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Abstract
Background: The ability of external investigators to reproduce published scientific
findings is critical for the evaluation and validation of biomedical research by the wider
community. However, a substantial proportion of health research using electronic
health records (EHR), data collected and generated during clinical care, is potentially
not reproducible mainly due to the fact that the implementation details of most data
preprocessing, cleaning, phenotyping and analysis approaches are not systematically
made available or shared. With the complexity, volume and variety of electronic health
record data sources made available for research steadily increasing, it is critical to ensure
that scientific findings from EHR data are reproducible and replicable by researchers.
Reporting guidelines, such as RECORD and STROBE, have set a solid foundation by
recommending a series of items for researchers to include in their research outputs.
Researchers however often lack the technical tools and methodological approaches to
actuate such recommendations in an efficient and sustainable manner.

Results: In this paper, we review and propose a series of methods and tools utilized in
adjunct scientific disciplines that can be used to enhance the reproducibility of
research using electronic health records and enable researchers to report analytical
approaches in a transparent manner. Specifically, we discuss the adoption of scientific
software engineering principles and best-practices such as test-driven development,
source code revision control systems, literate programming and the standardization
and re-use of common data management and analytical approaches.

Conclusion: The adoption of such approaches will enable scientists to systematically
document and share EHR analytical workflows and increase the reproducibility of
biomedical research using such complex data sources.

Keywords: Electronic health records, Reproducibility, Transparency, Biomedical
research

Background
Electronic health records (EHR), data generated and captured during routine clinical care
encounters across health care settings, have been recognized as an invaluable research
resource [1, 2]. Increasingly, EHR are linked with genotypic data to enable precision
medicine by examining how genetic variants influence susceptibility towards disease,
validate drug targets, or modify drug response at a scale previous unobtainable. EHR
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research resources such as CALIBER [3], the Precision Medicine Cohort Initiative [4],
the UK Biobank [5] and the eMERGE Network [6] enable researchers to investigate dis-
ease aetiology and prognosis [7–14] at unprecedented phenotypic depth and breadth
by recreating the longitudinal patient pathway spanning genome to phenome and birth
to death.
The replication of scientific findings using independent investigators, methods and

data is the cornerstone of how published scientific claims are evaluated and val-
idated by the wider scientific community [15–17]. Academic publications arguably
have three main goals: a) to disseminate scientific findings, b) to persuade the com-
munity that the findings are robust and were achieved through rigorous scientific
approaches and c) to provide a detailed description of the experimental approaches
utilized. Peer-reviewed manuscripts should, in theory, describe the methods used by
researchers in a sufficient level of detail as to enable other researchers to replicate
the study.
A recent literature review [18] of research studies using national structured and linked

UK EHR illustrated how a substantial proportion of studies potentially suffer from poor
reproducibility: only 5.1% of studies published the entire set of controlled clinical termi-
nology terms required to implement the EHR-derived phenotypes used. Similar patterns
were discovered in a review of over 400 biomedical research studies with only a single
study making a full protocol available [17]. With the volume and breadth of scientific
output using EHR data steadily increasing [19], this nonreproducibility could potentially
hinder the pace of translation of research findings.
No common agreed and accepted definition of reproducibility currently exists across

scientific disciplines. Semantically similarly concepts such as “replicability” and “duplica-
tion” are often used interchangeably [20]. In this work, we define reproducibility as the
the provision of sufficient methodological detail about a study so it could, in theory or
in actuality, be exactly repeated by investigators. In the context of EHR research, this
would involve the provision of a detailed (and ideally machine-readable) study protocol,
information on the phenotyping algorithms used to defined study exposures, outcomes,
covariates and populations and a detailed description of the analytical and statistical
methods used along with details on the software and the programming code. This in turn,
will enable independent investigators to apply the same methods on a similar dataset and
attempt to obtain consistent results (a process often referred to as results replicability).

