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Abstract

Background

The pneumococcal conjugate vaccine’s (PCV) impact on childhood pneumonia during pro-

grammatic conditions in Africa is poorly understood. Following PCV13 introduction in Malawi

in November 2011, we evaluated the case burden and rates of childhood pneumonia.

Methods and Findings

Between January 1, 2012-June 30, 2014 we conducted active pneumonia surveillance in

children <5 years at seven hospitals, 18 health centres, and with 38 community health work-

ers in two districts, central Malawi. Eligible children had clinical pneumonia per Malawi

guidelines, defined as fast breathing only, chest indrawing +/- fast breathing, or,�1 clinical

danger sign. Since pulse oximetry was not in the Malawi guidelines, oxygenation <90%

defined hypoxemic pneumonia, a distinct category from clinical pneumonia. We quantified

the pneumonia case burden and rates in two ways. We compared the period immediately

following vaccine introduction (early) to the period with >75% three-dose PCV13 coverage

(post). We also used multivariable time-series regression, adjusting for autocorrelation and

exploring seasonal variation and alternative model specifications in sensitivity analyses.

The early versus post analysis showed an increase in cases and rates of total, fast

breathing, and indrawing pneumonia and a decrease in danger sign and hypoxemic

PLOS ONE | DOI:10.1371/journal.pone.0168209 January 4, 2017 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: McCollum ED, Nambiar B, Deula R,

Zadutsa B, Bondo A, King C, et al. (2017) Impact of

the 13-Valent Pneumococcal Conjugate Vaccine on

Clinical and Hypoxemic Childhood Pneumonia over

Three Years in Central Malawi: An Observational

Study. PLoS ONE 12(1): e0168209. doi:10.1371/

journal.pone.0168209

Editor: Ray Borrow, Public Health England,

UNITED KINGDOM

Received: May 6, 2016

Accepted: November 28, 2016

Published: January 4, 2017

Copyright: © 2017 McCollum et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The Bill & Melinda Gates Foundation,

http://www.gatesfoundation.org/, (grant number

OPP 1044260) funded this study and all authors

(either directly or indirectly). EDM received

additional funding from the National Institutes of

Health National Heart Lung and Blood Institute,

http://www.nhlbi.nih.gov/, (T32 HL072748-11).

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168209&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168209&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168209&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168209&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168209&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168209&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.gatesfoundation.org/
http://www.nhlbi.nih.gov/


pneumonia, and pneumonia mortality. At 76% three-dose PCV13 coverage, versus 0%, the

time-series model showed a non-significant increase in total cases (+47%, 95% CI: -13%,

+149%, p = 0.154); fast breathing cases increased 135% (+39%, +297%, p = 0.001), however,

hypoxemia fell 47% (-5%, -70%, p = 0.031) and hospital deaths decreased 36% (-1%, -58%,

p = 0.047) in children <5 years. We observed a shift towards disease without danger signs, as

the proportion of cases with danger signs decreased by 65% (-46%, -77%, p<0.0001). These

results were generally robust to plausible alternative model specifications.

Conclusions

Thirty months after PCV13 introduction in Malawi, the health system burden and rates of the

severest forms of childhood pneumonia, including hypoxemia and death, have markedly

decreased.

Introduction

Pneumonia is the second most frequent killer of children <5 years old worldwide.[1] Nearly

one million children died of pneumonia in 2013, most were in Africa.[1] Streptococcus pneu-
moniae is a major contributor to global disease burden, accounting for ~14 million pneumonia

cases and more than 1/3 of pneumonia-associated deaths per 2009 estimates.[2] Children <5

years in Africa are especially vulnerable: rates of overall and pneumonia-associated mortality

are the highest worldwide.[2]

In high-income countries like the United States, the 7-valent pneumococcal conjugate vac-

cine (PCV7) dramatically reduced invasive pneumococcal disease (IPD) and clinical pneumo-

nia in children,[3, 4] and induced widespread herd immunity.[5, 6] Non-PCV7 serotype

replacement then emerged and slowed these declines while increasing empyema rates.[7–10]

Broader valency vaccines were therefore developed. PCV13 targets an additional six serotypes

including serotype 19A, a frequently invasive and drug resistant strain,[11–13] and serotypes

one and five that are common in Africa.[14, 15] After only two years in the United States

PCV13 further reduced IPD and clinical pneumonia paediatric hospitalizations while revers-

ing escalating empyema rates.[6, 13]

Randomized trials in Africa of PCV9 (includes PCV7 serotypes plus serotypes 1 and 5)

demonstrated similar vaccine benefits.[16–18] Subsequently, PCV9, PCV10, and more

recently PCV13 have been introduced into several African countries, including PCV13 in

Malawi in 2011, at a schedule of six, ten, 14 weeks of age, and no booster dose (i.e., 3+0 sched-

ule). To date PCV13’s impact on childhood clinical pneumonia during programmatic condi-

tions in Africa is not well understood.

By conducting widespread active pneumonia surveillance over 30 months at all health sys-

tem levels and applying two complementary analytic methods, we sought to address this

knowledge gap and determine PCV13’s effect on the burden and incidence of clinical and hyp-

oxemic pneumonia cases in <5 year olds in two districts in central Malawi. Our analysis first

compared the period just after the introduction of PCV13 (early) to the period with>75%

three-dose PCV13 coverage (post). We then employed multivariable time-series regression

techniques over the entire study period. We hypothesized a priori that PCV13 would reduce

the case burden and rate of childhood pneumonia, especially the most severe cases, under the

assumption that pneumococcus is both common and lethal in Malawian children with respira-

tory disease.

