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Abstract

There is considerable debate as to the nature of the primary parasite-derived moieties that activate innate pro-inflammatory
responses during malaria infection. Microparticles (MPs), which are produced by numerous cell types following vesiculation
of the cellular membrane as a consequence of cell death or immune-activation, exert strong pro-inflammatory activity in
other disease states. Here we demonstrate that MPs, derived from the plasma of malaria infected mice, but not naive mice,
induce potent activation of macrophages in vitro as measured by CD40 up-regulation and TNF production. In vitro, these
MPs induced significantly higher levels of macrophage activation than intact infected red blood cells. Immunofluorescence
staining revealed that MPs contained significant amounts of parasite material indicating that they are derived primarily from
infected red blood cells rather than platelets or endothelial cells. MP driven macrophage activation was completely
abolished in the absence of MyD88 and TLR-4 signalling. Similar levels of immunogenic MPs were produced in WT and in
TNF2/2, IFN-c2/2, IL-122/2 and RAG-12/2 malaria-infected mice, but were not produced in mice injected with LPS, showing
that inflammation is not required for the production of MPs during malaria infection. This study therefore establishes
parasitized red blood cell-derived MPs as a major inducer of systemic inflammation during malaria infection, raising
important questions about their role in severe disease and in the generation of adaptive immune responses.
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Introduction

Severe malaria in humans is a leading cause of morbidity and

mortality, especially in sub-Saharan Africa [1]. The clinical

manifestations of severe malaria are directly correlated with the

induction of strong pro-inflammatory type-1 immune responses.

Thus, whilst it is clear that early innate and T cell pro-

inflammatory immune responses are essential for the control of

malaria infection [2,3], excessive production of pro-inflammatory

cytokines, including IL-6, TNF and IFN-c, may also directly

contribute to severe disease, such as severe anaemia, cerebral

malaria (CM) and organ damage [3,4]. It is therefore crucial that

the most potent parasite dependent and independent pro-

inflammatory triggers are identified, and their signalling pathways

unravelled, before targeted, successful therapeutic treatments can

be developed for malaria infection.

Activation of macrophages is a key event in the pathogenesis of

severe malaria in both humans [5] and in experimental models of

malaria [6]. P. berghei ANKA (PbA) infection of C57BL/6 mice,

which is the best available model of CM, is characterized by

the development of strong pro-inflammatory immune responses,

including macrophage activation and the production of TNF, IL-

12, IL-1b, IL-6, ROI and NO [2,3]. Activation of brain resident

and brain-homing monocytic cells, leading to activation of brain

vascular endothelial cells and consequent sequestration of pRBC

and leucocytes, is believed to be a key stage in the development of

the neuropathology associated with experimental cerebral malaria

(ECM) during PbA infection. In addition, although splenic and

liver macrophage populations have been shown to be required for

optimal parasite control [7,8], excessive macrophage responses in

these organs has been directly correlated with malarial anaemia

and liver damage [9].

At present there is considerable debate about the pathways

driving inflammation during malaria infection. Interaction of

malaria parasite-derived moieties with cells of the innate system,

such as macrophages and dendritic cells, is likely to be the initial

step in induction of the inflammatory response; however, despite

intense research, there is no agreement regarding the identity of

the primary parasite products that initiate the pro-inflammatory

cascade [4] and the importance of Toll like receptor signalling and

scavenger receptors (such as CD36) in the recognition of parasite

products and subsequent production of inflammatory cytokines
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remains unclear [10–21]. Parasitized red blood cells (pRBC) have

been shown, depending on the model and the duration of

stimulation, to either induce or suppress macrophage and

dendritic cell function, including induction or suppression of

pro-inflammatory cytokine production [21–26]. The malaria

pigment hemozoin has been proposed as a novel TLR-9 ligand,

inducing TNF, IL-6 and IL-12 p40 production [12], but it has

subsequently been suggested that contaminating malarial DNA,

which binds to hemozoin, is responsible for TLR-9 activation [27].

However, hemozoin has also been shown to directly suppress

macrophage and dendritic cell function [28–30]. In recent years

attention has focussed on the potential role of parasite glycosylpho-

sphatidyl-inositol (GPI) [19,20,31,32], which is capable of inducing

TNF secretion by macrophages via signalling through TLR-2 [20]

and the scavenger receptor CD36 [19] and which, in one report,

induced cachexia when injected into mice [31]. Most recently

it has been shown that plasma-derived microparticles (MPs) from

malaria-infected mice can induce TNF production by macro-

phages [33] suggesting that MPs may also contribute to the

systemic inflammation that is characteristic of malaria infection.

MPs are sub-micron particles (0.1–1mm diameter) produced by

vesiculation or ‘blebbing’ of the plasma membrane of cells as a

result of loss of asymmetry of the phospholipid bilayer (reviewed

[34,35]). In healthy animals, circulating MPs are predominantly

derived from platelets, but, depending on the situation, MPs may

also be produced by leucocytes, endothelial cells and erythrocytes

(reviewed [34,35]). Vesiculation of the phospholipid bilayer and

MP development is a tightly-regulated homeostatic process that

occurs at an increased rate during cell activation and during

apoptotic or necrotic cell death. MP formation is directly

correlated with TNF and IL-1b production [34,35]. Thus,

although basal levels of MP are found in the blood of healthy

donors, elevated levels have been detected in many pathological

conditions [34,35] including cerebral malaria [36]. Consistent

with results obtained in humans, significantly higher numbers of

circulating MPs are found in PbA-infected mice than in uninfected

controls [33,35].

In this study we have investigated the ability of MPs induced

during acute malaria infections in mice to stimulate macrophage

pro-inflammatory responses and we have assessed the potential

relevance of this pathway in the development of severe malarial

disease. We find that malaria infection-induced MPs are much

more potent inducers of macrophage activation than are intact,

live pRBC and that pRBC-derived MPs, rather than endothelial-,

leukocyte- or platelet-derived MPs, are the primary inducers of

macrophage activation. Furthermore, we have defined a TLR-4-

and MyD88-dependent pathway of MP-induced macrophage

activation. This study establishes a major new pathway of innate

inflammation during malaria infection which implicates pRBC-

derived MPs as major contributors to the development of severe

malarial disease.

