where pre-exposure takes precedence over exposure risk
period the power values are higher than expected, hence this method cannot be recommended for use. There is little difference between power
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TABLE 1 Simulation results for true exposure relative incidence = 2 and 5 initial exposures per case. The first column gives the true value of τ simulated. The
second column ‘Prob’ gives the probability that exposures were modified following an event (Prob=0 indicates unmodified data). The third column ‘Bias’ gives
the bias of the simulated data. The final 9 columns give the power of the three tests with different ways of handling overlaps: exposure period takes precedence,
pre-exposure period takes precedence, or new overlap period, with different values of τ fitted.

Expo takes precedence Pre-expo takes precedence New overlap period
True τ Prob Bias τ= 15 τ=30 τ=60 τ= 15 τ=30 τ=60 τ= 15 τ=30 τ=60

Delay exposures
0 0 0.05 0.05 0.05 0.08 0.11 0.12 0.05 0.04 0.04

15 0.5 0.003 0.77 0.05 0.05 0.72 0.08 0.11 0.79 0.05 0.04
0.9 0.007 0.97 0.06 0.05 0.97 0.06 0.11 0.97 0.06 0.04

30 0.5 0.019 0.75 0.86 0.05 0.7 0.81 0.1 0.77 0.87 0.05
0.9 0.036 0.97 0.97 0.06 0.97 0.97 0.08 0.97 0.97 0.06

Perm 0.5 0.049 0.74 0.57 0.32 0.69 0.44 0.17 0.76 0.62 0.38
(shift 15) 0.9 0.063 0.97 0.95 0.68 0.97 0.92 0.45 0.97 0.98 0.78

Remove exposures
0 0 0.04 0.06 0.05 0.07 0.11 0.12 0.05 0.05 0.05

15 0.5 0.029 0.72 0.6 0.36 0.68 0.44 0.19 0.72 0.59 0.36
0.9 0.062 0.93 1 0.83 0.94 0.99 0.56 0.93 1 0.83

30 0.5 0.063 0.7 0.83 0.64 0.65 0.76 0.53 0.7 0.83 0.64
0.9 0.127 0.93 0.93 1 0.94 0.94 1 0.93 0.93 1

Perm 0.5 0.334 0.39 0.58 0.63 0.32 0.47 0.54 0.39 0.58 0.65
0.9 0.866 0.93 0.93 0.93 0.93 0.94 0.94 0.93 0.93 0.93

Add exposure
0 0 0.04 0.04 0.04 0.07 0.11 0.11 0.04 0.04 0.05

15 0.5 -0.107 1 1 0.99 1 1 1 1 1 1
0.9 -0.196 1 1 0.99 1 1 0.99 1 1 1

30 0.5 -0.103 0.99 1 0.99 1 1 1 1 1 1
0.9 -0.189 1 1 0.99 1 1 0.99 1 1 1

Perm 0.5 -0.116 0.53 0.57 0.59 0.81 0.87 0.87 0.71 0.77 0.82
0.9 -0.216 0.94 0.97 0.99 0.99 1 1 0.99 1 1

achieved when exposure takes precedence and when a new overlap period is given, except when an exposure is added at any time after the event
(labeled perm), where themethodwith a new overlap period has higher power. Hence, we favor themethodwith a new overlap period.
The absolute bias is very small when exposures are delayed by true τ = 15, 30 days (within a period of τ days) and the test has only the nominal

5% power when the fitted τ is longer than the true τ (as the total number of exposures will be exactly the same, only timings are different). A
permanent delay represents a shift of any post-event exposure by 15 days, hence it is unsurprising that power drops when fitted τ = 60.
When exposures are removed the absolute bias increases noticeably as true τ increases, asmore exposures are removed (multiple exposures per

case can be removed in this scenario). Power is consistently high when exposures are removed with probability 0.9. When exposures are removed
with probability 0.5, power achieved is highest when the fitted τ is well matched to the true τ .
When exposures are added the test has very high power to detect a difference. Power is below 1when an exposure is added at any time (perm),

and increases with increasing τ fitted.
Todemonstrate howbias is affectedby including a pre-exposure risk period in anSCCSmodel,we also calculated thebias as a differencebetween

