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Abstract

Attrition is a common occurrence in cluster randomised trials (CRTs) which leads

to missing outcome data. Two approaches for analysing such trials are cluster-level

analysis and individual-level analysis. This paper compares the performance of un-

adjusted cluster-level analysis, baseline covariate adjusted cluster-level analysis and

linear mixed model (LMM) analysis, under baseline covariate dependent missing-

ness (CDM) in continuous outcomes, in terms of bias, average estimated standard

error and coverage probability. The methods of complete records analysis (CRA)

and multiple imputation (MI) are used to handle the missing outcome data. We con-

sidered four scenarios, with the missingness mechanism and baseline covariate effect
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on outcome either the same or different between intervention groups. We show that

both unadjusted cluster-level analysis and baseline covariate adjusted cluster-level

analysis give unbiased estimates of the intervention effect only if both intervention

groups have the same missingness mechanisms and there is no interaction between

baseline covariate and intervention group. LMM and MI give unbiased estimates

under all four considered scenarios, provided that an interaction of intervention and

baseline covariate is included in the model when appropriate. Cluster mean imputa-

tion has been proposed as a valid approach for handling missing outcomes in CRTs.

We show that cluster mean imputation only gives unbiased estimates when missing-

ness mechanism is the same between the intervention groups and there is no interac-

tion between baseline covariate and intervention group. MI shows overcoverage for

small number of clusters in each intervention group.

1 Introduction

In cluster randomised trials (CRTs), identifiable clusters of individuals such as villages,

schools, medical practices - rather than individuals - are randomly allocated to each of

intervention and control groups, while individual-level outcomes of interest are observed

within each cluster. The number of clusters and/or the cluster sizes in each intervention

group might be different. CRTs with equal number of clusters in each intervention group

with constant cluster size are known as balanced CRTs. One important characteristic of

CRTs is that the outcomes of individuals within the same cluster may exhibit more sim-

ilarity compared to the outcomes of individuals in the other clusters, which is quantified

by the intraclass correlation coefficient (ICC), denoted by ρ. In practice, the value of
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ICC typically ranges form 0.001 to 0.05 and it is rare for clinical outcomes to have ICC

above 0.1 [1]. Small values of ICC can lead to substantial variance inflation factors, and

should not be ignored [2, 3]. CRTs are being increasingly used in the fields of health

promotion and health service research. Reasons for such popularity include the nature

of intervention that itself may dictate its application at the cluster level, less risk of in-

tervention contamination and administrative convenience [4]. It is well known that the

power and precision of CRTs are lower relative to trials that individually randomise the

same number of individuals [2]. In spite of this, the advantages associated with CRTs are

perceived by researchers to outweigh the potential loss of statistical power and precision

in some situations.

Attrition is a common problem for CRTs, leading to missing outcome data. This not

only reduces the statistical power of the study, but may result in biased intervention effect

estimates [5]. Handling missing data in CRTs is complicated by the fact that data are

clustered. Inadequate handling of the missing data may result in misleading inferences

[6]. A systematic review [7] revealed that, among all CRTs published in English in 2011,

72% of trials had missing values either in outcomes or in covariates or in both. Among

them only 34% of CRTs reported how they handled missing data. One of the reasons may

be that the methodological development for dealing with missing data in CRTs has been

relatively slow in spite of the increasing popularity of CRTs. Cluster mean imputation has

been suggested as a valid approach for handling missing outcome data in CRTs [8].

The impact of missing data on estimation and inference of a parameter of interest de-

pends on the missing data mechanism, the method used to handle the missing data, and the

choice of statistical methods used for data analysis. In this paper, we study the validity of
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three analysis methods - unadjusted cluster-level analysis, adjusted cluster-level analysis

and linear mixed model - when there is missingness in the continuous outcome, and this

missingness depend on baseline covariates, and conditional on these baseline covariates,

not on the outcomes itself. We compare the performance of these methods on complete

records and multiply imputed datasets. In addition, we investigate the validity of cluster

mean imputation, as proposed by Taljaard [8], under the same missingness assumption.

This paper is organised as follows. Section 2 presents a brief review of the approaches

to the analysis of CRTs with complete data. In Section 3, the assumed missingness mech-

anism for CRTs is described. Section 4 describes methods of handling missing data in

CRTs. In Section 5, we investigate the validity of complete records analysis of CRTs.

Section 6 describes a simulation study and presents the results. We conclude the study

with some discussion in Section 7.

2 Analysis of CRTs with complete data

We begin by describing the two broad approaches to the analysis of CRTs in the absence

of missing data. These are cluster-level analysis and individual-level analysis.