PCV13 Pneumonia Vaccine in Malawi
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Methods

Study design and setting

We conducted prospective, active surveillance, embedded into routine care, between January

1st, 2012-June 30th, 2014 in seven hospitals, 18 outpatient health centres, and by 38 community

health workers (CHWs) in Lilongwe and Mchinji district, central Malawi (Fig 1). The catchment

population was over 2.3 million people,[19] ~15% of Malawi’s population. Hospitals covered the

entire catchment area while health centres covered 28%: Mchinji district, and Kabudula, one

health area in Lilongwe district (Fig 1). Hospitals offered limited radiography and oxygen while

health centres provided outpatient care without either. Active pneumonia surveillance without

pulse oximetry was conducted at hospitals since 2001 as a part of the Child Lung Health Pro-

gram, but not at health centres or with CHWs.[20] In late 2011 this study introduced pulse oxim-

etry to the hospitals, health centres and CHWs it covers. CHWs covered 3% of the study

population (Fig 1). They followed community-based guidelines and prescribed antibiotics, pro-

viding care from weekly to bi-weekly held informal village clinics or via home visits.[21]

Individual informed consent was not required since the study collected routine data. The

institutional review boards of University College London (protocol 2006/002) and Malawi

(protocol 941) provided approval.

Data collection

Government healthcare staff prospectively collected routine pneumonia data from January 1,

2012. The hospital data form was adapted from a Ministry of Health tool while the health centre

and CHW forms were created since no routine data forms previously existed (S1 Appendix).

Fig 1. Map of study sites

doi:10.1371/journal.pone.0168209.g001
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Providers recorded diagnoses and non-invasive peripheral oxygen saturation (SpO2) measure-

ments at presentation. SpO2 was collected in room air with Masimo1 (hospitals) or Lifebox1

(health centres and CHWs) oximeters. PCV13 doses were documented from patient-held gov-

ernment-issued health records. The study followed hospitalized patients until hospital outcome,

including death. While outpatient follow-up visits are recommended at all levels, they do not

routinely occur and so outpatients were excluded from the mortality analysis. Hospitalized

patients and outpatients at health centre and CHW level were all included in the analyses of

cases of pneumonia. Patients could be counted multiple times during a single illness to allow

measurement of PCV13’s effect on medically attended pneumonia episodes (health system

pneumonia burden).

We emphasized case ascertainment by integrating trainings and supervision into the Minis-

try of Health Child Lung Health Program. During the three-month pilot phase from October-

December 2011, participating providers attended competency-based trainings of pneumonia

guidelines and oximetry use facilitated by a pediatric pulmonologist (EDM). Providers included

nurses, non-physician clinicians and CHWs; all passed testing before participating. Those who

failed were remediated. Monthly supervision visits occurred at all sites. Supervisors (RD, BZ,

HL, LM, EDM) assessed case ascertainment by evaluating provider decision-making with a quiz

and observing a patient encounter that included oximetry. Deficiencies were corrected. Supervi-

sion also allowed on-the-job training for new providers throughout the study. All staff received

retraining in April 2013 facilitated by EDM. All sites met quarterly for data reviews and study

progress assessments; hospitals met weekly to conduct quality assurance checks of their surveil-

lance data and, via review of all case records and notes, ensure all patient deaths were recorded.

Definitions

Pneumonia (see Table 1). We defined pneumonia per Malawi national pneumonia

guidelines, previously adapted from World Health Organization (WHO) clinical definitions,

and by hypoxemia (SpO2<90%).[22],[23] The hypoxemic pneumonia definition overlapped

with clinical categories such that patients with hypoxemia also were separately classified into

one of the three mutually exclusive clinical pneumonia categories (Table 1).

Early- and post-PCV13. Malawi introduced PCV13 during November-December 2011

in the study area. The vaccine was administered at six, ten, and 14 weeks of age without a

booster dose (i.e., 3+0 schedule). If children missed the first dose they could still receive subse-

quent doses, and a passive catch-up campaign was conducted during the first year of vaccine

introduction for children older than 14 weeks but younger than one year of age at time of first

dose. We compared the period immediately following introduction (early) with the period fol-

lowing attainment of widespread coverage (post). We chose a threshold of three-dose 75% cov-

erage according to published evidence of reduced pneumonia rates at this level.[24] We

conducted Lot Quality Assurance Surveys (LQAS) to determine vaccine coverage rates and the

period at which such coverage was achieved.[25] LQAS is a sampling methodology that

enables estimation of whether geographical areas, or lots, have vaccination coverage above a

certain target threshold of desired coverage.[25] LQAS in rural Lilongwe estimated three-dose

PCV13 coverage as 76% in children 6–16 months old by September 1st, 2013. We used a 6–16

month age range because of the catch-up campaign and our finding that third PCV13 doses

were given at age 4–6 months on average and as late as 16 months.

Data analysis

In descriptive univariable analyses we accounted for pneumonia seasonality by comparing the

same six months in the early-PCV13 period (low coverage, January-June 2012) with the same

PCV13 Pneumonia Vaccine in Malawi
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six months post-PCV13 introduction (January-June 2014). We evaluated the association of

monthly counts of pneumonia with three-dose PCV13 coverage more formally using quasi-

Poisson time series regression methods to allow for temporally varying risk factors and auto-

correlation [26, 27].

