Sanya, RE; Nkurunungi, G; Andia Biraro, I; Mpairwe, H; Elliott, AM; (2017) A life without worms. Transactions of the Royal Society of Tropical Medicine and Hygiene. pp. 1-9. ISSN 0035-9203 DOI: https://doi.org/10.1093/trstmh/trx010

Downloaded from: http://researchonline.lshtm.ac.uk/3682701/

DOI: https://doi.org/10.1093/trstmh/trx010

Usage Guidelines:
Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
A life without worms

Richard E. Sanyaa,b,*, Gyaviira Nkurunungia,c, Irene Andia Birarob, Harriet Mpairwea and Alison M. Elliotta,c

aMRC/UVRI Uganda Research Unit, Uganda Virus Research Institute, P.O. Box 49, Entebbe, Uganda; bCollege of Health Sciences, Makerere University, Kampala, Uganda; cDepartment of Clinical Research, London School of Hygiene \& Tropical Medicine, Keppel Street, London WC1E 7HT, UK

*Corresponding author: E-mail: sanyarich@gmail.com

Received 19 January 2017; revised 12 February 2017; editorial decision 14 February 2017; accepted 27 February 2017

Worms have co-evolved with humans over millions of years. To survive, they manipulate host systems by modulating immune responses so that they cause (in the majority of hosts) relatively subtle harm. Anthelmintic treatment has been promoted as a measure for averting worm specific pathology and to mitigate subtle morbidities which may include effects on anaemia, growth, cognitive function and economic activity. With our changing environment marked by rapid population growth, urbanisation, better hygiene practices and anthelmintic treatment, there has been a decline in worm infections and other infectious diseases and a rise in non-communicable diseases such as allergy, diabetes and cardiovascular disease. This review reflects upon our age-old interaction with worms, and the broader ramifications of life without worms for vaccine responses and susceptibility to other infections, and for allergy-related and metabolic disease. We touch upon the controversy around the benefits of mass drug administration for the more-subtle morbidities that have been associated with worm infections and then focus our attention on broader, additional aspects of life without worms, which may be either beneficial or detrimental.

Keywords: Allergy, Anthelmintic, Helminths, Infectious diseases, Metabolic disease, Vaccines

Introduction

Over a billion people are estimated to be infected with helminths, most living in areas of poverty.1,2 Helminths have co-existed with mammals for millions of years. Their lifecycles have evolved to ensure their survival while minimising harm to the mammalian host. Soil transmitted helminths (STH) such as hookworm, Ascaris lumbricoides, Trichuris trichiura and Strongyloides stercoralis spend part of their lifecycle in soil and gain access to their human host through skin penetration or ingestion. For the filarial nematodes, an insect vector takes up microfilariae during a blood meal and, after development in the insect, the parasite is injected into the next host during another blood meal. For water borne helminths such as Schistosoma, cercariae shed by the snail intermediate host access the definitive human host by skin penetration during contact with infested water. After migratory and development stages, adult worms lodge in body tissues such as the gut, blood vessels and lymphatics. In most cases, helminths do not replicate in the mammalian host.3

Helminths induce short and long term morbidity, and pathology in some body systems: gastrointestinal tract (malabsorption, diarrhoea, macro and micronutrient deficiencies, bleeding, intestinal obstruction, rectal prolapse), liver (peri-portal fibrosis, cholangitis, cholangiocarcinoma, hepatocellular carcinoma), cardiovascular system (anaemia), lymphatic system (lymphoedema), central nervous system (blindness, epilepsy), genito-urinary tract (haematuria, hydronephrosis, bladder cancer), lungs (Loeffler’s syndrome).4 These effects depend on the type and number of helminths in the host. Treatment is deserved to avert these harmful effects.

Societies in developing countries are experiencing remarkable population growth, urbanisation and lifestyle changes. With better hygiene and ‘deworming’ interventions, helminth infections are declining. Concurrently, there is a rise in non-communicable diseases (NCDs) such as diabetes5 and cardiovascular diseases,6 contributing significantly to global mortality and attributed largely to changes in diet and lifestyle. Could the decline in helminth infections be playing a role in this epidemiological transition? With helminth elimination the ultimate goal of mass drug administration (MDA) programmes,7 it is of interest to reflect on the prospect of a worm-free life. Do we clearly understand, are we ready for, the consequences of life divorced from the partnership established over millions of years? In this narrative review we discuss current evidence regarding the benefits of MDA, ways in which worms manipulate us, and the possible
effects of helminth infection on responses to vaccines and unrelated infectious diseases, and on allergy and metabolic disease.