Electronic health record analytical challenges

EHR data can broadly be classified as: a) structured (e.g. recorded using controlled clinical
terminologies such as as the International Classification of Diseases—10th revision (ICD-
10) or Systematic Nomenclature of Medicine – Clinical Terms (SNOMED-CT [21]), b)
semi-structured (e.g. laboratory results and prescription information that follow a loose
pattern that varies across data sources), c) unstructured (e.g. clinical text [22]) and d)
binary (e.g. medical imaging files). Despite the numerous advantages EHR data offer,
researchers face significant challenges (Fig. 1).
A primary use-case of EHR data is to accurately extract phenotypic information (i.e. dis-

ease onset and progression), a process known as phenotyping, for use in observational and
interventional research [5]. Phenotyping however is a challenging and time-consuming
process as raw EHR data require a significant amount of preprocessing before they can
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Fig. 1 Analytical challenges associated with using big health data for biomedical research span the
methodological, ethical, analytical and translational domains

be transformed into research-ready data for statistical analyses [23]. The context and
purpose in which data get captured (e.g. clinical care, audit, billing, insurance claims),
diagnostic granularity (e.g. post-coordination in SNOMED-CT vs. fixed-depth in ICD)
and data quality vary across sources [24].
EHR data preprocessing however, is not performed in a reproducible and systematic

manner and as a result, findings from research studies using EHR data potentially suffer
from poor reproducibility. Phenotyping algorithms defining study exposures, covariates
and clinical outcomes are not routinely provided in research publications or are provided
as a monolithic list of diagnostic terms but often miss critical implementation informa-
tion. For example, a phenotyping algorithm using diagnostic terms in hospital care should
consider whether a term is marked as the primary cause of admission or not but this
important distinction is often ommited from manuscripts. Common data manipulations
(Fig. 2) on EHR datasets are repeated ad nauseam by researchers but neither program-
matic code nor data are systematically shared. Due to the lack of established processes for
sharing and cross-validating algorithms, their robustness, generalizability and accuracy
requires a significant amount of effort to assess [25]. In genomics for example, cross-
referencing annotations of data produced by related technologies is deemed essential
[26] (e.g. reference Single Nucleotide Polymorphism (SNP) id numbers, genome annota-
tions), but such approaches are not widely adopted or used in biomedical research using
EHR data.

Electronic health records research reproducibility

Significant progress has been achieved through the establishment of initiatives such
as REporting of studies Conducted using Observational Routinely-collected Data
(RECORD) [27, 28] and the STrengthening the Reporting of OBservational studies in
Epidemiology (STROBE) [29, 30]. RECORD and STROBE are international guidelines
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Fig. 2 A generic EHR analytical pipeline can generally be split into several smaller distinct stages which are
often executed in an iterative fashion: 1) raw EHR data are pre-processed, linked and transformed into
statistically-analyzable datasets 2) data undergo statistical analyses and 3) scientific findings are presented
and disseminated in terms of data, figures, narrative and tables in scientific output

for studies conducted using routinely-collected health data. The guidelines focus on the
systematic reporting of implementation details along the EHR analytical pipeline: from
study population definitions and data linkage to algorithm details for study exposures,
covariates and clinical outcomes (Table 1). Often however, researchers lack the tools
and methods to actuate the principles behind these guidelines and fail to integrate them
into their analytical process from the start but rather try to incorporate them before
publication in an ad hoc fashion. This lack of familiarity with best practices around
scientific software development tools and methods prevents researchers from creating,
maintaining and sharing high-quality EHR analytical pipelines enabling other researchers
to reproduce their research.
We argue that EHR research can greatly benefit from adopting practices used in

adjunct scientific disciplines such as computer science or computational biology in

Table 1 REporting of studies Conducted using Observational Routinely collected Data (RECORD)
recommendations on reporting details around EHR algorithms used to define the study populations,
exposures and outcomes

RECORD guideline principle Description

id number

6.1 The methods of study population selection (such as codes or algorithms used to
identify subjects) should be listed in detail.

7.1 A complete list of codes and algorithms used to classify exposures, outcomes,
confounders, and effect modifiers should be provided.

13.1 Describe in detail the selection of the persons included in the study (i.e., study
population selection) including filtering based on data quality, data availability
and linkage.

22.1 Authors should provide information on how to access any supplemental infor-
mation such as the study protocol, raw data or programming code.
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order to reduce the potential irreproducability of research findings using such com-
plex data sources. In this manuscript, we review and identify a series of methods,
tools and approaches used in adjacent quantitative disciplines and make a series of
recommendations on how they can be applied in the context of biomedical research
studies using EHR. These can be used to potentially address the problem of irre-
producibility by enabling researchers to capture, document and publish their ana-
lytical pipelines. Where applicable, we give examples of the described methods and
approaches in R. Adopting best-practices from scientific software development can
enable researchers to produce code that is well-documented, robustly tested and uses
standardized programming conventions which in turn extend its maintainability. The
primary audience of our work is the increasingly expanding cohort of health data sci-
entists: researchers from a diverse set of scientific backgrounds (such as for example
clinicians or statisticians) that have not been exposed to formal training in computer sci-
ence or scientific software development but are increasingly required to create and use
sophisticated tools to analyze the large and complex EHR datasets made available for
research.