The main model fit was:

Yt � quasi � PoissonðmtÞ

logðmtÞ ¼ Β0 þ Β1ð3dosetÞ þ Β2ðdrest� 1Þ

Where the subscript t is the time (month) to which the subscripted variable applies; Yt is the

count of pneumonia cases; quasi-Poisson denotes Poisson with overdispersion; 3doset is the

population three-dose PCV13 coverage, scaled from 0 to 1 so that 1 = 76% to give an estimated

effect (B1) at 76% coverage, the level reached in the post-PCV13 period; and drest-1 is the devi-

ance residual for the previous month, t-1, in an identical model without the dres term in it,

which was added to adjust for residual autocorrelation in the time-series [26, 28]. Gaussian

models for log(Yt), which allow more standard approaches to allow for autocorrelation at the

expense of not respecting as closely that the outcome comprised counts, were also explored in

sensitivity analyses.

Age was not a potential confounder in these analyses, because age distribution in the total

population changed minimally (<1%) over the period of study, and was therefore unrelated to

population-level vaccine coverage. However, we did explore models with age as a potential

effect modifier. We modelled age as a categorical variable in pre-specified groups of 0–5

months, 6–23 months and 24–59 months old based on age ranges which would be most likely

to identify directly and indirectly attributable vaccine impact and because modelling age as a

Table 1. Clinical and hypoxemic pneumonia definitions

Pneumonia classification Definition (signs and symptoms)

Fast breathing

pneumonia1
Cough and/or difficulty breathing and

Fast breathing for age1 and

No lower chest indrawing and no danger signs2

Chest indrawing

pneumonia

Cough and/or difficulty breathing and

Lower chest indrawing and

No danger signs2

May or may not have fast breathing for age1

Danger sign pneumonia Cough and/or difficulty breathing and

At least one danger sign2

May or may not have fast breathing for age1 or lower chest indrawing

Hypoxemic pneumonia Cough and/or difficulty breathing and

SpO2<90%

May or may not have fast breathing for age1 or lower chest indrawing or

danger signs2

1�60 breaths/minute if <2 months old,�50 breaths/minute 2–11 months old;�40 breaths/minute if 12–59

months old
2Danger signs are any of the following: central cyanosis (hospital); severe respiratory distress (hospital),

stridor in a calm child, inability to drink and/or breastfeed, persistent vomiting, lethargy or unconscious,

convulsions), apnea (if 0–2 months of age)

SpO2 indicates peripheral oxygen saturation.

doi:10.1371/journal.pone.0168209.t001
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continuous variable resulted in model convergence problems. We report these models only as

sensitivity analyses as they are underpowered and herd protection may cause auto-correlation

across age groups and this would be difficult to model. Although our original intention was to

allow for population changes of the period, because the changes did not significantly change

the results, we preferred the simpler model without population adjustment. We include log

(population) as an offset in sensitivity analyses.

We also explored controlling for seasonal patterns. The shortness of our data series made

the usual approaches for this problematic [26], so we did this by including as an explanatory

variable an estimate of annual seasonal pattern, from sine-cosine pairs of annual period and

harmonics fitted to hospital data for Malawi from 2001 to 2012 (S3 Appendix) [20]. However,

we found that coefficients for this variable fit to the 2012–14 data were either non-significant

or, for danger sign cases and deaths, significantly negative, implying quite different seasonal

patterns to that observed on average in 2001–12. In consequence, we retained this seasonal

control only in sensitivity analyses.

All clinical pneumonia, fast breathing pneumonia, chest indrawing pneumonia, danger

sign pneumonia, hypoxemic pneumonia (Table 1), and pneumonia hospital deaths were ana-

lysed in separate Poisson models. In addition, we estimated association of vaccine coverage

with the proportion of pneumonia cases that had one or more clinical danger sign(s) with a

logistic model for monthly values of this proportion, specified with the same explanatory vari-

ables as the above Poisson regression models.

We modelled the data from each level of the health system (hospitals, health centre and

CHW) together in our main analyses, and separately in additional analyses. Missing data were

few for clinical pneumonia and hypoxemia variables, and none for hospital vital status.

Stata 13.1 was used for all analyses, with the time-series regressions run using the glm com-

mand with scale(x2) option, on time-series set (tsset) data: the code for the main model for

danger sign pneumonia being:

glm vsevere coverage76 L1.dres, family(poisson) scale(x2) eform.

We explored model fit with regression diagnostics and ran a total of 12 additional models

as sensitivity analyses for each outcome, varying combinations of variables included in the

model and assumptions relating to autocorrelation.

Results

From January 1st, 2012-June 30th, 2014 a total of 30,630 cases of clinical pneumonia were

recorded (Table 2). Three quarters of pneumonia patients (75.8%, n = 23,206) were <2 years.

More than half of the patients we recorded were from the hospital level (53.8%, n = 16,475),

while 22.1% (n = 6,764) were from health centres and 24.1% (n = 7,391) from CHWs. There

were peaks of pneumonia cases in January, February and July 2013 and March 2014 (Fig 2).

