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Highlights. 
 Net survival is estimated using either cause-specific or relative survival setting 

 A carefully revised cause of death is used for the cause-specific setting 

 The Pohar-Perme estimator is used for the relative survival setting 

 Bias of informative censoring is taken into account for both settings 

 Enables to provide an unbiased comparison of the two settings 
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Abstract 
 

Net survival is the survival that would be observed if the only possible underlying cause of death was 

the disease under study. It can be estimated with either cause-specific or relative survival data 

settings, if the informative censoring is properly considered. However, net survival estimators are 

prone to specific biases related to the data setting itself. We examined which data setting was the 

most robust against violation of key assumptions (erroneous cause of death and inappropriate life 

tables). 

We identified 4,285 women in the Geneva Cancer Registry, diagnosed with breast, colorectal, lung 

cancer and melanoma between 1981 and 1991, and estimated net survival up to 20-years using 

cause-specific and relative survival settings. We used weights to tackle informative censoring in both 

settings, and performed sensitivity analyses to evaluate the impact of misclassification of cause of 

death in the cause-specific setting or of using inappropriate life tables on net survival estimates in 

the relative survival setting. 

For all four cancers, net survival was highest when using the cause-specific setting and the absolute 

difference between the two estimators increased with time since diagnosis. The sensitivity analysis 

showed that (i) the use of different life tables did not compromise net survival estimation in the 

relative-survival setting while (ii) a small level of misclassification for the cause of death led to a large 

change in the net survival estimate in the cause-specific setting. 

The relative survival setting was more robust to the above assumptions violations and is therefore 

recommended for estimation of net survival. 
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Introduction 

 

Net survival measures the survival that would be observed if the only possible cause of death was 

the disease of interest [1]. It is the most defensible method of estimating survival from cancer. Two 

main settings have been described for its estimation: the relative survival setting and the cause-

specific setting. The latter requires information on underlying cause of death so that deaths due to 

causes other than the cancer of interest can be censored. Such information is not needed in the 

relative survival setting. Here, the overall survival of the cancer patients is compared to the survival 

they would have experienced if they had had the mortality of the general population from which 

they were drawn [2]. 

In both settings, net survival estimation is susceptible to bias due to informative censoring. 

Informative censoring occurs when patients are removed from the risk set (censored) under a non-

random way: these patients would experience a different mortality hazard compared to those that 

remain in the risk set. In the cause-specific setting, when the interest is in estimating the cancer-

specific mortality hazard, patients who died due to other cause are censored (and so removed from 

the risk set). It means that patients with higher risk of dying from causes other than cancer (for 

example, elderly compare to young patients) are more likely to be removed from the risk set. 

However, because age is also an important prognostic factor for cancer, censoring these patients is 

informative for the cancer-survival estimation. In the relative survival setting, this mechanism of 

informative censoring is less easy to conceptualise (because the cause of death is unknown and/or 

not used); any variable with an effect on both cancer-specific and other-cause mortality hazards 

induces informative censoring. Demographic variables which define the life tables may lead to 

informative censoring and need to be accounted for. A new estimator has been described by Pohar-

Perme which is able to take account of this bias within the relative survival setting [3] and its 

performances have been assessed in an extensive simulation study [4]. We have recently proposed a 

similar strategy for the estimation of net survival in the cause-specific setting [5].  

If informative censoring is accounted for, estimates of net survival derived in each of these settings 

are theoretically unbiased. However, biases relating to the data setting itself may still occur. In the 

relative survival setting, bias can originate from the non-comparability between the cohort and the 

general population from which rates of expected mortality are drawn, due to unmeasured 

variable(s) affecting both expected and excess hazard rates (this latter being the rate from which the 

net survival is derived). In the cause-specific setting, bias can arise from the misclassification of the 

underlying cause of death. Our previous analyses of patients diagnosed with breast cancer in Geneva 
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showed that the estimation of net survival using the cause-specific setting was very sensitive to the 

codification of underlying cause of death, but, in contrast, the relative survival setting was robust to 

non-comparability in the estimation of background mortality [5].  

Breast cancer may, however, represent a special case. Survival amongst breast cancer patients is 

high, but deaths directly caused by the original cancer still occur into the second and third decades 

following diagnosis: a pattern of excess mortality which is seen for very few other anatomic sites. As 

such, our previous conclusion may not hold for every cancer type. Here we extend our analysis of 

breast cancer patients to patients diagnosed with cancers of three other anatomic sites (according 

to the international classification of disease, 10th version, ICD-10) in order to establish whether the 

same conclusions hold for  other malignancies. 