Methods and results
We searched published literature, gray literature and Internet resources for established
approaches and methods used in computer science, biomedical informatics, bioinfor-
matics, computational biology, biostatistics, and scientific software engineering. We
evaluated and described the manner in which they can be used for facilitating repro-
ducible research using EHR and address the core challenges associated with this process.
Reproducibility has been identified as a key challenge and a core value of multiple adjunct
scientific disciplines e.g. computer science [31–33] bioinformatics [34], microbiome
research [35], biostatistics [36], neuroimaging [37] and computational biology [38].
We identified and evaluated the following methods and approaches (Table 2):

1. Scientific software engineering principles: modular and object oriented
programming, test-driven development, unit testing, source code revision control;

2. Scalable analytical approaches: standardized analytical methods, standardized
phenotyping algorithms and

3. Literate programming

Scientific software engineering

The nature and complexity of EHR data often requires a unique and diverse set of skills
spanning medical statistics, computer science and informatics, data visualization, and
clinical sciences. Given this diversity, it’s fair to assume that not all researchers processing
and analysing EHR data have received formal training in scientific software development.
For the majority of researchers, unconscious practices can creep into the developed code,
which if never made publicly available, will never be discovered and yet underpin most
published scientific claims. No researcher wants to be put into the position of retract-
ing their manuscript from a journal or having to contact a scientific consortium to ask
they repeat months of analyses due to an error discovered in their analytical code. While
these issues are not unique in EHR research, they are amplified given its multidisciplinary
nature.
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Table 2Methods and approaches that can enable the reproducibility of biomedical research
findings using electronic health records

Method/approach Recommendations

Scientific software engineering principles Create generic functions for common EHR data cleaning and
preprocessing operations which can be shared with the community

Produce functions for defining study exposures, covariates and
clinical outcomes across datasets which can be maintained across
research groups and reused across many research studies

Create modules for logically grouping common EHR operations e.g.
study population definitions or datasourcemanipulation to enable code
maintainability

Create tests for individual functions and modules to ensure the
robustness and correctness of results

Track changes in analytical code and phenotypt definitions using
controlled clinical terminology terms by making use of a source code
revision control system

Use formal software engineering best-practices to document workflows
and data manipulation operations

Standardized analytical approaches Build and distribute libraries for common EHR data manipulation or
statistical analysis and include sufficient detail (e.g. command line
arguments) for all tools used

Produce and annotate machine-readable EHR phenotyping algorithms
that can be systematically curated and reused by the community

Use Digital Object Identifiers (DOIs) for transforming research artifacts
into shareable citable resources and cross-reference from research
output

Deposit research resources (e.g. algorithms, code) in open-access
repositories or software scientific journals and cross-reference from
research output

Virtual machines can potentially be used to encapsulate the data,
operating system, analytical software and algorithms used to generate
a manuscript and where applicable can be made available for others to
reproduce the analytical pipeline.

Literate programming Encapsulate both logic and programming code using literate
programming approaches and tools which ensure logic and underlying
processing code coexist

There is a subtle but prevalent misconception that analytical code does not constitute
software as it’s written for a statistical package (e.g. R [39] or Stata [40]) and not in a
formal programming language (e.g. Python [41] or Java [42]). As a result, the majority
of researchers inadvertently fail to acknowledge or adopt best-practice principles around
scientific software engineering. This could not be further from the truth as, by definition,
code written for transforming raw EHR into research-ready datasets and undertaking sta-
tistical analyses is both complex and sophisticated due to the inherent complexity and
heterogeneity of the data. While not directly a technical solution, facilitating scientists to
obtain up to date training in best practices through training initiatives such as Software
Carpentry [43], can potentially enable them to produce better quality code.
There is no optimal manner in which scientific software can be developed for tack-

ling a particular research question as this is intrinsically an extremely problem-dependent
set of tasks. Adopting scientific software engineering best practices however can provide
EHR researchers with the essential bedrock of producing, curating and sharing high-
quality analytical code for re-use by the scientific community. In general, scientific code
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development can be divided into several different phases which are usually executed and
evaluated in smaller, rapid iterations: planning, coding, testing, debugging, documenta-
tion and analysis. In each of these phases, a number of tools andmethods exist that enable
researchers to manage provenance, readability and usability of their code. We review sev-
eral of the most critical ones: modular programming, test-driven development and source
code revision control in sections below.

