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Abstract 74 

The diarrhoeal pathogen Clostridium difficile consists of at least six distinct 75 

evolutionary lineages. The RT017 lineage is anomalous as strains only express toxin 76 

B, compared to strains from other lineages that produce toxins A and B and 77 

occasionally binary toxin. Historically, RT017 were initially reported in Asia but have 78 

now been reported worldwide. We used whole genome sequencing and phylogenetic 79 

analysis to investigate the patterns of global spread and population structure of 277 80 

RT017 isolates from animal and human origins from six continents, isolated between 81 

1990 and 2013. We reveal two distinct evenly split sub-lineages (SL1 and SL2) of C. 82 

difficile RT017 that contain multiple independent clonal expansions. All 24 animal 83 

isolates were contained within SL1 along with human isolates suggesting potential 84 

transmission between animals and humans. Genetic analyses revealed an over 85 

representation of antibiotic resistance genes. Phylogeographic analyses show a North 86 

American origin for RT017 as has been found for the recently emerged epidemic 87 

RT027 lineage. Despite only having one toxin, RT017 strains have evolved in parallel 88 

from at least two independent sources and can readily transmit between continents. 89 

 90 

  91 

 92 

 93 

 94 

 95 

 96 

 97 

 98 
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Introduction 99 

Clostridium difficile is a spore-forming obligate anaerobe that continues to be the 100 

leading cause of healthcare-associated infections in the developed world (1, 2). There 101 

are six main lineages that broadly split into PCR ribotypes (RTs) associated with 102 

RT027, RT023, RT017, RT078, a grouping of diverse RTs and the recently identified 103 

novel lineage containing RT131 (3). The global emergence of the RT027 strain was 104 

responsible for multiple outbreaks and increased disease severity in Canada and the 105 

United States in 2001 (4). This strain has since spread to South America (5-7), China 106 

(8), Japan (9), Hong Kong (10), Korea (11, 12), Taiwan (13), Singapore (14), 107 

Australia (15, 16), Saudi Arabia (17), Israel (18), New Zealand (19) and throughout 108 

Europe (5, 20-28). Although RT027 remains the dominant clone in the United States, 109 

Europe has seen a decline in RT027 with a simultaneous increase in other virulent 110 

RTs such as RT017 and RT078 (29). 111 

 112 

Using whole genome sequencing (WGS) and phylogenetic analysis, He et al., (4) 113 

identified the presence of two genetically distinct sub-lineages of RT027 through 114 

single nucleotide polymorphism (SNP) analysis; both had emerged in North America 115 

within a relatively short period after acquiring the same fluoroquinolone resistance 116 

conferring mutation encoding an alteration in gyrA and a highly related conjugative 117 

transposon (4). The two epidemic sub-lineages showed distinct patterns of global 118 

spread, with one lineage spreading more widely and causing healthcare-associated 119 

outbreaks globally (4).  120 

 121 

Traditionally, virulent C. difficile strains are characterised and identified in diagnostic 122 

laboratories by the presence of two potent toxins TcdA and TcdB (30). These genes 123 
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are located on a 19.6 kb pathogenicity locus (PaLoc). There is genetic variation in this 124 

region which can be exploited and which has revealed 30 different toxinotypes 125 

including six A-B+ toxinotypes. The most common and clinically relevant is 126 

toxinotype VIII and these isolates belong to RT017 (31). It is well known that the 127 

tcdA gene of this type contains a 1.8 kb deletion at the 3’ end and a nonsense mutation 128 

at tcdA amino acid 47 that introduces a stop codon leading to a truncated tcdA gene 129 

(31). RT017 strains also lack the binary toxin (CDT) found in for example pathogenic 130 

RT027 strains that produce all three toxins. Despite lacking two toxins, clinically 131 

significant C. difficile infection (CDI) has been reported worldwide for the RT017 132 

lineage (32-41).  133 

 134 

Historically, these strains were initially identified in CDI outbreaks in Asia and are 135 

thought to have spread to Europe and other continents. RT017 strains have been 136 

reported in: Canada (35, 42) China (34, 43), Korea (33, 44, 45), Argentina (46), 137 