Material and Methods 

The Geneva Cancer Registry records underlying cause of death for all cancer patients. More unusual, 

the registry also validates the accuracy of this variable by reviewing all clinical information available 

for each patient. The overall agreement between the variables (revised cause of death vs. cause of 

death based on death certificates) was high. However, several subgroups presented a lower 

concordance, suggesting differences in calendar time and less attention given to older patients and 

more advanced diseases [6]. This context thus represents a unique opportunity to compare relative 

survival and cause-specific settings when estimating net survival, because the registry holds more 

accurate information on the underlying cause of death.  

We selected women diagnosed between 1981 and 1991 at ages 15 to 99 with invasive colorectal 

(C18-20), lung (C34), melanoma (C44.1) or breast (C50) cancer. These malignancies afforded us 

tumours with a wide range of aggressiveness as well as very different incident age distributions. All 

patients were followed up to the end of 2012. 

Our approach has been described previously [5]. Briefly, we used the Pohar-Perme estimator in the 

relative-survival setting and our own derived estimator for the cause-specific setting to estimate net 

survival. Both estimators take into account informative censoring, that is the fact that the number of 

patients we observe to be at risk is smaller than the number of patients that would be at risk in the 

hypothetical world, were people could die of the cancer of interest only. Because the same is true 

for the number of deaths as well weights are used to correct the net survival estimates for this bias 

[7], [8]. We define these estimates as the “baseline situation”.  
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We then examined two sets of scenarios to evaluate the extent of biases arising from the data 

setting. The aim of scenarios A1 and A2 was to evaluate the impact of the life tables upon net 

survival estimation within the relative survival setting. In Geneva, general population mortality rates 

are available by year of age and calendar year. However, other socio-demographic variables are 

known to have a strong influence on the probability of death. In scenario A1, we consider a 

simulated stratification of the expected age-, sex- and period-specific mortality rates by deprivation. 

In scenario A2, we artificially increase the expected mortality of all patients, well above what would 

ordinarily be expected, by attributing the mortality of the most deprived patients to the whole 

cohort. We computed the difference between the baseline estimator (using the cause-specific 

setting) and the net survival estimates derived under scenarios A1 and A2. Differences were 

smoothed with a weighted non-parametric regression on time since diagnosis [9]. 

Scenario B aimed to evaluate the impact of misclassifying the cause of death on net survival 

estimation in the cause-specific setting. Here we randomly reattributed non-cancer deaths to cancer 

deaths for 10, 15, 20 and 25% of the deceased patients (scenarios B1, B2, B3 and B4, respectively). 

This was performed 100 times to derive a mean cause-specific net survival for each scenario. We 

derived the difference between the baseline estimator (using the relative survival setting) and the 

cause-specific estimates in scenarios B1, B2, B3 and B4. Differences were smoothed with a weighted 

non-parametric regression on time since diagnosis [9]. 

Results 

The final cohort was composed of 996 women diagnosed with colorectal cancer, 500 women 

diagnosed with lung cancer, 300 women diagnosed with melanoma and 2,489 women diagnosed 

with breast cancer.  

Table 1 describes the age distribution and aggressiveness of each disease. Patients diagnosed with 

colorectal, lung, melanoma and breast cancer presented a mean age of 72.1, 67.6, 53.1, and 62.1 

years, respectively. For colorectal cancers, 87.1% of the patients died, 511 of their cancer (598.9%). 

Among women diagnosed with lung cancer, 9796.6% died. There were 483 deaths, 419 from lung 

cancer (86.787%). Among patients with melanoma, 45.646% died, 40 due to melanoma (29.2%). For 

breast cancer 1,700 patients died (68.3%) 844 from their cancer (49.650%). 

Baseline estimators of net survival are presented in Figure 1 for each cancer site. We observed, 

consistent with our previous analyses, that net survival estimates using the cause-specific setting are 

higher than the estimates using the relative survival setting for every localisation. The absolute 

difference between the two estimators increased with time since diagnosis for all four cancers. For 
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colorectal cancer, the difference widened from almost 2% at one year to over 7% at 20 years. For 

lung cancer, the difference increased sharply within the first two years after diagnosis (2.53% at two 

years) and moderately afterwards. There was no detectable difference during the first three years 

after diagnosis for melanoma, but it subsequently increased to more than 8% at 20 years after 

diagnosis. For breast cancer, the absolute difference between the two estimators increased with 

time since diagnosis from 1% at one year to 10.811% at 20 years. 

