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Abstract

In regions without complete-coverage civil registration and vital statistics systems there is 

uncertainty about even the most basic demographic indicators. In such regions the majority of 

deaths occur outside hospitals and are not recorded. Worldwide, fewer than one-third of deaths are 

assigned a cause, with the least information available from the most impoverished nations. In 

populations like this, verbal autopsy (VA) is a commonly used tool to assess cause of death and 

estimate cause-specific mortality rates and the distribution of deaths by cause. VA uses an 

interview with caregivers of the decedent to elicit data describing the signs and symptoms leading 

up to the death. This paper develops a new statistical tool known as InSilicoVA to classify cause of 

death using information acquired through VA. InSilicoVA shares uncertainty between cause of 

death assignments for specific individuals and the distribution of deaths by cause across the 

population. Using side-by-side comparisons with both observed and simulated data, we 

demonstrate that InSilicoVA has distinct advantages compared to currently available methods.

1 Introduction

Data describing cause of death are critical to formulate, implement and evaluate public 

health policy. Fewer than one-third of deaths worldwide are assigned a cause, with the most 

impoverished nations having the least information (Horton, 2007). In 2007 The Lancet 
published a special issue titled “Who Counts?” (AbouZahr et al., 2007; Boerma and Stansfi, 

2007; Hill et al., 2007; Horton, 2007; Mahapatra et al., 2007; Setel et al., 2007); the authors 
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identify the “scandal of invisibility” resulting from the lack of accurate, timely, full-coverage 

civil registration and vital statistics systems in much of the developing world. They argue for 

a transformation in how civil registration is conducted in those parts of the world so that we 

are able to monitor health and design and evaluate effective interventions in a timely way. 

Horton (2007) argues that the past four decades have seen “little progress” and “limited 

attention to vital registration” by national and international organizations. With bleak 

prospects for widespread civil registration in the coming decades, AbouZahr et al. (2007) 

recommends “censuses and survey-based approaches will have to be used to obtain the 

population representative data.” This paper develops a statistical method for analyzing data 

based on one such survey. The proposed method infers a likely cause of death for a given 

individual, while simultaneously estimating a population distribution of deaths by cause. 

Individual deaths by cause can be related to surviving family members, while the population 

distribution of deaths provides critical information about the leading risks to population 

health. Critically, the proposed method also provides a statistical framework for quantifying 

uncertainty in such data.

1.1 Verbal autopsy

We propose a method for using survey-based data to infer an individual’s cause of death and 

a distribution of deaths by cause for the population. The data are derived from verbal 

autopsy (VA) interviews. VA is conducted by administering a standardized questionnaire to 

caregivers, family members and/or others knowledgeable of the circumstances of a recent 

death. The resulting data describe the decedent’s health history leading up to death with a 

mixture of binary, numeric, categorical and narrative data. These data describe the sequence 

and duration of important signs and symptoms leading up to the death. The goal is to infer 

the likely causes of death from these data (Byass et al., 2012a). VA has been widely used by 

researchers in Health and Demographic Surveillance System (HDSS) sites, such as members 

of the INDEPTH Network (Sankoh and Byass, 2012) and the ALPHA Network (Maher et 
al., 2010), and has recently received renewed attention from the World Health Organization 

(WHO) through the release of an update to the widely-used WHO standard VA 

questionnaire (World Health Organization, 2012). The main statistical challenge with VA 

data is to ascertain patterns in responses that correspond to a pre-defined set of causes of 

death. Typically the nature of such patterns is not known a priori and measurements are 

subject to multiple types of measurement error, discussed below.

Multiple methods have been proposed to automate the assignment of cause of death from 

VA data. The Institute for Health Metrics and Evaluation (IHME) has proposed a number of 

methods (for example: Flaxman et al., 2011; James et al., 2011; Murray et al., 2011a). Many 

of these methods build on earlier work by King and Lu (King et al., 2010; King and Lu, 

2008). Altogether, this work has explored a variety of underlying statistical frameworks, 

although all are similar in their reliance on a so-called “gold standard” – a database 

consisting of a large number of deaths for which the cause has been certified by medical 

professionals and is considered reliable. Assuming the gold standard deaths are accurately 

labeled, methods in this class use information about the relationship between causes and 

symptoms from the gold standard deaths to infer causes for new deaths.
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Gold standard databases of this type are difficult and very expensive to create, and 

consequently most health researchers and policy makers do not have access to a good cause 

of death gold standard. Further it is often difficult to justify devoting medical professionals’ 

time to performing autopsies and chart reviews for deceased patients in situations with 

limited resources. Given these constraints, deaths included in a gold standard database are 

typically in-hospital deaths. In most of the places where VA is needed, many or most deaths 

occur in the home and are not comparable to in-hospital deaths. Further, the prevalence of 

disease changes dramatically through time and by region. In order to accurately reflect the 

relationship between VA data and causes of death, the gold standard would need to contain 

deaths from all regions through time; something that no existing gold standard does.

