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Abstract

Background: Phase III trials of the malaria vaccine, RTS, S, are now underway across multiple sites of varying
transmission intensity in Africa. Heterogeneity in exposure, vaccine response and waning of efficacy may bias
estimates of vaccine efficacy.

Methods: Theoretical arguments are used to identify the expected effects of a) heterogeneity in exposure to
infectious bites; b) heterogeneity in individual’s response to the vaccine; and c) waning efficacy on measures of
vaccine efficacy from clinical trials for an infection-blocking vaccine.

Results: Heterogeneity in exposure and vaccine response leads to a smaller proportion of trial participants
becoming infected than one would expect in a homogeneous setting. This causes estimates of vaccine efficacy
from clinical trials to be underestimated if transmission heterogeneity is ignored, and overestimated if
heterogeneity in vaccine response is ignored. Waning of vaccine efficacy can bias estimates of vaccine efficacy in
both directions.

Conclusions: Failure to account for heterogeneities in exposure and response, and waning of efficacy in clinical
trials can lead to biased estimates of malaria vaccine efficacy. Appropriate methods to reduce these biases need to
be used to ensure accurate interpretation and comparability between trial sites of results from the upcoming
Phase III clinical trials of RTS, S.

Background
Malaria poses a major public health problem with unac-
ceptably high levels of Plasmodium falciparum-asso-
ciated morbidity and mortality recorded worldwide [1].
In recent years, dramatic declines in both parasite preva-
lence and disease incidence have been observed in a
number of locations across Africa [2-4], likely attributa-
ble to the increased access to effective first-line therapy
plus roll-out of interventions including long-lasting
insecticide treated nets. Whilst these may be considered
a success, an effective vaccine would be an important
addition to the current suite of anti-malaria interven-
tions. The most promising candidate malaria vaccine
under development is RTS, S combined with Glaxo-
SmithKline’s AS01 adjuvant.

The principal component of RTS, S is the circumspor-
ozoite antigen, which induces pre-erythrocytic antibo-
dies that prevent sporozoites from infectious mosquito
bites from leading to blood-stage malaria. RTS, S is thus
an infection-blocking vaccine. Phase II trials of RTS, S/
AS have demonstrated significant efficacy against time
to first infection (45% (95% CI, 31.4-55.9) [5] and 65.2%
(95% CI, 20.7-84.7) [6] reduction), clinical malaria
(29.9% (95% CI, 11.0-44.8) [5], 56% (95% CI, 31-72) [7]
and 43.2% (95% CI, -47.1-78.0) [6] reduction in different
trials) and severe malaria (57.7% (95% CI, 16.2-80.6) [5]
reduction). Multi-centre Phase III trials for this vaccine
are now underway in 11 sites across Africa.
There are many sources of bias that may arise when

measuring an infection-blocking malaria vaccine’s effi-
cacy in clinical trials. A significant source of bias that is
often overlooked is due to the effects of heterogeneity.
Heterogeneity can arise in one of three ways. Firstly,
heterogeneity in exposure occurs due to some
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individuals being bitten more frequently than others.
Between-individual variation has been observed in
experimental trials in which differential attractiveness to
humans sleeping in tents was quantified using mosquito
traps [8]. This heterogeneity in biting rate has also been
attributed to age due to difference in surface area
between adults and children [9], differences in human
sweat components [10], proximity to larval breeding
sites [11], bed net usage [12] and differences in house
design [13].
Secondly, there can be heterogeneity in vaccine