Results

Malaria infection-derived microparticles activate
macrophages in vitro

To investigate the ability of Plasmodium berghei ANKA (PbA)-

induced MPs to activate macrophages in vitro, bone marrow-

derived macrophages were challenged for 24hrs with purified PbA

infection-induced MPs, and uninfected MPs derived from naive

mice; macrophage activation was assessed by up-regulation of

CD40 expression and by the production of TNF. The size and

granularity of the purified MP preparations relative to 1mm beads

(gated population: upper right hand side) is shown in represen-

tative plots in Fig. 1A. As can be observed, PbA infection-induced

MPs and uninfected MPs were sub-cellular in size and

approximately 98% of all flow cytometric events within the MP

preparation were ,1mm in size. A number of flow cytometric

events were observed in the PBS control, but these events were in

general smaller than those observed in the MP preparations and

were due to minor contaminations within the solution. PbA

infection-induced MPs were homogenous in size and the majority

of MPs were approximately 150–250nm in diameter when

examined by scanning electron microscopy (Fig. 1B). Uninfected

MPs were heterogeneous in size compared with PbA-infection

induced MPs, varying from approximately 75mm to 450mm in

diameter. Irrespective of size, uninfected MPs and PbA infection-

induced MPs were comparable in morphology and appeared

spherical in appearance (Fig. 1B).

As expected, incubation with PBS (no stimulation) failed to

induce macrophage activation, as measured by CD40 expression

and TNF production (Fig. 1C–E). Similarly, stimulation with

control MPs from uninfected mice also failed to induce up-

regulation of CD40 expression or the production of TNF,

indicating that MPs derived from uninfected mice are non-

inflammatory (Fig. 1C–E). In contrast, strong macrophage

activation was observed following stimulation with PbA-induced

MPs (using a comparable volume of the MP preparation as used

for control MPs), with significantly elevated expression of CD40

and increased production of TNF compared with non-stimulated

and uninfected MP stimulated controls (Fig. 1C–E). These data

confirm the results obtained by Combes et al [33] showing that

PbA-induced MPs can stimulate TNF production by macrophag-

es. To ensure that macrophage activation was not an artefact of

LPS contamination of the MPs, endotoxin concentrations were

tested in all the MP preparations and were found to be less than

0.24 IU/ml in all cases; the minimum concentration of LPS

required to activate macrophages is approx 0.6 IU/ml (data not

shown but provided for review).

Significantly increased numbers of flow cytometric events were

found within PbA infection-induced MP preparations compared

with uninfected MP preparations (Fig. 1F): thus, it was foreseeable

that the ability of PbA induced MPs - but not uninfected MPs - to

stimulate macrophages was related to a quantitative difference in

Author Summary

Although parasite materials are responsible for the
activation of the immune system during malaria infection,
exactly how the immune response is initiated during
infection is extremely unclear. In this study we demon-
strate that sub micron particles (microparticles) are
produced by malaria infected red blood cells during
malaria infection, and we show that these microparticles
can promote strong inflammatory responses by activating
macrophages. We show that infected red blood cell-
derived microparticles are produced in higher numbers as
infection progresses, and that the host’s own pro-
inflammatory immune response is not required for the
generation of these microparticles. We have also examined
the receptors and signalling pathways required for
macrophage activation by microparticles, and we show
that the pathway of microparticle-induced activation is
distinct from other previously reported pathways. In
summary, we have defined a novel pathway of immune
response activation during malaria infection, which may be
important for promoting parasite control and/or causing
pathology.

Microparticles and Inflammation during Malaria
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Figure 1. Plasma microparticles derived from malaria infected mice stimulate strong macrophage pro-inflammatory responses in
vitro. Microparticles were prepared from the plasma of uninfected mice (uninfected MP) and from mice infected with P. berghei ANKA (day 7: PbA
MP) and were used to stimulate bone-marrow derived macrophages in vitro for 24hrs. (A) The size of plasma derived microparticles relative to 1mm
beads is shown. (B) Scanning electron micrographs showing morphology of MPs. Magnification 72,000X (insert 240,000X). (C) Representative
histograms showing the level of CD40 expression by bone marrow derived macrophages following stimulation with uninfected MPs, PbA MPs and
LPS. (D) Mean fluorescence intensity of CD40 expression by macrophages following stimulation. * p,0.05 between PbA MP and no-stim; , p,0.05
between LPS and no stim (E) The level of TNF production by stimulated macrophages was measured in the supernatant by ELISA. * p,0.05 between
PbA MP and no-stim; , p,0.05 between LPS and no stim (F) The number of MPs within the uninfected and PbA derived preparations was calculated
relative to a standardised number of 1mm beads. * p,0.05 between PbA MP and uninfected MP. (G) Representative histograms showing the
expression level of CD40 on macrophages following stimulation with varying doses of (left plot) uninfected MPs and (right plot) PbA-derived MPs. (H)
The mean fluorescence intensity of CD40 expression on macrophages stimulated with varying doses of uninfected and PbA-derived MPs. (I) TNF
production by stimulated with varying doses of uninfected and PbA-derived MPs. The results are representative of 4 separate experiments.
doi:10.1371/journal.ppat.1000744.g001
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the number of inflammatory MP particles, over an unspecified

threshold level, rather than an intrinsic qualitative difference in the

immunogenicity of the MP preparations. To examine this we

performed a dose response experiment using different volumes of

PbA induced and uninfected MP preparations and examined the

ability of the MPs to activate macrophages: uninfected MPs

derived from naive mice failed to stimulate CD40 up-regulation or

TNF production at any of the tested concentrations, whereas PbA

induced MPs promoted up-regulation of CD40 expression and

production of TNF in a dose dependent manner at 5, 10 and 50ml

volumes, equating to approximately 56104, 16105 and 56105

PbA MPs/well respectively (Fig. 1G–I). In addition, uninfected

MPs failed to stimulate macrophage activation when the number

of flow cytometric events of the preparation was normalised to

PbA MPs numbers (results not shown). The kinetics of macro-

phage activation by PbA-induced MPs or LPS were compared.

Although both LPS and PbA-induced MPs induced a maximal

TNF response within 6 hrs, maximal CD40 induction was slower

for PbA-induced MPs (24–48 hrs) than for LPS (12hrs) (Fig. S1).