Of children <5 years with PCV13 immunization records, 49.9% (n = 11,344/22,723)

received all three doses. The highest proportion of cases fully immunized were 6–23 months

old (71.7%, n = 8,567/11,948). Only 31.3% of cases 24–59 months (n = 1,336/4,266) and 22.1%

aged 0–5 months (n = 1,441/6,509) received three doses (S4 Appendix).

Pneumonia was characterized by fast breathing only in 13,071 cases (42.7%), chest indraw-

ing in 10,406 (34.0%) and clinical danger sign(s) in 5,962 (19.5%). Most cases with chest

indrawing (88.9%, n = 9,254/10,406) or danger sign(s) (90.5%, n = 5,397/5,962) were hospital-

ized, while 92.0% (n = 12,022/13,071) with solely fast breathing were at health centres or with

CHWs.

Eighty-nine percent of cases (n = 27,586/30,630) had a SpO2 measurement; 8.3% were hyp-

oxemic. Cases 0–5 months had the highest hypoxemia prevalence (11.4%) compared to 6–23

PCV13 Pneumonia Vaccine in Malawi
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month olds (8.4%) or 24–59 month olds (4.7%) (S4 Appendix). While the highest proportion

of hypoxemic pneumonia patients were hospitalized (11.3%), 9.9% of health centre cases had

hypoxemic pneumonia. Hypoxemia was infrequent in CHW-diagnosed children (1.2%). The

Table 2. Clinical pneumonia, hypoxemic pneumonia, outcome, and PCV13 status by health system level in Lilongwe and Mchinji districts, Malawi

Health

system

level

Clinical pneumonia1 Hypoxemic

pneumonia

Outcome PCV13

Fast

breathing

only

Chest

indrawing

Danger

sign(s)

Missing SpO2

Measured

SpO2<90% Alive Died Recorded 0 doses 1 dose 2 doses 3 doses

All,

n = 30630

13071

(42�7%)

10406

(34�0%)

5962

(19�5%)

1191

(3�9%)

27586

(89�3%)

2289

(8�3%)

22723

(74�2%)

6296

(27�7%)

2512

(11�1%)

2571

(11�3%)

11344

(49�9%)

Hospital,

n = 16475

1049

(6�4%)

9254

(56�2%)

5397

(32�8%)

775

(4�7%)

14033

(85�2%)

1581

(11�3%)

15946

(96�8%)

529

(3�2%)

11297

(68�6%)

3304

(29�2%)

1469

(13�0%)

1324

(11�7%)

5200

(46�0%)

Health

Centre,

n = 6764

4786

(70�8%)

1082

(16�0%)

546

(8�1%)

350

(5�2%)

6312

(93�3%)

622 (9�9%) 5780

(85�5%)

1311

(22�7%)

640

(11�1%)

702

(12�1%)

3127

(54�1%)

CHW,

n = 7391

7236

(97�9%)

70 (1�0%) 19

(0�3%)

66

(0�9%)

7241

(94�6%)

86 (1�2%) 5646

(76�4%)

1681

(29�8%)

403

(7�1%)

545

(9�7%)

3017

(53�4%)

SpO2 indicates peripheral oxygen saturation; CHW, community health worker. See S4 Appendix for breakdown by 0–5, 6–23 and 24–59 month age groups.
1See Table 1 for pneumonia definitions

doi:10.1371/journal.pone.0168209.t002

Fig 2. Pneumonia cases and deaths in children under 5 years old by month: January 2012–June 2014:

a) Total clinical pneumonia cases at all hospitals, health centres and community health worker clinics b) Clinical

pneumonia cases at all hospitals, health centres and community health worker clinics by category c) Hypoxemic

pneumonia cases at all hospitals, health centres and community health worker clinics d) Hospital pneumonia

deaths.

doi:10.1371/journal.pone.0168209.g002
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mortality rate for cases hospitalized with pneumonia was 3.2%. Hospitalized cases with hypox-

emic pneumonia had the highest mortality (8.3%) compared to pneumonia with danger sign

(s) (5.4%), chest indrawing (2.1%), or only fast breathing (1.2%).

Table 3 shows the descriptive univariable analyses for pneumonia cases at all health system

levels during January-June 2012 when three-dose PCV13 coverage was below 45% (early-

PCV13) compared to January-June 2014 when three-dose coverage exceeded 76% (post-

PCV13). Overall, there was an increase of 45% in all cases of clinical pneumonia. Fast breath-

ing (+83%), and chest indrawing (+60%) pneumonia cases for children <5 years were higher

during January-June, 2014, compared to January-June, 2012. These increases were mirrored

by a 45% reduction in cases of danger sign pneumonia. Hypoxemic pneumonia cases also

decreased 44%. Table 3 also disaggregates clinical and hypoxemic pneumonia rates into hospi-

tal, health centre, and CHW levels (see S5 Appendix for trends). Fast breathing pneumonia sig-

nificantly increased at all levels and chest indrawing pneumonia increased by 322 cases/

100,000 child months at hospitals (95% confidence interval (CI), 276, 368 cases/100,000 child

months). Danger sign and hypoxemic pneumonia rates dropped at hospitals and health cen-

tres; and hypoxemic pneumonia rates also declined by 218 cases/100,000 child months in

CHW-diagnosed patients (95% CI, 59, 377 cases/100,000 child months). Rates of pneumonia-

associated mortality for hospitalized cases <5 years declined by 41% (-63%, -21%).