response, which occurs due to variation in the degree of
protection (or take) of the vaccine between individuals.
For example if a vaccine is reported to have 90% efficacy
against infection, at one extreme this could mean that
each infection will be blocked 90% of the time, whilst at
the other extreme it could mean that 90% of vaccinated
people will be completely protected from infection.
Smith et al [14] and Halloran et al [15] have investi-
gated this concept and coined the terms all-or-nothing
and leaky vaccines. An all-or-nothing vaccine is one
which offers complete protection to a subset of the vac-
cinated population and has no effect on the rest of the
population whilst a leaky vaccine is one which offers the
same level of partial protection to everyone. In a malaria
vaccine trial it is possible that the candidate vaccine will
induce a different level of protection in each of the trial
participants. The level of protection given to a vacci-
nated person will be described by their vaccine response,
which will depend on the relative immunogenicity of the
vaccine and the magnitude of the induced antibody
titres. Individual vaccine response may further depend
on genetic and nutritional factors [16] as well as age,
past exposure and season [17].
Finally, for a candidate malaria vaccine offering partial

protection from infection, waning of efficacy is also
likely to be observed. Understanding how a vaccine’s
efficacy wanes over time is at least as important as mea-
suring its initial efficacy. Waning of efficacy can be esti-
mated from clinical trials by measuring a vaccine’s half-
life: the time taken for the initial efficacy to be halved.
However, a vaccine’s half-life is a crude measure of wan-
ing, as the effects of a vaccine may not decay at a con-
stant rate, and thus some people may remain protected
for longer than others. This type of heterogeneity is
often neglected in the interpretation of trial results.
Mathematical models have been used to investigate

the impact of heterogeneity in exposure [18-20], hetero-
geneity in vaccine response [20,21] and waning of effi-
cacy [20] on malaria transmission. In this paper
theoretical arguments are used to understand how these
three types of heterogeneity can affect measurement of
vaccine efficacy in clinical trials. Examples are motivated
by the RTS, S vaccine and hence focus on a pre-

erythrocytic vaccine which is assumed to act by partially
blocking infection. In the first section the basic methods
currently used to estimate vaccine efficacy in Phase II
and Phase III trials are described. The effects of the
three types of heterogeneity on the estimates of vaccine
efficacy from clinical trials are then investigated.

Measurements of vaccine efficacy
For a vaccine with efficacy VE, if the probability of an
unvaccinated person becoming infected after an infec-
tious bite is b, then the probability that a vaccinated
person becomes infected is (1 - VE) b. This efficacy VE,
hereafter referred to as the individual efficacy, can be
defined as the proportion of infectious bites on a vacci-
nated population that are blocked by the vaccine. This
proportion can be directly estimated in laboratory based
Phase IIa trials where healthy adult volunteers are
exposed to bites from infectious mosquitoes and then
monitored for blood-stage malaria infection [22,23].
In field-based Phase IIb clinical trials in malaria ende-

mic regions, it is impossible to directly estimate this
proportion. Instead vaccine efficacy must be estimated
by measuring malaria-related events in both the vaccine
and control arms of the trial. Vaccine efficacy can then
be calculated as

efficacy 1
events with vaccine

events without vaccine
 

Malaria infection has a complex life history giving rise
to a choice of events to measure [24]. These include
prevalence of infection as detected by the presence of
parasitaemia, time to first infection, episodes of febrile
malaria, episodes of severe malaria or multiple episodes
in fixed time periods. Each of these end-points will be
relevant in different settings. For example, infection-
blocking efficacy would be most important to a traveller
to a malaria endemic region, whereas efficacy against
severe disease would be most important for a child liv-
ing in an area of high transmission. Vaccine efficacy
against time to first infection and prevalence of infection
are focused upon as these are the outcomes directly
affected by pre-erythrocytic vaccines, although they can
also be expected to have a downstream effect on mor-
bidity and mortality.
Following the notation of Smith et al [14], the vaccine

efficacy against cumulative incidence of infection, also
known as risk-based infection-blocking efficacy, is
denoted VEr. This gives a measure of the risk of having
become infected by the end of a trial for the vaccine
group compared to the control group. Note that the
cumulative incidence of infection is different to the pre-
valence of infection as it measures the proportion who
have ever become infected and not the proportion
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infected at a given time. Vaccine efficacy against time to
first infection, also known as rate-based infection-block-
ing efficacy, will be denoted VEf. This gives a measure
of the rate at which the vaccine group becomes infected
compared to the control group.
In a trial of a vaccine with individual efficacy VE, of

length T, in a setting with constant force of infection Λ,
estimates for the proportion infected and the person
years at risk (PYAR) can be calculated using the formu-
lae in Table 1.
The risk-based efficacy can be calculated as