Taken together, these results demonstrate that MPs derived from

malaria infected mice induce potent macrophage activation and

are significantly more inflammatory on a particle to particle basis

than MPs from normal, uninfected mice.

Infection derived microparticles are highly
pro-inflammatory compared with parasitized
red blood cells

Our results in Figure 1 demonstrated the ability of PbA infec-

tion induced MPs to stimulate pro-inflammatory responses in vitro,

but these results did not specifically address the potential relevance

of this pathway in the generation of inflammatory responses

during malaria infection. Consequently, to examine the impor-

tance of MP-induced macrophage activation during malaria

infection, and how this may relate to other parasite-specific

pathways of macrophage activation, we compared the ability of

infection-induced MPs and live intact PbA pRBC to promote

macrophage activation. As expected, stimulation with uninfected

red blood cells failed to induce up-regulation of CD40 expression

or the production of TNF by macrophages (Fig. 2A–C).

Interestingly, stimulation with live intact parasitized red blood

cells (.80% purity, mainly late trophozoites and schizonts) at 1:1,

10:1 and 100:1 ratios of parasites to macrophages also failed to

induce up-regulation of CD40 expression or the production of

TNF (Fig. 2A–C). These results are surprising as strong

macrophage activation, including pro-inflammatory cytokine

production, has been reported following in vitro stimulation with

P. falciparum schizont infected RBC [22]. In contrast, although a

number of studies have clearly demonstrated that phagocytosis of

murine pRBC by macrophages occurs in vitro [36–38], there is

very little evidence to suggest that this leads to up-regulation of co-

stimulatory receptor expression on macrophages, or the produc-

tion of pro-inflammatory cytokines [39]. Nonetheless, stimulation

with infection induced MPs promoted significant up-regulation of

CD40 expression and production of TNF by macrophages

(Fig. 2A–C). These results show that plasma derived MPs may

exert a dominant pathway in driving macrophage activation

during malaria infection, either causing much of the inflammation

and pathology of infection, or initiating anti-malaria immune

responses.

Analysis of MP phenotype
MPs derived from malaria infected mice were considerably

more inflammatory than uninfected MPs derived from naive mice

(Fig. 1), even when the numbers of particles in each preparation

was normalised, suggesting that MPs derived from malaria

infected mice are more immunogenic than uninfected MPs. MPs

can be produced by the vesiculation of the membrane of many

different cell populations, including platelets, leukocytes, endothe-

lial cells and red blood cells, a process that is modulated during

inflammatory episodes [35]. Consequently, the predominant

cellular source of the MPs may change during malaria infection,

and this alteration in cellular source could explain the difference in

ability to promote macrophage activation. To address this

likelihood, we performed a phenotypic characterisation of the

PbA infection derived and uninfected MP populations.

We first assessed the expression of Annexin V, a marker of

cellular apoptosis, which is the standard marker of classical

inflammation-driven microparticles [35]. As expected based on

previous reports [33,40], we observed a significant and marked

increase in the expression of Annexin V on PbA induced MPs

compared with uninfected MPs, both in terms of frequency and

total numbers of positive events (Fig. 3A, B). Very low Annexin V

staining was observed on the PBS control FACS events,

demonstrating the specificity of the flow cytometric staining

(Fig. 3A, B). Importantly, not all infection derived (or uninfected)

MPs expressed AnnexinV, indicating that a large proportion of

particles within the MP preparation are not classically defined or

produced MPs.

To examine the cellular source of AnnexinV+ (and Annex-

inV2) microparticles we employed a panel of antibodies to cover

Figure 2. Malaria infection derived plasma microparticles
promote significantly stronger macrophage activation than
intact parasitized red blood cells. Microparticles were prepared
from the plasma of uninfected mice (uninfected MP) and from mice
infected with P. berghei ANKA (day 7: PbA MP). Mature trophozoite and
schizont stage parasitized red blood cells (pRBC) were purified in vitro
from blood of PbA infected mice. (A) Representative histograms
showing the level of CD40 expression by bone marrow derived
macrophages following stimulation with uninfected RBCs, pRBCs and
uninfected MPs and PbA MPs. (B) Mean fluorescence intensity of CD40
expression by macrophages following stimulation. (C) The level of TNF
production by stimulated macrophages was measured in the superna-
tant by ELISA. The results are representative of 2 separate experiments.
* denotes significant difference between PbA MP and no stim.cultures.
doi:10.1371/journal.ppat.1000744.g002
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Figure 3. Phenotypic characterization of uninfected and P. berghei ANKA plasma derived microparticles. Microparticles were prepared
from the plasma of uninfected mice (uninfected MP) and from mice infected with P. berghei ANKA (day 7: PbA MP). The cellular sources and
composition of the MPs were determined by flow cytometry. (A) Representative dot plots showing the frequency and (B) normalized numbers of
Annexin V+ events within the uninfected MP and PbA MP preparation. (C) The cellular source and activation status of MPs were examined by
determining the expression of TER119, CD144, CD45, F4-80, CD107a, CD41 and VCAM-1. (D) The percentage of Annexin V positive events co-
expressing secondary markers. (E) The frequency and (F) numbers of flow cytometric events in uninfected and PbA MPs expressing TER119, CD144,
CD45, F4-80, CD107a, CD41 and VCAM-1. The results are representative of 2 separate experiments. * p,0.05 between PbA MP and uninfected MP;
, P,0.05 between uninfected MP and PBS.
doi:10.1371/journal.ppat.1000744.g003
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all the major potential cellular sources of MPs (Fig. 3C). Platelets

(CD41) were the major source of classical AnnexinV+ micropar-

ticles within the uninfected MP population, with a number of red

blood cell (TER119) derived Annexin V+ MPs also found (Fig. 3C,

D). Few AnnexinV+ microparticles within the uninfected MP

population were produced from endothelium (CD144), leukocytes

(CD45) and macrophages (F4-80) and only a small number

co-expressed CD107a, meaning most were not exosomes, or

VCAM-1, indicating that they did not emanate from activated

endothelium (Fig. 3C, D). In contrast the majority of AnnexinV+
MPs derived from PbA infected mice did not co-express CD41,

suggesting that they were not platelet derived. Approximately 20%

of PbA infection induced AnnexinV+ microparticles appeared to

be derived from red blood cells, but the majority of the

AnnexinV+ microparticles failed to co-stain with any tested

antibody, meaning that their cellular origin is undefined (Fig 3C,

D). Nevertheless, when breaking down the cellular sources of all

the flow cytometric events within the PbA infection induced and

uninfected MP preparations, irrespective of AnnexinV expression,

a clear increase in the frequency and numbers of TER119+ (RBC

derived) and CD45+ (leukocyte derived) flow cytometric events

was observed within the PbA infection induced MP population

(Fig. 3C, E and F).

