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    Insecticide-treated nets (ITNs) represent a powerful means 
for controlling malaria in Africa. 1  This usefulness is due to 
the fact that the principal malaria vectors, from the Giles 
 Anopheles gambiae  and  An. funestus  species complexes, 2 – 4  pri-
marily feed indoors at night. 2 , 5 , 6  Thus, the proportion of human 
exposure that occurs indoors (π i ), when persons are asleep and 
can conveniently use them, is very high ( Figure 1A –D). Such 
estimates of π i , which take into consideration the movement 
patterns of persons are obtained in the field by weighting the 
observed indoor and outdoor biting rates at each period of the 
night by the proportion of humans that are typically in these 
two compartments at that time. 6 , 7  

  When reasonable levels of community-wide coverage are 
achieved, with approximately half of the population using 
them each night, 8 , 9  ITNs not only confer personal protection 
against infectious bites but can also reduce the survival, feed-
ing frequency, feeding success, and density of vector mosquito 
populations. 8 , 10  This finding means that ITNs not only prevent 
malaria in protected persons, but can also reduce the exposure 
of unprotected persons by suppressing transmission across 
entire communities. 9 , 11 – 15  

 Recent evidence suggests behavioral changes by malaria 
mosquito populations to avoid contact with ITNs by either 
feeding predominantly outdoors or in the early part of the 
evening. 5 , 7 , 16 – 18  Such changes can drastically reduce the level of 
personal protection conferred by ITNs for obvious reasons. 5 , 7  
These behavioral changes might have resulted from the selec-
tion of genetically inherited traits or, more directly, from plas-
tic phenotypic adaptation in response to increased coverage of 
ITNs or indoor residual spraying. 5 , 16 , 17  Such intervention pres-
sure may even be strong enough to cause changes in species 
composition of vector populations by selectively eliminating 
the most susceptible species and leaving those that are less vul-
nerable. 2 , 19 – 23  For instance,  An. arabiensis  Patton, which is typi-
cally more exophilic, zoophagic, and exophagic than its sibling 
species  An. gambiae  sensu stricto, already dominates malaria 
transmission in parts of western Kenya where widespread use 

of ITNs has progressively diminished the importance of  An. 
gambiae  s.s as the main malaria vector. 20  

 Although it is commonly perceived that ITNs are ineffec-
tive against outdoor-biting mosquitoes based on conventional 
measures of mosquito behavior, 5 , 18 , 24  we adapt an established 
mathematical model of mosquito behavior and malaria trans-
mission 8 , 10  to examine the possibility that ITNs can achieve 
communal suppression of malaria transmission exposure, 
even where mosquito evade them and personal protection is 
modest. We adapt an existing model 8  that was previously used 
to establish population-wide coverage thresholds levels of 
ITNs at which community-level protection is equivalent to or 
greater than personal protection. 8  Specifically, we modify the 
model slightly to deal more realistically with vector popula-
tions that vary in terms of their feeding behaviors. The proba-
bility of mosquitoes surviving their eventual host attack (Pγ) is 
adjusted to account for the effect of ITN avoidance behavior, 
expressed as the proportion of normal exposure that would 
occur at times during which a human host would normally 
be under a net (π i ). This parameter can also be thought of in 
simple terms as the maximum proportion of normal exposure, 
which is directly preventable through personal protection by 
using an ITN. The corrected probability of a mosquito surviv-
ing the eventual host attack is calculated with the following 
modification of equation 13 of the original model, 8  assuming 
that the proportion of all attacks that end in death is the sum 
of mortality probabilities for attacking protected and unpro-
tected hosts, weighted according to the proportion of the avail-
ability of all hosts that they represent. 

