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ABSTRACT  

Aims: 

Indices of brain volume (grey matter, white matter, lesions) are being used as outcomes in clinical trials of 

patients with multiple sclerosis (MS). We investigated the relationship between cortical volume, the number of 

neocortical neurons estimated using stereology, and demyelination. 

Methods: 

Nine MS and seven control hemispheres were dissected into coronal slices. On sections stained for Giemsa, the 

cortex was outlined and optical disectors applied using systematic uniform random sampling. Neurons were 

counted using an oil immersion objective (x60) following stereological principles. Grey and white matter 

demyelination was outlined on myelin basic protein immuno-stained sections, and expressed as percentages of 

cortex and white matter, respectively. 

Results: 

In MS, the mean number of neurons was 14.9 ± 1.9 billion versus 24.4 ± 2.4 billion in controls (p < 0.011), a 

39% difference. The density of neurons was smaller by 28% (p < 0.001), and cortical volume by 26% (p= 0.1). 

Strong association was detected between number of neurons and cortical volume (p < 0.0001). Demyelination 

affected 40 ± 13 % of the MS neocortex and 9 ± 12% of the white matter, however neither correlated with 

neuronal loss. Only weak association was detected between number of neurons and white matter volume. 

Conclusion: 

Neocortical neuronal loss in MS is massive and strongly predicted by cortical volume. Cortical volume decline 

detected in vivo may be similarly indicative of neuronal loss. Lack of association between neuronal density and 

demyelination suggests these features are partially independent, at least in chronic MS. 

 

 

 

 



  Carassiti, et al. Neuronal loss in the MS neocortex  Page 3 
 

LIST OF ABBREVIATIONS 

AOI – area of interest 

CNS – central nervous system 

GM – grey matter 

IHC – immunohistochemistry  

LFB – luxol fast blue 

MBP – myelin basic protein 

MRI – magnetic resonance imaging 

NFT – neurofibrillary tangles 

PPMS – primary progressive multiple sclerosis 

PwMS – people with MS 

SF – shrinkage factor 

SPMS – secondary progressive multiple sclerosis 

SURS – systematic uniform random sampling 

TNNN – total number of neocortical neurons 

WM – white matter 
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INTRODUCTION 

Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous system (CNS) 

usually becoming symptomatic in early adulthood (1, 2). The most obvious pathological findings in the MS 

brain consist of focal white matter (WM) demyelination with microscopic analysis further revealing perivascular 

and parenchymal inflammation, a variable degree of axonal loss, remyelination and gliosis (3).  

Although involvement of the grey matter (GM) in MS pathology has been described for well over one century 

(4-9), the past two decades have seen an increased interest in measuring the extent, and identifying the cellular 

basis, of cortical pathology in people with MS (pwMS), notably demyelination and neuronal loss (10-13). 

Magnetic resonance imaging (MRI) studies assessing various indices of cortical damage suggest that clinical 

measures of disability may be more closely related to GM than WM pathology, particularly after onset of 

progression (14-17).  

However, the histological correlate(s) of volume changes across the whole neocortex have not been 

systematically assessed.  Given that indices of brain volume have emerged as key outcome measures in natural 

history studies and treatment trials of new disease modifying agents, establishing the quantitative cellular basis 

of volumetric changes in the brain is of significant importance (18). 

Though previous observations have established the presence of neuronal loss in the MS neocortex, there is 

significant variation in the reported magnitude, ranging between 18% (19) and up to 65% in individual cortical 

layers (13). The variation in the degree of neuronal loss reported in these studies may have arisen from 

variability in the available post mortem material, differences in sampling strategy and the application of a two-

dimensional approach to histological quantification (20).  