Inflammatory malaria infection-induced microparticles
are derived from pRBC

The phenotypic characterisation of PbA infection-induced MPs

and uninfected MPs demonstrated clear differences in the

expression level of AnnexinV, TER119 and CD45, suggesting

that the predominant cellular sources of PbA infection induced

MPs and uninfected MPs varied, potentially explaining the

inflammatory nature of the malaria infection induced MPs.

As the frequency and numbers of RBC-derived particles was

increased in the PbA infection induced MP preparation, we

hypothesised that infection-induced MPs may either be formed by

vesiculation of the pRBC membrane during intra-erythrocytic

parasite maturation and/or pRBC rupture at schizogeny, in which

case MPs would be expected to contain malaria parasite-derived

components, or that they may be derived from uninfected RBCs,

which are known to undergo bystander lysis during acute malaria

infection, contributing to the rapid onset of anaemia [3]. To

distinguish between these two possibilities, we analysed PbA

infection-induced MPs for the presence of PbA-specific antigens by

immunofluorescence using purified anti-PbA IgG. As expected, no

parasite-derived material was detected in uninfected MP prepa-

rations (Fig. 4A). In contrast a large proportion of MPs from PbA-

infected mice bound the anti-PbA IgG (Fig. 4A), indicating the

presence of significant quantities of parasite-derived material in the

infection-derived MPs. Although a number of parasite moieties are

likely to be incorporated within the malaria infection induced MP

preparation, we failed to detect hemozoin in the plasma derived

preparation by beta-hematin formation assay (results not shown).

pRBC-derived microparticles are phenotypically and
functionally distinct from inflammation-induced
microparticles

The observation that a large proportion of PbA-infection induced

MPs were derived from pRBC and were predominantly Annexin

V2 suggested that they were not classical inflammation-induced

MPs. Nevertheless, PbA-infection induced MPs also displayed

heterogenous expression of Annexin V and the frequency and

numbers of Annexin V+ MPs increased during malaria infection,

showing that inflammatory MPs were also produced during

infection. Since it is not feasible to efficiently separate the two

populations of MPs from the plasma of PbA-infected mice, to

determine whether macrophage activation was induced by the

pRBC-derived MPs or by the more classical Annexin V+ MPs, we

generated a pure population of pRBC-derived MPs in vitro from

purified and extensively washed pRBC and compared their

macrophage activating properties with MPs from the plasma of

PbA-infected or uninfected mice, with in vitro generated MPs from

uRBC (Fig. 4) and with MPs purified from the plasma of mice

treated with LPS to induce inflammation (Fig. 5). The numbers of

MPs in each preparation were counted by flow cytometry and were

normalised to the number of MPs from uninfected mice prior to

culture with BMDM.

The in vitro-derived MPs were of similar size to those prepared

from plasma (data not shown). In vitro-derived MPs were

predominantly (.80%) TER119+, and although a proportion of

the in vitro-derived MPs (,20%) expressed Annexin V+, the levels

of Annexin V expression were substantially lower (MFI of 40.0 for

in vitro-derived MPs vs MFI of 98.5 for infection-derived MPs) than

for infection-derived MPs (Fig. 4B).

In support of our hypothesis that parasite material bound to

RBC membranes within the MPs is responsible for macrophage

activation, we observed significant up-regulation of CD40

expression (Fig. 4C, D) and production of TNF (Fig. 4E) by

macrophages cultured with in vitro-derived pRBC MPs, which was

comparable to the activation observed with the PbA infection-

derived plasma MPs (Fig. 4C–E). In contrast, MPs derived in vitro

from uRBC did not induce macrophage activation. As the vast

majority of pRBC derived MP particles expressed TER119

(Fig. 4B), it is unlikely that soluble non-membrane associated

parasite materials were purified during the generation of the MP

preparation or that non-membrane bound parasite materials were

responsible for the macrophage activation.

The plasma of mice injected 3 days previously with LPS - to

induce inflammation - contained MPs that expressed high levels of

Annexin V+ (Fig. 5A) and did not stain with the anti-PbA

antiserum (data not shown). LPS was a more potent stimulus of

classical Annexin V+ MP generation than PbA infection, leading to

an increase in both the frequency (Fig. 5B) and total numbers

(Fig. 5C) of Annexin V+ MPs. Although fewer Annexin V+ MPs

were present in the plasma of PbA-infected mice, the phenotype of

these Annexin V+ MPs was very similar to that of the LPS-induced

MPs, based upon TER119 and CD41 co-staining (Fig. 5D),

indicating that classical inflammation-induced MPs - derived from

comparable cellular sources - were present in both MP

preparations. Despite this, the LPS-induced MPs failed to induce

macrophage activation whereas, as shown previously, PbA-

infection induced MPs induced up-regulation of CD40 expression

and production of TNF (Fig. 5E–G).

Taken together, these data demonstrate that classical, inflam-

mation-driven MPs do not directly induce pro-inflammatory

immune responses in macrophages but that the atypical MPs

generated from pRBC have potent pro-inflammatory activity.

MP particle generation correlates with the onset of
clinical signs

To determine whether the timing of inflammatory MP

generation correlated with the onset of clinical signs, the numbers

and the inflammatory potential of MPs isolated from mice on days

3, 5 and 7 of infection were compared (Fig. 6). Although the total

number of plasma MPs increased only slightly over the course of

infection (Fig. 6A), numbers of TER119+ erythrocyte-derived MPs

increased steadily over the course of infection (Fig. 6B) in line with

the steadily increasing parasitaemia (Fig. 6C). Importantly,

Microparticles and Inflammation during Malaria
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however, day 3 and day 5 MPs were only poorly pro-inflammatory

(Fig. 6D,E) and only day 7 MPs were able to induce significant

macrophage CD40 expression and TNF production, suggesting

either that there is a threshold concentration of MPs required for

macrophage activation or that day 7 MPs are qualitatively different

from day 3 or day 5 MPs. In either event, there is clearly a close

temporal association between the accumulation of highly pro-

inflammatory MPs and the onset of severe malarial disease.