Recognizing the near impossibility of obtaining consistent gold standard databases that 

cover both time and space, we focus on developing a method to infer cause of death using 

VA data that does not require a gold standard. A method developed by Peter Byass known as 

InterVA (Byass et al., 2012a) has been used extensively, including by both the ALPHA and 

INDEPTH networks of HDSS sites, and is supported by the WHO. Rather than using gold 

standard deaths to inform the relationship between signs and symptoms and causes of death, 

InterVA uses information obtained from physicians in the form of ranked lists of signs and 

symptoms associated with each cause of death.

In this paper, we present a statistical method for assigning individual causes of death and 

population cause of death distributions using VA surveys in contexts where gold standard 

data are not available. In the remainder of this section we describe the current practice and 

three critical limitations. In Section 2 we propose a statistical model that addresses these 

three challenges and provides a flexible probabilistic framework that can incorporate the 

multiple types of data that are available in practice. Section 3 is the results section. Section 

3.1 presents results and comparison between the proposed method and existing alternatives 

using a gold standard dataset. Section 3.2 presents results from our method using data from 

two HDSS sites where no gold standard deaths are available. Section 4 describes how we 

incorporate physician assignment of cause of death. Although these data integrate naturally 

into our method, we present them in a separate section because they are only relevant when 

physician-coded causes are available. We end with Section 5 which provides a discussion of 

remaining limitations of VA data and proposes new directions for inquiry. Since many of the 

terms used in this paper are specific to the data and domain we discuss, we include a list of 

common acronyms in Table 1

1.2 InterVA and three issues

Given that InterVA is supported by the WHO and uses only information that is readily 

available in a broad range of circumstances, including those where there are no “gold 

standard” deaths, we focus our comparison on InterVA. When evaluating the performance of 

our method, we use multiple methods for comparison and provide detailed descriptions of 

the alternative methods in the Online Supplement. InterVA (Byass et al., 2012b) distributes a 

death across a pre-defined set of causes using information describing the relationship 

between VA data (signs and symptoms) and causes provided by physicians in a structured 

format. The complete details of the InterVA algorithm are not fully discussed in published 
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work, but they can be accurately recovered by examining the source code for the InterVA 

algorithm (Byass, 2012).

Consider data consisting of n individuals with observed set Si of (binary) indicators of 

symptoms, Si = {si1, si2, …, siS} and an indicator yi that denotes which one of C causes was 

responsible for person i’s death. Many deaths result from a complex combination of causes 

that is difficult to infer even under ideal circumstances. We consider this simplification, 

however, for the sake of producing demographic estimates of the fraction of deaths by cause, 

rather than for generating assignments that reflect the complexity of clinical presentations. 

The goal is to infer p(yi = c|Si) for each individual i and πc, the overall population cause 

specific mortality fraction (CSMF) for cause c, for all causes. Using Bayes’ rule,

(1)

InterVA obtains the numerator in (1) using information from interviews with a group of 

expert physicians. Many of the methods currently available, whether or not they use gold 

standard data, make use of this logic. That is, they rely on external input about the 

propensity of observing a particular symptom given the death was due to a particular cause. 

Some methods use Bayes’ rule directly (King and Lu (2008) uses Bayes’ rule on a set of 

randomly drawn causes, for example) while others apply different transformations to obtain 

a “propensity” for each cause given a set of symptoms (e.g. James et al. (2011)). The key 

distinction for InterVA is that, for each cause of death, a group of physicians with expertise 

in a specific local context provide a “tendency” of observing each sign/symptom, presented 

in Table 2. These tendencies are provided in a form similar to the familiar letter grade 

system used to indicate academic performance. These “letter grades”, the leftmost column in 

Table 2, effectively rank signs/symptoms by the tendency of observing them in conjunction 

with a given cause of death. These rankings are translated into probabilities to form a cause 

by symptom matrix, Ps|c. InterVA uses the translation given in Table 2. This transformation 

in Table 2 is arbitrary and, as we demonstrate through simulation studies in the Online 

Supplement, influential. Our proposed method uses only the ranking and infers probabilities 

as part of a hierarchical model. The probability p(Si|yi = c) in (1) is the joint probability of 

an individual experiencing a set of symptoms (e.g. experiencing a fever and vomiting, but 

not wasting). It is impractical to ask physicians about each combination of the hundreds of 

symptoms a person may experience. Apart from being impossibly time-consuming, many 

combinations are indistinguishable because most symptoms are irrelevant for any particular 

cause. InterVA addresses this by approximating the joint distribution of symptoms with the 

product of the marginal distribution for each symptom. That is, 

. This simplification is 

equivalent to assuming that the symptoms are conditionally independent given a cause, an 

assumption we believe is likely reasonable for many symptoms but discards valuable 

information in particular cases. We discuss this assumption further in subsequent sections in 

the context of obtaining more information from physicians in the future. This challenge is 
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not unique to our setting and also arises when using a gold standard dataset for a large set of 

symptoms. Most of the methods described above that use gold standard data utilize a similar 

simplification, but they derive the necessary p(Si|yi = c) empirically using the gold standard 

deaths (e.g. counting the fraction of deaths from cause c that contain a given symptom).