the median(β̂) estimate obtained with a pre-exposure risk period included in the model for the modified data and the median(β̂) estimate for the
complete unmodified data (with no pre-exposure period). These results are presented in Table 2 .
From Table 2 it can be seen that, as expected, when events reduce the probability of being exposed (delay, remove) the exposure relative inci-

dence is overestimated. Similarly, when events increase the chance of being exposed the direction of bias, as expected, is downwards. Inclusion of
a pre-exposure risk periods usually adjusts the bias in the correct direction, but there are exceptions and sometimes the bias is over-corrected.
For example, when exposures are added with probability 0.9, almost all events land in the pre-exposure period and the way overlaps are dealt with
makes a considerable difference.When exposure takes precedence, estimates can becomemassively over-corrected, andwhen pre-exposure takes
precedence, bias can become considerably worse. A better balance is struck when a new period is assigned. Hence, overall, we favor the method
where a new period is given for overlaps.
When exposures are added or removed at any time after the event (‘Perm’), it may not, in theory, be possible to achieve complete bias correction

(an alternative SCCS method should be used). The results for the new overlap period method are consistent with this, achieving only partial bias
correction when exposures are added or removed permanently (true τ = Perm). Bias correction ought to be optimized when the fitted τ matches
the period affected well. The total period affected is τ + 10, as the length of the exposure risk period is always 10. Since these exact values were
not fitted this is a little unclear from the results, and how the slight bias created in age effects by the addition, removal or shift of exposures is
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TABLE 2 Simulation results for true exposure relative incidence = 2 and 5 initial exposures per case. The third column labelled ‘Nopreexp’ gives the bias
without any pre-exposure period fitted. The final 9 columns give the bias in estimating exposure relative incidence with pre-exposure risk periods for the three
different ways of handling overlaps and values of τ fitted.

Expo takes precedence Pre-expo takes precedence New overlap period
True τ Prob Nopreexp τ= 15 τ=30 τ=60 τ= 15 τ=30 τ=60 τ= 15 τ=30 τ=60

0 0 0.006 0.007 0.012 0.011 0.019 0.018 0.005 0.004 0.004
Delay exposures

15 0.5 0.003 -0.147 -0.012 -0.004 -0.078 0 0.014 -0.08 -0.003 0.001
0.9 0.007 -0.252 -0.019 -0.002 -0.127 -0.003 0.016 -0.135 -0.002 0.004

30 0.5 0.019 -0.125 -0.29 0.004 -0.051 -0.116 0.014 -0.055 -0.104 0.019
0.9 0.036 -0.209 -0.491 0.009 -0.08 -0.181 0.021 -0.09 -0.189 0.033

Perm 0.5 0.049 -0.096 -0.104 -0.107 -0.032 -0.008 0.006 -0.029 -0.012 0.015
(Shift 15) 0.9 0.063 -0.185 -0.209 -0.207 -0.066 -0.012 -0.002 -0.07 -0.039 0.004

Remove exposures
15 0.5 0.029 -0.107 -0.127 -0.124 -0.042 -0.042 -0.04 -0.044 -0.048 -0.051

0.9 0.062 -0.2 -0.237 -0.235 -0.067 -0.082 -0.081 -0.067 -0.086 -0.093
30 0.5 0.063 -0.066 -0.207 -0.212 -0.002 -0.03 -0.02 -0.003 -0.034 -0.031

0.9 0.127 -0.119 -0.386 -0.397 0.01 -0.056 -0.05 0.011 -0.056 -0.057
Perm 0.5 0.334 0.268 0.189 0.067 0.301 0.297 0.291 0.301 0.292 0.285

0.9 0.866 0.677 0.463 0.084 0.799 0.78 0.717 0.799 0.78 0.717
Add exposure

15 0.5 -0.107 0.588 0.586 0.592 -0.056 -0.036 -0.009 0.16 0.042 -0.027
0.9 -0.196 2.114 2.11 2.149 -0.16 -0.089 -0.039 0.245 0.032 -0.087

30 0.5 -0.103 0.171 0.586 0.586 -0.071 -0.037 -0.011 0.018 0.048 -0.023
0.9 -0.189 0.376 2.106 2.133 -0.151 -0.084 -0.049 0.003 0.039 -0.081