Australia (47, 48), Israel (49), Japan (50) South Africa (51) and throughout Europe 138 

(36, 39, 41, 52, 53). These strains have also been isolated from non-human sources 139 

including equine, bovines (54) and rabbits (55). We recently performed WGS on 35 140 

human and two hospital environmental isolates of RT017 circulating in London, 141 

United Kingdom and identified three SNP variants (39). One variant was found to be 142 

clonal and had persisted in a London hospital ward for at least five years (39). 143 

 144 

Here, WGS and phylogenetic analysis was used to define the population structure of a 145 

collection of 277 RT017 isolates from six continents of human and non-human origins 146 

with isolation dates between 1990 and 2013. Analyses reveal that RT017 strains have 147 

evolved in parallel from at least two independent sources and can readily transmit 148 
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between continents. Genotypic and phenotypic antimicrobial susceptibilities were also 149 

compared. 150 

 151 

METHODS 152 

The 277 isolates described in this study are shown in table 1 and included 37 isolates 153 

from a previous study (ENI study accession number ERP009770) (39) and the 154 

remaining new to this study (ENA study accession number PRJEB11868). These were 155 

of human (n = 251), environmental/hospital ward (n = 2), equine (n = 4), canine (n = 156 

11) and bovine (n = 9) origin with isolation dates between 1990 and 2013. These 157 

isolates were subjected to genomic DNA extraction as previously described by Stabler 158 

et al., (56). WGS data for the isolates was obtained using either the HiSeq 2000 159 

Sequencing System or the MiSeq Sequencing System (Illumina, California, USA) and 160 

libraries were created as previously described (57) or using Nextera XT kit (Illumina, 161 

California, USA) respectively. The sequence data was processed and quality 162 

controlled according to a standard pipeline as previously described (58). Briefly, 163 

FASTQ formatted sequencing reads were quality controlled with a minimum quality 164 

phred-score of 30 (as a rolling average over 4 bases) using trimmomatic (59). The 165 

resulting reads were mapped using the BWA-MEM (60) software against the M68 C. 166 

difficile reference strain and the majority of post-trimmed reads (>92% for all samples 167 

passing quality control) were mapped to the reference. SNPs were called using 168 

Samtools/VCFtools (61). 169 

 170 

Velvet (62) and Velvet Optimiser (63) were used to de novo assembly the trimmed 171 

reads into contigs producing 277 assemblies. Optimal k-mers fell between 53 bp and 172 

97 bp and the mean n50 was over 928,000 bp. The mean longest contig was 1,067,000 173 
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bp, with 71 samples producing contigs that covered over half of the genome (greater 174 

than ~2.15 Mbp) and 16 samples assembled to contigs greater than 4 Mbp (equivalent 175 

greater than 90% of the genome). Pipeline, post-analyses, genetic, phylogenetic, 176 

phylogeographic and cluster analysis were carried out using Perl, R, abacas, prokka, 177 

RaXML, Bayesian Evolutionary Analysis Sampling Trees (BEAST) and mclust 178 

software (64-68). A minor allele frequency (MAF) of less than 1% was used and to 179 

remove any SNPs that may be associated with recombination and which would mask 180 

the true phylogeny, SNPs within 1 bp distance of an insertion or deletion site were 181 

excluded from further analysis. We used BEAST (67) to produce a SNP phylogeny 182 

from the SNPs as well as geographical and temporal data combined in 183 

phylogeographic analysis and mclust software for maximum likelihood cluster 184 

analysis.  185 

 186 

To determine the minimum inhibitory concentrations (MICs) of 7/277 isolates, 187 

dilutions for the antibiotics; chloramphenicol, rifampicin, tetracycline, erythromycin, 188 

naladixic acid, gentamicin, teicoplanin and ampicillin were made as previously 189 

described (69). Briefly, 10 ml pre-equilibrated Brain Heart Infusion broth, 190 

supplemented with yeast (Oxoid), L-Cysteine (Sigma) and C. difficile supplement 191 