Pγ = 1−
((1 − πi) μu + πi μu+p) ah,u Nh,p + μu (ac Nc + ah,u Nh,u)

ah,u Nh,u + Ac

 The definitions of relevant terms in the model are shown 
in  Table 1 . The reduction in relative rate of exposure (RRE) 
to malaria transmission achieved by individual-level personal 
protection (ITN users), community-level protection (ITN 
non-users), and combined individual and communal protec-
tion (ITN users) was estimated by fixing the additional mor-
tality probability of mosquitoes encountering an ITN at 0.8 25  
and ITN coverage at the achievable level of 0.5, equivalent to 
50% use as recorded in typical household surveys and speci-
fied by internationally agreed targets. 8 , 9  Otherwise, the model 
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is formulated, parameterized, and applied exactly as previ-
ously described. 8  

      Figure 1E  and F show that less than half of all human expo-
sure to  An. arabiensis  in urban Dar es Salaam, Tanzania 7  occurs 
in times and places when using an ITNs is feasible (π i  = 0.46). 
Based on these published field data, simulations predict only 
a slight suppression in personal relative rate of exposure to 
transmission (RRE = 0.59), equivalent to a 1.7-fold reduction 

( Figure 2 ). However, much greater decreases in exposure to 
transmission for ITN users (communal plus personal protec-
tion; RRE = 0.19) and non users (communal protection only; 
RRE = 0.32) are predicted at 50% community-wide cover-
age. Thus, even non-users receiving only communal protection 
can expect 3.1-fold reduction of exposure to transmission and 
users enjoy a 5.3-fold reduction. Extrapolating this level of 
communal protection horizontally across  Figure 2  shows that 
this is equivalent to the personal protection provided when 
mosquitoes feed predominantly at times when most resident 
are indoors (π i  = 0.77). Once reasonably high use rates are 
attained, communal protection achieved is greater than per-
sonal protection because even modest reductions of mosquito 
survival and feeding success per gonotrophic cycle result in 
much larger impacts upon proportion of mosquitoes surviving 
the multiple blood feeds required to reach an age where they 
can transmit mature sporogonic-stage parasites. 26 – 28  

  Conventional mosquito behavior measures 5 , 18 , 24 , 29 – 32  can 
underestimate the potential of ITNs because they ignore the 
importance of human movements 33  indoors and outdoors. 
 Anopheles gambiae  s.s .  also prefers to bite outdoors in Dar 
es Salaam ( Figure 1C ), 7  but surveys of human malaria preva-
lence confirm that ITNs confer valuable personal protection 

 F igure  1.    Crude behavioral profiles of three populations of malaria vectors in Tanzania ( A ,  C , and  E ) and the corresponding exposure profiles 
of the human populations exposed to them ( B ,  D , and  F ). The left panels plot crude behavioral profiles based on mean biting density of mosquitoes 
per hour, and the right panels represent human behavior-adjusted estimates of actual transmission exposure obtained by multiplying the mean bit-
ing density of mosquito in each hour and the proportion of humans present in the indoor and outdoor compartments. 6 , 7     

 T able  1 
  Parameter definitions  

P γ  = Mean probabilities of surviving eventual host attack
π i  =  Proportion of normal exposure of unprotected humans lacking 

  nets that occurs at times and places when net users would be 
protected by sleeping under them

μ u  = Mortality upon attacking an unprotected host
μ u+p  = Overall mortality upon attacking a protected host
a h,u  = Mean availability of individual unprotected humans

N h,p  = Number of protected humans
a c  = Mean availability of individual cattle

N c  = Number of cattle
N h,u  = Number of unprotected humans
N h  = Number of humans
A c  = Total availability of cattle
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and reduce infection risk by 23.6% (95% confidence interval = 
61.4–95.1%,  P  = 0.016. 34  This finding is due to the fact that 
because persons sleep indoors during peaks of mosquito activ-
ity, this location is where most human exposure occurs (π i  = 
0.73;  Figure 1D ), and can be prevented by using an ITN. 7  

 Plotting π i  versus the proportion of mosquitoes that are 
caught indoors by conventional field methods ( Figure 3 ) 
shows that in all cases, the latter consistently underestimates 
the former. Even for highly exophagic populations of mosqui-
toes, most bites ( Figure 3 ) can be confined to times when most 
humans are indoors 7  and possibly under a net. This approach 
can therefore underestimate the full potential of ITNs because 
it considers outdoor catches at times when they have little or 
no epidemiologic relevance. Conversely, the proportion of 
mosquitoes that are caught at times during which most persons 
are asleep can overestimate or underestimate π i  for exophagic 
and endophagic vectors, respectively, because outdoor catches 
during these period and indoor catches in the evenings and 
mornings are included ( Figure 3 ). 