Perm 0.5 -0.116 0.003 0.086 0.226 -0.099 -0.089 -0.101 -0.06 - 0.06 -0.061
0.9 -0.216 0.015 0.195 0.625 -0.2 -0.203 -0.199 -0.124 -0.118 -0.118

also unclear. Considering the results with the new overlap period for the add and delay scenarios, fitting τ too long (e.g. fitting τ = 60 when true
τ = 15, 30) always under-corrects the bias, while fitting τ too short always over-corrects the bias. For the remove scenario, biases tend to be
over-corrected. Over-correction is less of a concern for the delay and remove scenarios, than for the add scenario where estimates are biased
upwards.
As shown in Table 2 , the convention used to handle overlaps between risk periods and pre-exposure periods can have a substantial impact on

the results, the best being achieved when an additional parameter is used for such overlaps. In many applications, there is at most one exposure,
and so the issue of overlaps is much less important âĂŞ in fact it only arises when exposures are added after an event. Table 3 shows the bias in
such circumstances. As expected, if each case experiences at most one exposure, the convention used for overlaps is immaterial when post-event
exposures are removed or delayed.

5.2 Event-dependent observation periods
5.2.1 Method
Toexplore the tests for event-dependent observationperiods simulationswere set upwith100and200 cases, allwith observationperiods of length
300 days and age group cut offs at 100 and 200 days. Only one exposure risk period was generated. Firstly the timings of the exposure risk periods
were simulated, five scenarios were considered: (1) a uniform distribution of exposure start times over the observation period with exposure risk
periods lasting 30 days (exceptwhere they overlap the ends), (2) a linear increase in exposure start times over the observation periodwith exposure
risk periods lasting 30 days, (3) a linear decrease in exposure start times over the observation periodwith exposure risk periods lasting 30 days, (4) a
linear increase in exposure start timeswith indefinite exposure risk periods that endwith the end of observation, and (5) all exposure start times set
at 0with a linear decrease in exposure end times over the observation period.We understand that bias from event-dependent observation periods
will tend to be in one direction when trends in the timing of exposures over the observation period are present and the last two scenarios where
all exposures are loaded at the end or at the beginning of the observation periodwere aimed at generating considerable bias. (Conversely exposure
risk periods evenly spread over the observation period should give rise to minimal bias, this will be especially true if there are many intermittent
exposures hence we did not consider multiple exposures for these simulations.)
Event days were simulated as for event-dependent exposures with exposure-related relative incidences exp(β) = 1, 2 and 5, and age-related

relative incidences exp(α) = 3,2 and 1, in the first, second and last age groups respectively. This decreasing age effect was chosen to create more
bias; if events tend to occur toward the beginning of the study period then there is a greater proportion of observation period to lose if observation
periods are event-dependent.
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TABLE3 Simulation results for true exposure relative incidence =2 and1 initial exposure per case. The third column labelled ‘Nopreexp’ gives the biaswithout
any pre-exposure period fitted. The final 9 columns give the bias in estimating exposure relative incidence with pre-exposure risk periods for the three different
ways of handling overlaps and values of τ fitted.

Expo takes precedence Pre-expo takes precedence New overlap period
True τ Prob Nopreexp τ= 15 τ=30 τ=60 τ= 15 τ=30 τ=60 τ= 15 τ=30 τ=60

0 0 -0.006 -0.009 -0.014 -0.006 -0.009 -0.014 -0.006 -0.009 -0.014
Delay exposure

15 0.5 -0.001 -0.046 -0.007 -0.008 -0.046 -0.007 -0.008 -0.046 -0.007 -0.008
0.9 -0.002 -0.057 -0.011 -0.01 -0.057 -0.011 -0.01 -0.057 -0.011 -0.01

30 0.5 0 -0.041 -0.069 -0.01 -0.041 -0.069 -0.01 -0.041 -0.069 -0.01
0.9 -0.001 -0.055 -0.114 -0.014 -0.055 -0.114 -0.014 -0.055 -0.114 -0.014