VEr  1
proportion infected with vaccine

proportion infected wwithout vaccine
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Thus the risk-based efficacy, VE, as measured in a
field trial can be estimated from the individual efficacy.
This measure approaches 0 as T increases as it is
assumed that everyone will become infected if the fol-
low-up is sufficiently long. In addition, for small T we
have VEr ≈ VE.
In a field trial the rate at which a cohort becomes

infected can be estimated by dividing the infected pro-
portion at the end of the follow-up period by the total
person years at risk. The rate-based efficacy can then be
calculated as

VE f  1
infection rate with vaccine

infection rate without vacccine
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Therefore the rate-based efficacy is equal to the indivi-
dual efficacy. In particular it is independent of the force
of infection Λ and the length of the trial T.
The risk-based definition of efficacy is commonly used

for diseases in which natural infection with the causative
agent provides near complete protection against a second
infection with the same agent, for example measles.

However, the high frequency at which people living in
endemic regions are challenged with malaria infection
makes risk-based infection-blocking efficacy uninforma-
tive, as most trial participants are likely to have become
infected during a trial. In order to overcome this difficulty,
a consensus has formed amongst vaccine trialists to pri-
marily use rate-based measures based on time to first
infection [24,25].

Heterogeneity in transmission
In a site where a malaria intervention is being trialled,
the transmission intensity is usually measured using the
entomological inoculation rate (EIR). In the analysis of
trial results it is often assumed that all participants
experience the same homogeneous force of infection.
Making this assumption and ignoring the effects of het-
erogeneity in transmission can bias trial results.
If the average force of infection is measured to be Λ =

bε, where b is the infectivity (the probability that a bite
from an infectious mosquito results in infection), and ε
is the measured EIR, then the heterogeneity in malaria
transmission can be modelled using some distribution f.
A proportion f(x) of the population under observation
will experience a force of infection xΛ. As f is a distribu-
tion it must have mean 1 ensuring that that the average
force of infection across the entire population is indeed
Λ. Examples of distributions that will be considered are
given in Table 2.
In an area with constant force of infection Λ (i.e.

homogeneous transmission), the average proportion
infected at time T will be I(T) = 1-e-ΛT. In an area with
heterogeneity in transmission described by a distribution
f, the average proportion infected will be

I T e f x dxf
x T( ) ( )  



1
0



Figure 1A shows the average infected proportion in a
trial as a function of the follow-up time T for the

Table 1 Expected values for the observed infected
proportion I(T), and person years at risk (PYAR) in a
clinical trial with follow-up period T, of a vaccine
with individual efficacy VE, in a region with force
of infection Λ.

Group Proportion infected I(T) Person years at risk PYAR

Control 1 - e-ΛT 1  e T


Vaccine 1 - e-(1 - VE)ΛT 1

1

1

 e

VE

VE T( )

( )





Table 2 Examples of distributions describing
heterogeneity in exposure in order of increasing
heterogeneity

Distribution Description

constant All individuals receive the same number of infectious
mosquito bites.