How much do we benefit from MDA?

MDA entails administration of anthelminthic medicines without reference to an individual's infection status, or test of cure. The World Health Assembly endorsed MDA for school children as a schistosomiasis and STH control strategy for high transmission settings and this has been widely adopted.

MDA policy is premised on anticipated benefits for helminth-specific pathology, maternal anaemia, birth weight, childhood growth, anaemia, cognitive function, school performance and long term economic returns. We do not question the benefit of MDA for controlling pathologies such as schistosome-induced fibrosis, hookworm-induced anaemia, elephantiasis and river blindness. However, the impact of MDA on more subtle morbidities associated with helminths has been difficult to demonstrate.

Mass treatment for hookworm in the American south at the turn of 20th century was associated with greater school enrolment, attendance and literacy and long-term gain in income. Further, in 2004, Miguel and Kremer published a highly influential report showing an association between school-based MDA and reduced school absenteeism among Kenyan children. Ten years later, these children who were dewormed at school had more years of school enrolment, more time in employment and longer work hours each week. However, recent reanalyses of the original data have highlighted the challenges of evaluating such interventions.

A large cluster-randomised trial in India with one million pre-school children showed little effect of regular deworming on mortality in pre-school children. A Cochrane review concluded that treating children known to have STH may improve weight gain but evidence of benefits on haemoglobin, school attendance and cognitive function is limited; also that community based treatment programmes had little or no effect on these outcomes. Similarly, a systematic review found the evidence insufficient to link helminths to cognitive performance and a further meta-analysis concluded that mass deworming of children had little or no effect on weight, height, cognition, school attendance or mortality.

WHO recommends anthelminthic treatment during pregnancy, hoping that it will reduce maternal anaemia, increase birth weight and reduce mortality. The benefits are not yet clear. We, and others, have found limited overall effects of anthelmintic use during pregnancy on maternal anaemia, and none on birth weight, perinatal mortality or congenital abnormalities. Anthelmintic treatment during pregnancy did not affect infectious disease incidence or response to immunisation. A Cochrane review notes that evidence is insufficient to recommend use of anthelmintic medication for pregnant women in the first trimester and administration of a single dose anthelmintic was not associated with any impact on maternal anaemia.

There has been debate on the policy of MDA and systematic review methodology has been questioned in its application to helminths. However, it brings to light the need for more evidence to support MDA and to understand fully its benefits.

How do worms manipulate us?

The age-old colonisation of mammals by helminths has been successful mainly because of the latter's shrewd manipulation of host systems (Figure 1).

Helminths employ enzymes and other excretory/secretory proteins to disrupt and alter host tissues, thus successfully migrating, feeding, establishing niches and developing strategies to exit the host to complete their life-cycles. For example, *Schistosoma* cercariae contain proteases that aid in skin penetration while the major excretory/secretory protein of *Trichuris trichiura* induces pore formation to facilitate helminth entrenchment in the gut.

Loss of mucosal and epithelial integrity as helminths take root in the host is often accompanied by release of inflammatory mediators, such as alarmins and damage associated molecular patterns, normally detrimental to the helminth and its host. However, helminth excretory/secretory products also work to offset this. For example, secreted products of *Heligmosomoides polygyrus* block production of the alarmin IL-33, a key inducer of Th2-type inflammation. Besides, to curb host morbidity from helminth-inflicted tissue injury, helminth-induced mediators spearhead tissue healing and remodelling.

But perhaps the helminth's most potent survival weapon is the wide array of mechanisms developed to evade or regulate a vigilant host immune system. At the helm are helminth-induced Th2-type and regulatory immune responses. Helminth-induced Th2 cytokines interleukin (IL)-4 and IL-13 promote alternative activation of macrophages, resulting in production of large amounts of immunomodulatory IL-10 and transforming growth factor (TGF)-β, and T cell hypo-responsiveness involving regulatory T cells. Helminth-induced, IL-10-producing 'regulatory B cells' have also been demonstrated. A notable consequence of helminth-induced immunomodulation is the attenuation of responses to 'bystander' antigens, widely implicated in the helminth-associated modulation of immune responses to a number of non-communicable and communicable diseases.