Three issues arise in the current implementation of InterVA. First, although the motivation 

for InterVA arises through Bayes’ rule, the implementation of the algorithm does not 

compute probabilities that are comparable across individuals. InterVA defines p(Si|yi = c) 

using only symptoms present for a given individual, that is p(Si|yi = c) ≜ ∏{j:sij=1} p(sij = 1|

yi = c). The propensity used by InterVA to assign causes is based only on the presence of 

signs/symptoms, disregarding them entirely when they are absent:

(2)

The expression in (2) ignores a substantial portion of the data, much of which could be 

beneficial in assigning a cause of death. Knowing that a person had a recent negative HIV 

test could help differentiate between HIV/AIDS and tuberculosis, for example. Using (2) 

also means that the definition of the propensity used to classify the death depends on the 

number of positive responses. If an individual reports a symptom, then InterVA computes 

the propensity of dying from a given cause conditional on that symptom. In contrast, if the 

respondent does not report a symptom, InterVA marginalizes over that symptom. Consider 

as an example the case where there are two symptoms si1 and si2. If a respondent reports the 

decedent experienced both, then InterVA assigns the propensity of cause c as p(yi = c|si1 = 1, 

si2 = 1). If the respondent only reports symptom 1, the propensity is p(yi = c ∩ si2 = 1|si1 = 

1) + p(yi = c ∩ si2 = 0|si1 = 1). These two measures represent fundamentally different 

quantities, so it is not possible to compare the propensity of a given cause across individuals.

Second, because the output of InterVA has a different meaning for each individual, it is 

impossible to construct valid measures of uncertainty for InterVA. We expect that even under 

the best circumstances there is variation in individuals’ presentation of symptoms for a given 

cause. In the context of VAs this variation is compounded by the added variability that arises 

from individuals’ ability to recollect and correctly identify signs/symptoms. Linguistic and 

ethnographic work to standardize the VA interview process could control and help quantify 

these biases, though it is not possible to eliminate them completely. Without a probabilistic 

framework, we cannot adjust the model for these sources of variation or provide results with 

appropriate uncertainty intervals. This issue arises in constructing both individual cause 

assignments and population CSMFs. The current procedure for computing CSMFs using 

InterVA aggregates individual cause assignments to form CSMFs (Byasset al., 2012a). This 

procedure does not account for variability in the reliability of the individual cause 

assignments, meaning that the same amount of information goes into the CSMF whether the 

individual cause assignment is very certain or little more than random guessing.

Third, the InterVA algorithm does not incorporate other potentially informative sources of 

information. VAs are carried out in a wide range of contexts with varying resources and 
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availability of additional data. For example, while true \gold standard” data are rarely 

available, many organizations already invest substantial resources in having physicians 

review at least a fraction of VAs and assign a cause based on their clinical expertise. 

Physicians reviewing VAs are able to assess the importance of multiple co-occurring 

symptoms in ways that are not possible with current algorithmic approaches, and because of 

that, physician-assigned causes are a potentially valuable source of information.

In this paper, we develop a new method for estimating population CSMFs and individual 

cause assignments, InSilicoVA, that addresses the three issues described above. Critically, 

the method is modular. At the core of the method is a general probabilistic framework. On 

top of this exible framework we can incorporate multiple types of information, depending on 

what is available in a particular context. In the case of physician coded VAs, for example, we 

propose a method that incorporates physician expertise while also adjusting for biases that 

arise from their different clinical experiences.

2 InSilicoVA

This section presents a hierarchical model for cause-of-death assignment, known as 

InSilicoVA. This model addresses the three issues that currently limit the effectiveness of 

InterVA and provides a flexible base that incorporates multiple sources of uncertainty. We 

intend this method for use in situations where access to \gold standard” data is not possible 

and, as such, there are no labeled outcomes and we cannot leverage a traditional supervised 

learning framework. Section 2.1 presents our modeling framework. We then present the 

sampling algorithm in Section 2.2.

2.1 Modeling framework

This section presents the InSilicoVA model, a hierarchical Bayesian framework for inferring 

individual cause of death and population cause distributions. A key feature of the InSilicoVA 

framework is sharing information between inferred individual causes and population cause 

distributions. As in the previous section, let yi = {1,…,C} be the cause of death indicator for 

a given individual i and the vector Si = {si1, si2,…,siS} be signs/symptoms. We begin by 

considering the case where we have only VA survey data and will address the case with 

physician coding subsequently. We typically have two pieces of information: (i) an 

individual’s signs/symptoms, sij and (ii) a matrix of conditional probabilities, Ps|c. The Ps|c 

matrix describes a ranking of signs/symptoms given a particular cause.

We begin by assuming that individuals report symptoms as independent draws from a 

Bernoulli distribution given a particular cause of death c. That is,

where P(sij|yi = c) are the elements of Ps|c corresponding to the given cause. The assumption 

that symptoms are independent is likely violated, in some cases even conditional on the 

cause of death. Existing techniques for eliciting the Ps|c matrix do not provide information 

about the association between two (or more) signs/symptoms occurring together for each 
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cause, however, making it impossible to estimate these associations. Since yi is not observed 

for any individual, we treat it as a random variable. Specifically,

where π1,…,πC are the population cause-specific mortality fractions.