80/20 The distribution of infectious bites follows an 80/20 rule
as suggested by Woolhouse et al [28]where 20% of
people receive 80% of the bites.

gamma The distribution of infectious mosquito bites follows a
gamma distribution with parameter 1/4.2 as suggested
by Smith et al [19].

extreme A hypothetical example of extreme heterogeneity as
might be observed in a localised epidemic, in this case
modelled as 5% of people receiving 95% of infectious
bites.
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heterogeneity distributions listed in Table 2. As hetero-
geneity in exposure to infection increases, the propor-
tion of individuals infected in any given setting
decreases. Furthermore, for a given force of infection,
homogeneous exposure, whereby everyone receives the
same number of infectious bites, always leads to the
highest proportion infected (see Additional File 1). To
understand this result, consider the problem from the
hypothetical point of view of a mosquito population try-
ing to infect as many humans as possible with malaria.
In order not to waste any bites on people already
infected, the mosquitoes should evenly distribute their
bites on the entire population. If there is heterogeneity
in the bite distribution, then many bites will be wasted
on humans that are already infected.

Heterogeneity in vaccine response
Leaky and all-or-nothing vaccines represent the extreme
cases of a vaccine that has a completely homogeneous
effect on the vaccinated population and a vaccine that
has a very heterogeneous effect. In reality one would
expect to observe a range of intermediate behaviours
between these two extremes. A vaccine that has variable
individual efficacy on the vaccinated population can be
described by an efficacy distribution g. Let g(x) be the
proportion of the population on which the vaccine has
individual efficacy x. These efficacy distributions have

been described previously by Halloran and Longini
using frailty-mixing models [26,27]. Some examples are
given in Table 3.
For a vaccine with efficacy distribution g, the average

individual efficacy can be calculated by averaging the
individual efficacy for the entire population

xg x dx VE( )
0

1

 

For a population in an area with force of infection Λ,
given a homogeneous (leaky) vaccine with individual
efficacy VE, the average proportion infected after follow-
up time T will be I(T) = 1-e-(1-VE)ΛT. If the same

Figure 1 Cumulative proportion of infected trial participants for an infection-blocking vaccine with an average individual efficacy of
45.0% based on RTS,S, and in a similar setting to the Mozambique trial site described by Alonso et al [5]. (A) Cumulative proportion of
unvaccinated trial participants infected under a range of transmission heterogeneities. (B) Cumulative proportion of vaccinated trial participants
infected for a range of vaccine types. The proportion infected for an all-or-nothing vaccine can never cross the dashed line marked 1-V = 0.55 as
the 45% of vaccinees with total protection will never become infected. Note that the 4 vaccines each have the same individual efficacy but
different heterogeneities in vaccine efficacy.

Table 3 Examples of distributions describing vaccine
response in order of increasing heterogeneity

Vaccine Description

leaky Vaccination gives everyone the same level of partial
protection.

leaky-or-
nothing

Vaccination offers partial protection to some people but
no protection to others, as described by Halloran et al
[27].

beta Vaccination offers a variable level of protection to all
vaccinees. The effect of vaccination follows a beta
distribution as described by Maire et al [21].

all-or-
nothing

Vaccination offers full protection to some people but no
protection to others.
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population is instead given a vaccine with the same
average individual efficacy VE, but with vaccine response
described by a distribution g the average proportion
infected will be

I T e g x dxg
x T( ) ( )( )   1 1

0

1


Figure 1B shows the average infected proportion as a
function of the follow up time T for the efficacy distri-
butions listed in Table 3 for a specified average indivi-
dual efficacy. The all-or-nothing vaccine always protects
more people from infection than the leaky vaccine
regardless of follow-up time. Thus, the more heteroge-
neous a vaccine is (i.e. the more it resembles an all-or-
nothing vaccine), the more people will be protected
from infection. In fact it can be proved (see Additional
File 1) that if a vaccine has average individual efficacy
VE, then it will always protect at least as many people
as would be expected from a leaky vaccine with the
same average individual efficacy, and at most as many
people as an all-or-nothing vaccine. To understand this,
compare a leaky vaccine with an all-or-nothing vaccine.
Given long follow-up, everyone in a group given a leaky
vaccine will eventually become infected as eventually
one of the infectious bites will evade the vaccine
response. In contrast, a group given an all-or-nothing
vaccine will contain a subgroup that will always remain
free from infection. The unprotected subgroup will
become infected at a natural rate, but the number of
infections in this subgroup will be less than the number
of infections in the entire leaky group. Therefore there
will be fewer infections in the entire all-or-nothing
group than in the leaky group.