Using multivariable time series regression we estimated the association of an increase of

three-dose PCV13 coverage from zero to 76% with changes in risk of all clinical pneumonia,

fast breathing, chest indrawing and danger sign pneumonia, hypoxemic pneumonia, mortality,

and the proportion of clinical pneumonia cases that had danger signs, controlling for autocor-

relation as explained in the methods. Table 4 shows the results of the models. There was a

non-significant increase in the risk of all clinical pneumonia: incident rate ratio (IRR): 1.47,

95% CI: 0.87, 2.49, p = 0.154. While the risk of fast breathing pneumonia increased signifi-

cantly (IRR: 2.35, 95% CI: 1.39, 3.97, p = 0.001), the risk of chest indrawing (IRR: 1.39, 95% CI:

0.73, 2.68, p = 0.320) and danger sign pneumonia (IRR: 0.64, 95% CI: 0.31, 1.30, p = 0.212)

were not significantly associated with vaccine coverage. There were significant decreases in the

risks of hypoxemic pneumonia, and the proportion of danger sign pneumonia associated with

76% three-dose PCV13 coverage. The risk of hypoxemic pneumonia was reduced by 47%

(95% CI: 5%, 70%; p = 0.031), and the proportion of clinical pneumonia cases that had danger

signs was lowered by 65% (95% CI: 46%, 77%; p<0.0001) at 76% vaccine coverage compared

to 0%. Importantly, the risk of hospital pneumonia death was also significantly lower: IRR:

0.64, 95% CI: 0.42, 0.99, p = 0.047; Table 4).

The sensitivity analyses (S6 Appendix) indicate that the results in Table 4 are fairly robust

to alternative specifications of the model. For all clinical pneumonia (Fig A6.1 in S6 Appendix)

10 of the 12 models estimated a non-significant increase, the two Gaussian models without

autocorrelation estimated a significant increase; point estimates of the IRR ranged from 1.32

to 1.66 and 95%CI ranged from 0.76 to 3.02. For fast breathing pneumonia (Fig A6.2 in S6

Appendix) the 12 models estimated significant increases with 76% three-dose vaccine cover-

age, with point estimates of the IRR ranging from 2.11 to 3.09, and 95% CI spanning the range

1.31 to 4.84. For chest indrawing pneumonia the IRR point estimates of the 12 models ranged

from 1.22 to 1.63, and all had confidence intervals spanning 1 (i.e. non-significant effects; Fig

A6.3 in S6 Appendix). Ten of the 12 Poisson regression models for danger sign pneumonia

estimated non-significant reductions in risk; the IRR point estimates for all models ranged

from 0.41 to 0.76 and 95% CI span 0.13 to 2.11, with the Gaussian models with autocorrelation

being least precise (Fig A6.4 in S6 Appendix). Of note the decline in risk of danger sign pneu-

monia was larger and statistically significant when the 2001–12 seasonal pattern was included

despite its anomalous negative coefficient (IRR: 0.46, 95% CI: 0.22, 0.93, p = 0.031, Fig A6.4 in

PCV13 Pneumonia Vaccine in Malawi
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S6 Appendix). The difference is due to the seasonal peaks from the retrospective data estimated

by the season covariate not coinciding with the January, February and July 2013 peaks in the

danger sign pneumonia outcome in this study (top middle panel Fig A3.2 in S3 Appendix).

Table 3. Changes in case burden of clinical and hypoxemic pneumonia in children (0–59 months)

Outcome1 Health system

level

January to June 2012

Total cases

January to June 2014

Total cases

Case difference % change p-value1

All clinical pneumonia2 All 4765 6886 2121 45% <0�0001

Fast breathing

pneumonia2
All 1828 3354 1526 83% <0�0001

Chest indrawing

pneumonia2
All 1608 2567 959 60% <0�0001

Danger sign

pneumonia2
All 1116 609 -507 -45% <0�0001

Hypoxemic

pneumonia2
All 497 277 -220 -44% <0�0001

Rate (cases/100,000 child

months)

Rate (cases/100,000 child

months)

Rate difference

(95% CI)

% change (95%

CI)

p-value

All clinical pneumonia Hospital 1067 1263 196 (138, 255) 18% (13%,

24%)

<0�0001

Health Centre 1615 2113 498 (360, 636) 31% (22%,

39%)

<0�0001

CHW 13806 24857 11050 (9795,

12305)

80% (71%,

89%)

<0�0001

Fast breathing

pneumonia

Hospital 53 120 67 (51, 83) 127% (97%,

157%)

<0�0001

Health Centre 1064 1644 580 (462, 698) 54% (43%,

66%)

<0�0001

CHW 13137 23341 10204 (8975,

11433)

78% (68%,

87%)

<0�0001

Chest indrawing

pneumonia

Hospital 556 878 322 (276, 368) 58% (50%,

66%)

<0�0001

Health Centre 324 267 -56 (-112, -1) -17% (-35%,

0%)

0.0464

CHW 126 196 71 (-58, 199) 56% (-46%,

159%)

0.2859

Danger sign

pneumonia

Hospital 407 199 -208 (-238, -177) -51% (-59%,

-44%)

<0�0001

Health Centre 158 92 -65 (-102, -29) -42% (-65%,

-18%)

0.0004

CHW 28 78 51 (-23, 124) 181% (-82%,

445%)

0.1857

Hypoxemic pneumonia Hospital 119 78 -40 (-58, -23) -34% (-49%,

-19%)