Perm 0.5 -0.014 -0.064 -0.057 -0.051 -0.064 -0.057 -0.051 -0.064 -0.057 -0.051
(Shift 15) 0.9 -0.021 -0.077 -0.083 -0.084 -0.077 -0.083 -0.084 -0.077 -0.083 -0.084

Remove exposure
15 0.5 0.011 -0.002 -0.007 -0.008 -0.002 -0.007 -0.008 -0.002 -0.007 -0.008

0.9 0.05 -0.002 -0.007 -0.012 -0.002 -0.007 -0.012 -0.002 -0.007 -0.012
30 0.5 0.045 0.015 -0.006 -0.01 0.015 -0.006 -0.01 0.015 -0.006 -0.01

0.9 0.098 0.05 -0.006 -0.016 0.05 -0.006 -0.016 0.05 -0.006 -0.016
Perm 0.5 0.295 0.268 0.245 0.188 0.268 0.245 0.188 0.268 0.245 0.188

0.9 0.574 0.527 0.468 0.355 0.527 0.468 0.355 0.527 0.468 0.355
Add exposure

15 0.5 -0.459 0.362 0.348 0.347 -0.313 -0.289 -0.231 -0.012 -0.033 -0.057
0.9 -0.722 1.766 1.776 1.903 -0.609 -0.522 -0.32 -0.137 -0.231 -0.314

30 0.5 -0.446 -0.124 0.358 0.344 -0.386 -0.281 -0.234 -0.248 -0.012 -0.043
0.9 -0.705 -0.096 1.761 1.827 -0.643 -0.542 -0.387 -0.436 -0.165 -0.265

Perm 0.5 -0.502 -0.367 -0.29 -0.179 -0.436 -0.428 -0.418 -0.408 -0.36 -0.294
0.9 -0.781 -0.53 -0.361 -0.068 -0.677 -0.657 -0.672 -0.617 -0.533 -0.42

SCCS models were fit to this complete data, estimates for β̂ gained may be considered the gold standard, allowing for random variation. Then a
‘censoring day’ (or early end of observation period)was simulated for each individual. Censoring dayswere generated under two scenarios: uniform
between the event day and the planned end of observation, or at a linearly increasing rate after the event day up to a maximum of 30 days. The
observation period ended at the censoring day for fixed proportions of randomly selected individuals: 80%, 50%, 20%, 10% or 5%. SCCS models
were fit to these five partially censored data sets. The test for robustness described in subsection 4.1 was applied. The test for identification of
event-dependent observation periods in 4.2 was also applied, with κ set at 15, 30, 60 and 90 days.

5.2.2 Results and evaluation
To evaluate the robustness test, we compared the bias, defined as the median(β̂) for the partially censored data - median(β̂) for the complete data,
with the power, defined as the percentage of test rejections at the 5% level of significance. Given the many simulation scenarios (60), results were
summarized graphically in Figure 2 . The first thing to note on Figure 2 is the differing x-axis scales, which shows the increasing extent of the bias
as the proportion of censored individuals increases. The results for 5% of observation periods ending early are not shown, but as expected, the bias
was minimal. The model including the interaction term sometimes ran into computational problems when only 5 cases (5% censored, n = 100)
belonged to the censored group, for example when none of the 5 cases experienced an exposure due to censoring. There are close to the expected
5% test rejections (at the 5% level of significance) when the bias is very close to 0, and the percentage of test rejections rises as the observed
bias moves further from 0. A null simulation, for which cases were labelled as censored when in fact observation periods were not censored, also
produced around 5% power (results not shown). The bias and number of test rejections depended heavily on the scenario simulated, for example
greater power was achievedwith a sample size of n = 200, in comparison with n = 100. Overall, the robustness test appears to work as intended.
Figure 2 also demonstrates how trends in exposure over the observation period influence the direction of the bias: if individuals tend to expe-

rience exposure more toward the end of the observation period, relative incidences will be biased upward; whereas if cases tend to experience
exposuremore toward thebeginningof theobservationperiod, relative incidences (expβ)will bebiased toward0. Themost extremebiases resulted
when exposure risk periods always ran to the end of observation (biased upward) or always ran from 0 (biased downward).
The test for identification of event-dependent observation periods was evaluated by plotting the power against the proportion of censored

cases, defined as the percentage of test rejections at the 5% level of significance. Results for the scenarios where the censoring day was uniformly
distributed between the event day and 300 (the planned end of observation) are given in Figure 3 . The proportion of test rejections rises as the
proportion censored rises, thus the test does appear to reasonably identify when event-dependent observation periods are present, even for this
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FIGURE 2 Test for robustness: power plotted against bias. The four panels show results for different proportions of individuals censored.