Moreover, the impact of neocortical demyelination on neuronal loss and cortical volume across the whole brain 

has remained unclear. Peterson and co-workers described an increase of neuronal apoptosis in demyelinated 

neocortex (21), however the reported association between neuronal loss and demyelination was either mild 

(10% loss in demyelinated versus non-demyelinated cortical areas) or non-significant (13, 19, 22, 23). Given the 

difficulties detecting cortical lesions using MRI in vivo as well as post mortem, at least when using standard 

clinical MR systems (24-26), careful quantitative autopsy studies to further explore the association between 

myelination status, neuronal loss and cortical volume change are warranted (27). 
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In this study, we quantified the number of neurons across the whole neocortex of pwMS using unbiased 

stereological methods to estimate the overall extent of neuronal loss. We then investigated the association 

between the number of neocortical neurons and (i) the degree of cortical and WM demyelination, and (ii) 

cortical and WM volume. 
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MATERIALS AND METHODS 

Brain specimens and clinical data 

This study was performed on formalin-fixed post mortem brain hemispheres from nine pwMS, seven secondary 

progressive (SP) MS and two primary progressive (PP) MS, of which six were female and three male. Control 

brain tissues from seven healthy donors (three females and four males) with no history or pathological evidence 

of neurological disease were used as a reference. MS cases were selected to provide a wide age range at death 

(Table 1). 

The diagnosis of MS, as well as the absence of any other confounding pathology in our cohort of  cases, 

was confirmed based on the patient history (reviewed by Klaus Schmierer and Daniele Carassiti) and on 

a detailed neuropathological inspection (conducted by Francesco Scaravilli, Daniele Carassiti, Natalia 

Petrova and Klaus Schmierer): at least five tissue blocks, dissected without compromising the integrity of 

the neocortex for subsequent stereological analysis, were sampled from the following regions: 

hippocampus and entorhinal cortex, F2 frontal cortex, the pericallosal gyrus, corpus callosum and the 

periventicular WM, occipital and temporal cortices.  We then assessed with light microscopy the presence 

of inflammatory infiltrates and described the demyelinated lesions according to Kuhlmann and colleagues 

(28). All dissected tissue blocks were stained for Haematoxilin & Eosin, Luxol fast blue (LFB), and 

immunostained for CD68 to reveal microglial cells. In 7/16 cases with an older age at death (two controls 

and five MS, aged 92 and 81, and 55-73 years, respectively), immunohistochemistry (IHC) was carried 

out to assess the presence of Lewy bodies, beta-Amyloid and neurofibrillary (NFT) tangles. The 

antibodies used and corresponding immunohistochemical methods, are summarised in supplementary 

Table 6. 

Tissue dissection  

Following the separation of the cerebellum and brainstem from the forebrain at the level of the midbrain, the 

hemispheres were separated by an antero-posterior cut through the corpus callosum and weighed. Lobar 

topography was marked on the cortical surface using tissue dye (Sigma-Aldrich, USA) so that the three frontal 

gyri, the motor, the parietal/temporal and the occipital cortices were identified. Brain hemispheres were then 

dissected into parallel coronal slices with a thickness of 11 mm using a custom-made Perspex tissue holder 

including cutting panel (Schmierer GmbH, Gross-Gerau, Germany). The total surface area of each 
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formalin-fixed coronal slice was measured before and after tissue processing. The tissue shrinkage factor 

(SF) was then calculated and expressed as a percentage loss of the formalin-fixed surface area prior to 

tissue processing. 

Tissue processing, embedding and staining 

Coronal slices were processed for paraffin-embedding using a Thermoscientific Excelsior ES tissue processing 

machine. Due to the thickness of the brain slices the processing protocol was optimized to a duration of 80 hours 

(h). All samples were first immersed in industrial methylated spirit at 30 °C for 39 hours (divided in six steps of 

1 h, 4 h, 6 h, 8 h, 10 h and 10 h), then dehydrated in toluene at 30 °C for 14 hours (3 steps of 4 h, 5 h and 5 h), 

followed by a final incubation in liquid paraffin at 62 °C for 27 hours (3 steps of 6 h, 9 h and 12 h). For each 

incubation step the solution was automatically changed and stirred.  During embedding each slice was kept in 

the same orientation as it had been during dissection. Care was taken to embed the cutting side parallel to the 

surface of the paraffin block. Whole hemispheric sections were then cut using a Reichart-Jung tetrander. The 

first 40 μm-thick section including the entire hemispheric surface of the coronal slice was mounted on pre-

coated glass slides and instantly dried at 40 °C for 24 h, then pre-heated at 60 °C for at least 2 h before 

dewaxing in xylene, rehydrating in industrial methylated spirit and staining with modified Giemsa stain solution 

(50 mL Giemsa by Merck, Cat. No. 1.09204, with 200 mL potassium-hydrogen-phosphate at pH 4.5 for 1 L of 

final solution, filtered before use) for about 3 hours. Finally the sections were differentiated with 0.5% acetic 

acid and dehydrated before mounting them in DPX mounting medium (VWR, PA, USA).  