Helminth-allergy interactions are a good example of the bystander effect. Although antigenic targets for allergy- and helminth-specific immune responses are similar, helminth infections seem to be protective against allergy-related conditions in both humans and mice. Current evidence points to an extensive array of immunomodulatory mechanisms underlying inverse helminth-allergy associations. They range from induction of IL-10-producing regulatory T cells, regulatory B cells and alternatively activated antigen presenting cells, promotion of polyclonal IgE synthesis and immunoglobulin class switching to IgG4, to suppression of release of alarmins (such as IL-33) and inhibition of type 2 innate lymphoid cell activity.

Host metabolic responses may also be influenced by helminth infections. For example, *S. mansoni* egg antigen-treated obese mice have increased levels of white adipose tissue Th2-type cells, modified macrophage activation and reduced adipose tissue mass and improved insulin sensitivity. Non-obese diabetic mice infected with *H. polygyrus* and *Trichinella spiralis* are protected against type-1 diabetes through the Th2-associated reduction of inflammatory autoimmune responses. There is also recent evidence in humans and mice that helminths may protect against inflammatory...
bowel diseases through Th2-type immunity-mediated expansion of a protective microbiota. Helminth-induced bystander response suppression is a double-edged sword. We may benefit from helminth-driven regulation of non-communicable diseases, as elaborated above. However, helminth excretory/secretory products and Th2 cytokines have been shown to suppress anti-microbial functions of innate immune cells (dendritic cells and macrophages), leading to increased differentiation of regulatory T cells and Th2 cells while impeding the development of protective Th1-type responses and potentially compromising immunity to several communicable diseases.

Worms and vaccines

Following recognition of the Th1/Th2 hypothesis, the contrasting ability of mycobacterial and helminth antigens to elicit Th1 and Th2 responses, respectively, and mutual inhibition between these opposing effects, it was proposed that helminth co-infection might account for the poor efficacy of vaccines such as BCG in tropical settings and the high prevalence of TB and HIV in Africa. As helminth prevalence declines, will vaccines become more effective, and susceptibility to other infectious diseases decrease?

Studies in animal models largely suggest that this will be the case. In the mouse, infection with H. polygyrus (a nematode with a life-cycle confined to the gut) modified the response to a malaria protein vaccine, resulting in reduced antibody and Th1 responses, increased Th2 and regulatory responses and impaired protection against malaria challenge. Treatment of the helminth before, but not after, immunisation abrogated these effects, emphasising the importance of co-infection at the time of immunisation. Similar effects of H. polygyrus have been reported for a DNA malaria vaccine, but not for live, irradiated sporozoites, or for live BCG, indicating that the impact of a particular helminth differs by vaccine type: protein, DNA or live attenuated organisms. Mice infected with Schistosoma species (which cause systemic infections) show impaired induction of protective immunity both to malaria and to TB challenge (following BCG), indicating that different helminth infections have different effects. Schistosoma infections also resulted in
impaired antibody responses to toxoid and protein vaccines—
but a study on hepatitis B immunisation showed a gradual recovery of the response when the infection was treated after
immunisation.52 The life-cycle of Trichinella spiralis involves an intestinal phase, followed by encystment in skeletal muscle;
suppression of the IgA response to cholera toxin53 and to hepatitis B immunisation54 has been demonstrated during the intes-
tinal, but not the muscle, stages of the life-cycle. While these experiments demonstrate suppressive effects, intraperitoneal
injection of Ascaris extract concurrently with BCG has been shown to enhance macrophage activation and suppress BCG replication55 and a protein from the filarial worm Onchocerca volvulus shows promise as an adjuvant for influenza vaccine.56 Together, studies in mice show that helminth infections have important potential to supress vaccine responses, but that hel-
minth species, stage of life-cycle, timing of helminth exposure and treatment, and characteristics of the vaccine may be
important determinants of the outcome and that specific hel-
mint molecules may actually have enhancing effects. As well, differences between murine models are likely to result from
genetics of the host and intensity of helminth infection used.