Figure 4. Immunogenic malaria infection-derived MPs are produced from pRBC and contain parasite materials. Microparticles were
prepared from the plasma of uninfected mice (uninfected MP) and from mice infected with P. berghei ANKA (day 7: PbA MP). (A) The presence of
parasite material in MP preparations was examined by IFAT using purified anti-P. berghei ANKA IgG antibodies followed by detection with FITC-
labelled anti-mouse secondary antibodies. MPs were prepared from purified pRBC (pRBC MP) and the ability of pRBC MP to activate macrophages in
vitro relative to PbA plasma derived MPs was assessed. (B) The expression of AnnexinV and TER119 on the different MP preparations. (C)
Representative histograms showing the level of CD40 expression by bone marrow derived macrophages following stimulation with uninfected MPs,
PbA MPs, uninfected RBC MPs (uRBC MPs) and pRBC MPs. (D) Mean fluorescence intensity of CD40 expression by macrophages following stimulation.
(E) The level of TNF production by stimulated macrophages was measured in the supernatant by ELISA. The results are representative of 2 separate
experiments. * p,0.05 between PbA MP and no stim.cultures; , p,0.05 between pRBC MP and no stim.cultures.
doi:10.1371/journal.ppat.1000744.g004

Microparticles and Inflammation during Malaria
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Inflammation is not required for production of
immunogenic microparticles during malaria infection

We have shown that pRBC-derived microparticles are phenotyp-

ically distinct from classical, inflammation-induced microparticles

and, in contrast to LPS-induced MPs, possess potent pro-inflamma-

tory activity. Nonetheless, AnnexinV+ inflammation-driven MPs

have been reported to induce pro-inflammatory immune responses in

other models [35]. Thus, to further explore the role of inflammation

and inflammation-induced MPs in the response of macrophages

to PbA-induced MPs, we prepared MPs from the plasma of

PbA-infected (day 7 p.i.) TNF2/2, IL-12p402/2, IFN-c2/2 and

RAG-12/2 mice, all of which have major defects in their innate

inflammatory response, and compared them with MPs from WT

PbA-infected mice (Fig. 7). Numbers of MPs in each preparation

were counted (by flow cytometry) and adjusted to uninfected MP

numbers. Similar levels of immunofluorescence were seen when

MPs were labelled with anti-PbA antiserum (Fig 7A), indicating

that comparable amounts of parasite material was found in

each preparation. Importantly, MPs derived from PbA-infected

TNF2/2, IL-12p402/2, IFN-c2/2, RAG-12/2 and WT mice all

induced very similar levels of macrophage activation, as shown by

up-regulation of CD40 expression and TNF production (Fig. 7 B–

D). Taken together, these data strongly suggest that parasite

moieties within the membranes of these atypical, pRBC-derived

MPs are responsible for macrophage activation and that these MPs

can be generated in the absence of inflammation.

Microparticle driven macrophage activation is TLR4 and
MyD88 dependent

We next investigated the pathways required for macrophage

activation by malaria infection induced MPs. As our data

indicated that parasite material, bound to RBC membrane within

the MP preparation was responsible for driving macrophage

activation, we hypothesised that TLRs and the adaptor molecule

MyD88 may be required for macrophage stimulation. TLR

molecules and MyD88 have previously been shown to be required

for optimal pro-inflammatory cytokine production during malaria

infection [10,12,17,20]. Our results clearly show that PbA

infection-induced MP activation of macrophages is MyD88

dependent, as macrophage activation, as measured by CD40 up-

regulation and TNF production, was completely ablated in

MyD882/2 macrophages (Fig. 8A–C). MP-induced macrophage

Figure 5. LPS-inflammation induced MPs do not activate macrophages. Microparticles were prepared from the plasma of uninfected mice
(uninfected MP), from mice injected with 20mg LPS (Day 3: LPS MP) and from mice infected with P. berghei ANKA (day 7: PbA MP). (A) Representative
dot plots showing the expression of Annexin V in the MP preparations. (B) The frequency and (C) normalized numbers of Annexin V+ events within
the MP preparations. (D) The frequency of TER119+ and CD41+ events within the Annexin V+ populations. (E) Representative histograms showing the
level of CD40 expression by bone marrow derived macrophages following stimulation with MPs: shaded histogram no stimulation; dark line LPS MP;
light line PbA MP. (F) Mean fluorescence intensity of CD40 expression by macrophages following stimulation. (G) The level of TNF production by
stimulated macrophages was measured in the supernatant by ELISA. The results are representative of 2 separate experiments. * p,0.05 between PbA
MP and no stim.; , p,0.05 between LPS MP and no stim.; + p,0.05 between PbA MP and LPS MP.
doi:10.1371/journal.ppat.1000744.g005
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activation was totally TLR-4 dependent; up-regulation of CD40

expression and induction of TNF production were both com-

pletely absent in TLR-42/2 macrophages (Fig. 8D–F). Interest-

ingly, however, PbA infection-induced MP stimulation of TNF

production (but not CD40 expression) was also significantly lower

in TLR-22/2 and TLR-92/2 macrophages than in WT

macrophages. These data would be consistent with the presence

of low levels of TLR-2 and TLR-9 ligands such as GPI and

hemozoin within the MPs. As the response was completely ablated

in TLR-42/2 macrophages - demonstrating that TLR-4 is

essential for TLR-4 responsiveness - our results suggest that a

primary TLR-4 ligand within the MPs activates the cells and that

TLR-2 and TLR-9 ligands synergise with the TLR-4 stimulus to

induce maximal macrophage activation.

