Franke, A; Hampe, J; Rosenstiel, P; Becker, C; Wagner, F; Hasler, R; Little, RD; Huse, K; Ruether, A; Balschun, T; Wittig, M; Elsharawy, A; Mayr, G; Albrecht, M; Prescott, NJ; Onnie, CM; Fournier, H; Keith, T; Radelof, U; Platzer, M; Mathew, CG; Stoll, M; Krawczak, M; Nurnberg, P; Schreiber, S (2007) Systematic association mapping identifies NELL1 as a novel IBD disease gene. PLoS ONE, 2 (8). e691. ISSN 1932-6203 DOI: https://doi.org/10.1371/journal.pone.0000691

Downloaded from: http://researchonline.lshtm.ac.uk/4277/

DOI: 10.1371/journal.pone.0000691

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
Supplementary Figure 4: (A) Structure-based multiple sequence alignment of the N-terminal domains of NELL1 and NELL2 homologs and the N-terminal domain of human thrombospondin-1 (TSP-1). The DSSP secondary structure assignment of the TSPN structure (PDB code 1z78, chain A) is depicted at the top of the alignment. (B) Multiple sequence alignment of NELL1 and NELL2 homologs. Domain locations are represented as colored bars at the top of the alignment (green: VWC domain; pink: EGF-like domain). Alignment columns with more than 70% physicochemically similar amino acids are highlighted in blue boxes with white letters. Text labels point to the N-terminal signal peptide and the sequence variants, which are marked yellow in all homologs. Residue numbering in the alignment is based on complete protein sequences as derived from corresponding UniProt entries.