Modelling multi-site transmission of the human papillomavirus and its impact on vaccination effectiveness.

Lemieux-Mellouki, P; Drolet, M; Jit, M; Gingras, G; Brisson, M; (2017) Modelling multi-site transmission of the human papillomavirus and its impact on vaccination effectiveness. Epidemics. ISSN 1755-4365 DOI: 10.1016/j.epidem.2017.08.001

Full text not available from this repository.


Previous HPV models have only included genital transmission, when evidence suggests that transmission between several anatomical sites occurs. We compared model predictions of population-level HPV vaccination effectiveness against genital HPV16 infection in women, using a 1) uni-site (genital site), and a 2) multi-site model (genital and one extragenital site). We developed a uni-site and a multi-site deterministic HPV transmission model, assuming natural immunity was either site-specific or systemic. Both models were calibrated to genital HPV16 prevalence (5%-7.5%), whilst the multi-site model was calibrated to HPV16 prevalence representative of oral (0%-1%) and anal (1%-7.5%) sites. For each model, we identified 2500 parameter sets that fit endemic genital and extragenital prevalences within pre-specified target ranges. In the Base-case analysis, vaccination was girls-only with 40% coverage. Vaccine efficacy was 100% for all sites with lifetime protection. The outcome was the relative reduction in genital HPV16 prevalence among women at post-vaccination equilibrium (RRprev). RRprev was stratified by extragenital prevalence pre-vaccination. Under assumptions of site-specific immunity, RRprev with the multi-site model was generally greater than with the uni-site model. Differences between the uni-site and multi-site models were greater when transmission from the extragenital site to the genital site was high. Under assumptions of systemic immunity, the multi-site and uni-site models yielded similar RRprev in the scenario without immunity after extragenital infection. In the scenario with systemic immunity after extragenital infection, the multi-site model yielded lower predictions of RRprev than the uni-site model. Modelling genital-site only transmission may overestimate vaccination impact if extragenital infections contribute to systemic natural immunity or underestimate vaccination impact if a high proportion of genital infections originate from extragenital infections. Under current understanding of heterosexual HPV transmission and immunity, a substantial bias from using uni-site models in predicting vaccination effectiveness against genital HPV infection is unlikely to occur.

Item Type: Article
Faculty and Department: Faculty of Epidemiology and Population Health > Dept of Infectious Disease Epidemiology
PubMed ID: 28916210


Download activity - last 12 months
Downloads since deposit
Accesses by country - last 12 months
Accesses by referrer - last 12 months
Impact and interest
Additional statistics for this record are available via IRStats2

Actions (login required)

Edit Item Edit Item