Discussion

Understanding the pathways leading to inflammation during

malaria infections should allow the development of new

approaches to therapy and more immunogenic vaccines. In this

study we have identified an entirely novel pathway of inflamma-

tion during malaria infection, namely TLR-4/MyD88-mediated

activation of macrophages by membrane microparticles emanat-

ing from parasitized red blood cells. Importantly, we have shown

that malaria-infection induced MPs promote significantly stronger

macrophage activation than live infected red blood cells,

underlining the potential significance of MP-induced inflammation

during malaria infection. The primary TLR-4 dependence of this

pathway sets it apart from the previously described glycoslylpho-

sphatidylinositol (GPI)-TLR-2/CD36 pathway [19–20] and the

hemozoin/parasite DNA/TLR-9 pathway [12].

Previous studies on MPs during malaria infection have largely

been in the context of their role in the pathogenesis of severe disease:

circumstantial evidence supports a role for MPs in severe P. falciparum

infection [36]. In addition, ABCA1 KO mice that are defective in

the ability to produce MPs are protected against ECM during P.

berghei ANKA infection [33]. Endothelial and platelet derived MPs

have been shown to ‘‘bridge’’ endothelial cell and pRBC and

leukocyte interactions, allowing sequestration within brain micro-

vessels, which is a key factor in initiation of cerebral pathology

[41,42]. However, other than the studies in ABCA1 KO mice, which

have numerous defects in lipid metablism and macrophage function

that might influence their susceptibility to ECM [43], there is no

causal evidence to link MPs with pathogenesis in vivo. The results of

this current study have added to the complexity of the potential roles

for MPs during malaria infection. We have shown that malaria

infection induced MPs are capable of promoting the up-regulation of

CD40 expression and TNF secretion from bone marrow derived

macrophages in vitro; thus, malaria infection induced MPs promote

potent activation of innate and adaptive immune responses, which is

likely to have major significance in the development of inflammation

during infection.

Our data importantly differs from earlier studies on MPs during

malaria infection, as we have defined the cellular source of

Figure 6. The generation of TER119+ immunogenic MPs depends on the stage of malaria infection. Macrophages were stimulated for
24hrs with microparticles prepared from the plasma of mice infected with P. berghei ANKA. (A) Mean fluorescence intensity of CD40 expression by
macrophages following stimulation. (B) The level of TNF production by stimulated macrophages was measured in the supernatant by ELISA. (C) The
number of MPs within the PbA derived preparations was calculated relative to a standardized number of 1mm beads. (D) The expression of TER119 on
the different MP preparations. (E) The percentage parasitaemia on days 3, 5 and 7 post-infection. The results are representative of 2 separate
experiments. * p,0.05 between day 5 PbA MP and day 7 PbA MP; + p,0.05 between day 3 PbA MP and day 5 PbA MP; , p,0.05 between day 3 PbA
MP and day 7 PbA MP; # p,0.05 between day 7 PbA MP and all groups.
doi:10.1371/journal.ppat.1000744.g006
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immunogenic MPs as infected red blood cells, containing large

quantities of parasite-material, rather than platelets or endothelial

cells [36,40,40–42]. pRBC-derived MPs were phenotypically and

functionally distinct from the classical, Annexin V+ microparticles

that emanate primarily from platelets but also from leucocytes and

endothelial cells during systemic inflammation [34,35]. Not only

were pRBC-derived MPs produced in the absence of key

inflammatory mediators such as TNF, IL-2 and IFN-c but also,

in our hands, classical inflammation-derived MPs had minimal

macrophage activating capacity and are thus clearly products of -

rather than drivers of - inflammation.

One particularly striking observation was that pRBC-derived

MPs are much, much more potent macrophage activators than are

live, intact pRBC. This suggests that MPs may be released from

pRBC only at certain very specific stages of parasite development,

possibly associated with the membrane disintegration that is seen

immediately prior to schizont rupture [44]. Although mature

pRBC are expected to rupture and produce MPs during the

course of the 24hr culture, the concentration of MPs generated

may have been too low to activate the macrophages. Alternatively,

phagocytosis of intact pRBC by macrophages via CD36-

dependent pathways [39] may have prevented generation of free

microparticles or suppressed the subsequent TLR-4 mediated

signalling promoted by MPs. In agreement with the latter

hypothesis, macrophage activation through anti-CD40 or TLR

stimulation is suppressed following the phagocytosis of non-

activating latex beads [45] and TLR-tolerance has been shown to

occur during malaria infection [46].

The importance of parasite material within the MPs for

stimulating macrophage activation raises intriguing questions

regarding the nature and identity of the pro-inflammatory parasite

molecules within the MPs. GPI, the membrane anchor for

MSP-1 and MSP-2, and hemozoin, the product of haemog-

lobin breakdown by the parasite, have been shown to promote

[12,19,20,31] or suppress innate activation [28–30]. While

hemozoin is thought to stimulate macrophage activation through

ligation with TLR-9 [12,27], activation by GPI is mediated by

TLR-2 and CD36 through downstream activation of ERK, p38,

MAPK, JNK and NFkb signalling pathways [19,20,47,48]. The

absolute dependence of MP-mediated macrophage activation on

TLR-4 signalling makes it most unlikely that MPs are simply

vehicles for GPI and hemozoin. Furthermore, plasma-derived PbA

infection-induced MPs did not contain measurable levels of

hemozoin and we have found that scavenger receptor A and B

family members (including CD36) are not required for MP-

induced macrophage activation (results not shown). These data

suggest that the main inflammatory parasite materials within the

MP preparation are unlikely to be GPI or hemozoin. Nevertheless,

TLR-2 KO and TLR-9 KO macrophages produced significantly

lower levels of TNF following stimulation with PbA infection-

induced MPs, indicating that TLR-2 and TLR-9 signalling is

required for optimal TNF production. These observations are

highly consistent with a scenario in which PbA infection-induced

MP recognition by TLR-4 initiates the macrophage response and

macrophage activation is then amplified by GPI/hemozoin

signalling through TLR-2 and TLR-9. Co-operation and synergy

of distinct TLR signalling pathways in response to complex TLR

ligands is becomingly increasingly well recognised in a number of

different systems [49,50].

The essential role for MyD88 signalling for macrophage

activation by malaria-infection derived MPs is entirely consistent

with a number of studies demonstrating a role for MyD88 in

malarial inflammation and pathology. For example TLR/MyD88

mediated IL-12 production is responsible for liver injury during

P. berghei NK65 infection [9] and TNF production induced via

MyD88 signalling promotes weight loss and fever during P.

chabaudi AS infection [17]. Moreover, although the role of MyD88

dependent signalling in P. berghei ANKA induced ECM remains

unclear with conflicting findings [10,11,13,14], MyD88 signalling

is required for optimal macrophage TNF, IL-6 and IL-1a
production [10]. Our data suggest that pRBC-derived MPs may

be a significant inducer of all these effects.