Stereological analysis 

Stereological analysis (DC) was performed using a stereology workstation consisting of a modified light 

microscope (Nikon Eclipse 80i) equipped with a PlanUW objective 2× (numerical aperture (NA) = 0.06), a 60x 

PlanApo oil-immersion objective (NA = 1.4) (Nikon, Tokyo, Japan), an integrated motorized stage for 

automated sampling (MBF Bioscience; Williston, VT, USA), a CCD colour video camera (MBF Bioscience, 

CX9000) and stereology software (StereoInvestigator; MicroBrightField, Williston, VT, USA). 

40µm-thick Giemsa-stained coronal hemispheric sections were inserted on a custom made section holder, and 

then area of interest (AOI), in this case the whole neocortical ribbon, was manually outlined and measured using 

a 2× objective. The neocortical volume was calculated for each slice using  

 Vslice = AOI x T,         (1)  
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where T was the distance between sections(29).  The total number of neurons per slice was equal to the volume 

of the reference space (neocortex) per slice multiplied by the numerical density of neurons = NV. The NV was 

equal to the total number of neurons counted in the slice (∑Q-) divided by the total volume of all disectors in 

which those neurons were sampled = ∑Q-/∑disectors volume. The volume of one disector was equal to the area 

of the frame of the disector, 50 μm x 50 μm, multiplied by the height of the disector (20 μm), i.e. 50,000 μm3. 

StereoInvestigator Software placed disectors over the AOI using a systematic uniform random sampling (SURS) 

protocol and an x-y step length of x = 3455 μm, and y = 4655μm. Step lengths were defined such that even the 

smaller AOIs, for example in the most anterior slices of the frontal cortex, and the most posterior ones in the 

occipital cortex, would be covered by at least 10 disectors and were then kept constant for all samples. The 

protocol thereby avoided underestimation of these cortical regions. The cell counting was performed using the 

optical disector method (30-32). The method is a slight modification of existing techniques, which have been 

considered efficient and reliable in studies of rat (33) and human neocortex (34). The optical disector is a three-

dimensional probe generated with the aid of a microscope with a high numerical aperture and oil immersion 

objective, in which it is possible to observe thin focal planes in relatively thick sections. A counting frame with 

‘exclusion’ and ‘inclusion’ lines was superimposed on the magnified image of the tissue on a computer screen 

and the orientation in the z-axis was measured with a digital microcator with a precision of 0.5 µm. The purpose 

of ‘exclusion’ and ‘inclusion’ lines of the counting frame is to exclude edge effects arising from subsampling 

(35). All cells that come into focus within the frame and not in focus at the uppermost position were counted as 

the focal plane was moved 20 µm through the section. Giemsa-stained neurons were identified according to the 

following morphological criteria: a triangular cellular shape, a vesicular nucleus, a single large nucleolus free of 

any surrounding heterochromatin, and a visible cytoplasm with interspersed ribosomes(36). The neuronal 

nucleus was used as the counting item: on average 125 ± 54 neuronal nuclei were counted per slice, with an 

average number of neurons of 1787 ± 522 counted for each brain (mean ± SD).  The number of neurons in each 

slice was subsequently calculated according to  

NV x Vref          (2) 

and the total number of neocortical neurons (TNNN) determined as the sum total number of neurons in all slices 

from one hemisphere multiplied by two (Fig 1 A to C). This result is an unbiased estimate as the 

hemispheres were chosen systematically at random based on the assumption that both brain hemispheres 
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in one individual contain the same number of neocortical neurons (in control cases: 4 right vs 3 left 

hemispheres, in MS cases: 2 right vs 7 left, in the whole cohort: 5 right vs 11 left). 