2.1 Cluster-level analysis

Cluster-level analysis can be done in two ways: unadjusted cluster-level analysis and

baseline covariate adjusted cluster-level analysis. This approach can be explained as a

two-stage process. In the first stage of unadjusted analysis, a relevant summary measure

of outcomes is calculated for each cluster. Then, in the second stage, the cluster specific
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summary measures of the control and intervention groups obtained in the first stage are

compared using appropriate statistical methods. The most common one is the standard

t−test for two independent samples (here referred to as cluster-level t− test) with degrees

of freedom (DF) equal to the total number of clusters in the study minus two. The basis of

using this test is that the resulting summary measures are statistically independent, which

is a consequence of the clusters being independent of each other. In the case of baseline

covariate adjusted analysis, an individual-level regression analysis is carried out at the

first stage including all covariates as explanatory variables, except for the intervention

indicator, and ignoring the clustering of the data [4, 9]. The individual level residuals from

the first-stage model are then used to calculate the cluster-specific summary measures for

the control group and the intervention group, which are then compared using cluster-

level t−test in the second stage of analysis to evaluate the intervention effect adjusted for

baseline covariates. The main purposes of adjusting for baseline covariates are to increase

the credibility of the trial findings by demonstrating that any observed intervention effect

is not attributed to the possible imbalance between the intervention groups in term of

baseline covariates, and to improve the statistical power [10].

2.2 Individual-level analysis

In individual-level analysis, a regression model is fitted to the individual-level outcomes,

allowing for the fact that observations within the same cluster are correlated. Linear mixed

model (LMM) is widely used as individual-level analysis for CRTs with continuous out-

comes. The LMM takes into account between-cluster variability using cluster-level ef-

fects which are assumed to follow a specified probability distribution. The parameters
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of that distribution are estimated using maximum likelihood methods together with in-

tervention effect and other covariates effects. Generalised estimating equations are an

alternative approach, but that for continuous outcomes and an exchangeable correlation

matrix, estimates are identical to those from LMM with a random intercept [11].

The adjusted t−test, proposed by Donner and Klar (2000) [2], is a alternative approach

to test the intervention effect for quantitative outcomes, which involves calculating the

mean of the individual outcome values in each intervention group. These means are

then compared using a t−test in which the standard error is adjusted to account for the

intra-cluster correlation. The adjusted t−test and the cluster-level t−test are identical for

balanced CRTs.

3 Missingness mechanism assumptions for CRTs

In this paper, we will consider the common setting where the outcomes are continuous,

and only outcomes are missing. In statistical analysis, if there are missing values, an

assumption must be made about the missingness mechanism, which refers to the rela-

tionship between missingness and the underlying values of the variables in the data [12].

According to Rubin’s framework [13], a missingness mechanism can be classified as (i)

missing completely at random (MCAR), where the probability of a value being missing is

independent of the observed and unobserved data, (ii) missing at random (MAR), where

conditioning on the observed data, the probability of a value being missing is independent

of the unobserved data, and (iii) missing not at random (MNAR), where the probability

of value being missing depends on both observed and unobserved data.

In CRTs, an assumption that may sometimes be plausible is that missingness in out-
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comes depends on covariates measured at baseline and conditional on these baseline co-

variates, not on the outcome itself. We refer to this as covariate dependent missingness

(CDM). For example, blood pressure outcome data could be CDM if missingness in blood

pressure measurement depends on covariates (e.g. age, BMI or weight), but given these,

not on the blood pressure measurement itself. CDM is an example of a MAR mechanism

when covariates are fully observed.

Let Yijl be a continuous outcome of interest for the lth (l = 1, 2, . . . ,mij) individual

in the jth (j = 1, 2, . . . , ki) cluster of the intervention group i (i = 1, 2), where i = 1

corresponds to control group and i = 2 corresponds to intervention group. We assume

that the Yijl follow a linear mixed model given by

Yijl = αi + βiXijl + δij + εijl, (3.1)

where αi is a constant for ith intervention group, Xijl is a baseline covariate value for

(ijl)th individual, βi is the effect of baseline covariate X on Y in intervention group

i, δij is the (ij)th cluster effect and εijl is the individual error term. We also assume

that the cluster effect (δij) and the individual error (εijl) are statistically independent;

and E (δij) = 0, Var (δij) = σ2
b and E (εijl) = 0, Var (εijl) = σ2

w, where σ2
b and σ2

w

are the between-cluster variance and within-cluster variance, respectively. Later we will

sometimes make normality assumptions on these random effects/random errors. Suppose

the baseline covariate X has mean µx. Then

E
(
Ȳi
)

= αi + βiµx = µi,
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where Ȳi = (1/ki)
∑ki

j=1(1/mij)
∑mij

l=1 Yijl = (1/ki)
∑ki

j=1 Ȳij . Here, Ȳi and Ȳij are the

mean outcome of the ith intervention group and the (ij)th cluster, respectively. With

complete data, the cluster-level analysis estimate of the intervention effect, say θ̂, is then

calculated as

θ̂ = Ȳ1 − Ȳ2.

With complete data, this estimator is unbiased for the true intervention effect, that is,

E(θ̂) = µ1 − µ2.

Suppose there are some missing values for outcome Y . Define a missing data indicator

Rijl such that

Rijl =


1, if Yijl is observed

0, if Yijl is missing .

Then
∑mij

l=1 Rijl is the number of observed outcomes in the (ij)th cluster. The CDM

assumption can then be expressed as

P (Rijl = 0|Y ij,X ij) = P (Rijl = 0|Xijl),

where Y ij = (Yij1, Yij2, . . . , Yijmij
) and X ij = (Xij1, Xij2, . . . , Xijmij

) are the vectors

of the outcomes and the baseline covariate values, respectively, in the (ij)th cluster. In

other words, the missingness of the (ijl)th individual’s outcome Yijl depends only on that

individual’s baseline covariate value Xijl.
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4 Methods of handling missing data in CRTs

Common approaches for handling missing data in CRTs include complete records analy-

sis (CRA), single imputation and multiple imputation (MI). This section describes these

approaches. In this paper, we focused on CRA and MI since they are the most commonly

used methods for handling missing data.