Modular and object oriented programming

Adopting a modular programming approach will allow EHR researchers to organize their
code more efficiently and subsequently enable its documentation and re-use, both by
them and other researchers. Modular programming is essentially a software design tech-
nique that emphasizes separating the functionality of a program into smaller, distinct,
independent and interchangeable modules [44]. This translates to splitting code (that is
often produced as a single, large, monolithic file) into several smaller modules that con-
tain similar operations or concepts and that in turn can be stored as independent source
code files. These modules can contain anything from a collection of functions to process
a particular set of data fields (e.g. convert laboratory test measurements from one mea-
surement unit to another) or entire modules dealing with the intricacies of one particular
data source (e.g. extract and rank the causes of hospitalization from administrative data).
Common EHR data transformation or analysis operations (Table 3) can be created

as functions which can then be shared across modules. Defining functions that can be
repeated across different modules significantly reduces the complexity and increases the
maintainability of code. The majority of software applications used in EHR research allow
both the sourcing of external files and libraries. For example, in R, the source command
sources an external R file and the library command loads an external library into the
current namespace. Functions can be easily defined using the function command.
Adjacent to modular programming is the concept of object oriented programming

(OOP) [45]. OOP is a software programming approach based on the concept of objects
which contains both data (attributes) and procedural code (methods) to work on the
data and can interact with other objects. Formal definitions of objects (i.e. available
attributes and methods) are provided by classes and objects themselves are instances of
classes. Central to OOP is the concept of encapsulation which abstracts the data and
methods of an object from other objects which are only allowed to interact with them
through a predefined template called an interface. Interfaces in OOP are a paradigm
which allows the enforcement of certain predefined properties on a particular class
object. Finally, the concept of inheritance allows objects to be organized in a hierarchi-
cal manner where each level defined a more specific object than the parent level and
inherits all the attributes and methods of the parent level. Methods of classes can have
a number of preconditions and postconditions defined i.e. predicates that must always
hold true just before or right after the execution of a piece of code or the execution is
invalidated [46]. Finally, formal software design modelling languages, such as the Uni-
fied Modelling Language (UML), [47] can assist researchers in designing and visualizing
complex software applications and architectures. Furthermore, modelling languages can
be used as a common point of reference and communication across multidisciplinary
EHR research groups as they provide non-technical, unambigious graphical represen-
tations of complex approaches. An example of a very simple UML class diagram is
provided in Fig. 3.
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Table 3 Example of an R function for converting lipid measurements between mmol/L and mg/dL
units

Function arguments (value and units) are validated prior to performing the calculation and an error is raised if incorrect or
missing parameters are supplied

Test-driven development and unit testing

Test-driven development (TDD) is a software development approach where automated
tests are created prior to developing functional code [48]. In addition to testing, TDD
involves writing automated tests of a program’s individual units, a process defined as
unit testing [49]. A unit is the smallest logical component of a larger software application
that can be tested. The majority of tools and languages used in EHR research have some

Fig. 3 Simple example of a Unified Modelling Language (UML) class diagram Class diagrams are static
representations that describe the structure fo a system by showing the system’s classes and the relationships
between them. Classes are represented as boxes with three sections: the first one contains the name of the
class, the second one contains the attributes of the class and the third one contains the methods. Class
diagrams also illustrate the relationships (and their multiplicity) between different classes. In this instance, a
patient can be assigned to a single ward within a hospital whereas a ward can have multiple patients
admitted at any time (depicted as 1..*)
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mechanism to directly facilitate code testing. For example, in Stata code testing can be
implemented using the testcase class in Mata while in SAS [50] unit testing is facilitated
through the FUTS [51] or SASUnit [52] libraries. TDD can enable complex EHR pre-
processing and analytical code to be adequately and thoroughly tested iteratively over the
lifetime of a research project.
Several R libraries exist (e.g. testthat [53], RUnit [54] and svUnit [55]) that enable

researchers to create and execute unit tests. RUnit and svUnit are R implementions of the
widely used JUnit testing framework [56] and contain a set of functions that check calcula-
tions and error situations (Table 4). Such tests can then be integrated within a continuous
integration framework [57], a software development technique that enables the automatic
execution of all tests whenever an underlying change in the source code is made and in a
way ensures that errors are detected earlier. More advanced methods, such as executing
formal software verification methods [58] against a predefined specification can be useful
for larger and more complex projects.