To explore association between TNNN and WM volume, the latter was also manually outlined and calculated as 

described above for cortical volume. 

Quantification of demyelination 

The extent of GM and WM demyelination was manually outlined on 10 μm-thick hemispheric coronal sections, 

adjacent to Giemsa stained sections (Fig 2 A), using myelin basic protein (MBP) immunohistochemistry (SMI-

94, Covance, Cambridge Bioscience, UK) following an established protocol (26) (Fig 2 B). The quantification 

of demyelination was performed on a mean of 6 (range: 4 -14) slices/hemisphere selected using systematic 

uniform random sampling covering all cortical regions investigated. 

All images were acquired at x2 magnification using the stereology workstation with optimized settings for light 

intensity, exposure and white balance, depending on the objective in use and kept constant during every 

acquisition session. Images were saved as .TIFF files with spatial reference information settings for each 

objective based on calibration images. 

Files were then opened using ImageJ and GM demyelination manually outlined on the digitized images of MBP 

immuno-stained sections including all cortical lesion types (21), and expressed as a percentage of the total 

cortex on each slide. The same images were used to manually outline WM demyelination. 

Statistical analysis 

Demographics are reported as means ± standard deviation (SD) and compared using student’s t test. Differences 

between pwMS and controls were examined using linear mixed models with the measure being compared as the 

response variable, and a fixed effect group indicator; fixed effect cortical region indicators were included in all 

models, and other potential confounders (age, gender, SF and disease duration, for which controls were assigned 

a zero value in comparisons with pwMS) were included singly as fixed effect covariates. These models used the 

coronal slice as the unit of analysis, with a random subject intercept to account for the ownership of slices by 

subjects. Possible variations in pwMS vs control differences by region were examined by adding a group  

region interaction term to the models. Linear mixed models were also used to investigate associations, in 

patients only, between cortical pathology measures. Residuals were examined to check model assumptions, as a 
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result of which number of neurons, cortical and WM volumes per slice were log transformed, which generally 

improved residual normality and homoscedasticity. Restricted maximum likelihood estimation (REML) was 

used except where there was evidence of residual heteroscedasticity, when maximum likelihood was used with 

robust standard errors. Pearson’s test was used only to investigate the association between the entire cortical 

volume and the total number of neurons with a whole brain as a unit of analysis. All calculations were 

performed in Stata 13 (Stata Corporation, College Station, Texas, USA) and Prism 6 (GraphPad, California, 

USA) and significance is reported at 5%.
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RESULTS 

Histological sampling and cohort details 

A total of 16 cerebral hemispheres were dissected into 229 coronal slices (14 slices/hemisphere, range = 13-17 

slices), and analysed in this study. PwMS did not differ from controls with respect to age at death (68 ± 14 

years, range: 47-92 years vs 75 ± 18 years, range = 47-92, p = 0.44), post mortem delay (34 ± 12 hours vs 29 ± 

19 hours, p = 0.5), and fixation time (59 ± 27 months vs 171 ± 150 months, p = 0.26), the latter was in particular 

very long for three female controls, however this outlier data does not affect our analysis and overall 

observations. Hemispheres of pwMS were lighter than controls (477 ± 47 g vs 552 ± 72 g, p = 0.02), a 14% 

difference, and SF after processing more pronounced in pwMS than in controls (28 ± 11% and 25 ± 11%, t-test 

p = 0.027). 

Microscopic inspection of tissue blocks for pathology reporting showed only sparse inflammation, either in WM 

parenchyma or within perivascular spaces or in the depth between two banks of a gyrus, where meningeal 

inflammation has been reported to be found more frequently (11). Therefore we did not characterize meningeal 

inflammation any further in our cohort. No active WM lesions were observed. 

In order to rule out possible co-morbidity, such as Parkinson’s or Alzheimer’s disease, we investigated 

sections using morphological and IHC methods. No evidence of Lewy bodies or α-synuclein-positive 

intracytoplasmatic inclusions was found in any of the brains examined (supplementary Fig. 4 D and G). 