4.1 Complete records analysis

In complete records analysis (CRA), often referred to as complete case analysis, only

individuals with outcome observed are considered in the analysis, while individuals with

missing outcome are excluded. It is widely used because of its simplicity and is usually

the default method of most statistical packages. It is well known that CRA is valid if data

are MCAR or if missingness is independent of the outcome, conditional on covariates

[12]. Likelihood based CRA is valid under MAR, if missingness is only in the outcome

and all predictors of missingness are conditioned on in the model [12]. CRA is also valid

under MNAR mechanisms where missingness in a covariate is dependent on the value of

that covariate, but is conditionally independent of outcome [14, 15]

4.2 Single imputation

Single imputation imputes a single value for each missing outcome and creates a complete

data set. In general single imputation is not recommended, since estimates of uncertainty

are biased downwards, leading to anti-conservative inferences. However, for CRTs two

choices for single imputation are group mean imputation and cluster mean imputation [8].
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In the first case, missing outcomes in each intervention group are replaced by the mean

outcome calculated using complete records pooled across clusters of that group. This

approach reduces the variability among the clusters means and, therefore, gives inflated

Type I error [8]. In cluster mean imputation, missing outcomes in each cluster are replaced

by the mean outcome calculated using complete records of that cluster. This approach

has been suggested as a good approach for handling missing outcomes by Taljaard et

al. [8]. They showed that cluster mean imputation gives Type I error close to nominal

level under MCAR, using adjusted t−test with balanced CRTs. However, under MAR

or CDM, adjusted t−test with cluster mean imputation may not be valid. We note that,

with balanced CRTs, the cluster-level t−test and the adjusted t−test are identical with

cluster mean imputation since after imputation the cluster sizes become constant and the

cluster means remain unchanged by the imputation. Consequently, our later results for

the validity of cluster level t-test can also be applied to infer the validity of results after

using cluster mean imputation. One additional problem with cluster mean imputation is

that it distorts the estimates of between-cluster variability and within-cluster variability,

which often are of interest.

4.3 Multiple imputation

Multiple imputation (MI), first proposed by Rubin (1987) [16], is a method of filling in the

missing outcomes multiple times by simulating from an appropriate model. The aim of

imputing multiple times is to allow for the uncertainty about the missing outcomes due to

the fact that the imputed values are sampled draws for the missing outcomes. A sequence

of Q imputed data sets is obtained by replacing each missing outcome by a set of Q ≥ 2
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imputed values that are simulated from an appropriate distribution or model. Each of the

Q data sets are then analysed as a completed data set using a standard method. The results

from the Q imputed data sets are then combined using Rubin’s rules [16]. The combined

inference is based on a t−distribution with DF given by

ν = (Q− 1)

(
1 +

Q

Q+ 1

WMI

BMI

)2

, (4.1)

where BMI is the between-imputation variance and WMI is the average within-imputation

variance. This formula for DF is derived under the assumption that the complete data DF,

νcom, is infinite [17].

In CRTs, νcom is usually small as it is based on the number of clusters in each inter-

vention group rather than the number of individuals. For unadjusted cluster-level analysis

and individual-level baseline covariate adjusted cluster-level analysis, νcom is calculated as

k1+k2−2 for statistical inference using cluster-level t−test [4] and adjusted t−test [8]. An

adjustment is made to the νcom to adjust for cluster-level baseline covariates using cluster-

level analysis. In this case, we reduce the complete data DF from νcom = k1 + k2 − 2

to νcom = k1 + k2 − 2 − p, where p is the number of parameters corresponding to the

cluster-level baseline covariates in the first stage regression model [4].

When νcom is small and there is a modest proportion of missing data, the repeated-

imputation DF, ν (given in 4.1), for reference t− distribution can be much higher than

νcom, which is not appropriate [17]. In such a situation, a more appropriate DF, νadj,

proposed by Barnard and Rubin (1999) [17], is calculated as

νadj =

(
1

ν
+

1

ν̂obs

)−1

≤ νcom, (4.2)
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where

ν̂obs =

(
1 +

Q+ 1

Q

BMI

WMI

)−1(
νcom + 1

νcom + 3

)
νcom.

At least four different types of MI have been used in CRTs [7]. These are standard MI

which ignores clustering, fixed effects MI which includes a fixed effect for each cluster in

the imputation model, random effects MI where clustering is taken into account through

random effects in the imputation model and within-cluster MI where standard MI is ap-

plied within each cluster. Andridge [18] showed, with balanced CRTs under MCAR and

MAR missingness in a continuous outcome with a single covariate in addition to inter-

vention indicator, that MI models that incorporate clustering using fixed effects for cluster

can result in a serious overestimation of variance of group means and this overestimation

is more serious for small cluster sizes and small ICCs. This overestimation of variance

results in a decrease in power, which is particularly dangerous for CRTs which are often

underpowered [18]. MI using random effects for cluster gave slight overestimation of

variance of group means for very small values of ρ. Andridge also showed that using an

MI model that ignores clustering can lead to severe underestimation of the MI variance

for large values of ρ (>0.005). This underestimation of variance leads to inflated Type I

error.