Without gold standard data, we rely on the Ps|c matrix to understand the likelihood of a 

symptom profile given a particular cause. In practice physicians provide only a ranking of 

likely signs/symptoms given a particular cause. Rather than arbitrarily assigning 

probabilities to each sign/symptom in a particular ordering, as in Table 2, we learn those 

probabilities. We could model each element of Ps|c using this expert information to ensure 

that, within each cause, symptoms with higher labels in Table 2 have higher probability. 

Since many symptoms are uncommon, this strategy would require estimating multiple 

probabilities with very weak (or no signal) in the data. Instead we estimate a probability for 

every letter grade in Table 2. This strategy requires estimating substantially fewer parameters 

and imposes a uniform scale across conditions. Entries in the Ps|c matrix are not individual 

specific; therefore, we drop the i indicator and refer to a particular symptom sj and entries in 

Ps|c as p(sj|y = c). Following Taylor et al. (2007), we re-parameterize Ps|c as PL(s|c), where 

L(s|c) indicates the letter ranking of the (s, c)-th cell in the Ps|c matrix based on the expert 

opinion provided by physicians in Table 2. We then give each entry in PL(s|c) a truncated 

Beta prior:

where M and αs|c are prior hyperparameters and are chosen so that αs|c/M gives the desired 

prior mean for PL(s|c), and the constraint represents the truncation imposed by the order of 

the ranked probabilities. For simplicity, we use 𝟙s|c to represent an indicator of the interval 

where PL(s|c) is defined. That is, 𝟙s|c defines the portion of a beta distribution between the 

symptoms with the next largest and next smallest probabilities,

This strategy uses only the ranking (encoded through the letters in the table) and does not 

make use of arbitrarily assigned numeric values, as in InterVA. Our strategy imposes a strict 

ordering over the entries of Ps|c. We could instead use a stochastic ordering by eliminating 

𝟙s|c in the above expression. Defining the size of αs|c in an order consistent with the expert 

opinion in Table 2 would encourage, but not require, the elements of Ps|c to be consistent 

with expert rankings. We find this approach appealing conceptually, but not compatible with 

the current strategy for eliciting expert opinion. In particular, there are likely entries in Ps|c 

that are difficult for experts to distinguish. In these cases it would be appealing to allow the 

method to infer which of these close probabilities is actually larger. Current strategies for 
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obtaining Ps|c from experts, however, do not offer experts the opportunity to report 

uncertainty, making it difficult to appropriately assign uncertainty in the prior distribution.

We turn now to the prior distribution over population CSMF’s, π1,…,πC. Placing a Dirichlet 

prior on the vector of population CSMF probabilities would be computationally efficient 

because of Dirichlet-Multinomial conjugacy. However in our experience it is difficult to 

explain to practitioners and public health officials the intuition behind the Dirichlet 

hyperparameter. Moreover, in many cases we can obtain a reasonably informed prior about 

the CSMF distribution from local public health officials. Thus, we opt for an over-

parameterized normal prior (Gelman et al., 1996) on the population CSMFs. This prior 

representation does not enjoy the same benefits of conjugacy but is more interpretable and 

facilitates including prior knowledge about the relative sizes of CSMFs. Specifically we 

model πc = exp θc/Σc exp θc where each θc has an independent Gaussian distribution with 

mean μ and variance σ2. We put diffuse uniform priors on μ and σ2. To see how this 

facilitates interpretability, consider a case where more external data exists for communicable 

compared to non-communicable diseases. Then, the prior variance can be separated for 

communicable and non-communicable diseases to represent the different amounts of prior 

information. The model formulation described above yields the following posterior:

To contextualize our work, we can relate it to Latent Dirichlet Allocation (LDA) and other 

text mining approaches to finding relationships between binary features. To compare 

InSilicoVA to LDA, consider CSMFs as topics, conditions as words, and cases as 

documents. InSilicoVA and LDA are similar in that we may consider each death as resulting 

from a combination of causes, just as LDA considers each document to be made up of a 

combination of topics. Further, each cause in InSilicoVA is associated with a particular set 

of observed conditions, while in LDA each topic is associated with certain words. The 

methods differ, however, in their treatment of topics (causes) and use of external information 

in assigning words (conditions) with documents (deaths). Unlike LDA where topics are 

learned from patterns in the data, InSilicoVA is explicitly interested in inferring the 

distribution of a pre-defined set of causes of death. InsilicoVA also relies on external 

information, namely the matrix of conditional probabilities Ps|c to associate symptoms with 

a given cause. Statistically, this amounts to estimating a distribution of causes across all 

deaths, then using the matrix of conditional probabilities to infer the likely cause for each 

death, given a set of symptoms. This means that each death arises as a mixture over causes, 

but inference about this distribution depends on both the pattern of observed signs/symptoms 

and the matrix of conditional probabilities. In LDA, each document has a distribution over 

topics that is learned only from patterns of co-appearance between words. We also note that 

the prior structure differs significantly from LDA to accomplish the distinct goals of VA.
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2.2 Sampling from the posterior

This section provides the details of our sampling algorithm. We evaluated this algorithm 

through a series of simulation and parameter recovery experiments. Additional details 

regarding this process are in the Online Supplement. All codes are written in R (R Core 

Team, 2014), with heavy computation done through calls to Java using rJava (Urbanek, 

2009). We have prepared an R package which we have included with our resubmission and 

will submit the package to CRAN prior to publication.