In humans, studies of the impact of helminth co-infection on
vaccine responses are important in their own right, and also
offer an important surrogate for studies on susceptibility to
infections, which are much more difficult to undertake. The
bystander modulatory effects of chronic helminth infections are
of potential direct significance in adolescents and adults when
primary or recall immunisation occurs in this age group. For
example, for human papilloma virus immunisation, tetanus and
other boosters, and during outbreaks, such as the recent Yellow
Fever and Ebola epidemics; also when novel vaccines are under-
going initial evaluations in older populations. Observational
studies among children and adults have shown associations
between helminth infection and suppression of antibody and
Th1 responses, particularly during systemic filarial infections
and schistosomiasis: vaccines affected include BCG, tetanus, typhoid
and a candidate malaria vaccine.57–65 Hepatitis B immunisation
may also be impaired in the context of schistosomiasis,66 but
effects may be limited to those with hepatosplenic disease, call-
ing into question the causal mechanisms involved.57 Clinical
trials may help us to test whether helminth induced immuno-
modulation is causal in suppression of vaccine responses and,
so far, these have been confined to effects of geohelminths.
Treatment of geohelminths with albendazole has been shown
to improve the Th1 response to BCG,68,69 and the antibody and
Th1 response to oral cholera vaccine.70,71 No studies have yet
investigated the effects of treating schistosomiasis or filariases
but, on balance, the data so far suggest that vaccine responses
will improve with the elimination of worms.

However, the majority of vaccines in current use target
pathogens that cause substantial disease and death in early
life. They are administered to the very youngest age groups in
whom chronic helminth infections have yet to establish them-
selves. In these age groups, it is maternal infection status that
is potentially of greater importance in terms of impacting on a
newborn’s capacity for induction of vaccine-specific responses.
Evidence that the human fetus could be sensitised in utero to
helminths and mycobacterial antigen72 suggested that prenatal
exposure might influence infant vaccine responses. Indeed,
initial studies by Malhotra and colleagues showed an associ-
ation between sensitisation to Schistosoma or filarial antigens in
utero and a Th2 bias to the infant response to BCG immunisa-
tion.73 Malhotra and colleagues also described adverse associa-
tions between prenatal exposure to hookworm and other
helminths and the response to diphertheria toxoid and
Haemophilus influenzae type B (HiB) immunisation in infancy,74
but this has not been confirmed by results from Uganda where
the only association observed was a possible enhancement of
IgG responses to pertussis toxin, HiB and hepatitis B among
infants of mothers with Strongyloides.75,76 A study in Ecuador
also showed no association between exposure to maternal geo-
helminths and infant responses to diphertheria toxoid, tetanus,
pertussis, measles, Rubella or HiB, but enhanced IgA responses
to polio and rotavirus.77 An important consideration is that the
infant outcome may vary depending on the nature and timing
of the exposure to parasite antigens: Malhotra and colleagues
showed that infant DT responses were enhanced if the infant
was sensitised to malaria antigens, but suppressed if the infant
was ‘tolerised’.76 Only one substantive trial has investigated the
effects of treating helminths during pregnancy on infant vaccine
responses: this did not confirm findings from an earlier pilot78
and gave only weak evidence of an effect of treating maternal
hookworm on the infant response to tetanus or BCG immunisa-
tion.24,25 Further work is needed to understand whether hel-
mint elimination among pregnant women will alter the infant
response to key vaccines.

Given the complex effects of helminths on vaccine responses
it is not surprising that effects on infectious disease susceptibil-
ity complex too (reviewed elsewhere).79–81 A possible unifying
hypothesis, supported by recent evidence from mouse models,82 is that chronic helminth co-infection has little effect on the
innate response to incident infections (and may even enhance it) but does impair adaptive responses that control rep-
ication of established infections. For example, in the case of TB,
a recent trial on effects of anthelminthic treatment on bovine
TB among wild buffalo in South Africa’s Kruger National Park
found that regular anthelminthic treatment had no impact on
Mycobacterium bovis infection incidence, but resulted in lower
mortality among M. bovis infected animals.83 Similarly, we found
little evidence that helminth co-infection affects susceptibility to
TB infection in humans,84 but recent results suggest that treat-
ment of helminths may abrogate regulatory T cells-mediated
suppression of Th1 cell frequency and function in helminth-TB
co-infection85 and hints at improved clinical outcome.86