Taljaard et al. [8] examined the performance of MI in a simple set-up considering

balanced CRTs where there are no covariates except intervention indicator using stan-

dard regression imputation, which ignores clustering, and random effects MI which does

account for intraclass correlation. They also considered the Approximate Bayesian Boot-

strap (ABB) procedure, proposed by Rubin and Schenker [19], as a non-parametric MI.

In ABB, sampling from the posterior predictive distribution of missing data is approx-
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imated by first generating a set of plausible contributors drawn with replacement from

the observed data, and then imputed values are drawn with replacement from the possi-

ble contributors. Two possible uses of ABB in CRTs are pooled ABB and within-cluster

ABB, where the set of possible contributors are sampled from all observed values across

the clusters in each group or from observed values in the same cluster, respectively. They

showed that none of these four MI procedures tend to yield better power compared to the

power of adjusted t−test using no imputation and cluster mean imputation under MCAR.

We note that in the case of missing outcome under MAR for individually randomised

trials, Groenwold et al. [20] showed that CRA with covariate adjustment and MI give

similar estimates so long as the same set of predictors of missingness are used. It can be

anticipated that similar result holds for CRTs. An obvious advantage of CRA over MI is

that it is much easier to apply, and therefore in situations where they are equivalent, CRA

is clearly preferable.

5 Validity of complete records analyses of CRTs

In this section, we describe the unadjusted cluster-level analysis, baseline covariate ad-

justed cluster-level analysis and linear mixed model analysis methods using complete

records, and derive conditions under which they give valid inferences under the CDM

assumption.
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5.1 Unadjusted cluster-level analysis using complete records

The mean of the observed outcomes in the ith intervention group can be calculated as

Ȳ obs
i =

1

ki

ki∑
j=1

Ȳ obs
ij ,

where Ȳ obs
ij =

(
1/
∑mij

l=1 Rijl

)∑mij

l=1 RijlYijl is the observed mean of (ij)th cluster. The

estimate of intervention effect is given by

θ̂obs = Ȳ obs
1 − Ȳ obs

2 . (5.1)

In Appendix A, we show that

E
(
θ̂obs
)

= µ1 − µ2 + β1 (µx11 − µx)− β2 (µx21 − µx) , (5.2)

and

Var
(
θ̂obs
)

=
2∑
i=1

1

ki

(
β2
i σ

2
x̄i1

+ σ2
b +

σ2
w

ηi

)
, (5.3)

where µxi1 is true mean of the baseline covariate X in the ith intervention group among

those individuals with observed outcomes, σ2
x̄i1

is the variance of the cluster specific

means of X among those with observed outcomes, and 1/ηi = E (1/
∑

lRijl). From

(5.2), it follows that the unadjusted cluster-level analysis using CRA will be unbiased if

β1 (µx11 − µx) = β2 (µx21 − µx) , or equivalently ,
β1

β2

=
µx21 − µx
µx11 − µx

(5.4)
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A sufficient condition for (5.4) to hold is that β1 = β2 (i.e. there is no interaction between

baseline covariate and intervention group in the outcome model) and that the missingness

mechanisms are the same in the two intervention groups, so that µx11 = µx21. It can also

seen from equation (5.2) that, when there is no missing data, µx11 = µx21 = µx, and

hence the unadjusted cluster-level analysis results in unbiased estimates of intervention

effects even when β1 6= β2.

5.2 Adjusted cluster-level analysis using complete records

Recall that the first step of the adjusted cluster-level analysis involves fitting a regression

model for Y with X as covariate, but ignoring the intervention indicator and clustering of

the data. The residual ε̂ijl is then given by

ε̂ijl = Yijl − Ŷijl,

where Ŷijl = γ + λXijl is the predicted outcome for the (ijl)th individual based on the

first stage model fit. The mean of the observed residuals of the ith group is given by

¯̂εi
obs

=
1

ki

ki∑
j=1

¯̂εij
obs
,

where ¯̂εij
obs

= 1/
(∑mij

l=1 Rijl

)∑mij

l=1 Rijlε̂ijl is the mean of observed residuals of the (ij)th

cluster. The baseline covariate adjusted estimator of intervention effect is given by

θ̂obs
adj = ¯̂ε1

obs − ¯̂ε2
obs
. (5.5)
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We show in Appendix B that

E
(
θ̂obs

adj

)
= µ1 − µ2 + β1 (µx11 − µx)− β2 (µx21 − µx) + λ (µx21 − µx11) . (5.6)

Hence, the estimator (5.5) will be unbiased if (i) β1 = β2 and µx11 = µx21, or if (ii)

λ = β1 = β2. Equation (5.6 ) is derived (see Appendix B) assuming fixed values of

γ and λ instead of their estimates. In practice, γ and λ are unknown and must be estimated

by fitting the first stage regression model for the observed outcomes. We are not worried

about the estimate of the intercept parameter γ since the expression (5.6) is independent

of γ. If λ is estimated consistently, then θ̂obs
adj will be a consistent estimator of intervention

effect when in truth λ = β1 = β2. The estimator of λ, say λ̂, is calculated using com-

plete records, and will be unbiased (and therefore consistent) if Rijl ⊥⊥ Yijl|Xijl. This is

true only when the two intervention groups have the same missingness mechanisms and

have the same baseline covariate effects on outcome in the outcome model. Therefore,

assuming CDM, the baseline covariate adjusted cluster-level analysis is consistent only if

the two intervention groups have the same covariate effects on outcome in the outcome

model and the same missingness mechanisms. We also note that with no missing data

µx11 = µx21 = µx, hence, equation (5.6) guarantees that the adjusted cluster-level anal-

ysis, which assumes that the covariate effect on outcome is the same in both groups, is

unbiased, regardless of whether the covariate effect is the same in the intervention groups.