(Oxoid) (BHIS) were inoculated with three colonies of 48 h culture on BHIS agar 192 

plates. Once the OD reached 0.3 nm, 24-well plates containing the antibiotic dilutions 193 

were inoculated with 1/100 of the BHIS broths and incubated. The ODs were 194 

measured 24 h post inoculation and MIC data were categorised as susceptible, 195 

intermediate and resistant following the Clinical and Laboratory Standards Institute 196 

(CLSI) and the European Committee on Antimicrobial Susceptibility Testing 197 
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(EUCAST) guidelines. The reference strain M68 was used as a control as were 198 

appropriate negative controls. 199 

 200 

RESULTS  201 

WGS was performed on a global collection of 277 C. difficile RT017 isolates. 202 

Collectively, these were isolated from human (n=251), bovine (n=9), canine (n=11), 203 

equine (n=4) and hospital ward environments (n=2) between 1990 and 2013 204 

(Supplementary Information 1). All isolates belonged to multilocus sequence type 37. 205 

After sequence quality control and mapping to the M68 RT017 reference genome 206 

(GenBank accession number FN668375), we identified 1288 high quality bi-allelic 207 

SNPs with 311 present in greater than 1% of samples and greater than 1 bp from an 208 

insertion or deletion. Of these non-rare SNPs, 65.6% (n=204) were non-synonymous, 209 

17.7% (n=55) synonymous and 16.7% (n=52) were present in non-coding regions of 210 

the genome (non-synonymous SNPs are shown in Supplementary Information 2). 211 

Twelve SNPs affected stop-codons; eleven non-synonymous and one synonymous 212 

(Table 1).  213 

 214 

SNP data revealed 109 haplotypes containing between 0 and 52 SNPs (with respect to 215 

the M68 reference) with 76.5% (212/277) of isolates having between 10 and 35 SNPs 216 

(Table 2).  217 

 218 

We generated a maximum-likelihood phylogenetic tree based on the 1288 SNPs, 219 

which demonstrates the presence of two genetically diverse sub-lineages; SL1 and 220 

SL2 (Figures 1 and 2). Of the 1288 SNPs, 76% (977/1288) had a minor allele 221 

frequency (MAF) of ≤1% and/or were within 1 bp of an insertion or deletion. To 222 
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control for false positive identification of SNPs (these SNPs may mask the true 223 

phylogeny of RT017) phylogenetic trees with and without these SNPs were generated. 224 

The inclusion of 977 SNPs only had a minor effect on the overall phylogenetic tree. 225 

Four SNPs were found to differentiate the two sub-lineages; one present in a non-226 

coding region and three non-synonymous SNPs (Table 3). SL2 is the most distantly 227 

related to the reference M68 strain of the two sub-lineages and both sub-lineages are 228 

geographically and temporally widespread. All isolates from the previously reported 229 

study on London isolates fell into SL2 (39). 230 

 231 

The RT017 strains are documented to have a higher level of antibiotic resistance 232 

compared to other C. difficile RTs (37, 70). Fluoroquinolone resistance in C. difficile 233 

has been associated with mutations in codon 82 of the gyrA gene and codon 426 of the 234 

gyrB gene. The common SNP found in the gyrA gene is T82I and the gyrB gene are 235 

A426V and A426A (71). Remarkably, we found 64.6% (179/277) to have the amino 236 

acid substitution found in the gyrA gene (T82I). A substitution in the gyrB gene 237 

(V426N) was present in 4.7% of strains (13/277) and an additional 10.1% (28/277) 238 

including M68 harboured a valine at position 426 of the predicted gyrB product 239 

(Table 2 and Supplementary Information 1). The T82I substitution was globally 240 

distributed in both sub-lineages. Additionally, substitutions in the 81-bp rifampicin 241 

resistance determining region of the rpoB gene; R505K, H502N and S485F were 242 

found in 32.5% (90/277), 33.2% (92/277) and 1.1% (3/277) respectively (Table 2 and 243 

Supplementary Information 1). 244 

 245 

To investigate horizontal gene transfer, a key mechanism driving C. difficile 246 

evolution, we performed programmatic and visual inspection of the comparisons 247 
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which revealed 56 regions of DNA between ~4 and ~61.5 kb that were absent in the 248 

M68 strain but present in other strains. These had 34 different insertion sites (Table 2, 249 

Figure 3 and Supplementary Information 1 and 4). Additionally, we found regions of 250 