Table 4 Using the RUnit library to perform unit tests for a function converting measurements of
lipids from mmol/L to mg/dL

Combinations of valid, invalid, and missing function parameters are tested and the output returned from the function is examined
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Source code revision control

EHR research invariably generates a substantial amount of programming code across the
entire EHR pipeline. Even minor changes, accidental or intended (e.g. updating a disease
exposure definition), in the code can have large consequences in findings. Given the col-
laborative and iterative nature of EHR research, it is essential for researchers to have the
ability to track changes in disease or study population definitions over time and share the
code used in a transparent manner. The standard solution for tracking the evolution of
code over time is to use a version control system (Table 5) such as Git [59] or subversion
[60]. Version control systems, widely used in software engineering, are applications that
enable the structured tracking of changes to individual text-based files both over time and
across multiple users [61]. Version control also enables branching: the duplication of the
core code for the purpose of parallel development independent of the parent code-base.
Branching enables the isolation of code for the purposes of altering or adding new func-
tionality or implementing different approaches. In the case of phenotyping algorithms,
several branches of the same project may contain alternate implementations of the algo-
rithm with the same core features but slight variations. If only one approach is needed in
the end, the relevant branch can then be merged back into the main working code-base
(Fig. 4). The use of version control systems in EHR research can enable researchers to
keep versioned implementations of exposure, outcomes and phenotype definitions and
document the reasons for any changes over time. Computable versions of phenotyping
algorithms [62] can also be stored within a version control system for the same reasons.
Phenotyping algorithms defining disease cases and controls are often developed iter-

atively and refined when new data become available or changes in the underlying
healthcare process model cause the data generation or capture process to change. In
the CALIBER EHR research platform for example [3], phenotyping algorithms and their
associated metadata are stored and versioned in a private version control system. This
includes the actual SQL code for querying the raw data, the implementation details and
logic of the algorithm, the diagnostic terms and their relative position used and any other
relevant metadata (such as author, date of creation, date of validation) in a bespoke text-
based format. This enables researchers to keep track of changes of definitions at the
desired time granularity and facilitates the collaborative creation of algorithms. Themeta-
data and implementation details are then made available through the CALIBER Data
Portal [63] for other researchers to download and use.

Scalable analytical approaches

Standardized analytical methods

Scientific software is often at first developed behind closed doors and public release
is only considered around or after the time of publication [64]. The standardization of
common analytical approaches and data transformation operations in EHR research will
potentially enable the reproducibility of scientific findings and fuel a sustainable com-
munity around the use of EHR data for research. Adjunct scientific disciplines have
adopted this principle through the creation of large software libraries that contain a
variety of common analytical approaches [65, 66]. For example, Bioconductor [67] was
established in 2001 as an open source software for performing bioinformatics opera-
tions based on R. It serves as a common software platform that enables the development
and implementation of open and accessible tools. Bioconductor promotes high quality
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Table 5 Example of using git to initialize an empty repository and track changes in a versioned file
defining a study cohort

documentation, and enables standard computing and statistical practices to produce
reproducible research. The documentation across sections of each project is clear, accu-
rate and appropriate for users with varying backgrounds on the programming languages
and analytic methods used. There is particular emphasis on programming conventions,
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Fig. 4 Example of an algorithm managed by version control software Example of an algorithm managed by
version control software. The master algorithm version is located on the main development line that is not
on a branch, often called a trunk or master, is in green. An individual refinement branch, currently being
worked on without affecting the main version is in green and is eventually merged with the main
development version [95]

guidance, and version control, all of which greatly benefit from being perfomed in a
standardized manner.
Adopting similar approaches in EHR research can arguably allow researchers to use

and re-use standardized data cleaning, manipulation and analysis approaches. The repro-
ducibility pipelinemay require amore explicit structure where specific analytic workflows
are tied to complete processes illustrating the decision tree from data preparation to data
analysis. The ability to reproduce biomedical research findings depends on the intercon-
nection of stages such as detailing the data generation processes, phenotyping definitions
and justifications, different levels of data access where applicable, specifics on study
design (e.g. matching procedures or sensitivity analyses) and the statistical methods used.
Building generic and re-usable software libraries for EHR data is challenging due to the
complexity and heterogeneity across data sources. While some libraries for manipulating
and analysing EHR data exist [68], these are narrowly focused on specific data sources are
challenging to generalize across other sources, countries or healhcare systems. Building
and curating software libraries following the best practices outlined in this manuscript
and disseminating them with standard scientific output is recommended in order to grow
and sustain a community of tools and methods that researchers can use. Examples such
as Bioconductor can offer inspiration on how to build an active community around these
libraries that will facilitate and accelerate their development, adoption and re-use by the
community.
A key aspect of developing software tools for data processing is estimating the expected

