THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites.


Chang, HH; Worby, CJ; Yeka, A; Nankabirwa, J; Kamya, MR; Staedke, SG; Dorsey, G; Murphy, M; Neafsey, DE; Jeffreys, AE; Hubbart, C; Rockett, KA; Amato, R; Kwiatkowski, DP; Buckee, C; Greenhouse, B; (2017) THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites. PLoS computational biology, 13 (1). e1005348. ISSN 1553-734X DOI: 10.1371/journal.pcbi.1005348

[img]
Preview
Text - Published Version
License:

Download (2941Kb) | Preview

Abstract

As many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission and spread of the disease, but a high prevalence of multi-clone or polygenomic infections can render estimation of even the most basic parameters, such as allele frequencies, challenging. A previous method, COIL, was developed to estimate complexity of infection (COI) from single nucleotide polymorphism (SNP) data, but relies on monogenomic infections to estimate allele frequencies or requires external allele frequency data which may not available. Estimates limited to monogenomic infections may not be representative, however, and when the average COI is high, they can be difficult or impossible to obtain. Therefore, we developed THE REAL McCOIL, Turning HEterozygous SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and Complexity Of Infection using Likelihood, to incorporate polygenomic samples and simultaneously estimate allele frequency and COI. This approach was tested via simulations then applied to SNP data from cross-sectional surveys performed in three Ugandan sites with varying malaria transmission. We show that THE REAL McCOIL consistently outperforms COIL on simulated data, particularly when most infections are polygenomic. Using field data we show that, unlike with COIL, we can distinguish epidemiologically relevant differences in COI between and within these sites. Surprisingly, for example, we estimated high average COI in a peri-urban subregion with lower transmission intensity, suggesting that many of these cases were imported from surrounding regions with higher transmission intensity. THE REAL McCOIL therefore provides a robust tool for understanding the molecular epidemiology of malaria across transmission settings.

Item Type: Article
Faculty and Department: Faculty of Infectious and Tropical Diseases > Dept of Clinical Research
Research Centre: Malaria Centre
PubMed ID: 28125584
Web of Science ID: 394144400053
URI: http://researchonline.lshtm.ac.uk/id/eprint/3414385

Statistics


Download activity - last 12 months
Downloads since deposit
10Downloads
55Hits
Accesses by country - last 12 months
Accesses by referrer - last 12 months
Impact and interest
Additional statistics for this record are available via IRStats2

Actions (login required)

Edit Item Edit Item