<0.0001

Health Centre 252 75 -177 (-219, -135) -70% (-87%,

-54%)

<0�0001

CHW 349 131 -218 (-377, -59) -63% (-108%,

-17%)

0.0063

Mortality Hospital 52 31 -22 (-33, -11) -41% (-63%,

-21%)

0.0001

1See Table 1 for pneumonia definitions
2p-value estimated assuming a population equivalent to that of the catchment area for the hospitals (i.e. the whole of Mchinji and Lilongwe districts). Note

that cases were recorded from health centres in about 28% of this population and with community health workers in about 3% of the total population so

these p-values are approximate and we can’t accurately calculate confidence intervals (or rates; only cases are reported in this table)

doi:10.1371/journal.pone.0168209.t003
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For hypoxemic pneumonia, six of the 12 models estimated a significant reduction in risk with

76% three-dose PCV13 vaccine coverage, with IRR point estimates ranging from 0.40 to 0.63

and 95% CI spanning the range 0.21 to 1.26 (Fig A6.5 in S6 Appendix). Ten of the 12 mortality

models estimated a significant reduction in mortality risk with IRR point estimates ranging

from 0.55 to 0.70 and 95% CI spanning 0.34 to 1.08; the only models estimating a non-signifi-

cant effect on mortality were models 6 and 7 –the Poisson ones with season and one and two

month lagged residuals (Fig A6.6 in S6 Appendix). For the proportion of pneumonia that had

danger signs (Fig A6.7 in S6 Appendix) all of the models estimated the IRR to be below 1, with

point estimates ranging from 0.26 to 0.38 and 95% CI spanning 0.15 to 0.96.

At the hospital level the results were inline with the main results: only the hypoxemia

decline was not significant (S7 Appendix). At the health centre level no significant changes

were observed in any of the outcomes except for hypoxemic pneumonia, where there was a sig-

nificant decline (IRR: 0.36, 95% CI: 0.16, 0.81, p = 0.014, S7 Appendix). At the CHW level,

there were significant increases in all clinical pneumonia, fast breathing (98% of all clinical

pneumonia observed at this level, Table 2) and danger sign pneumonia, though due to there

being only 19 cases of the latter during the whole study period (Table 2) the danger sign mod-

els were very unstable (S7 Appendix).

The sensitivity analyses with age as an effect modifier in the main model are shown in S8

Appendix. There was a significant increase in all clinical pneumonia in 6–23 month olds. The

increase in fast breathing pneumonia was in 6–23 and 24–59 month olds, but not 0–5 month

olds; there was a significant increase in chest indrawing pneumonia in 6–23 month olds; a

Table 4. Time-series regression results with the association of 76% three-dose PCV13 coverage on pneumonia outcomes highlighted

All clinical pneumonia a

Model and

covariate a
IRR (95%CI);

p-value

3dose (B1) 1.469 (0.865, 2.493);

p = 0.154

L1.dres (B2) 1.015 (1.004, 1.025);

p = 0.008

Fast breathing

pneumonia a
Chest indrawing

pneumonia a
Danger sign

pneumonia a
Hypoxemic

pneumonia a
Mortality a Proportion danger

sign a

Model and

covariate a
IRR (95%CI); IRR (95%CI); IRR (95%CI); IRR (95%CI); IRR (95%CI); OR (95%CI);

p-value p-value p-value p-value p-value p-value

3dose (B1) 2.347 (1.389, 3.966); 1.393 (0.725, 2.678); 0.636 (0.313,

1.295);

0.532 (0.299,

0.945);

0.643 (0.416,

0.994);

0.351 (0.230,

0.536);

p = 0.001 p = 0.320 p = 0.212 p = 0.031 p = 0.047 p<0.0001

L1.dres (B2) 1.009 (0.990, 1.028); 1.026 (1.008, 1.043); 1.042 (1.025,

1.059);

1.055 (1.018,

1.094);

1.029 (0.932,

1.135);

1.060 (1.041,

1.078);

p = 0.379 p = 0.003 p<0.0001 p = 0.004 p = 0.572 p<0.0001

IRR = Incidence Rate Ratio; OR = Odds Ratio
a 3dose is the population three-dose PCV13 coverage, scaled from 0 to 1 so that 1 = 76% to give an estimated effect (B1) at 76% coverage, the level

reached in the post-PCV13 period; L1.dres is the deviance residual for the previous month in an identical model without the dres term in it, which was added

to adjust for residual autocorrelation in the time-series

Observations = 29; these are the 30 calendar months in time (January 2012 to June 2014) minus one due to the inclusion of the one-month lagged residual

term L1.dres

doi:10.1371/journal.pone.0168209.t004
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significant decrease in danger sign pneumonia in 24–59 month olds; significant decreases in

hypoxemic pneumonia in 0–5 and 24–59 month olds; a significant decrease in mortality in

24–59 month olds; and significant decreases in the proportion of pneumonia cases that had

danger signs in all three age groups (S8 Appendix).

Discussion

Using large-scale active surveillance, this study describes the impact of routine PCV13 use on

childhood pneumonia in a PCV-naïve, high pneumonia burden low-income country in sub-

Saharan Africa. We found a non-significant increase in total pneumonia cases. We found this

was comprised of a large and significant increase in the risk of fast breathing pneumonia (of

approximately 135%) as well as a suggested decrease in pneumonia cases with danger signs

(approximate 36% reduction, p<0.05 significant in some models tested), resulting in a 65%

reduction in the proportion of danger sign pneumonia cases in children <5 years across the

health system. We also found that PCV13 introduction in Malawi was associated with a 47%

reduction in hypoxemic pneumonia and a 36% reduction in hospital pneumonia mortality.