data growth and designing modules and tools accordingly to accommodate future
increases in data. Given the steady increase in size and complexity of EHR data, work-
flow management systems used in bioinformatics such as Galaxy [69], Taverna [70], and
Snakemake [71] can enable the development of scalable approaches and tools in EHR
research. Workflowmanagement systems enable researchers to break down larger mono-
lithic tasks or experiments into a series of small, repeatable, well defined tasks, each
with rigidly defined inputs, run-time parameters, and outputs. This allows researchers to
identify which parts of the workflow are a bottleneck or in some cases which parts could
benefit from pararellization to increase throughput. They also allow the integration of
workload managers and complex queuing mechanisms that can also potentially lead to
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better management of resources and processing throughput [72]. Pipelines can be built to
obtain snapshots of the data, validate using predefined set of rules or for consistency (e.g.
against controlled clinical terminologies) and then transform into research-ready datasets
for statistical analysis. Such pipelines can then potentially be shared and distributed using
container technologies such as Docker [73] or package managers like Conda [74]. Docker
is an open-source platform that uses Linux Containers (LXC) to completely encapsu-
late and make software applications portable. Docker containers require substantially less
computational resources than virtual machine-based solutions and allow users to exe-
cute applications in a fully virtualized environment using any Linux compatible language
(e.g. R, Python, Matlab [75], Octave [76]). Docker libraries can be exported, versioned
and archived, thus ensuring that the programmatic environment will be identical across
compatible platforms.
Limited backwards compatibility can often hinder the reproducibility of previous scien-

tific findings. For example, newer versions of a statistical analysis tool might not directly
support older versions of their proprietary data storage format or an analytical tool might
be compiled using a library that is no longer available in newer versions of an operating
system. These issues can potentially be mitigated through the use of virtualization [77].
Virtual machines (e.g. Oracle VirtualBox [78], VMware [79]) are essentially containers
that can encapsulate a snapshot of the OS, data and analytical pipelines in a single binary
file. This can be done irrespective of the “host” operating system that is being used
and these binary files are compatible across other operating systems. Other researchers
can then use these binary files to replicate the analytical pipeline used for the reported
analysis.

Standardized phenotyping algorithms

No widely accepted approach currently exists for storing the implementation and logic
behind EHR phenotyping algorithms in a machine-readable and transportable format.
The translation from algorithm logic to programming code is performed manually, and
as a result, is prone to errors due to the complexity of the data and potential ambiguity
of algorithms [25]. In their work, Mo and colleagues describe the ideal characteristics of
such a format such as the ability to support logical and temporal rules, relational algebra
operations, integrate with external standardized terminologies and provide a mechanism
for backwards-compatibility [80]. The creation and adoption of computational repre-
sentations of phenotyping algorithms will enable researchers to define and share EHR
algorithms defining exposures, covariates and clinical outcomes and share them in a stan-
dardized manner. Furthermore, machine-readable representations of EHR phenotyping
algorithms will enable their integration with analytical pipelines and will benefit from
many of the approaches outlined in this manuscript such as version control, workflow
systems and standardized analytical libraries [62, 81]. Finally, algorithm implementations
can also be uploaded in open-access repositories [82] or software journals [83] where
they could be assigned a unique Digital Object Identifier (DOI) and become citeable and
cross-referenced in scientific output.

Literate programming

Publishing study data online or in secure repositories alongside the code to preprocess
and analyse it may be possible in some biomedical research domains, but is typically not