In conclusion, we have identified a novel and very potent,

MyD88- and TLR-4-dependent pathway of inflammation during

malaria infection that is mediated by pRBC-derived membrane

microparticles. Interestingly, a recent study has shown a link

between polymorphisms in the TLR-4 locus and susceptibility to

severe malaria in humans [51]; our data offer a plausible biological

Figure 7. Microparticles generated during malaria infection
independently from inflammation promote macrophage acti-
vation. Microparticles were prepared from the plasma of uninfected
mice (uninfected MP) and from WT, TNF2/2, IL-12p402/2, IFN-c2/2 and
RAG-12/2 mice infected with P. berghei ANKA (day 7: PbA MP). (A) The
presence of parasite material in the separate MP preparations was
examined by IFAT. (B) Representative histograms showing the level of
CD40 expression by bone marrow derived macrophages following
stimulation with MPs. (C) Mean fluorescence intensity of CD40
expression by macrophages following stimulation. (D) The level of
TNF production by stimulated macrophages was measured in the
supernatant by ELISA. The results are representative of 2 separate
experiments. * denotes significant difference between no stim and all
infection derived MP preparations.
doi:10.1371/journal.ppat.1000744.g007
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explanation for this observation. We expect that pRBC micro-

particles will synergise with GPI and hemozoin to induce the

extraordinarily high levels of circulating inflammatory mediators

that are seen in many patients with acute malaria. However, the

ability of MPs to induce expression of molecules such as CD40 on

antigen presenting cells suggests that they might also play a role in

T cell priming and T effector cell function. Future studies will need

to identify the parasite ligands presented by these microparticles

and explore their potential role as adjuvants for malaria vaccines.

Materials and Methods

Ethics statement
Animal experimentation was approved under UK Home Office

Regulations and was subject to LSHTM ethical review.

Mice and parasites
Female, 8–12 week old C57BL/6 wild type, IFN-c2/2, TNF2/2,

IL-122/2, and RAG-12/2, were obtained from Harlan and

maintained under barrier conditions.

Cryopreserved Plasmodium berghei ANKA parasites were passaged

once in vivo for a maximum of 4 days before being used to infect

experimental animals. Mice were infected intraveneously with 104

parasitised red blood cells and parasitaemia was determined daily by

examination of Giemsa-stained thin blood smears.

Preparation of plasma microparticles
MPs were prepared as described before [33]. Briefly, blood was

collected aseptically in 0.124M sodium citrate solution from naive

or malaria-infected mice (day 6 or 7 of P. berghei ANKA infection),

and centrifuged at 1,500g for 15 minutes at room temperature.

The platelet poor plasma supernatant (PPP) was collected and

further centrifuged at 13,000g for 3mins to obtain platelet free

plasma (PFP). This was diluted 1:3 with citrated PBS containing

heparin and centrifuged at 14,000g for 90 minutes at 15uC to

produce the MP pellet which was then resuspended in sterile PBS.

MPs were quantified by flow cytometry as numbers of events

relative to a standardised number of 1mm beads (BS Partikels,

GMBH, Germany). Unless otherwise stated, blood from two mice

was pooled to generate each MP preparation. All microparticle

preparations and negative control samples were tested for LPS

contamination using the Limulus Amebocyte Lysate (LAL) gel

formation test, performed according to manufacturer’s standard

operating procedures (Health Protection Agency, UK).

Erythrocyte-derived microparticles
P. berghei ANKA pRBC were collected on day 6 or day 7 of

infection and enriched using LD column magnetic cell sorting

(Miltenyi Biotec). pRBC were routinely .80% pure and were

mainly mid- to late-stage trophozoites and schizonts. pRBC were

washed three times in PBS to remove all plasma constituents and

the final pellet was resuspended to the original volume. To make

microparticles, pRBC or equivalent numbers of RBC from

uninfected mice (uRBC) were subject to repeated (3X) combina-

tions of freeze-thaw and ultra-sonication (10 sec/pulse) cycles.

pRBC or uRBC lysates were then centrifuged at 13,000g for 3min

to remove particulate material and the supernatant was diluted 1:3

with citrated PBS containing heparin and centrifuged at 14,000g

for 90 minutes at 15uC to produce the MP pellet. All microparticle

preparations and negative control samples were tested for LPS

Figure 8. Microparticle driven macrophage activation is MyD88 and TLR-4 dependent. Microparticles were prepared from the plasma of
mice infected with P. berghei ANKA (day 7: PbA MP). Bone marrow derived macrophages were generated from WT (B6), MyD882/2, TLR-22/2, TLR-42/2,
TLR-2/42/2 and TLR-92/2 mice. The ability of PbA MPs to activate (A–C) MyD882/2 macrophages and (D–F) TLR-22/2, TLR-42/2, TLR 2/42/2 and TLR-92/2

macrophages was examined. (A, D) Representative histograms showing the level of CD40 expression by macrophages following stimulation with PbA
MPs. (B) Mean fluorescence intensity of CD40 expression by macrophages following stimulation. (E) normalized CD40 expression by macrophages relative
to non-stimulated controls. (C, F) The level of TNF production by stimulated macrophages was measured by ELISA. The results are representative of 2
separate experiments. (B, C) * p,0.05 between WT non-stimulated and PbA MP stimulated; , p,0.05 between WT PbA MP stimulated and MyD882/2

PbA MP stimulated. (E, F) * p,0.05 between WT PbA MP stimulated and TLR-42/2 PbA MP stimulated; , p,0.05 between WT PbA MP stimulated and
TLR-2/42/2 PbA MP stimulated; + p,0.05 between WT PbA MP stimulated and TLR-22/2 PbA MP stimulated; # p,0.05 between WT PbA MP stimulated
and TLR-92/2 PbA MP stimulated.
doi:10.1371/journal.ppat.1000744.g008
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contamination using the Limulus Amebocyte Lysate (LAL) gel

formation test, performed according to manufacturer’s standard

operating procedures (Health Protection Agency, UK).