DNA of between ~8 and ~29 kb present in the M68 strain at six sites but absent from 251 

multiple samples (Table 2 and Supplementary Information 1 and 3). These insertions 252 

and deletions were associated with erythromycin, teicoplanin, tetracycline, 253 

chloramphenicol and beta-lactam resistance genes and their products potentially 254 

associated with virulence such as a two-component response regulator, a SAM 255 

protein, an AntA/AntB antirepressor, a cell surface protein and a sporulation-specific 256 

glycosylase (Supplementary Information 3 and 4). The deletions and insertions were 257 

well distributed geographically and temporally and a 49 kb insertion found only in a 258 

clonal cluster of 23/37 London isolates in our previous study (39) was also found to 259 

insert at a different site in single isolates from Canada, USA and the UK with 260 

isolation dates of 2006, 2006 and 2011 respectively (Figure 3). Only one SNP was 261 

found in the toxin pathogenicity locus region, which was synonymous and present in 262 

the non-functioning tcdA gene fragment from five Korean isolates in SL2 isolated 263 

between 2004 and 2008. Visual inspection of the comparisons revealed both tcdA and 264 

tcdB genes to be highly conserved; no sequence variations were found. 265 

 266 

MICs were determined for eight C. difficile isolates (including M68 as a control) 267 

against the antibiotics; chloramphenicol, rifampicin, tetracycline, erythromycin, 268 

naladixic acid, gentamicin, teicoplanin and ampicillin. Their MIC values are shown in 269 

table 4. All isolates were resistant to naladixic acid, gentamicin and ampicillin, either 270 

resistant or intermediate resistance to tetracycline and all were sensitive to 271 
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teicoplanin. Two (2/8) isolates were resistant to chloramphenicol, four (4/8) were 272 

resistant to rifampicin and 7/8 were resistant to erythromycin. 273 

 274 

DISCUSSION 275 

The RT017 lineage, with its unique toxin profile and unusual global prevalence, has 276 

been overshadowed by the global outbreak of the RT027 lineage. Reminiscent of the 277 

RT027 lineage, two distinct sub-lineages of C. difficile RT017 that contain multiple 278 

independent clonal expansions were revealed in this study. This division demonstrates 279 

that toxin variant strains emerged on at least one occasion, suggesting that a full toxin 280 

repertoire is not essential for efficient human-to-human transmission.  281 

 282 

Based on our gyrA and gyrB SNP data, we would predict up to 76.2% (211/277) of 283 

isolates to be resistant to the fluoroquinolone class of antibiotics. Interestingly, the 284 

T82I SNP found in gyrA is the same mutation reported in the global outbreak of 285 

RT027 (4). Based on our MIC data, all eight isolates were resistant to naladixic acid 286 

indicating resistance to the fluoroquinolone class of antimicrobials.  287 

 288 

Based on our rifampicin SNP data, we would predict 34.7% (96/277) of isolates in 289 

this study to be resistant to the rifampicin class of antibiotics. Interestingly, 82% 290 

(152/185) of these substitutions were found in SL1. R505K, H502N have previously 291 

been associated with rifampicin resistance in C. difficile (72), however, based on our 292 

MIC data, only two (2/8) isolates were sensitive to rifampicin with one of the isolates 293 

containing the R505K and H502N SNP indicating that these alone do not always lead 294 

to phenotypic resistance. Interestingly, S485F was found in three historical isolates 295 

from Wrexham, UK. This resistance conferring SNP has not previously been reported 296 
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in C. difficile, only in Mycobacterium tuberculosis (73). All three isolates were 297 

phenotypically resistant to rifampicin, however, all three isolates also contained the 298 

R505K SNP and so confirming this SNP’s contribution to resistance was not possible. 299 