scenario, where the timing of censoring is random. For this scenario, the test has greatest power when κ = 15 or κ = 30. Note that the uncensored
observation period length was 300, so these values of κ correspond to 5% and 10% of the length of the original observation period.
For the scenarioswhere observation periodswere censoredwithin 30 days of the event (results not shown), unsurprisingly, the test had greatest

power when κ = 30. The power was 100% (or very close) when the proportion of cases censored was 20% or more. Even with 5% censoring, the
power ranged from 16% to 50%.
We also looked into whether the test for identification of event-dependent observation periods had any power to detect bias, evaluating results

as for the test for robustness. We concluded that this test should not be used to detect bias and it’s use should be limited to identifying whether or
not event-dependent observation periods are present in the absence of this information from the data source.

6 EXAMPLES
Wepresent two examples. The first relates to potential event-dependent exposures, the second to event-dependent observation periods.

6.1 Measles, mumps and rubella vaccine and blood disorders
These data relate to the potential association between receipt of measles, mumps and rubella (MMR) vaccine and the occurrence of idiopathic
thrombocytopenic purpura (ITP), a bleeding disorder, in children. The studywas previously reportedwith a slightly different data set from that used
here. (19) The events are admissions to hospital for ITP.
The observation period included all days between 1stOctober 1991 and 30th September 1994, and between days 366 and 730 of age, inclusive.

The data comprise 44 events in 35 children: five children were admitted twice and one child was admitted five times for ITPwithin the observation
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FIGURE3 Test for identification of event-dependent observation periods: proportion censoredplotted against power. The four panels show results
for different lengths of κ. Only results with censoring days uniformly distributed between the event day and 300 are shown.

period. Time is measured in discrete days. To allow for variation in the incidence of ITP with age, the analysis uses six age groups: 366-426 days,
427-487 days, 488-548 days, 549-609 days, 610-670 days and 671-730 days of age. In the present analysis, we shall use a single post-MMR risk
period: 0-42 days afterMMR; thus the day of vaccination (day 0 afterMMR) is included in the risk period. This SCCSmodel gives a relative incidence
of 3.23, with 95% confidence interval (1.53, 6.79). Thus there is evidence of a positive association betweenMMRand ITP in the six weeks following
vaccination.
We now investigate the possibility that a hospital admission for ITP might affect subsequent MMR vaccination. While there is little reason to

suspect that MMR vaccination would never take place after an ITP admission, it is possible – indeed likely – that such an admission would delay
subsequent vaccination. The first step is to plot the intervals between MMR vaccination and ITP onset. This is shown in Figure 4 . The panel on
the left is drawn using 25-day intervals. There is a clear peak (14 events) in the 50-day period just after 0; in no other 25-day period does the
count exceed 4. The panel on the right shows the number of exposed cases under observation. Note that a case with k events is counted k times
so that at interval 0, the number under observation is always the number of events in exposed cases; 35 events in 31 exposed cases here (9 events
arose in 4 unexposed cases). Taken together, the two graphs do not indicate an evident shortage of events before MMR, which is what would be
expected if occurrence of an event were to substantially reduce the likelihood of MMR vaccination. However, there are no events in the 25-day
period immediately before MMR, which might indicate a short-term delay in MMR vaccination following an event. On the other hand, such gaps
occur at other intervals as well.
This may be investigated further by fitting SCCS models with pre-exposure periods of length τ , for various values of τ . We tried τ =

14, 30, 61, 122, 183 days – that is, 2 weeks, and 1, 2, 4 and 6months. The results are shown in Figure 5 . The panel on the left shows that the relative
incidence associatedwith the pre-exposure ‘risk’ intervals are less than 1, indicating that occurrence of an event inhibits subsequentMMRvaccina-
tion during that interval. For τ = 14 and 30 days, the relative incidence is zero as there are no events in those intervals. For τ = 61 it is 0.497, with
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FIGURE 4 Left: number of events in exposed cases by time sinceMMR. Right: number of exposed cases under observation by time sinceMMR.