2.2.1 Metropolis-within-Gibbs algorithm—The posterior in the previous section is not 

available in closed form. We obtain posterior samples using Markov-chain Monte Carlo, 

specifically the Metropolis-within-Gibbs algorithm described below. We first give an 

overview of the entire procedure and then explain the truncated beta updating step in detail. 

Given suitable initialization values, the sampling algorithm proceeds:

1. Sample Ps|c from truncated beta step described in the following section.

2. Generate Y values using the Naive Bayes Classifier, that is for person i

where

3. Update π⃗

a. Sample μ

b. Sample σ2

c. Sample θ⃗

This needs to be done using a Metropolis Hastings step: 

for k in 1 to C,

• Sample U ~ Uniform(0, 1)
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• Sample θ⃗* ~ N(θ⃗, σ*),

•

If , then 

update θk by .

We find computation time to be reasonable even for datasets with ~ 105 deaths. We provide 

additional details about assessing convergence in the results section and Online Supplement.

2.2.2 Truncated beta step—As described in the previous section, our goal is to estimate 

probabilities in Ps|c for each ranking given by experts (the letters in Table 2). We denote the 

levels of Ps|c as L(s|c) and, assuming the prior from the previous section, sample the full 

conditional probabilities under the assumption that all entries with the same level in Ps|c still 

share the same value. Denoting the probability for a given ranking or tier as Pt(si|cj), the full 

constraints become:

The full conditionals are then truncated beta distributions with these constraints, defined as:

where M and αLsj|ck
are hyperparameters and y⃗ is the vector of causes at a given iteration. 

The 1S|c term defines an indicator function which we denote as short hand for 

1PL(s|c)∈(PL(s|c)−1,PL(s|c)+1). That is, 1S|c denotes the indicator for whether the level for a 

particular s|c falls between the upper and lower bounds of that level. We incorporate these 

full conditionals into the sampling framework above, updating the truncation at each 

iteration according to the current values of the relevant parameters.

3 Results

In this section we present results from our method in two contexts. First, in Section 3.1 we 

compare our method to alternative approaches using a set of gold standard deaths. For these 

results, we compared our method to both InterVA and to methods currently used in practice 

when gold standard deaths are available. Then, in Section 3.2 we implement our method 

using data from two health and surveillance sites.
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Along with the results presented in the remainder of this section, we also performed 

simulation studies to understand our method’s range of performance. Details and results of 

these simulations are presented in the Online Supplement.

3.1 PHMRC gold standard data

We compare the performance of multiple methods using the Population Health Medical 

Research Consortium (PHMRC) dataset (Murray et al., 2011b). The PHMRC dataset 

consists of about 7,000 deaths recorded in six sites across four countries (Andhra Pradesh, 

India; Bohol, Philippines; Dar es Salaam, Tanzania; Mexico City, Mexico; Pemba Island, 

Tanzania; and Uttar Pradesh, India). Gold standard causes are assigned using a set of 

specific diagnostic criteria that use laboratory, pathology, and medical imaging findings. All 

deaths occurred in a health facility. For each death, a blinded verbal autopsy was also 

conducted.

To evaluate the performance of InSilicoVA, we compared our proposed method to a number 

of alternative algorithmic and probabilistic methods. Specifically, we examined Tariff (James 

et al., 2011), the approach proposed by King and Lu (2008), the Simplified Symptom Pattern 

Method (Murray et al., 2011a) and InterVA. We provide a short description of each 

comparison method along with complete details of our implementation in the Online 

Supplement. The most realistic comparator to our method is InterVA, since InterVA is the 

only method currently available that does not require gold standard training data. For both 

InterVA and InSilicoVA, we use the training data to extract a matrix of ranks that used to 

estimate a Ps|c matrix. In practice, these values would come from input provided by experts. 

Through simulation studies provided in the Online Supplement, we show that the quality of 

inputs greatly inuences performance of all methods. With the PHMRC data we use the 

labeled deaths to generate inputs for all of the methods, separating the performance of the 

statistical model or algorithm from the quality of inputs.

We calculate the raw conditional probability matrix of each symptom given a cause, then 

used two approaches to construct the rank matrix from the empirical values required for 

InterVA and InSilicoVA. First, we ranked the conditional probabilities using 15 levels and a 

distribution matching the InterVA model. For example, if a% of the cells in the original 

InterVA Ps|c matrix are assigned the lowest level, we assign also a% of the cells in the 

empirical matrix to be that level. We assign the median value among these cells to be the 

default value for this level. We refer to this first approach as the “Quantile prior” since it 

preserves the same distribution of probabilities in the InterVA matrix. Second, we ranked the 

probabilities using the same levels in Table 2 by assigning each cell the letter grade in Table 

2 with value closest to it. We refer to this approach as the “Default prior” since it uses the 

same translation between empirical probabilities and ranks as in InterVA.