A-beta amyloid deposition was also absent from the hippocampus of all controls and MS cases (not 

shown). In one MS case (MS455) diffuse αβ-amyloid plaques in the neocortex were observed; a few such 

plaques were also seen in the neocortex of the oldest control case (C55) (supplementary Fig.4 E and H).  

The same control (92 year old) was also found to have very sparse NFT-positive neurons in the dentate 

gyrus, and also some in the neocortex (Supplementary Fig. 4 F). Similarly, a very low numbers of NFT-

positive neocortical neurons were observed in two MS patients (MS475 and MS455, supplementary Fig.4 

I). 
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Loss of neocortical neurons in MS  

In pwMS the TNNN was 14.9 ± 1.9 billion versus 24.4 ± 2.4 billion in controls (mean ± SD) showing that there 

were 39% fewer neurons in the neocortex of pwMS than in controls after adjusting for age, gender, disease 

duration and SF (95% CI 13%, 58%, p = 0.011, Fig 3 A). There was no evidence that this difference varied 

significantly across the frontal, motor, parietal/temporal and occipital cortical regions (p = 0.72). The number of 

neurons in each cortical region are listed in Table 2. 

Extent of neocortical ‘atrophy’ in MS  

After adjustment for age, gender, disease duration and SF we detected trend difference in total cortical volume 

with pwMS having a 26% smaller cortical volume than controls (p = 0.1). There was no evidence of different 

volume reductions across the four cortical regions analysed (p = 0.77). 

Lower neuronal density in the MS neocortex 

After adjusting for age, gender, disease duration, cortical region and SF, the mean neuronal density 

[neurons/mm3 ± SEM] in pwMS was 57468 ± 3636 and 79787 ± 3869 in controls (mean ± SEM, p = 0.0008) 

indicating a significant 28% reduction in neuronal density (Fig 3 B). Neuronal density was significantly smaller 

in women compared to men, in pwMS (p < 0.001) and in controls group (p < 0.001). See Table 3 for the mean 

neuronal density and the proportional decrease in neuronal density measures in pwMS and controls, both males 

and females. 

We observed a significant decrease of neuronal density in each cortical region in pwMS when compared to 

controls (See Table 4, all p < 0.001). 

As expected, we detected a significantly higher neuronal density in the occipital cortex compared to the other 

cortical regions in both MS and controls (p < 0.001). There was no statistical evidence that the difference in the 

neuronal density observed between cortical regions followed a different pattern in pwMS and controls (p = 

0.615).  

The extent of demyelination  

The degree of demyelination was quantified in 57 hemispheric coronal sections of nine MS cases. The non-

adjusted mean proportion of demyelinated cortex in MS was 40 ± 13 %. There was no evidence that 



  Carassiti, et al. Neuronal loss in the MS neocortex  Page 13 
 

demyelination varied by gender (p = 0.99), age (p = 0.794) or disease duration (p = 0.2). All cortical regions 

included in our analysis showed significantly less demyelination than frontal cortex (motor cortex, p = 

0.004; parietal and temporal cortices, p = 0.017; occipital cortex p < 0.001) which was the most severely 

affected (see Table 5 for the relative demyelination in each cortical region). 

There was no significant gender difference in terms of proportional cortical demyelination between males and 

females (M = 42 ± 11%, F= 39 ± 7%, p = 0.737). 

The mean proportion of demyelination in WM (9 ± 12%) was four-fold smaller than in the GM (p < 0.0001, Fig. 

3 C). There was no evidence that WM demyelination varied by gender (p = 0.43), age (p = 0.11) or disease 

duration (p = 0.99).  

No association between neuronal loss and demyelination   

After adjusting for age, gender and SF, no significant association was detected between the percentage of 

cortical demyelination and the neuronal density, neither across the entire cortex (p = 0.21, Fig 3 D) nor in 

specific cortical regions (p = 0.322). No association was detected either between the number of cortical neurons 

and WM lesion volume (p = 0.11). 