The variance of the estimator (5.5) can be written as (see Appendix B for derivation)

Var
(
θ̂obs

adj

)
=

2∑
i=1

1

ki

(
(βi − λ)2 σ2

x̄i1
+ σ2

b +
σ2
w

ηi

)
. (5.7)
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This shows that when β1 = β2 and the missingness mechanisms are the same in the two

intervention groups, in order for the estimator (5.5) to have minimum variance one should

replace the unknown λ by an estimate of β1 = β2 = β.

5.3 Linear mixed model using complete records

Let Z be the intervention indicator which is zero for control group and is one for interven-

tion group. When it is assumed that the two intervention groups have the same covariate

effects on outcome, we fit a LMM with fixed effects of X and Z, and a random effect for

cluster. Then the estimate of the coefficient of Z will be the estimated intervention effect

accounting for X .

If one thinks that the baseline covariate effects on outcome could be different in the

two intervention groups and there are missing outcome values, an interaction of X and

Z must be included in the model. This implies that the intervention effect varies with X .

Then the estimate of the intervention effect at the mean value of X is known as average

intervention effect. Let X∗ denote the empirically centred variable X − X̄ , where X̄

is the mean of X calculated using data from all individuals. If the baseline covariate

effects on outcome are assumed to be different in the two groups, we fit a LMM, using

complete records, with fixed effects ofX∗, Z and their interaction, and a random effect for

cluster. The estimate of the coefficient ofZ will then be the estimated average intervention

effect. One may need to account for the centreing step in the variance estimation. We

will investigate in the simulations whether ignoring this has any negative impact on CI

coverage.

In the general theory of LMM, the variance of the fixed effects parameter estimates,
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which are calculated based on their asymptotic distributions, are known to be underesti-

mated for small sample sizes [21]. In this paper, we used quantiles from t− distribution

with degrees of freedom k1 + k2 − 2 rather than the quantiles form the standard normal

distribution to construct the confidence interval for the intervention effect, as this has been

used in other papers for individual-level analysis using mixed models for CRTs [22, 23].

6 Simulation Study

A simulation study was conducted to investigate the performance of unadjusted cluster-

level analysis, baseline covariate adjusted cluster-level analysis and LMM using complete

records analysis (CRA) under baseline covariate dependent missingness in outcomes. We

also investigated whether there is any gain using MI over CRA. The average estimate

of intervention effect, its average estimated standard error (SE) and coverage probability

were calculated and compared. We considered balanced CRTs, where the two intervention

groups have equal number of clusters (ki = k) and constant cluster size (mij = m).

6.1 Data generation and analysis

For each individual in the study a single covariate value X was generated independently

as X ∼ N(0, 1). Since σ2
x = 1, we can write the coefficient of X in (3.1) as βi = τiσy,

where σ2
y is the total variance of Y within each intervention group and τi is the correlation

coefficient between Y and X in intervention group i. We fixed σ2
y = 100, α1 = 20 and
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α2 = 25. Then the outcome Y was generated using the model

Yijl = αi + τiσyXijl + δij + εijl,

where δij ∼ N(0, ρσ2
y) and εijl ∼ N(0, (1 − τ 2

i − ρ)σ2
y). We chose the cluster size

m = 30 for each cluster. Parameters that were varied in generating the data include

the number of clusters in each group, k = (5, 10, 20, 30) and the unconditional ICC,

ρ = (0.001, 0.05, 0.1). The missing data indicators Rijl under CDM assumption were

generated, independently for each individual, according to a logistic regression model

logit
(
Rijl = 0

∣∣Y ij,X ij

)
= φi0 + φi1Xijl.

The intercept φi0 and slope φi1 were chosen so that Ejl (Rijl) = pi, where pi is the desired

proportion of observed values in intervention group i. The degree of correlation between

missingness and baseline covariate depends on the value of φi1. We used φ11 = φ21 = 1,

which gives the odds ratio for having a missing outcome (Y ) is 2.72 associated with a

one unit increase in the covariate (X) value. Missing data indicators were then imposed

to each generated complete data to get the incomplete data.

Four possible scenarios were considered:

1. φ10 = φ20 = −1 and τ1 = τ2 = 0.5 : missingness mechanism is the same between

the intervention groups and there is no interaction between intervention group and

baseline covariate in the outcome model.

2. φ10 = −1, φ20 = 0.5 and τ1 = τ2 = 0.5 : missingness mechanism is different

between the intervention groups and there is no interaction between intervention
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group and baseline covariate in the outcome model.

3. φ10 = φ20 = −1 and τ1 = 0.4, τ2 = 0.6 : missingness mechanism is the same

between the intervention groups and there is an interaction between intervention

group and baseline covariate in the outcome model.