In examining the results, note that SSP does not provide CSMF estimates. King et al. (2010) 

provides a method for classifying individual deaths using the framework from King and Lu 

(2008), but this method has not been empirically evaluated and is not widely used in 

practice, so we do not include it in our comparison study. The King and Lu (2008) method 

also allows advanced users to tune the number of symptoms sampled in their procedure. We 

implement the method using a value close to the default parameter. For the individual cause 
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assignment we also evaluated performance using the Chance-Corrected Concordance metric 

proposed by Murray et al. (2014). Results using this metric were substantively similar, with 

the exception that the Tariff method’s performance decreases when viewed with this metric. 

Complete results with chance-corrected concordance are presented in the Online 

Supplement.

We evaluated out of sample performance in two ways. Before considering these results, we 

note that InSilicoVA and InterVA use less information from the data than the comparison 

methods. In each comparison, the methods designed for gold standard data have access to all 

available information in the training set, whereas InSilicoVA and InterVA only have access 

to the ranked likelihood of seeing a symptom for a given cause.

In our first evaluation, we obtained training sets by simply sampling each death with equal 

probability. This is the most straightforward approach to derive test-train splits and produces 

a CSMF distribution that matches the data. Figure 1 displays the results across 100 test-train 

splits. A striking first result is the unparalleled performance of the King and Lu (2008) 

method. The King and Lu (2008) relies on randomly selected samples of symptoms taken 

from the training set to produce estimates for the elements of Ps|c that can then be applied to 

the test set. In theory, King and Lu (2008) method only requires that the estimated elements 

of Ps|c obtained from the training sample be applicable in the test sample. In practice, 

however, if certain symptom combinations appear more (or less) frequently in the training 

set than the testing set, then the random sampling of symptoms will introduce additional 

error in the Ps|c estimates. Taking a simple random sample of PHMRC deaths to use as 

testing means that the distribution of symptom occurrence is, in expectation, very similar 

between training and testing sets. These conditions underestimate the potential for error in 

estimating elements of Ps|c. Additional simulation results for the King and Lu (2008) 

method are in the Online Supplement. Aside from this caveat, InSilicoVA displays superior 

performance in both CSMF distribution and individual cause assignments. The two ways of 

computing Ps|c make little difference in the performance, indicating that the model can 

recover reasonable estimates of Ps|c entries even when ranks are constructed in different 

ways.

For our second PHMRC evaluation study, we use the test/training split approach proposed 

by Murray et al. (2011b). Using this approach, the dataset is first randomly split into testing 

and training sets. For the testing set, a cause of death distribution is simulated from a 

Dirichlet distribution at each iteration. Cases from the testing set are then sampled with 

replacement with probability proportional to the simulated CSMF. This approach allows the 

“true” cause of death distribution to change at each iteration, meaning that results are not 

specific to a single cause of death distribution. A downside of this re-sampling approach, 

however, is that the implementation proposed by Murray et al. (2011b) uses a diffuse 

Dirichlet distribution, meaning that the cause of death distribution is typically at across 

causes. In practice, the data we use display large variation in the cause of death distributions, 

with a small number of causes accounting for most of the deaths.

Figure 2 displays the results for the Dirichlet assignment evaluation. There is greater 

variability in performance among all methods compared to Figure 1, though InSilicoVA 
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displays superior performance in both CSMF and individual cause assignment. As expected, 

the added variability between the testing and training symptom profiles introduces additional 

error in the King and Lu (2008) method, resulting in reduced performance. To better 

understand how the methods perform on specific causes, Figure 3 shows a confusion matrix 

for the Dirichlet resampling evaluation study. The diagonals in the confusion matrices 

represent the number of times the method correctly identifies a cause X across 100 

simulations, divided by the number of times across the 100 test-train splits that cause X was 

the true cause. The off-diagonal elements give the fraction of times the method incorrectly 

identifies cause X as the true cause across the test-train splits. For InSilicoVA and InterVA 

we show 21 results for the default (InterVA cutoffs) prior, though the results for the quantile 

prior were substantively similar. We see the best performance from InSilicoVA and Tariff. 

Note also that many of the cases involving misclassification in all of the methods occur 

where there are related causes. HIV/AIDs and Tuberculosis (TB) are frequently 

misclassified, for example. Many cancers are also dificult to differentiate from one-another, 

as we see off-diagonal shading in the lower center and right of the plots. We provide further 

results in the Online Supplement, including tables giving sensitivity and specificity for each 

method and cause.

Throughout this work, we claim that gold standard data are rarely available in practice. One 

may question, however, why we cannot simply use the PHMRC data as a gold standard 

dataset in future applications. To evaluate this question, we exploit the geographic variability 

within the PHMRC data. We used the data from one of the PHMRC sites as the testing set, 

then used as the training set: (1) all the sites, (2) all other sites, (3) the same site and (4) one 

of the other sites. The results are summarized in Tables 3 and 4. We show additional results 

in the Online Supplement that reveal performance for each site as training data individually. 