95%CI (0.133, 1.86). Similarly, all subsequently confidence intervals include 1. The panel on the right of Figure 5 show the relative incidence asso-
ciated with MMR vaccination (in the risk period 0–42 days post MMR), when pre-MMR ‘risk’ intervals are included. This suggests that the results
are robust to inclusion of a pre-MMR ‘risk’ interval.When τ = 0wehave the original relative incidence of 3.23. As τ increases, the relative incidence
declines sightly. For τ = 61 days, it is 2.72, 95%CI (1.22, 6.09). The confidence intervals all lie wholly above 1.
These findings provide some evidence that hospital admission for ITP delays subsequent MMR vaccination for some weeks. The pre-exposure

effect is statistically significant for τ = 30 days (likelihood ratio test statistic 6.11 on 1 degree of freedom, p = 0.013) but not for the other values of
τ . Most importantly, it does not have amajor impact on the results, or on the conclusion thatMMR is positively associated with ITP.

6.2 Antipsychotics and stroke
These data relate to the potential association between receipt of antipsychotics and stroke. The original study carried out used a standard self-
controlled case series analysis. (21) The original analysis found a significant association between antipsychotics and stroke in both patients with
prior dementia (relative incidence 3.50, 95%CI 2.97 to 4.12), and patientswithout prior dementia (RI 1.41, 95%CI 1.29 to 1.55). The datawere later
reanalysed to take account of potential event-dependent observation periods owing to the high short-term mortality associated with stroke. (14)
The reanalysis confirmed the strong positive association in patients with dementia, but found little evidence of an association in patients without
dementia.
The adjusted SCCSmethod is relatively complex, (14) so it is desirable to apply a suitable sensitivity analysis to decidewhether it is required.We

applied themethods of the present paper, using the same exposure categories: time on antipsychotics as themain exposure risk period, followed by
two washout periods of 91 days each (the original paper used five 35-day washout periods). The original paper used 5-year age bands; a finer age
categorization was used with the adjusted SCCS method. (14) Here we also used 5-year age bands, but with grouped ages below 45 and above 95
to avoid sparseness.
Of the 6789 cases aged over 20 years used in the analysis, 5218 were censored and 1571 were observed right up until the nominal end of

observation. Figure 6 shows the histograms of the time from event to actual end of observation in the two groups. The two histograms differ
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markedly. Thus, the histogram on the left shows a very sharp mode for intervals less than 0.5 years. These are likely to be due to stroke-induced
deaths, and suggest that event-dependent observation periodsmaywell be a problem in these data.
We therefore classified cases according to whether the observation periods were censored or not, and fitted the standard SCCS model and a

model with an interaction between the censoring indicator and the exposure variable (the interaction model). In all models we assumed separate
age and exposure effects for caseswith andwithout prior dementia, but (for simplicity) combined all types of antipsychotics. LetE andAdenote the
exposure and age factors,D the 2-level factor for prior dementia andC the 2-level factor for presence of censoring. The standardmodel, expressed
as amodel formula using the usual notation, (22) includes the terms

D.E +A+A.D

and the interactionmodel includes the terms
D.E + C.E +D.C.E +A+A.D.
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Themain effects ofC andD are not included as they are time-invariant and drop out of the likelihood. In R code, themodel formulae are entered as
D/E + A ∗D and (D ∗ C)/E + A ∗D, respectively. In addition, the model includes an offset term for the length of the interval, and an individual
factor term.
The likelihood ratio test for the interaction model compared to the standard model gave a test statistic of 37.20 on 6 degrees of freedom, p <

0.0001. This suggests that there is significant event-dependence of observation periods. More importantly, the exposure effects for censored and
uncensored cases are very different in cases with no prior dementia, as shown in Table 4 .