Denaxas et al. BioDataMining  (2017) 10:31 Page 14 of 19

an option for EHR research given the strict information governance restrictions and legal
frameworks researchers operate under. Additionally, EHR sources typically contain the
entire patient history and all their interactions with health care settings but only a sub-
set of the original data is used and it is therefore equally important to document and
disseminate the process of data extraction as well as the post-processing and analysis.
Extracting the appropriate dataset for research involves specifying lists of relevant

controlled clinical terminology terms, timing windows for study population and patient
phenotypes, and eligibility criteria. The work of defining the extraction criteria is usually
performed by data managers in conjunction with domain experts such as clinicians. The
algorithm parameters and implementation details are subsequently converted to machine
instructions (e.g. SQL), executed and resulting data are usually exported from a rela-
tional database. Although the rationale behind the extraction process and the machine
readable code should bear equivalent information content, it is extremely difficult for a
human reader to understand the underlying logic and assumptions by reading the code
itself [80]. It is also very challenging to fully reproduce the extraction using only the
human readable instructions of the agreed protocol given the ambiguity of algorithms
and the complexity of the data. Similar challenges exist for the preprocessing of EHR data,
such as the definition of new covariates and clinical outcomes, as well as for the analysis
and post-processing (such as plotting) of the extracted dataset and results.
A simple and time-honoured solution to this challenge is the provision of documenta-

tion alongside the code used for the extraction/preprocessing/analysis of EHR data. This
approach however is often problematic as documentation can often be out-of-date with
regards to the code, might be incomplete as it is often written after the analysis is fin-
ished and for large projects, linking the correct pieces of documentation to the specific
locations in the code can be cumbersome. A potential approach to solving this chal-
lenge is literate programming. The concept of literate programming was introduced by
Donald E Knuth [84] and is not limited to a specific analytical tool or programming lan-
guage. Literate programming is the technique of writing out program logic in a human
language with included (separated by a primitive markup) code snippets and macros. In
practice, both the rational behind the data processing pipeline as well as the process-
ing code itself are authored by the user using an appropriate integrated development
environment (IDE). The resulting plain text document subsequently undergoes two pro-
cesses, the first in which the code itself is executed (often referred to as tangling) and
one in which the formatted documentation is produced (often referred to as weaving).
The result is a well formatted rich text document, for example Hypertext Markup Lan-
guage (HTML), which can often include the output of the executed code (e.g. plots,
summary tables, analysis results) alongside the original code snippets and documentation
(Fig. 5).
The most popular modern day literate programming tool in R is roxygen [85] while

popular report generation packages are Knitr [86] and Sweave [87]. Another widely used
tool is Jupyter [88], which is often used with (but not limited to) Python. For example,
Johnson et al. published all code necessary to reproduce the data description of the
MIMIC-III [89] database in the form of Jupyter notebooks on a GitHub repository [90].
The use of Jupyter notebooks was encouraged, and a specially developed software plat-
form that integrated with notebooks was provided for a datathon using the MIMIC-III
database, rendering all resulting analysis fully reproducible [91]. Most EHR research
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Fig. 5 Example of using the Knitr R package to produce a dynamic report with embedded R code and results
including a plot. Documentation and data processing code chunks are written in plain text in a file that is
processed as RMarkdown. At the top of the file, a series of key: value pair statements in YAML set document
metadata such as the title and the output format. Code chunks are enclosed between ``` characters and
executed when the document is compiled. Parameters such as echo and display can be set to specify
whether the results of executing the code or whether the actual code itself is displayed. Example taken from
http://jupyter.org/

analytical tools support literate programming (Table 6) and its use can greatly facilitate
closing the gap between code and narrative.
Taking the literate programming paradigm ever further, compendia [92] are contain-

ers for distributing and disseminating the different elements that comprise a piece of
computational research. These elements are also fundamental in the concept of liter-
ate programming, however in the case of compendia, the data are also contained in the
output [93].

Conclusion
The challenge of reproducibility in science has been widely recognized and discussed [94].
Scientists using EHR data for biomedical research face a number of significant chal-
lenges which are further amplified due to the complexity and heterogeneity of the data
sources used and the cross-disciplinarity of the field. It is crucial for researchers to

Table 6 Examples of packages and libraries supporting literate programming and report generation
in popular analytical/statistical software packages

Statistical/Analytical tool Relevant packages

R RMarkdown, Knitr, Sweave, Roxygen

Stata MarkDoc, Weaver, Ketchup

Python Jupyter Notebook, Doxygen

Matlab Doxygen (limited)

Octave Doxygen [96]

SAS SASWeave [97], StatRep

http://jupyter.org/
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adopt best-practices across disciplines in order to enable the reproducibility of research
findings using such data. In this manuscript we identify and present a set of princi-
ples, methods and tools from adjunct scientific disciplines that can be utilized to enable
reproducible and transparent biomedical research using EHR. Enabling reproducible
research using EHR is an ongoing process that will greatly benefit the scientific and wider
community.
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Craddock RC, Devenyi GA, et al. Bids apps: Improving ease of use, accessibility, and reproducibility of neuroimaging
data analysis methods. PLoS Comput Biol. 2017;13(3):1005209.