Where deprivation-specific life tables were used (scenario A1), the difference between both net 

survival estimators was fairly constant across all four cancers (Figure 2). When we used the life 

tables of the most deprived population (scenario A2), we still observed a small but substantial 

difference for all cancer sites.  

By contrast, increasing the proportion of deaths classified as being due to cancer led to a decreasing 

difference between the cause-specific estimate and the baseline estimate (derived within the 

relative survival setting) for all anatomic sites, even turning negative for colon cancer and melanoma 

(Scenarios B1- B4). For colorectal cancer, the effect was dependent on time since diagnosis: early in 

follow-up the difference was eliminated only with more than 25% of deaths reallocated. However, 

after 5 years, the reallocation of 10-15% resulted in no difference in the two estimators. In contrast, 

for lung cancer, 25% re-allocation did not eliminate the difference between the two net-survival 

estimators. From 6 years after diagnosis onwards, the difference was almost eliminated for 

melanoma if 25% of deaths were reallocated. For breast cancer, the difference decreased as the 

proportion of re-allocation increased, even turning negative. When 15–20% of the deaths were 

reallocated, the difference was close to zero. 

Discussion 

This study has evaluated whether our previous conclusions relating to the nature and size of 

modifications to the data in each setting are similar for breast cancer [5] and other cancers with very 

different patterns of incidence and excess mortality. We account for informative censoring in all 

analyses, allowing an accurate comparison of two unbiased net survival estimators. Our analyses are 

therefore not comparable with previous studies comparing cause-specific survival and relative 

survival [10] [11]. Indeed, the estimators used for these studies were not estimating net survival as 

they did not account for informative censoring [3].   

Differences between the two net survival estimators varied with time since diagnosis and with 

anatomic site. However, the cause-specific approach generally resulted in higher estimates of net 

survival. The first sensitivity analysis (scenarios A1 and A2) showed that the use of different life 



7 
 

tables did not compromise net survival estimation in the relative-survival setting. Even with a very 

large modification in the expected mortality rate (by the application of mortality rates for the most 

deprived population to all patients), estimates of net survival were fairly stable. Net survival 

estimation in the relative survival setting appeared, therefore, to be relatively robust to non-

comparability of the underlying mortality rates to the patient population, irrespective of the 

anatomic site. By contrast, the second sensitivity analyses showed a greater impact in net survival 

estimates within the cause-specific setting: a relatively small level of misclassification for the 

underlying cause of death led to a large change in the net survival estimate. This was true for all 

cancer sites.  

 

After longer periods of follow up, the Pohar-Perme estimator tended to produce erratic results when 

the number of deaths was small. Net survival can increase within the relative-survival setting 

because the observed mortality of the cancer patient group can be lower than their expected 

mortality. With increasing time, the few remaining patients need to represent more and more of 

their counterparts; such patients, especially among elderly, are more likely to survive better than the 

general population, resulting in overall hazard lower than expected hazard. The excess hazard 

therefore becomes negative and the survival function increases. The erratic curves in the context of 

net survival derived with the relative survival setting therefore originates from the fact that we are 

asking questions about the hypothetical world that are not supported by sufficient information in 

the real world. We estimated net survival at 20 years for comparative purpose but being interested 

in a “25‐year net survival of a 90-year old patient” implies asking what would happen in 25 years to a 

patient who is 90 at the time of diagnosis if they could not die from other reasons than cancer. Such 

a question of course makes no sense. Therefore, the length of analytical follow‐up time should be 

restricted so that the population survival probability for all patients in the cohort is large enough. 

Another difficulty in long-term (net) survival is due to the increasing probability of multiple tumors. 

In our study, for patients having several tumours with the same ICDO-code (same or paired organ), 

we considered only the first tumour for the estimation of net survival. 

Even with those limits aforementioned, we think that the relative survival setting should be the 

preferred approach when estimating net survival with population-based data, regardless of the 

cancer site, because it is less sensitive to inappropriate data changes potential data biases in 

comparison to the cause-specific setting. Parametric approaches using flexible regression models for 

the excess mortality hazard [Remontet 2007 StatMed, Charvat 2016 StatMed] could be considered in 
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the case of long follow-up time and few cancer deaths, where the Pohar-Perme estimator produces 

more erratic results.   
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Table 1. Deaths distribution by age groups, years after diagnosis and cancer sites for women diagnosed with an invasive tumour between 1981 and 1991.  
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Figure 1. Estimation of net survival for the four localisations using both cause-specific and relative survival setting. 

 

 

 

Net survival using: 
 Cause-specific setting
 Relative survival setting. 
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Figure 2: Sensitivity analysis among both cause-specific and relative survival setting.  
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