TABLE 4 Relative incidence (RI) and 95% confidence interval (CI) in exposed period by dementia group andmodel

No dementia With dementia
RI 95%CI RI 95%CI

Standardmodel
1.42 (1.30, 1.56) 3.42 (2.90, 4.03)

Interactionmodel
Censored 1.63 (1.47, 1.81) 3.47 (2.91, 4.12)
Uncensored 0.91 (0.75, 1.11) 3.11 (1.92, 5.04)
Model with terminal ‘risk’ period 1.16 (1.06, 1.27) 2.97 (2.53, 3.50)

The results from theuncensored group suggest that the significant effect of antipsychotics on stroke in caseswithout dementia obtainedwith the
standardmodelmay be spurious, as the significance of the effect disappears in this group. The association in caseswith dementia, however, appears
genuine: the estimates are virtually the same in censored and uncensored cases. These observations accord with the full analysis undertaken using
amore complexmodel. (14)
We also did separate analyses in patients with andwithout dementia. The likelihood ratio test for the interaction versus standardmodel in cases

with no prior dementia gave a test statistic of 32.39 on 3 degrees of freedom, p < 0.0001. In caseswith prior dementia, the test statistic was 4.95 on
3 degrees of freedom, p = 0.175. Thus, in the group with dementia, there is only marginal evidence of event-dependent observation periods, with
little impact on the exposure estimates, unlike the groupwithout dementia.
Finally, we also fitted a terminal ‘risk’ period of κ = 183 days. This choice was based on the sharp peak in intervals from event to end of observa-

tion under 6 months in Figure 6 . The parameter θ was estimated to be 3.23, 95% CI (3.04, 3.44), and unsurprisingly the effect is highly significant.
Table4 also shows thevaluesof the relative incidences associatedwith antipsychotics in patientswith andwithoutdementia in this analysis; similar
results were obtainedwith κ = 365 days. They suggest that including a terminal ‘risk’ period reduces the bias, but does not eliminate it.

7 FINAL REMARKS
We have presented some simple methods of analysis to test the validity of key assumptions of the self-controlled case series model, along with
some related graphics. Thesemethods canbe implementedwithin the standard SCCS framework,without recourse tomore complex adjusted SCCS
methods. (12, 13, 14) The methods can be thought of as sensitivity analyses. It is important to note that, even if the assumptions are found to be
questionable, the estimates of the parameters of interest may exhibit very little bias. Thus, our methods enable the researcher to check the likely
robustness of the results obtained by standard SCCS analyses.When estimates are found not to be robust to failure of assumptions, more complex
analyses may be required. (12, 13, 14)
The proposed test for event-dependence of exposures generally has good power in the moderate sample sizes investigated. Fitting a pre-

exposure risk period generally reduces the bias caused by event-dependence of exposures, provided that overlaps between risk periods and the
pre-exposure risk periods are allocated additional parameters. When occurrence of an event leads to additional exposures, other methods of
handling overlaps can seriously destabilize the estimates. Our results suggest that when events delay subsequent exposures by a short time, the
correction methods described here may not be worth applying as they may overcorrect the bias. Such scenarios, in particular, are not likely to be
so simple in practice and require further investigation. For example, the situation where vaccination is delayed due to the adverse event is one
such scenario, but delays will be of varying length and longer delays may be better represented by the ‘remove exposures’ scenario for which the
correction reduces bias.
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When events have a lasting impact on subsequent exposures, as when the event is a contra-indication to treatment, fitting a pre-exposure risk

period will not correct the bias. To do so, it is necessary to use an adjusted SCCS method, (12, 13) or consider using an alternative self-controlled
design. (7) However, it is usually knownwhether the event inhibits or precipitates further exposures, and so the direction of the bias is known.
We investigated two tests for event-dependence of observation periods. Both tests were found to have acceptable power with the moderate

sample sizes investigated. The robustness test displayed a very clear relationship between power and the amount of bias resulting from event-
dependence, and is therefore much more useful than the second test proposed, in which only the presence of event-dependence, rather than the
degree of bias itmay induce,may be detected. In circumstanceswhere event-dependence of observation periodsmay arise, it is important to obtain
the information on censoring required by the robustness test.
As with all sensitivity analyses, it is difficult to provide general guidance as to when results are to be deemed insufficiently robust to failure of

assumptions. This will usually depend on context: if the substantive conclusions are unchanged, then the results may be deemed to be robust.
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