Using our model estimates and observed cases between September-2013 and June-2014 (when

the vaccine was at sufficient coverage) we estimate that, if the associations were causal, PCV13

prevented approximately 386 medically attended hypoxemic cases, and 74 deaths in Lilongwe

and Mchinji districts in Malawi (in 442,946 child months at risk, S2 Appendix). We have

attempted to be conservative in our estimates as these numbers would be greater if we had

assumed some effect of the vaccine at lower coverage before September 2013. Nevertheless,

our results suggest that pneumonia cases are common and frequently severe, and that severe

cases can be prevented with routine use of conjugate vaccines.

There is no gold standard diagnostic test for pneumonia etiology. As a result, pneumococcal

vaccine trials in children have utilized surrogate measures like chest radiograph consolidation

that favour specificity over sensitivity and are important for evaluating trial endpoints.[18] By

contrast, we conducted a pneumonia surveillance study to assess vaccine impact in a real-

world setting where the majority of patients receive healthcare but radiography and laboratory

resources are few. In the absence of radiographic and laboratory measures, we utilized pulse

oximetry and pre-defined, broadly accepted classifications for clinical pneumonia.

The Malawi pneumonia definitions were adapted from the WHO and are used throughout

Africa; Malawian providers have utilized them for more than a decade.[22] The criteria are

pragmatic for non-physicians and were designed to be highly sensitive to increase antibiotic

treatment for children with possible bacterial pneumonia, who prior to these guidelines were

often not treated with antibiotics. As a compromise to achieving high sensitivity these guide-

lines were knowingly permitted to have a low specificity due to clinical overlap with illnesses

from other bacterial pathogens, viruses, or malaria.[29, 30] In spite of the low specificity of the

WHO criteria, PCV has still been found to be efficacious against WHO-defined pneumonia in

African trials.[16, 18] A PCV9 trial in South Africa reported 12% (95% CI, 4%-20%) efficacy

against a combination of chest indrawing and danger sign pneumonia in HIV-infected and

-uninfected children <5 years, but no efficacy against fast breathing pneumonia.[18] In the

Gambia, PCV efficacy was 7% (1%-12%) against fast breathing and chest indrawing pneumo-

nia (some of which also had danger signs) and 16% (3%-28%) against all-cause pneumonia

mortality.[16] Our observed reductions in danger sign pneumonia, hypoxemic pneumonia,

and hospital pneumonia mortality were noticeably larger than what was observed in these clin-

ical trials. Diarrhea and dehydration are known risk factors for severe, life-threatening pneu-

monia in developing countries,[31] and rotavirus is a leading cause of diarrhea in Malawian

children.[32] Since rotavirus vaccine was also introduced during this study’s time period

PCV13 Pneumonia Vaccine in Malawi
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(October 2012), we speculate that the overlapping introduction of rotavirus vaccine, and its

reported 64% effectiveness against rotaviral diarrhea in Malawian children,[32] is likely to

have contributed to the greater than expected reductions seen in this analysis. The incidence

of malaria, which can also overlap with pneumonia [31], to the best of our knowledge, did not

change during the study period. The coverage of the Hib vaccine also remained high and stable

at around 93% during the study period [33]. These two potential confounding factors therefore

are unlikely to have contributed to the observed reductions in pneumonia incidence and

mortality.

Interestingly, after full introduction of PCV we also observed an increase in lower risk clini-

cal pneumonia cases that lacked danger signs. This paradoxical increase in milder clinical

pneumonia in children (or reduced vaccine effectiveness for mild clinical pneumonia) has

been previously observed in other PCV studies from the United States,[34] Philippines,[35]

and South Africa.[18] We do not think that this finding in our study was due to improved sur-

veillance over time as we maintained the same standardized pneumonia case definitions and

supportive supervision practices throughout the study, and conducted a conservatively long

three month pilot period to ensure there was standard data collection. Rather, a secondary

analysis of the South African trial, along with the growing body of evidence from south Asia

that most fast breathing pneumonia cases are likely of viral etiology and may not require anti-

biotic treatment at all,[36, 37] offer potential insight to this finding. The South African trial

showed that following PCV9 introduction there was a decrease in hospitalized viral respiratory

illnesses, and the authors deduced from this that a large proportion of severe pneumococcal

pneumonia develops secondarily from viral infections.[38] Taking this into account, our find-

ings may reflect a PCV13-induced shift away from higher-risk viral/pneumococcal combined

disease towards a pneumococcal-free, lower-risk viral process that still meets the Malawi and

WHO fast breathing or chest indrawing pneumonia definitions (see Table 1). From a health

system perspective our data further demonstrates that PCV introduction in similar African

settings is unlikely to be associated with less medically attended clinical pneumonia episodes

overall (indeed our data suggests it was associated with more total cases), but could result in

fewer high-risk pneumonia medical encounters and hospital deaths. The shift toward less

severe disease could also be accompanied by changing seasonal patterns as suggested by our

comparison with retrospective pre-PCV13 hospital data (S3 Appendix).