How heterogeneity affects estimates of vaccine efficacy
Consider an infection-blocking vaccine with constant
individual efficacy being tested in a range of transmission
settings described by the distributions in Table 2. Figures
2A and 2C show the risk-based and rate-based efficacies
that would be observed as a function of increasing fol-
low-up time. Comparing the curves for the risk-based
(Figure 2A) and rate-based (Figure 2C) efficacies it is
apparent that the rate-based efficacy is a more useful
measure as it converges to the individual efficacy as the
follow-up time increases. The estimates of rate-based
efficacy in the presence of transmission heterogeneity
(Figure 2C), show that the more heterogeneous the trans-
mission setting, the lower the measured value for the
rate-based infection-blocking efficacy. This means that if
a vaccine is tested in an area with a high level of trans-
mission heterogeneity, its efficacy will be underestimated.
To understand this, consider a population where 20%

of the population receive 80% of the infectious mosquito

bites as suggested by Woolhouse et al [28]. In the
unvaccinated control group, the high-risk 20% will
almost certainly become infected whereas only a small
proportion of the low-risk 80% will become infected.
Now consider the vaccinated group. Despite being vacci-
nated a large proportion of the high-risk 20% will
develop malaria infection, as they will be bitten so fre-
quently that the vaccine will be unable to block all
infections. In the low-risk group, only a small propor-
tion will become infected due to the low number of
infectious bites and the effect of the vaccine. Thus, het-
erogeneity in the force of infection makes the infection
profiles (who ends up infected) of the vaccine and con-
trol groups more similar, and hence a lower efficacy is
measured.
Next consider an infection-blocking vaccine whose

individual efficacy has been estimated from Phase IIa
trials, but whose distribution of responses between indi-
viduals is unknown. Figures 2B and 2D show the risk-
based and rate-based efficacies that would be observed
for each of the response distributions described in Table
3. Note how the risk-based efficacies in Figure 2B
decrease with follow-up time. This is because eventually
everybody will become infected regardless of vaccination
status. The exception to this is the case of an all-or-
nothing vaccine where the subgroup which is fully pro-
tected will always remain uninfected. In contrast the
rate-based efficacies in Figure 2D increase with follow-
up time. This is because individuals who receive a high
level of protection from the vaccine will remain suscep-
tible for a longer time and significantly increase the
total person years at risk used in the rate-based efficacy
calculation. Finally, we observe that vaccines that induce
more heterogeneous responses between individuals are
estimated to be more efficacious than their homoge-
neous counterparts (Figure 2D), despite both vaccines
having the same average individual efficacy. In particu-
lar, the upper limit for the observed rate-based efficacy
is given by an all-or-nothing vaccine and the lower limit
is given by a leaky vaccine. Therefore in a trial of a can-
didate malaria vaccine, if there is heterogeneity in vac-
cine response and this is ignored in the analysis, the
vaccine efficacy will be overestimated.

Waning vaccine efficacy
RTS, S has been observed to induce long-lasting protec-
tion against malaria for up to 45 months [29,30]. For
example in a Phase II trial of children in Mozambique,
Alonso et al [5] recorded a rate-based vaccine efficacy
against first clinical episode of malaria of 29.9% (95%
CI, 11.0-44.8) in a six-month follow-up period. In an
extended follow-up of the Mozambique trial Sacarlal
et al [30] recorded a vaccine efficacy of 16.8% (95% CI,
-2.5-32.4) over months 21-33, and an efficacy of 11.8%

White et al. Malaria Journal 2010, 9:82
http://www.malariajournal.com/content/9/1/82