The multiple haplotypes revealed is similar with that found for the RT027 global 300 

study where >100 distinct genotypes were found in 151 isolates. Despite SNPs and 301 

insertion and deletions, there was no variation on susceptibility to ampicillin, 302 

teicoplanin, gentamicin, or naladixic acid. However, there was some variation with 303 

chloramphenicol, rifampicin, tetracycline and erythromycin. Whether the insertions 304 

carrying chloramphenicol o-acetyltransferase, TetR-family transcriptional regulator or 305 

the ermB gene played a role in this variation is unknown. 306 

 307 

Figure 4 depicts the phylogeny of the isolates by source. Interestingly, the 24 animal 308 

strains, which were all isolated from a similar location (Ontario, Canada) over a 309 

relatively short time period (2002 and 2005), are distributed amongst human isolates 310 

in SL1 only. This suggests there is possible transmission between humans and 311 

animals. 312 

 313 

The ready global distribution of RT017 suggests determinants independent of toxin B 314 

are important in transmission. This could be related to the ready acquisition of 315 

antibiotic resistance determinants, efficient germination and/or spore formation. This 316 

study provides the basis to further investigate factors important for the epidemic 317 

spread of C. difficile. 318 

 319 

The deletions and insertions were well distributed geographically and temporally 320 

suggesting either the rapid dissemination of strains or the multiple independent 321 
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acquisition and loss of DNA regions (Figure 2 and Supplementary Information 1). 322 

The insertion of different clusters of genes at the same site suggests ‘hot-spot’ regions 323 

for the uptake of DNA (Supplementary Information 4) and a 49 kb insertion found 324 

only in a clonal cluster of 23/37 London isolates in our previous study (39) was also 325 

found to insert at a different site in single isolates from Canada, USA and the UK with 326 

isolation dates of 2006, 2006 and 2011 respectively (Figure 3). This suggests these 327 

isolates have independently acquired this insertion. 328 

 329 

Similar to RT027, our analyses support a North American origin for RT017 with 330 

multiple, global transmission events with its earliest movement into Europe in 1986 331 

(Figures 4 and 5). The North American health system and practices appears to 332 

facilitate the ready evolution and epidemic spread of C. difficile for RT027 (4) and 333 

now in this study with RT017. Our data shows that it was Europe that introduced 334 

RT017 to Asia and Australia, with subsequent spread from Asia to the Middle East, 335 

South America and South Africa. The analysis indicates over 40 movements back and 336 

forth over the span of 30 years, consistent with population movements of a globalised 337 

society. Traditionally, it has been considered that RT017 strains emerged from Asia 338 

due to the reported high incidence of this RT, that could not relate to nor depend on 339 

toxin A-based assays for diagnosis (40). However, our analysis does not support an 340 

“out of Asia” hypothesis and supports a North American origin (Figures 4 and 5).  341 

 342 

This study investigated the genetic diversity of 277 C. difficile RT017 isolates with 343 

temporal, geographical and source variation. Phylogeographic analysis of the SNPs 344 

identified through WGS of the isolates suggests that there are two main sub-lineages 345 

of RT017 that share a common ancestry and are globally disseminated. Both sub-346 
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lineages contain isolates from diverse geographical locations and isolation dates, with 347 

animal isolates spread amongst human isolates in SL1. Together with the haplotype 348 

diversity and geographically and temporally diverse presence of the transposable 349 

elements, these data suggest widespread transcontinental spread and recombination 350 

with independent acquisition and loss within different clusters. 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 
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FIGURE LEGENDS 697 

 698 

Figure 1: Maximum-likelihood Phylogenetic Analysis of 277 global RT017 699 

isolates based on core-genome SNPs against the M68 reference. We used non-rare 700 

(>1% MAF) SNP’s that were not in close proximity to insertions or deletions to 701 

determine the phylogenic tree. The SL1 and SL2 sub-lineages were differentiated by 702 

four SNP’s (see table 3) with the reference strain M68 falling into SL2. The coloured 703 

nodes indicate the geographical source of isolates 704 

 705 

Figure 2: Maximum-likelihood Phylogenetic Analysis of 277 global RT017 706 

isolates based on core-genome SNPs against the M68 reference. The phylogeny is 707 

separated into individual panels corresponding to each continent. Data from five out 708 

of 7 continental designations (Africa, Europe, Asia, Oceania and North America) 709 

include SL1 and SL2 isolates indicating that both sub-lineages are global in nature. 710 