The observed reductions in severe disease may also reflect both direct and indirect PCV

effects. Although vaccine coverage estimates were low among cases 24–59 months (32.6%), we

estimated considerable reductions in rates of danger sign pneumonia (77%) and hypoxemic

pneumonia (83%) in this age group. Similarly, among 0–5 month olds (PCV13 coverage:

22.1%), hypoxemic pneumonia rates decreased 43% (S8 Appendix). Other studies have

reported indirect effects of PCV on clinical pneumonia, but mainly in unvaccinated adults.[4,

6] Nasopharyngeal carriage studies, however, suggest that vaccination of children reduces

transmission of vaccine-type pneumococci to their unvaccinated contacts.[5, 14] A recent

study reported a reduction in vaccine-type pneumococcal carriage prevalence among unvacci-

nated children two years after vaccine introduction, an observation that the authors attributed

to herd protection.[14] Although our study did not assess colonization, the observed reduc-

tions in disease occurred over a similar timeframe and in a similar patient population, suggest-

ing that herd effects of PCV may have conferred indirect protection to unvaccinated cases. As

previously mentioned, rotavirus vaccine introduction may have also impacted the pneumonia

disease patterns we observed. Notably, the interaction between rotavirus and pneumococcal

conjugate vaccines on diarrheal and respiratory disease incidence and health outcomes in

Malawian children is not well understood and is an active area of on-going research.
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While the efficacy of PCV against pneumonia has been previously reported,[16, 18] to our

knowledge no other studies have incorporated measures of SpO2. In African children with

respiratory complaints an abnormally low SpO2 level can be associated with radiographic

pneumonia, and SpO2<90% with mortality.[39] Amongst <5 year olds, we found a 47%

reduction in hypoxemic pneumonia rates after PCV13 introduction. These objective SpO2

findings are consistent with the declines in subjectively assigned danger sign pneumonia.

Given there are no oxygen resources at health centres, the 9.9% health centre hypoxemia prev-

alence is alarming. In addition, PCV13’s impact on hypoxemic pneumonia as a probe for

pneumococcal pneumonia needs confirmation alongside validated endpoints in controlled

studies.

Conducting a study of this design, scale and scope in a weak healthcare system is challeng-

ing. We lacked reliable baseline data prior to PCV13 introduction, although the slow increase

in PCV13 three-dose coverage provided more low coverage data than expected. Under-ascer-

tainment due to provider misdiagnosis is possible. However, our monthly supervision visits

suggest misdiagnosis was likely negligible and did not change over time. While this surveil-

lance system was extensive it was still intrinsically susceptible to under-ascertainment when

care was not sought and also selection bias since we were only able to include children who

accessed care. These biases should not affect the study findings since health-seeking behaviour

is unlikely to have changed significantly during this relatively short study. Since our models

were based on vaccination status at population level, which is complete for all cases, missing

individual level vaccination data does not affect our analytic approach. 11% of cases were miss-

ing SpO2 data and hence could not be included in our hypoxemia models, and it is possible

that such children in hospitals and health centres are sicker than those with SpO2 data [40].

We conducted an additional sensitivity analysis assuming these children were 50% more likely

to have hypoxemia and found the main hypoxemia result to only change slightly from 0.532

(0.299, 0.945, p = 0.031; Table 4) to 0.550 (0.314, 0.962, p = 0.036). Despite extensive data col-

lection efforts, our data lacked reliable personal identifiers, including addresses, so we were

unable to adjust our analysis for area-level clustering or clustering within individuals (repeat

admissions of the same patient for the same or subsequent illness). Our mortality analysis was

limited to the hospital level as the health centre and CHW levels were not set-up to reliably col-

lect information on treatment outcomes. Due to the restricted number of monthly data points

we had insufficient power to control for potential confounding factors, including HIV status,

which also lacked data, and malnutrition. We attempted to control for seasonal variation using

retrospective data from Malawian hospitals, though seasonal peaks were not the same as in our

data (S3 Appendix), and we adjusted our estimates for one-month lagged autocorrelation. A

longer time series would have enabled us to better explore the influence of seasonal variation.

We were unable to identify a suitable control for secular trends as childhood diseases under

routine surveillance in Malawi either overlapped with clinical pneumonia (malaria)[30] or had

a confounding intervention during the study period (rotaviral vaccine introduction October

2012 for diarrheal disease). Lastly, we assumed that LQAS data represented PCV13 coverage in

the entire study area and this could be incorrect. However, healthcare in this sub-region is gen-

erally comparable and the assumptions made for our study time periods were conservative so

that confounding effects from coverage differences are unlikely.

Other controlled and observational studies that include more specific pneumococcal pneu-

monia markers and are able to account for high-risk groups like HIV-infection and severe

malnutrition are necessary to fully evaluate PCV13’s impact on Malawian children. This study

only assessed the first two and a half years of PCV13 use. As such, continued surveillance for

serotype replacement and long-term vaccine effectiveness remains important. Nevertheless,

our study utilized widespread active surveillance to evaluate PCV13’s impact on Malawian
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childhood pneumonia case burden and incidence in little-studied urban and rural hospitals,

outpatient health centres, and remote communities. After PCV13 was introduced we found an

impressive reduction in hospital pneumonia fatality and the most severe forms of childhood

pneumonia at all health system levels, providing strong support for PCV13 use in high burden

African countries like Malawi.
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