Worms and allergy-related disease
Results from epidemiological studies on the relationship
between helminths and allergy have been inconsistent. As for
vaccine studies, different helminth species interact with the
host’s immune system differently, resulting in different clinical
outcomes. An earlier review and meta-analysis87 found that
hookworm had an inverse association with asthma (summary
odds ratio [OR] 0.50, 95% CI 0.28–0.90), with a ‘dose-response’
by infection intensity, A. lumbricoides showed a positive associ-
ation and T. trichiura showed no relationship. Another meta-
analysis88 showed an inverse association between helminthic
infections and allergen skin sensitisation (summary OR 0.69, 95% CI 0.6–0.79).

Exposure to helminth infections in-utero and in early child-
hood is negatively associated with allergy risk in childhood.
Our birth cohort in Uganda showed that maternal hookworm
during pregnancy was associated with a reduced incidence of
eczema in childhood (adjusted hazard ration [aHR] 0.71, 95% CI
0.51–0.99), with a dose-response, and that early childhood
infections with T. trichiura and hookworm were associated with
a reduced incidence of childhood eczema.89 Treatment
of maternal helminths during pregnancy increased the incidence
of eczema in childhood.84,90 A study in Brazil also showed that
early childhood infections with T. trichiura and A. lumbricoides
were associated with a lower prevalence of allergen skin reactiv-
ity in later childhood.91 In Gabon, a lower prevalence of skin
reactivity to house dust mite was reported among children
infected with Schistosoma haematobium compared to those
without the infection.92 Most studies have considered helminths
as an independent variable in regression models, but there is
increasing evidence that helminths are effect-modifiers of the
relationship between atopy and clinical allergy. We found that
maternal hookworm during pregnancy attenuated the associ-
ation between Dermatophagoides-specific IgE and eczema in
childhood, as well as the effects of other known risk-factors for
eczema such as mother’s history of eczema and female gen-
der.89 This effect-modification has also been reported in studies
in Ecuador.93, 94 A study conducted in Uganda found a positive
association between Dermatophagoides-specific IgE and histo-
mime release among children without hookworm but not
amongst children with hookworm.95

Despite the inconsistencies outlined, epidemiological studies
have consistently shown a lower prevalence of clinical allergy
(and sometimes atopy) in rural compared to urban areas in low
and middle income countries.96–98 This is consistent with the
observed low prevalence of asthma/allergy among children
raised on farms compared to city dwellers in high income coun-
tries.97 In the high income countries, this farm effect has been
attributed to exposure to diverse microbiome on the farm and
to the consumption of unpasteurised dairy products.98 For low
and middle income countries, the protective effect had been
attributed partly to geohelminths,97 but the possible role of the
microbiome has not yet been extensively explored. Animal stud-
ies have demonstrated interactions between helminths and
microbiota.99 Could the microbiome in rural settings explain
why, in Ugandan island communities, we found a very low
prevalence of clinical allergies, despite positive associations
between helminths and reported wheeze (and atopy)?100

Additionally, there is increasing evidence of attenuation of
the relationship between atopy and allergy among children in
rural compared to urban areas in low and middle income coun-
tries.93,101,102 This has been attributed partly to geohelminths,
but the role of other infections and microbiome deserves
investigation.

Studies on immigrants from rural to urban setting represent
natural experiments. One such study103 found that immigrants
from rural Ethiopia to Israel had a low prevalence of atopy and
allergy, and a negative association between helminth infection
and atopy on arrival, which was quickly reversed after a year of
living in Israel. This was attributed to the treatment of
helminths, a decline in helminths among the untreated, and
exposure to a novel environment.

The helminth-allergy relationship is complicated by the many
inter-related factors at play. To obtain a conclusive stand, we
need to conduct comprehensive studies that take into account
the various helminth-related variables, and the potential inter-
action and confounding with the microbiome, other infections
(such as malaria) and interaction and other environmental
exposures. This will require extensive data collection and
advanced statistical analyses. But the potential benefits are
worth it, for we will be able to understand better how to har-
ness the beneficial effects of worms or the rural environment
for the primary, secondary and tertiary prevention of asthma,
allergies and other chronic inflammatory conditions that may
be associated with a life without worms.