 711 

Figure 3: Bayesian evolutionary analysis of 277 global RT017 isolates based on 712 

core-genome SNPs against the M68 reference. Using a geo-temporal model we can 713 

orient the evolution of the RT017s though time. The analysis indicates a split from 714 

SL1 (lower samples) into SL2 (upper samples) c1990, with the M68 reference in SL2. 715 

The introduction of resistance associated SNPs (such as in rpoC) fall within closely 716 

related groups in the phylogeny. The continents are coloured as in figures 1 and 2. 717 

The heat map depicts the sub-lineage, presence/absence of insertions and 718 

antimicrobial resistance associated SNPs in relation to the isolates and continent. 719 
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Figure 4:  Maximum-likelihood Phylogenetic Analysis of the global RT017 720 

isolates based on core-genome SNPs against the M68 reference depicting the 24 721 

animal isolates by coloured nodes. Note the three equine isolates are positioned (and 722 

masked) by the bovine and canine cluster on the left. The two bovine isolates on the 723 

right of the tree have SNP distance of 17 from the bovine, canine, and equine cluster. 724 

All animal isolates are from Ontario, Canada and isolated between 2002 and 2005. 725 

 726 

Figure 5: Global transmission events inferred from Bayesian evolutionary 727 

analysis of RT017. From the geo-temporal analyses we can infer the first movements 728 

into each continent, with the date and originating continent. The analysis indicates a 729 

North American origin with an expansion into Europe in the mid-1980s, followed by 730 

a move into Asia and on to Africa and South America through the 1990s and early 731 

2000s. RT017 was not identified in Oceania (Australia) until the late 2000s, via a 732 

jump from Europe. 733 
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Table 1: Stop-codon associated SNPs. 

Position in the 
M68 genome 

M68 
Reference 

Codon 

Alternative 
Codon 

Non-Synonymous 
/ Synonymous / 

Non-Coding 
Gene Predicted Function and/or Potential Impact No. of isolates 

with SNP 

132573 TGG TGA NS M68_00168 Amino acid aminotransferase 16 
557896 TTC* TAA* NS feoB3 Ferrous iron transport protein B 3 
1204039 GGA TGA NS M68_01144 Hydrolase 36
1359584 GGA TGA NS M68_01270 Extracellular solute-binding protein 3 
1907433 TAA GAA NS msrAB Peptide methionine sulfoxide reductase 256 
1916756 AAT* GAT* S M68_01782 Unknown 3 
3304067 TCA* GCA* NS Sigma-54 Controls expression of nitrogen related genes 29 
3399853 TTG* TAA* NS M68_03193 Ca2+/Na+ antiporter 13 
3402470 CAA TAA NS plfB Formate acetyltransferase 3
3704987 CCA* TGA* NS sleB Spore-cortex-lytic protein 8 
3784055 TTC* TAA* NS M68_03513 Penicillin-binding protein 3 
4157880 TTG* TAA* NS M68_03851 PTS system, IIc component 6 

 
* = encoded on reverse strand  
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Table 2: Summary details of 277 C. difficile study isolates and their genotypic characteristics 

 

 * Reference residue/amino acid/ alternative residue 
 

Sub-lineage 

Total N
o. of 

Isolates 

Country of 
O

rigin 

Isolation 
D

ates 

N
o. of 

H
aplotypes 

N
o. of SN

Ps 

N
o. of 

isolates w
ith 

a insertion 

N
o. of 

isolates w
ith 

a deletion 

Rifampicin resistance Fluoroquinolone resistance Resistance inferred 

34,687 34,697 34,747 112,752 113,641 113,642 Position 

rpoB rpoB rpoB gyrA gyrB gyrB Gene 

R505K H502N S485F T82I V426D V426I *Amino acid change 

1 163 

 
Argentina, Australia, 
Bulgaria, Canada, 
China, Czech 
Republic, Greece, 
Hong Kong, Japan, 
Korea, Kuwait, 
Poland, Portugal, 
Romania, Singapore, 
Slovenia, South 
Africa, The 
Netherlands, UK, 
USA 

1994 
to 

2013 

55 
(50.5%) 0 to 35 49 

(30.1%) 
44 

(30%) 
73 

44.8% 
79 

48.5% 
0 

0% 
124 

76.1% 
134 

82.2% 
4 

2.5% 

 