Page 5 of 9



(95% CI, -20.1-35.2) over months 33-45. These results
could either be consistent with RTS, S inducing protec-
tion from infection over an extended period but with
waning efficacy, or an artefact due to the apparent wan-
ing of efficacy due to the effects of heterogeneity.
Kanaan and Farrington [31] propose two models of

waning vaccine efficacy; the selection and deterioration
models. In the selection model, waning arises from het-
erogeneity in the duration of protection, i.e. a vaccinated
person is protected for a period of time dependent on
the vaccine half-life and then loses all protection. For

example a person receiving a vaccine with initial indivi-
dual efficacy 45% and a half-life of 1 year will have a
50% chance of still being protected after one year. In
the deterioration model, waning arises from the gradual
decline in the individual efficacy. For example a vaccine
with initial individual efficacy of 45% and a half-life of 1
year will have an efficacy of 22.5% one year after it is
administered. These two models are with-waning analo-
gues of the all-or-nothing and leaky models. In both
cases there can be additional heterogeneity between
individuals in the rate of waning, with some individuals

Figure 2 (A) Risk-based infection-blocking efficacy for a vaccine under the range of transmission heterogeneities in Table 2.
(B) Risk-based infection-blocking efficacy for the four vaccines described in Table 3 with the same individual efficacy. (C) Rate-based
infection-blocking efficacy under different transmission heterogeneities. (D) Rate-based infection-blocking efficacy for the four vaccines.
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remaining protected for longer than others. This would
occur if a vaccine’s efficacy is dependent on natural
boosting through continuous exposure to infection.
Figure 3 shows the effects of waning efficacy for both

leaky and all-or-nothing vaccines. The solid lines repre-
sent the cumulative infected proportion (Figure 3A) and
the rate-based infection-blocking efficacy (Figure 3B)
whilst the dashed lines represent these same quantities
except with the addition of waning vaccine efficacy with
a half-life of one year using the deterioration model for
the leaky vaccine and the selection model for the all-or-
nothing vaccine. As expected, waning efficacy reduces
the observed rate-based vaccine efficacy for both leaky
and all-or-nothing vaccines. If the effects of waning effi-
cacy are ignored, estimates of rate-based efficacy can be
prone to bias. For example, a waning vaccine with high
initial efficacy could be confused with a non-waning
vaccine with lower efficacy. Or a waning all-or-nothing
vaccine could be mistaken for a non-waning leaky vac-
cine. Thus the only way to detect the presence of wan-
ing vaccine efficacy in clinical field trials is to ensure
that there is extended follow-up of the trial participants.

Discussion
The results presented here demonstrate that several
sources of heterogeneity can lead to biased estimates of
vaccine efficacy if their effects are ignored. In general,
heterogeneity in exposure to infectious mosquitoes will
result in an underestimate of vaccine efficacy. In

contrast, heterogeneity in individuals’ response to the
vaccine (often termed the take of the vaccine) will result
in an overestimate of vaccine efficacy. In addition, wan-
ing efficacy of the vaccine will further complicate the
observed patterns. Thus simple calculations that ignore
these sources of heterogeneity can easily give biased
results and it will be difficult to assess the extent to
which these are biased upwards or downwards.
Whilst these results are intuitively clear, it is often

assumed that randomization will diminish or remove
their effect. Clearly randomization should at the least
ensure that characteristics such as individual-level
attractiveness to mosquitoes are balanced in the trial
arms. Moreover, cluster-based designs in which villages
or other population units are randomized should ensure
a balance in village-level exposure between the arms.
However, even if heterogeneity is balanced across trial
arms through robust randomization, this will not coun-
ter-balance the biases identified here. For exposure-dri-
ven heterogeneity, in the control arm those that are
highly exposed will almost certainly become infected
whilst the low-risk population will avoid infection. Simi-
larly, in the vaccinated arm a large, albeit lower, propor-
tion of the highly exposed population will become
infected but as in the control arm, the remainder will
likely avoid infection. Because a large proportion of both
the control and vaccinated group are unexposed, this
will always result in an underestimate of vaccine
efficacy.