4. φ10 = −1, φ20 = 0.5 and τ1 = 0.4, τ2 = 0.6 : missingness mechanism is different

between the intervention groups and there is an interaction between intervention

group and baseline covariate in the outcome model.

In the first and third scenarios, there was 30% missing outcomes in both the inter-

vention groups. In the second and fourth scenarios, there was 30% missing outcomes in

the control group, and 60% missing outcomes in the intervention group. Each generated

incomplete data set was then analysed using unadjusted cluster-level analysis, baseline

covariate adjusted cluster-level analysis and LMM using complete records. We included

the interaction between intervention and covariate into the LMM in the third and fourth

scenarios, where the two intervention groups have different covariate effects on outcome

in the data generating model for outcome.

The R package jomo [24] was used to multiply impute each generated incomplete

data set using MI with number of imputations 20. A random intercept LMM was used

as the imputation model so that the imputation model was correctly specified. We used

200 burn-in iterations and 10 iterations between two successive draws after examining,

respectively, the convergence of the posterior distributions of the parameters estimates of

the imputation model and the plots of their autocorrelation functions. The completed data

sets were then analysed using LMM. An interaction between intervention and baseline

20



covariate was included in both the imputation model and the analysis model when the

two intervention groups have different covariate effects on outcome in the data generating

model. We always used restricted maximum likelihood estimation method to fit the LMM.

The Wald t−test with adjusted DF, given in equation 4.2, with νcom = 2(k−1) was used to

test the null hypothesis of intervention effect. We had maximum 50 convergence warnings

in 10,000 simulations when LMM was fitted using the R package lme4 [25].

6.2 Results

Empirical average estimates of intervention effect, average estimated standard errors (SEs)

and coverage probabilities of nominal 95% confidence interval over 10000 simulation

runs for each of the four scenarios are presented in Tables 1 to 4, respectively.

When the missingness mechanism is the same between the intervention groups and

there is no interaction between intervention and baseline covariate in the outcome model,

both the unadjusted and adjusted cluster-level analyses gave unbiased estimates of inter-

vention effect with coverage probabilities very close to the nominal level (see Table 1).

However, these two methods gave biased estimates of intervention effect if the two inter-

vention groups had either different missingness mechanisms or there was an interaction

between intervention and covariate in the outcome model or both (see Table 2, Table 3

and Table 4, respectively). These results support our derived conditions explained in Sec-

tion 5.1 and Section 5.2, respectively, for unadjusted and adjusted cluster-level analyses

to be unbiased using CRA, where we showed that these two methods are unbiased only

if the missingness mechanism is the same between the intervention groups and there is

no interaction between intervention and baseline covariate in the data generating model

21
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Table 5: Comparison between the complete data DF (νcom) and the average estimates of
adjusted DF (νadj), over 10000 simulation runs, used by MI, when the two intervention
groups have different missingness mechanisms and different covariate effects on outcome
in the data generating model for outcome (scenario 4). The last two columns show the
upper 2.5% points of the t−distribution with νcom and νadj DF, respectively.

ρ k νcom νadj tνcom(0.025) tνadj(0.025)

0.1

5 8 4.58 2.31 2.64
10 18 11.72 2.10 2.18
20 38 25.71 2.02 2.06
30 58 38.74 2.00 2.02

0.05

5 8 3.92 2.31 2.80
10 18 9.64 2.10 2.24
20 38 20.61 2.02 2.08
30 58 30.18 2.00 2.04

0.001

5 8 3.12 2.31 3.11
10 18 7.12 2.10 2.36
20 38 13.73 2.02 2.14
30 58 19.01 2.00 2.09

for the outcome. These results also imply that cluster mean imputation, as proposed by

Taljaard [8] (described in Section 4.2 ), is not valid under CDM assumption unless the

two intervention groups have the same missingness mechanisms and there is no inter-

action between intervention and baseline covariate in the outcome model. The bias in

average intervention effect estimates could be in either direction. But, in this paper, we

always have downward bias in the reported intervention effect estimates. This is because

we considered a positive correlation between baseline covariate and outcome in the data

generation process, and a positive association between baseline covariate and probability

of missingness in outcomes. As a result, a large value of outcome has higher chance of

being missing compared to a low value of outcome. In our simulations the degree of bias

was high if the two intervention groups had different covariate effects on outcome and
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it goes up if, in addition, the two intervention groups have different missingness mecha-

nisms (see Table 3 and Table 4). LMM and MI gave unbiased estimates of intervention

effect under all the four considered scenarios, provided that an interaction of intervention

and baseline covariate was included in the model to allow for different covariate effects

on outcome in the two intervention groups (scenario 3 and 4).

The LMM and MI had similar empirical average estimated standard errors of the in-

tervention effect estimates. The LMM gave coverage probabilities close to nominal level

except for very small ρ and small k, where it showed slightly overcoverage. However,

while LMM with νcom gave good coverage, MI using νadj gave overcoverage, and this

can be attributed to it used a smaller DF. The average estimates of νadj, used by MI, over

10,000 simulations runs and νcom for scenario 4 are presented in Table 5. Results showed

that the estimates of νadj are smaller compared to νcom.