2 114 

Australia, Hong 
Kong, Indonesia, 
Ireland, Korea, 
Poland, Singapore, 
South Africa, Taiwan, 
The Netherlands, UK, 
USA 

1990 
to 

2013 

54 
(49.5%) 17 to 52 65 

(57%) 
109 

(96%) 
17 

15% 
13 

11.4% 
3 

2.6% 
55 

48.2% 
114 

100% 
9 

7.9% 
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Table 3: Lineage defining SNPs 

 

Position Amino 
Acid 

Reference 
Base 

Alternative 
Base 

Non-
Synonymous / 
Synonymous / 
Non-Coding 

Gene Predicted Function and/or 
Potential Impact 

650374 19 A G NS MerR Altered response to 
environmental stimuli 

900866 . C T NC . . 

2914248 257  A G NS dacF  Β-lactam resistance 

3604289 329 C A NS Hypothetical protein Unknown 
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Table 4: Antimicrobial susceptibility data and their genotypic characteristics  

  
(S) = sensitive, (I) = intermediate resistance (R) = resistant  
  
  
a Recommended by the European Committee on Antimicrobial Susceptibility Testing (EUCAST).  
b Recommended by CLSI (M11-A8, 2012, and M-100-S23, 2013).  
c No guidance from CLSI or EUCAST, cut-offs based on data according to the CLSI M-100-S23 (interpretative values for Staphylococcus  
aureus).  

 Strain M68 S- 017.72 WA 1514 S- 017.92 S- 017.27 S- 017.74 I 6 01-116 

 Location Ireland Walsall Australia China Wrexham Walsall Indonesia Korea 

 Date Isolated 2006 2011 2012 2009 1996 2011 2011 2001 
Insertion Insertion  A, B, C A  D, E F, G  
Deletion Deletion  H H, I J H, J, K H, J  

Re
sis

ta
nt

 S
N

Ps
 rpoB ( R505K)         

rpoB (H502N)         
rpoB (S485F)         

gyrA (T82I)         
gyrB   (V426I)         

gyrB   (V426D)         

A
nt

im
ic

ro
bi

al
 A

ge
nt

 aChloramphenicol 8 (S) 8 (S) 4 (S) 64 (R) 8 (S) 8 (S) 256 (R) 8 (S) 
aRifampicin 0.008 (I) 2 (I) 0.004 (S) >256 (R) >256 (R) 0.004 (S) >256 (R) >256 (R) 

bTetracycline 32 (R) 32 (R) 0.25 (I) 32 (R) 32 (R) 0.25 (I) 32 (R) 32 (R) 
bErythromycin >256 (R) >256 (R) >256 (R) >256 (R) >256 (R) <2 (S) >256 (R) >256 (R) 
bNalidixic acid 256 (R) 256 (R) 256 (R) 256 (R) 256 (R) 256 (R) 256 (R) 256 (R) 

cGentamicin >256 (R) >256 (R) 256 (R) >256 (R) 256 (R) 256 (R) >256 (R) >256 (R) 
cTeicoplanin <1 (S) <1 (S) <1 (S) <1 (S) <1 (S) <1 (S) <1 (S) <1 (S) 

bAmpicillin 8 (R) 8 (R) 8 (R) 8 (R) 8 (R) 4 (R) 4 (R) 8 (R) 
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Insertion A: Putative drug/sodium antiporter and radical SAM protein TetR-family trancscriptional regulator  
Insertion B: Transcriptional repressor DicA  
Insertion C: Streptogramin A acetyltransferase and multidrug resistance protein  
Insertion D: Putative beta-lactamase repressor  
Insertion E: Putative drug/sodium antiporter  
Insertion F: TetR-family transcriptional regulator  
Insertion G: Chloramphenicol o-acetyltransferase (M68 has one copy of chloramphenicol)  
Deletion H: Dimethyladenosine transferase (ermB)  
Deletion I: Putative teicoplanin resistance protein and putative beta-lactamase repressor  
Deletion J: Aminoglycoside 6-adenylyltransferase  
Deletion K: Putative conjugative transposon FtsK_SpoIIIE-related protein  
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