Worms and metabolic disease

A recent systematic review showed that individuals with a previ-
ous or current helminth infection were 50% less likely to have
metabolic dysfunction.104

In diet induced obese mice, chronic infection with
Schistosoma mansoni lowered whole body insulin resistance
and glucose intolerance and improved peripheral glucose uptake
and insulin sensitivity. Injection of schistosome antigens induced
a similar effect41 and, in a separate study, reduced atheroscle-
rosis in mice.105 Mice infected with H. polygyrus had lower blood
glucose, insulin resistance, fat accumulation than uninfected
mice106 and benefits were sustained even after clearance of the
helminth.107 Nippostrongylus brasiliensis infection was asso-
ciated with decreased weight gain and improved glucose meta-
bolism.108 Similarly, diet induced obese mice infected with
Litomosoides sigmodontis or exposed to its antigen had
improved glucose tolerance.109

In humans, a cross-sectional study in rural China showed
that individuals with a history of schistosomiasis infection exhib-
ited lower fasting blood glucose levels compared to controls
who had never had schistosomiasis.110 A study in India111
reported a lower prevalence of filarial infections in patients with
type 2 diabetes than in non-diabetic controls. Patients with type
2 diabetes and lymphatic filariasis had lower concentrations of
pro-inflammatory cytokines—IL-6 and GM-CSF—than patients
without lymphatic filariasis. Among aboriginal adults in
Australia, prior Strongyloides stercoralis infection was associ-
ated with reduced type 2 diabetes risk.112 Infection with STH has also
been associated with decreased insulin resistance and lower
body mass index, abdominal obesity, and lipid levels.113, 114

Together, these recent findings indicate that helminth infec-
tions may convey important benefits for metabolic disease in
humans. If so, understanding the mechanisms with a view to
harnessing this knowledge for prevention and therapy of meta-
bolic disease is important.

Conclusions

Helminths can be damaging, especially when there are intense
infections: therefore, control is good. Some authors have also
argued that MDA is a cost-effective health investment for
Figure 2. Is ‘de-worming’ good for us?

Although, as we have discussed, controlled trials to date have struggled to confirm a major impact of MDA on the subtle morbidities and mortality associated with worm infections in observational studies. As the debate on MDA continues, we need to note that removal of helminths leaves the immune system out of balance. We postulate that helminth elimination will result in a broad array of additional effects, both beneficial and detrimental to human health. The consequences may include altered responses to vaccines and to infectious diseases, and increased susceptibility to inflammatory conditions such as allergy-related disease and metabolic disease (Figure 2). Further work is needed to understand helminth-human interactions and their mechanisms, so that we can mitigate adverse consequences in the event that helminth infections in humans are eliminated.

Authors' contributions: AME conceived the idea. RES, GN, HM and AME carried out the literature search and wrote the manuscript. RES, GN, HM, IAB and AME critically revised the manuscript. All authors read and approved the final manuscript. RES is the guarantor of the paper.

Acknowledgements: The authors would like to thank the anonymous reviewer for his/her helpful comments that were included in the paper.

Funding: This work was supported by the Wellcome Trust [grant numbers 107743 (to Richard E. Sanya, Irene Andia Biraro), 095778 (to Harriet Mpairwe), 102512 (to Alison M. Elliott)]; and the African Partnership for Chronic Disease Research [to Gyaviira Nkurunungi].

Competing interests: None declared.

Ethical approval: Not required.

References

47 Su Z, Segura M, Stevenson MM. Reduced protective efficacy of a blood-stage malaria vaccine by concurrent nematode infection. Infect Immun 2006;74:2138–44.

95 Pinot de Moira A, Fitzsimmons CM, Jones FM et al. Suppression of basophil histamine release and other IgE-dependent responses in

102 Obeng BB, Amoah AS, Larbi IA et al. Schistosome infection is negatively associated with mite atopy, but not wheeze and asthma in Ghanaian schoolchildren. Clin Exp Allergy 2014;44:965–75.