Bone marrow derived macrophages (BMDM)
Bone marrow derived macrophages harvested from femurs of

wild type and knockout mice were prepared as described

previously [52]. Briefly, bone marrow cells were washed and

suspended in DMEM supplemented with 10% heat-inactivated

FCS, 20% L-cell supernatant (a source of CSF-1), 5% horse serum

(SIGMA), L-glutamine (GIBCO) and penicillin and streptomycin

(GIBCO) and cultured in tissue culture Petri Dishes (Sterilin, UK).

After 7 days the supernatant containing fibroblasts and mature

macrophages was removed. Adherent cells were scraped off gently,

washed, diluted 1:3 and cultured to maturity for a further 4 days.

Macrophages were cryo-preserved until required.

Macrophage activation assay
BMDM were cultured at 106/ml in duplicate or triplicate in 96-

well plates (NUNC) either in DMEM alone or with LPS (200ng/

nl), pRBC/uRBC (at various BMDM:RBC ratios) or MPs

(normalised numbers in each experiment relative to uninfected

MP levels: average 3–56105/well, depending on the experiment)

for 24 hours at 37uC in 5% CO2). Supernatants were collected

and assayed for TNF and the macrophage monolayer was

harvested for flow cytometric analysis.

ELISA
Supernatants were assayed by standard capture ELISA using

Immunolon 4 HBX plates (ThermoLabsystems UK) coated with

monoclonal hamster antibody against murine TNF (TN3) (gift from

Celltech, Slough, UK). Bound TNF was detected with a biotinylated

goat anti-mouse TNF-a antibody (R&D, UK), streptavidin perox-

idase (Sigma, UK) and 0-phenylenediamine (Sigma, UK). Recom-

binant murine TNF (R&D, UK) was used as a standard.

Flow cytometry
MPs were quantified relative to a standardised number of 1mm

reference beads (BS Partikels, GMBH, Germany): 5ml of MPs were

diluted in 200ml of sterile PBS, with 5 drops of 1mm beads added

into 4mls PBS. Phenotypic characterisation of MPs was performed

by incubating 10ml MPs, diluted 1:4 in sterile PBS, with anti-

mouse TER119 (clone: TER119), anti-mouse CD41 (clone:

MWReg30; BD Pharmingen), anti-mouse VCAM (clone: 429),

anti-mouse CD45 (clone: 30F11), anti-mouse CD144 (clone:

eBioBV13), anti-mouse CD107a (clone: eBio D4B) or anti-mouse

F4-80 (clone: BM8 ). All antibodies, unless otherwise stated, were

from E-Bioscience (distributed by Insight Biotechnology, UK).

MPs were then suspended in Annexin V (BD Pharmingen) binding

buffer before being co-stained with Annexin V. MPs were then

diluted to a final volume of 250ml by the addition of sterile PBS

containing 1mm reference beads. Macrophage activation was

examined by surface staining using anti-mouse CD40 (clone:

1C10), anti-mouse MHC-II (clone: M5/114.15.2) and anti-mouse

F4-80 (clone: BM8). Note, significantly altered acquisition settings

were applied for flow cytometric detection of MPs compared with

those usually utilised for detection of leucocytes; FSc voltage on

E02 was adjusted to position 1mm reference beads in the upper

right hand area of the plot.

Indirect Fluorescent Antibody Test (IFAT)
Antiserum to P. berghei ANKA-infected RBC was prepared from

mice that had undergone 3 rounds of infection and drug cure and

IgG was purified on Protein-G (HiTrap, Amersham,UK). Ten

microlitres of purified MPs were air dried and acetone fixed on

gelatin-coated glass slides. Slides were blocked with rat serum prior

to incubation with anti-PbA IgG for 1 hr at room temperature.

Following incubation with anti-PbA IgG, slides were visualised

using FITC rat anti-mouse antibody (clone 11-4011-85: E-

Bioscience) by fluoresescence microscopy (Zeiss, Axioplan 2) using

Volocity software (Improvision).

Scanning electron microscopy
Microparticles were purified from naı̈ve or day 7 P. berghei

ANKA infected mice as described above. After the final

centrifugation at 14,000g for 90min the pellet was resuspended

in 30 ml of PBS and MPs were seeded on to pre-coated Poly-L-

Lysine-coated glass coverslips (Poly-L-Lysine, Sigma) and allowed

to adhere overnight at 4uC in a moist chamber. The adhered MPs

were fixed with 30 ml of 2.5% glutaraldehyde and 30 ml of 4%

paraformaldehyde for 20 min at room temperature. The 60 ml of

fixatives were removed and replaced with fresh solutions of 2.5%

glutaraldehyde and 4% paraformaldehyde and left overnight at

4uC in the moist chamber. The coverslips were then washed twice

in PBS 0.2 M and left at 4uC until processing. Post-fixation was

carried out with osmium for 1h at room temperature and the

preparations were dehydrated in solutions of ethanol of increasing

strength from 70%, 80% and 90% for 10 min in each solution.

Coverslips were finally dehydrated twice for 10min in 100%

ethanol and then twice for 5min with 100% ultra-pure ethanol.

After rapidly immersing for 3 min in hexamethyldisilazane

(Sigma), the preparations were air dried and transferred to a

desiccator overnight. Samples were mounted onto, gold coated

stubs for 2 min for imaging on a Zeiss scanning electron

microscope (Zeiss ULTRA plus).

Statistical significance
Statistical significance was determined using two tailed

Student’s T test, unless otherwise stated, with P,0.05 considered

as significant.

Supporting Information

Figure S1 Distinct kinetics of CD40 upregulation and TNF

production by macrophages following stimulation with LPS and

PbA-induced MPs. Macrophages were stimulated for 6hrs, 12hrs,

24hrs or 48hrs with LPS (200ng/ml) or MPs prepared from the

plasma of mice infected with P. berghei ANKA (day 7: PbA MP). (A)

Mean fluorescence intensity of CD40 expression by macrophages

following stimulation. (B) The level of TNF production by

stimulated macrophages was measured in the supernatant by

ELISA. The results are representative of 2 separate experiments.

Found at: doi:10.1371/journal.ppat.1000744.s001 (0.02 MB PDF)
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