Association between number of cortical neurons and tissue volumes 

After adjusting for age, gender and SF, a greater cortical volume correlated strongly with a greater number of 

cortical neurons (p < 0.001).  This correlation, when tested in each brain slice, was significantly different in 

pwMS compared to controls (p < 0.001), with pwMS showing a shallower regression line (49787/mm3) than 

controls (68848/mm3) thereby indicating lower neuronal density in the MS cortex (Fig 3 E and F). In addition, 

we detected significant correlation between WM volume and the number of neocortical neurons in the 

same slab: for each additional mm3 of WM volume we detected a corresponding increase of 0.005% in the 

number of neocortical neurons (p = 0.004, Fig 3 H). Further statistical calculations, applying instead the 

Pearson’s test on the ‘total cortical volume’ and the ‘total n cortical neurons’ as the unit of analysis, confirmed a 

strong association between these two quantities (Fig 3 G, r= 0.86; p < 0.0001). 
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DISCUSSION 

Given various in vivo indices of brain volume are in use to monitor treatment effect in clinical trials of pwMS, it 

is important to accurately establish the histological correlates of brain volume changes(37, 38).  In this study we 

focussed on the MS neocortex using an unbiased histological sampling technique and applied the rules of 

stereology in order to accurately quantify in post mortem brain the extent of neuronal loss across the entire 

neocortex in pwMS and controls and the correlation between the number of neurons, cortical volume and 

cortical demyelination.  

After a mean disease duration of 27 years pwMS had 39% lower TNNN compared to controls highlighting the 

substantial loss of the key CNS cell type – neurons – during a life with MS.  Neuronal density was reduced by 

just under 30%, and as with neuronal loss, this decrease was a global finding, i.e. there was no difference in 

terms of proportional neuronal loss among the lobes investigated, including the occipital (visual) cortex which – 

in line with its specific anatomical organisation of layers – showed a higher density of neurons compared to the 

frontal, motor, parietal and temporal cortices.  The detected reduction of TNNN in MS, over and above the 

reported 10% due to ageing (34), underlines the significance of neuronal loss in the MS neocortex. Negligible 

signs of additional pathology in a few of our cases are unlikely to have affected the stereological estimates 

in our study. 

Whilst the difference in cortical volume between MS and controls did not reach statistical significance, the 

number of neocortical neurons was robustly associated with the cortical volume in both MS brain and control 

tissue (Fig 3 E-G). There are, of course, some caveats in comparing results derived from histology of processed 

post mortem tissue with data acquired using MRI in pwMS in vivo. The process of fixation leads to changes of 

MRI indices, such as relaxation times and diffusion (39, 40); some degree of shrinkage may have taken place as 

a result of tissue fixation (41), over and above the volume reduction due to the dehydrating process of tissue 

embedding, which in our sample was 25-28%.   

In spite of the abovementioned limitations, we therefore infer from the association between the number of 

cortical neurons and the cortical volume detected in our study that indices of cortical volume acquired using 

MRI may provide a reasonable estimate of the number of neocortical neurons during life. The weak association 

between WM volume and the number of neocortical neurons in pwMS, underpins in vivo MRI studies indicating 

WM volume is a far less robust predictor of cortical pathology (42, 43). 



  Carassiti, et al. Neuronal loss in the MS neocortex  Page 15 
 

Whilst the difference in total cortical volume between MS and controls did not reach statistical significance, the 

magnitude of this difference – 26% smaller volume in MS brain – would be in line with an annual cortical 

atrophy of just under 1%, which is similar to figures obtained using MRI in pwMS in vivo (43). 

Several MRI studies reported regional variation of cortical volume reduction in pwMS (44, 45). However, we 

did not detect such variation with the degree of cortical volume loss being very similar across all regions. One 

explanation for this difference would be that local volume variation may present at early disease stages and 

becomes less apparent in chronic MS (46, 47).  

Significant neocortical demyelination was detected in our samples. The degree of demyelination varied, similar 

to previous observations (11), between 46% (frontal cortex) and 33% (occipital cortex), which is in contrast to 

our cortical volume measures that suggested a virtually identical degree of atrophy across all lobes. Whilst 

earlier pathology studies suggested a mild effect (10%) of cortical demyelination on neocortical neuronal 

loss(13, 21, 22), our study did not reveal any association whatsoever between the extent of demyelination and 

the density of neurons in the MS neocortex. This finding corroborates recent research on a smaller number of 

tissue samples which indicated neuronal loss in the MS neocortex compared to controls, however showing no 

difference in the number of neurons between lesional and non-lesional MS neocortex (23). 