Figure 3 (A) Cumulative proportion of vaccinated trial participants infected for leaky and all-or-nothing vaccines. The dashed lines
represent the infected proportion when vaccine efficacy wanes with a half-life of 1 year. (B) Rate-based efficacy for leaky and all-or-nothing
vaccines. The dashed lines represent the expected rate-based efficacy with a waning vaccine.

White et al. Malaria Journal 2010, 9:82
http://www.malariajournal.com/content/9/1/82

Page 7 of 9



In contrast, heterogeneity in vaccine response will only
affect the vaccine arm of the trial. In this arm of the trial
heterogeneity will cause some trial participants to receive
a higher level of protection than others, whereas the con-
trol arm will be unaffected. The presence of a highly pro-
tected subgroup in the vaccine arm of the trial will cause
the measurement of the rate-based infection-blocking effi-
cacy to be greater than the individual vaccine efficacy.
Thus the individual vaccine efficacy will be overestimated.
Given these heterogeneities, how can their impact on

estimates of vaccine efficacy be minimized? The first
step is to ensure that trial participants are as homoge-
neous as possible. For example children in a malaria
vaccine trial should be of similar age, live in similar set-
tings and have similar access to healthcare and anti-
malaria interventions such as bed nets. This should
occur not just through randomization but by ensuring
that trials are undertaken in areas of relatively homoge-
neous transmission. However even with the most care-
fully selected study cohort there is likely to be residual
heterogeneity in exposure and response. Thus analysis
methods need to account for these possible biases. In
studies of malaria immunity Bejon [32] and Kinyanjui
[33] have suggested that the effects of heterogeneity be
reduced by excluding individuals likely to be unexposed.
However, when infection rather than blood-stage disease
is the primary outcome this may be problematic given
that infection is generally the most reliable marker of
exposure. In addition Valim et al [34] recently proposed
a statistical estimator of individual vaccine efficacy that
corrects for the effects of heterogeneity in exposure by
taking account of multiple exposures. Whilst the authors
are not aware of comparable estimators that account for
heterogeneity in response, this may in fact not be a
major problem for the RTS, S vaccine because in one of
the Phase II trials of RTS, S [5], nearly all of the vacci-
nated group became infected with P. falciparum at
some stage during the monitoring period. This suggests
that the current RTS, S vaccine is leaky - although there
may still be considerable heterogeneity in this leakiness.
Thus further characterization of the heterogeneity in
response is needed to ensure that estimates of vaccine
efficacy are not substantially biased.
Extended follow-up of clinical trials of RTS, S have

observed the apparent waning of vaccine efficacy against
clinical malaria, as demonstrated by the coming together
of Kaplan Meier plots comparing the infected propor-
tions in vaccine and control groups [29]. This waning
could be consistent with either a deterioration model
where efficacy is gradually lost, or a selection model
where efficacy is maintained for a random period of
time dependent on the vaccine half-life, or may just be
an artefact of heterogeneity in exposure and vaccine
response. In addition there may be heterogeneity in

waning where the vaccine has a variable half-life. Early
efficacy estimates based on 6 or 12 month follow-up
may be biased and this bias is difficult to quantify. For
example, 12 month results could be consistent with a
vaccine with high initial efficacy and a short half-life, or
medium initial efficacy and a longer half-life. Extended
follow-up, potentially spanning several years, is therefore
required to obtain unbiased estimates.

Conclusion
RTS, S is currently undergoing extensive testing in
Phase III clinical trials. These trials will enrol up to
16,000 children and infants across 11 sites in seven dif-
ferent African countries. The results presented here
demonstrate that heterogeneity in exposure, response
and vaccine waning can bias vaccine efficacy measures
in ways that are not easily measurable. This needs to be
borne in mind when combining results from the wide
range of transmission settings in these Phase III studies.

Additional file 1: Mathematical Supplement. Extended calculations
and mathematical proofs.
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