  However, the number of mosquitoes caught indoors dur-
ing sleeping hours, expressed as a proportion of itself plus the 
number mosquitoes caught outdoors outside of sleeping hours, 
closely matches formal estimates of π i  ( Figure 3 ). Although 
the level of exophagy and endophagy of vector populations 
influences the efficacy of ITNs for preventing malaria trans-
mission, human movement patterns and the extent to which 
vector activity patterns match them may often be more impor-
tant. These examples from Dar es Salaam 7  illustrates how two 
exophagic vector populations can avoid ITNs to different 
extents because of differences in their peak times of activity 
and the degree to which these coincide with human behavioral 

patterns. In simple terms, it is more important that persons are 
asleep and can conveniently use an ITN when vector activ-
ity peaks than that the place they sleep is preferred by those 
mosquitoes. 

 We therefore caution that ITNs should not be automatically 
discarded as a priority vector control measure just because 
vector mosquitoes are observed to prefer feeding outdoors. 
Explicit estimates of π i  values for locally relevant populations 
should first be obtained in the field and the potential com-
munity-level benefits, which are rarely captured by standard 
survey designs, should be carefully considered. Personal pro-
tection measures such as spatial repellents 35 , 36  may be required 
to protect against outdoor bites in the morning or early eve-
ning, 16 , 29 , 37  but should only be considered a supplement to ITNs 
unless proven otherwise. If the equitable, population-wide 
benefits of communal protection are ignored, potential oppor-
tunities for effective malaria control with a well-proven exist-
ing technology may be missed because the requirements for 
behaviorally-susceptible vector populations may be overesti-
mated or overemphasized. 

 F igure  2.    Simulated relationship between personal (users), com-
munal (non-users), and combined effect of personal and communal 
(users) level suppression of malaria transmission exposure across a 
range values for the proportion of normal exposure for an unpro-
tected individual occurring at times when insecticide-treated nets 
(ITNs) would be in use if they were available (π i ).  Arrows A ,  B , and 
 C  represent reported values of π i  for  Anopheles arabiensis  and  An. 
gambiae  s.s in urban Dar es Salaam, Tanzania 7  and  An. gambiae  sensu 
lato in the rural Kilombero Valley, 6  respectively ( Figure 1 ). Note that 
although here we present a scenario in which overall ITN coverage 
level is set at 50%, the degree of personal protection against exposure 
is independent of coverage in the community at large.    

 F igure  3.    Graph of three crude behavioral indices for three popu-
lations of  Anopheles  mosquitoes in Tanzania compared with formal 
estimates of π i , which is the maximum proportion of normal exposure 
that is directly preventable by using an insecticide-treated net.  Arrows 
A ,  B , and  C  represent reported values of π i  for  An. arabiensis  and  An. 
gambiae  s.s in urban Dar es Salaam 7  and  An. gambiae  sensu lato in the 
rural Kilombero Valley, 6  respectively ( Figure 1 ). Open squares repre-
sent the proportion of mosquitoes that are caught indoors calculated 
by dividing the total catch indoors across all times (I 0→24 hours ) by total 
catch occurring outdoors (O 0→24 hours ) and indoors (I 0→24 hours ). The open 
triangles represent the proportion of mosquitoes that are caught at 
times when most humans are likely asleep, obtained by dividing the 
total catch occurring indoors and outdoors from 9:00  pm  to 5:00  am  
(I 9:00  pm →5:00  am   + O 9:00  pm →5:00  am  ) by total catch indoors and outdoors across 
all times (I 0→24 hours  + O 0→24 hours ). The filled circles represents a crude 
estimate of the proportion of exposure occurring indoor (π i ), obtained 
by dividing the total catch occurring indoor from 9:00  pm  to 5:00  am  
hours (I 9:00  pm  → 5:00  am  ) by itself plus the total outdoor catch from 5:00  am  
hours to 9:00  pm  (O 5:00  am →9:00  pm  ).    
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