The observed lack of association between the volume of WM and both the neocortical myelination  and  

neuronal loss in each slab, suggests that, at least in advanced stages of MS, these two key pathological features 

may become partially independent. Assuming an association between demyelination and neuro-axonal loss does 

exist in early MS, well described for acute lesions in the WM (48, 49), the detected lack of such relationship in 

the GM in late stage MS remains poorly understood. Numerous hypotheses are being explored including the 

contribution of anterograde (Wallerian) and retrograde (“dying back”) axonal degeneration (50) due to remote 

lesions located some distance away (51, 52), meningeal inflammation (11) not necessarily targeting myelin 

proteins (53), chronic microglia activation (54), gliosis (55), oxidative stress and mitochondrial dysfunction(56), 

primary neurodegenerative processes (57), and exhaustion of CNS repair mechanisms (58), all of which may 

contribute to worsening disease in pwMS without overt inflammatory demyelination (12).  

Whilst lesions detected using conventional T2 weighted MRI in patients with long standing MS are not specific 

for the underlying tissue condition (de-/remyelination, axonal damage, gliosis, inflammation, etc.), the majority 

of those lesions will be of the chronic inactive type with significant axonal loss and sparse remyelination (59). 



  Carassiti, et al. Neuronal loss in the MS neocortex  Page 16 
 

And whilst chronic disease deterioration is rather uniform and relentless (60), association with lesions on T2 

weighted MRI as a proxy of inflammatory demyelination is no longer robust at this stage, in line with the 

relative independence of disability accrual (considered driven by neuro-axonal loss) from relapses (considered 

the clinical manifestation of inflammatory demyelination) (61). These findings are also corroborated by the poor 

response of people with worsening MS to purely systemic immunomodulatory and immunosuppressive therapy 

(62).  The poor prediction of disability based on lesions detected on T2 weighted MRI is one of the key reasons 

why measures of brain volume have become such important indices to predict clinical outcome. 

 

The lack of correlation in chronic MS between neocortical demyelination and neuronal loss is also strikingly 

similar to the lack of such association between demyelination and axonal loss in the MS spinal cord (63). It will 

be of interest to investigate these relationships using post mortem tissue of the entire neuraxis, which to our 

knowledge has only been performed once in a relatively limited sample (64). 

 

Limitations of the study 

Whilst the observed cortical atrophy could be caused entirely by the loss of neurons, its cellular basis should be 

addressed in further stereology studies also assessing: neuronal size, dendritic and synaptic pathology and the 

loss of other neocortical cell populations, such as microglia and oligodendrocytes.  

In particular, dysfunction and loss of synapses, a pathological finding common to a number of chronic 

neurological diseases (65), has recently received attention also in the context of MS and its animal model 

experimental autoimmune encephalitis (66). In pwMS synaptic loss has been reported in the hippocampus 

associated with demyelination (67) and the presence of  the complement system proteins C1q and C3 (68). 

Subsequent studies reported synaptic damage and loss in the cortical GM (22, 69, 70) and the cerebellar 

dentate nucleus (71). It is possible that synaptic loss could contribute as an additional factor to cortical 

atrophy together with the observed neuronal loss. Further studies are therefore warranted to investigate 

the interrelationship between synaptic loss, demyelination and volume change in pwMS. 

In spite of these limitations, the strength of the detected association between cortical volume and number of 

neurons in our data, corroborated by recent evidence from a MRI/pathology study (27), supports the use of MRI 

indices of brain – particularly cortical – atrophy as a predictor of neuronal loss. 
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In conclusion, we provide robust evidence that in chronic MS (i) neocortical neuronal loss is ultimately 

decreased by nearly 40%, (ii) the impact of demyelination on neuronal density as well as cortical volume 

appears limited, and (iii) cortical volume is a strong predictor of number of cortical neurons. By inference, we 

hypothesize MRI indices of cortical and brain atrophy can provide a useful tool to predict an important 

degenerative component of MS. Further validation of this hypothesis through correlative MRI/pathology studies 

is warranted. 
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