In almost every case InSilicoVA outperforms all other methods in terms of both mean CSMF 

accuracy and mean COD assignment accuracy. The only exception is when using one site as 

training and a different site as testing, where King and Lu (2008) has slightly higher average 

CSMF accuracy. We see a noticeable decrease in performance when training using a site that 

is different from the testing region. The probabilistic structure underlying InSilicoVA and 

using only the conditional probabilities given in the Ps|c matrix mitigate this effect, though 

we still see a performance drop. This indicates that both the distribution of causes of death 

and that the association between symptoms and causes change based on geographic 

variability. In contrast to the resources required to collect gold standard data, the Ps|c matrix 

used by InterVA and InSilicoVA can be collected cheaply and effciently and tailored to the 

specific symptom/cause relationship in a particular geographic setting.

3.2 HDSS sites

In this section we present results comparing InSilicoVA and InterVA using VA data from 

two Health and Demographic Surveillance Sites (HDSS). Section 3.2.1 provides background 

information to contextualize the diverse environments of the two sites, and Section 3.2.2 

presents the results.

3.2.1 Background: Agincourt and Karonga sites—We apply both methods to VA 

data from two HDSS sites: the Agincourt health and sociodemographic surveillance system 
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(Kahn et al., 2012) and the Karonga health and demographic surveillance system (Crampin 

et al., 2012). Both sites collect VA data as the primary means of understanding the 

distribution and dynamics of cause of death. As is typically the case in circumstances where 

VAs are used, the VA data at these sites are not validated by physicians performing physical 

autopsies. We do not, therefore, have gold standard data we can leverage for training 

methods.

The Agincourt site continuously monitors the population of about 31 villages located in the 

Bushbuckridge subdistrict of Ehlanzeni District, Mpumalanga Province in northeast South 

Africa. This is a rural population living in what was during Apartheid a black “homeland,” 

or Bantustan. The Agincourt HDSS was established in the early 1990s to guide the 

reorganization of South Africa’s health system. Since then the site has functioned 

continuously and its purpose has evolved so that it now conducts health intervention trials 

and contributes to the formulation and evaluation of health policy. The population covered 

by the site is approximately 120,000 and vital events including deaths are updated annually. 

VA interviews are conducted on every death occurring within the study population. We use 

9,875 adult deaths from Agincourt from people of both sexes from 1993 to the present.

The Karonga site monitors a population of about 35,000 in northern Malawi near the port 

village of Chilumba. The current system began with a baseline census from 2002–2004 and 

has maintained continuous demographic surveillance. The Karonga site is actively involved 

in research on HIV, TB, and behavioral studies related to disease transmission. Similar to 

Agincourt, VA interviews are conducted on all deaths, and this work uses 1,469 adult deaths 

from Karonga that have occurred in people of both sexes from 2002 to the present.

3.2.2 Results for HDSS sites—We fit InSilicoVA to VA data from both Agincourt and 

Karonga. We also fit InterVA using the physician-generated conditional probabilities Ps|c as 

in Table 2 and the same prior CSMFs π⃗ provided by the InterVA software (Byass, 2013). We 

removed external causes (e.g., suicide, traffic accident, etc.) because deaths from external 

causes usually have very strong signal indicators and are usually less dependent on other 

symptoms. For InterVA, we first removed the deaths clearly from external causes and use the 

R package InterVA4 (Li et al., 2014) to obtain CSMF estimates. For InSilicoVA, we ran 

three MCMC chains with different starting points. For each chain, we ran the sampler for 

104 iterations, discarded the first 5, 000, and then thinned the chain using every twentieth 

iteration. We ran the model in R and it took about 15 minutes for Agincourt data and less 

than 5 minutes for Karonga using a standard desktop machine. Visual inspection suggested 

good mixing and we assessed convergence using Gelman-Rubin (Gelman and Rubin, 1992) 

tests. Complete details of our convergence checks are provided in the Online Supplement.

The results from Agincourt and Karonga study are presented in Figure 4. InSilicoVA is far 

more conservative and produces confidence bounds, whereas InterVA does not. A key 

difference is that InSilicoVA classifies a larger portion of deaths to causes labeled in various 

“other” groups. This indicates that these causes are related to either communicable or non-

communicable diseases, but there is not enough information to make a more specific 

classification. This feature of InSilicoVA identifies cases that are dificult to classify using 

available data and may be good candidates for additional attention, such as physician review.
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We view this behavior as a strength of InSilicoVA because it is consistent with the 

fundamental weakness of the VA approach, namely that both the information obtained from 

a VA interview and the expert knowledge and/or gold standard used to characterize the 

relationship between signs/symptoms and causes are inherently weak and incomplete, and 

consequently it is very dificult or impossible to make highly specific cause assignments 

using VA. Given this, we do not want a method that is artificially precise, i.e. forces fine-

tuned classification when there is insuficient information. Hence we view InSilicoVA’s 

behavior as reasonable, “honest” (in that it does not over interpret the data) and useful. 

“Useful” in the sense that it identifies where our information is particularly weak and 

therefore where we need to apply more effort either to data or to interpretation.

4 Physician coding

The information available across contexts that use VA varies widely. One common source of 

external information arises when a team of physicians reviews VA data and assigns a likely 

cause to each death. Since this process places additional demands on already scarce 

physician time, it is only available for some deaths. Unlike a gold standard dataset where 

physician information is used as training data for an algorithm, a physician code is typically 

used as the definitive classification. Physician clarifiers do not have access to the decedent’s 

body to perform a more detailed physical examination, as in a traditional autopsy.