http://dx.doi.org/10.1002/ejhf.709
http://www.recordstatement.org/
http://www.recordstatement.org/
https://www.strobe-statement.org/
https://www.strobe-statement.org/


Denaxas et al. BioDataMining  (2017) 10:31 Page 18 of 19

38. Waltemath D, Adams R, Bergmann FT, Hucka M, Kolpakov F, Miller AK, Moraru II, Nickerson D, Sahle S, Snoep JL,
et al. Reproducible computational biology experiments with sed-ml-the simulation experiment description markup
language. BMC Syst Biol. 2011;5(1):198.

39. The R Project. https://www.r-project.org/. Accessed 5 Apr 2017.
40. StataCorp L, et al. Stata data analysis and statistical software. Spec Ed Release. 2007;10:733.
41. The Python Programming Language. http://www.python.org. Accessed 5 Apr 2017.
42. The Java Programming Language. http://www.java.com. Accessed 5 Apr 2017.
43. Wilson G. Software carpentry: getting scientists to write better code by making themmore productive. Comput Sci

Eng. 2006;8(6):66–9.
44. Parnas DL. On the criteria to be used in decomposing systems into modules. Commun ACM. 1972;15(12):1053–8.
45. Stefik M, Bobrow DG. Object-oriented programming: Themes and variations. AI Mag. 1985;6(4):40.
46. Meyer B. Applying’design by contract’. Computer. 1992;25(10):40–51.
47. Medvidovic N, Rosenblum DS, Redmiles DF, Robbins JE. Modeling software architectures in the unified modeling

language. ACM Trans Softw Eng Methodol (TOSEM). 2002;11(1):2–57.
48. Janzen D, Saiedian H. Test-driven development concepts, taxonomy, and future direction. Computer. 2005;38(9):

43–50.
49. Fucci D, Turhan B, Juristo N, Dieste O, Tosun-Misirli A, Oivo M. Towards an operationalization of test-driven

development skills: An industrial empirical study. Inf Softw Technol. 2015;68:82–97.
50. The SAS Analytical Software. https://www.sas.com/. Accessed 5 Apr 2017.
51. FUTS SAS Testing Library. https://info.thotwave.com/access-the-futs-framework-for-unit-testing-sas. Accessed 5

Apr 2017.
52. SASUnit SAS Testing Library. https://sourceforge.net/projects/sasunit/. Accessed 5 Apr 2017.
53. Wickham H. testthat: Get started with testing. R J. 2011;3(1):5–10.
54. Burger M, Juenemann K, Koenig T. Runit: r unit test framework. R package version. 2009:0.4. https://cran.rstudio.

com/web/packages/RUnit/.
55. Grosjean P, Grosjean MP. Package ‘svunit’. 2013. https://cran.r-project.org/web/packages/svUnit/index.html.
56. Cheon Y, Leavens GT. A simple and practical approach to unit testing: The JML and JUnit way, vol. 2374. In: ECOOP.

Springer; 2002. p. 231–55.
57. Beaulieu-Jones BK, Greene CS. Reproducibility of computational workflows is automated using continuous analysis.

Nat Biotechnol. 2017;35(4):342–346.
58. Clarke EM, Wing JM. Formal methods: State of the art and future directions. ACM Comput Surv (CSUR). 1996;28(4):

626–43.
59. Git Version Control System. https://git-scm.com/. Accessed 5 Apr 2017.
60. Subversion Version Control System. http://subversion.apache.org. Accessed 5 Apr 2017.
61. Pitt-Francis J, BernabeuMO, Cooper J, Garny A, Momtahan L, Osborne J, Pathmanathan P, Rodriguez B, Whiteley JP,

Gavaghan DJ. Chaste: using agile programming techniques to develop computational biology software. Philos
Trans R Soc Lond A: Math, Phys Eng Sci. 2008;366(1878):3111–36.

62. Papez V, Denaxas S. Evaluation of semantic web technologies for storing computable definitions of electronic health
records phenotyping algorithms. Am Med Informa Assoc Annual Symp. 2017. https://arxiv.org/abs/1707.07673.

63. The CALIBER Data Portal. https://www.caliberresearch.org/portal/. Accessed 5 Apr 2017.
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