7 Discussion and Conclusion

In this paper, we aimed to investigate the validity of the unadjusted and adjusted cluster-

level analyses, and linear mixed model for analysing CRTs, where the outcomes are con-

tinuous and only outcomes are missing under covariate dependent missingness assump-

tion. We used complete records analysis and multiple imputation for handling the missing

outcomes. The contributions of the paper can be summarised as follows:

First, we found that both the unadjusted and adjusted cluster-level analyses are in gen-

eral biased using CRA unless there is no interaction between intervention and baseline

covariate in the data generating model for outcome; and the missingness mechanism is

the same between the interventions groups, which is arguably unlikely to hold in practice.
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Cluster-level analysis is used by many researcher to analyse CRTs because of its sim-

plicity. We therefore caution researchers that these methods may commonly give biased

inferences in CRTs with missing outcomes. However, we note that these two methods are

unbiased with full data, even when there is an interaction between baseline covariate and

intervention in the true data generating model for outcome.

Second, cluster mean imputation has been previously recommended as a valid ap-

proach for handling missing outcomes in CRTs. We found that cluster mean imputation

gave invalid inferences under covariate dependent missingness assumption unless miss-

ingness mechanism is the same between the intervention groups and there is no interaction

between intervention and baseline covariate in the data generating model for outcome.

Third, the LMM using CRA gave unbiased estimates of intervention effect regardless

of whether missingness mechanisms are the same or are different between the intervention

groups and whether there is an interaction between intervention and baseline covariate in

the data generating model for the outcome, provided that an interaction between inter-

vention and baseline covariate was included in the model when such interaction exists in

truth.

Finally, we compared the results of LMM using CRA with the results of MI. As

expected, we found that MI gave unbiased intervention effects estimates regardless of

whether missingness mechanisms are the same or are different in the two intervention

groups and whether there is an interaction between intervention and baseline covariate.

The LMM and MI had similar empirical standard errors of the estimates of intervention

effects. However, MI using adjusted degrees of freedom estimates gave overcoverage for

the nominal 95% confidence interval. This is due to underestimation of adjusted degrees
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of freedom used by MI compared to complete data degrees of freedom. Groenwold et al.

[20] showed that that there is little to be gained by using MI over LMM in the absence

of auxiliary variables. Moreover, when missingness is confined to outcomes, LMM fitted

using maximum likelihood are fully efficient and valid under MAR.

Throughout this paper, we have assumed covariate dependent missingness mechanism

in a continuous outcome, which is an example of MAR as our baseline covariate was

fully observed. In practice, we cannot identify on the basis of the observed data which

missingness assumption is appropriate [14, 26]. Therefore, sensitivity analyses should

be performed [26, Ch. 10] to explore whether our inferences are robust to the primary

working assumption regarding the missingness mechanism. Furthermore, we focused on

studies with only one individual-level covariate; the methods described can be extended

for more than one covariates.

In conclusion, in the absence of auxiliary variables, LMM can be recommended as

the primary analysis approach for CRTs with missing outcomes if one is willing to make

baseline covariate dependent missingness assumption for outcomes.

29



Appendices

A Unadjusted cluster-level analysis using CRA

The mean of the observed outcomes in a particular cluster can be written as

Ȳ obs
ij =

1∑mij

l Rijl

mij∑
l=1

RijlYijl

=
1∑
lRijl

mij∑
l=1

Rijl (αi + βiXijl + δij + εijl)

= αi + βi
1∑
lRijl

mij∑
l=1

RijlXijl + δij +
1∑
lRijl

mij∑
l=1

Rijlεijl

= αi + βiX̄
obs
ij + δij +

1∑
lRijl

mij∑
l=1

Rijlεijl,

where X̄obs
ij = (1/

∑
lRijl)

∑mij

l=1 RijlXijl is the observed mean of the baseline covariate

X in the (ij)th cluster. The expected value of X̄obs
ij across the clusters in the ith interven-

tion group will be the true mean of X among those individuals with observed outcomes.

Let µxi1 denote the true mean of the baseline covariate X in the ith intervention group

among those individuals with observed outcomes. Then

E
(
Ȳ obs
ij

)
= αi + βiµxi1 + E

(
1∑
lRijl

mij∑
l=1

Rijlεijl

)
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Let Rij = (Rij1, Rij2, . . . , Rijmij
) be the vector of missing data indicators for the (ij)th

cluster. Then

E

(
1∑
lRijl

mij∑
l=1

Rijlεijl

)
= E

[
E

(
1∑
lRijl

mij∑
l=1

Rijlεijl

∣∣∣Rij

)]

= E

[
1∑
lRijl

mij∑
l=1

RijlE
(
εijl

∣∣∣Rij

)]
= 0, (A.1)

since εijl’s are independent of Rijl’s and E(εijl) = 0. Therefore, we have

E
(
Ȳ obs
ij

)
= αi + βiµxi1.

The variance of Ȳij can be written as

Var
(
Ȳ obs
ij

)
= β2

i Var
(
X̄obs
ij

)
+ σ2

b + Var

(
1∑
lRijl

mij∑
l=1

Rijlεijl

)

= β2
i σ

2
x̄i1

+ σ2
b + Var

(
1∑
lRijl

mij∑
l=1

Rijlεijl

)
,

σ2
x̄i1

is the variance of the cluster specific means of X among those with observed out-

comes.
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Now

Var

(
1∑mij

l Rijl

mij∑
l=1

Rijlεijl

)
= Var

[
E

(
1∑
lRijl

miij∑
l=1

Rijlεijl

∣∣∣Rij

)]

+E

[
Var

(
1∑
lRijl

mij∑
l=1

Rijlεijl

∣∣∣Rij

)]

= 0 + E

[
1

(
∑

lRijl)
2

mij∑
l=1

RijlVar
(
εijl

∣∣∣Rij

)]
, using (A.1)

= σ2
wE
(

1∑
lRijl

)
=

σ2
w

ηi
, (A.2)

where E
(
1/
(∑mij

l Rijl

))
= 1/ηi (say) . Therefore,

Var
(
Ȳ obs
ij

)
= β2

i σ
2
x̄i1

+ σ2
b +

σ2
w

ηi
.

The observed mean of the ith intervention group is calculated as

Ȳ obs
i =

1

ki

ki∑
j=1

Ȳ obs
ij

Then

E
(
Ȳ obs
i

)
= αi + βiµxi1.

and

Var
(
Ȳ obs
i

)
=

1

ki

(
β2
i σ

2
x̄i1

+ σ2
b +

σ2
w

ηi

)
.

The estimator of intervention effect in unadjusted cluster-level analysis based on observed
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values is given by

θ̂obs = Ȳ obs
1 − Ȳ obs

2 .

Then

E
(
θ̂obs
)

= (α1 + β1µx11)− (α2 + β2µx21)

= (α1 + β1µx)− (α2 + β2µx) + β1 (µx11 − µx)− β2 (µx21 − µx)

= µ1 − µ2 + β1 (µx11 − µx)− β2 (µx21 − µx) .

and

Var
(
θ̂obs
)

=
1

k1

(
β2

1σ
2
x̄11

+ σ2
b +

σ2
w

η1

)
+

1

k2

(
β2

2σ
2
x̄21

+ σ2
b +

σ2
w

η2

)
=

2∑
i=1

1

ki

(
β2
i σ

2
x̄i1

+ σ2
b +

σ2
w

ηi

)
,

which tends to zero as (k1, k2) tend to infinity.
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B Adjusted cluster-level analysis using CRA

The mean of observed residuals of a particular cluster is given by

¯̂εij
obs

=
1∑mij

l Rijl

mij∑
l=1

Rijlε̂ijl

=
1∑
lRijl

mij∑
l=1

Rijl

(
Yijl − Ŷijl

)
=

1∑
lRijl

mij∑
l=1

Rijl (αi + βiXijl + δij + εijl − γ − λXijl)

= αi + (βi − λ)
1∑
lRijl

mij∑
l=1

RijlXijl + δij +
1∑
lRijl

mij∑
l=1

Rijlεijl − γ

= αi + (βi − λ) X̄obs
ij + δij +

1∑
lRijl

mij∑
l=1

Rijlεijl − γ

Then

E
(

¯̂εij
obs
)

= αi + (βi − λ)µxi1 − γ

and

Var
(

¯̂εij
obs
)

= (βi − λ)2 σ2
x̄i1

+ σ2
b +

σ2
w

ηi
,

using the results (A.1) and (A.2). The mean of observed residuals of the ith intervention

group can be written as

¯̂εi
obs

=
1

ki

ki∑
j=1

¯̂εij
obs

Then

E
(

¯̂εi
obs
)

= αi + (βi − λ)µxi1 − γ

34



and

Var
(

¯̂εi
obs
)

=
1

ki

(
(βi − λ)2 σ2

x̄i1
+ σ2

b +
σ2
w

ηi

)
.

The baseline covariate adjusted estimator of intervention effect, based on observed values,

is given by

θ̂obs
adj = ¯̂ε1

obs − ¯̂ε2
obs

Then

E
(
θ̂obs

adj

)
= (α1 + (β1 − λ)µx11 − γ)− (α2 + (β2 − λ)µx21 − γ)

= (α1 + β1µx)− (α2 + β2µx) + β1 (µx11 − µx)− β2 (µx21 − µx) + λ (µx21 − µx11)

= µ1 − µ2 + β1 (µx11 − µx)− β2 (µx21 − µx) + λ (µx21 − µx11)

and

Var
(
θ̂obs

adj

)
=

1

k1

(
(β1 − λ)2 σ2

x̄11
+ σ2

b +
σ2
w

η1

)
+

1

k2

(
(β2 − λ)2 σ2

x̄21
+ σ2

b +
σ2
w

η2

)
=

2∑
i=1

1

ki

(
(βi − λ)2 σ2

x̄i1
+ σ2

b +
σ2
w

ηi

)

which tends to zero as (k1, k2) tend to infinity.

C List of Abbreviations

ABB Approximate Bayesian Bootstrap

CDM Covariate Dependent Missingness
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CL(adj) Adjusted Cluster-level Analysis

CL(unadj) Unadjusted Cluster-level Analysis

CRA Complete Records Analysis

CRTs Cluster Randomised Trials

DF Degrees of Freedom

ICC Intraclass Correlation Coefficient

LMM Linear Mixed Model

MAR Missing At Random

MCAR Missing Completely At Random

MI Multiple Imputation

MNAR Missing Not At Random
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