We propose incorporating physician coded deaths into our hierarchical modeling framework. 

This strategy provides a unified inference framework for population cause distributions 

based on both physician coded and non-physician coded deaths. We address two challenges 

in incorporating these additional sources of data. First, available physician coded data often 

do not match causes used in existing automated VA tools such as InterVA. For example in 

the Karonga HDSS site physicians code deaths in a list of 88 categories and need to be 

aggregated into broader causes to match InterVA causes. Second, each physician uses her/his 

own clinical experience, and often a sense of context-specific disease prevalences, to code 

deaths, leading to variability and potentially bias. In Section 4.1 we present our approach to 

addressing these two issues. We then present results in Section 4.2.

4.1 Physician coding framework

In this section we demonstrate how to incorporate physician coding into the InSilicoVA 

method. If each death were coded by a single physician using the same possible causes of 

death as in our statistical approach, the most straightforward means of incorporating this 

information would be to replace the yi for a given individual with the physician’s code. This 

strategy assumes that a physician can perfectly code each death using the information in a 

VA interview. In practice it is difficult for physicians to definitively assign a cause using the 

limited information from a VA interview. Multiple physicians typically code each death to 

form a consensus. Further the possible causes used by physicians do not match the causes 

used in existing automated methods. In the data we use, physicians first code based on six 

broad cause categories, then assign deaths to more specific subcategories. Since we wish to 

use clinician codes as an input into our probabilistic model rather than as a final cause 

determination, we will use the broad categories from the Karonga site. Since our data are 
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only for adults we removed the category “infant deaths.” We are also particularly interested 

in assignment in large disease categories, such as TB or HIV/AIDS, so we add and 

additional category for these causes. The resulting list is: (i) non-communicable disease 

(NCD), (ii) TB or AIDS, (iii) other communicable disease, (iv) maternal cause, (v) external 

cause or (vi) unknown. The WHO VA standards (World Health Organization, 2012) map the 

causes of death used in the previous section to ICD-10 codes, which can then be associated 

with these six broad categories. We now have a set of broad cause categories {1, …, G} that 

physicians use and a way to relate these general causes to several causes of death used by 

InSilicoVA.

We further assume that we know the probability that a death is related to a cause in each of 

these broad cause categories. That is, we have a vector of a rough COD distribution for each 

death: Zi = (zi1, …, ziG) and Σg zig = 1. In situations where each death is examined by 

several physicians, we can use the distribution of assigned causes across the physicians. 

When only one physician reviews the death, we place all the mass on the Zi term 

representing the broad category assigned by that one physician. An advantage of our 

Bayesian approach is that we could also distribute mass across other cause categories if we 

had additional uncertainty measures. We further add a latent variable ηi ∈ {1, …, G} 

indicating the category assignment. The posterior of Y then becomes

Since ηi = g|Zi ~ Categorical(zi1, zi2, …, ziG) and yi|π, 

 where , and χcg is the indicator of 

cause k in category g. Without loss of generality we assume each cause belongs to at least 

one category. Then by collapsing the latent variable ηi, we directly sample yi from the 

posterior distribution:

where

A certain level of physician bias is inevitable, especially when physicians’ training, 

exposure, and speciality vary. Some physicians are more likely to code certain causes than 

others, particularly where they have clinical experience in the setting and a presumed 

knowledge of underlying disease prevalences. We adopt a two-stage model to incorporate 

uncertainties in the data and likely bias in the physician codes. First we use a separate model 

to estimate the bias of the physician codes and obtain the de-biased cause distribution for 
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each death. Then, we feed the distribution of likely cause categories (accounting for 

potential bias) into InsilicoVA to guide the algorithm.

For the first stage we used the model for annotation bias in document classification proposed 

by Salter-Townshend and Murphy (2013). The algorithm was proposed to model the 

annotator bias in rating news sentiment, but if we think of each death as a document with 

symptoms as words and cause of death as the sentiment categories, the algorithm can be 

directly applied to VA data with physician coding. Suppose there are M physicians in total, 

and for each death i there are Mi physicians coding the cause. Let 

 be the code of death i by physician m, where  if death i 

is assigned to cause g and 0 otherwise. The reporting bias matrix  for each physician 

is then defined as the probability of assigning cause g′ when the true cause is g. If we also 

denote the binary indicator of true cause of death i to be Ti = {ti1, ti2, …, tiG}, the 

conditional probability of observing symptom j given cause g as pj|g, and the marginal 

probability of cause g as πg, then the complete data likelihood of physician coded dataset is:

(3)

We then proceed as in Salter-Townshend and Murphy (2013) and learn the most likely set of 

parameters through an implementation of the EM algorithm. The algorithm proceeds:

1. For i = 1, …, n:

a.
initialize T using 

b.
initialize π using 

2. Repeal until convergence:

After convergence, the estimator t̂ig can then be used in place of zig in the main algorithm as 

discussed in Section 2.1. An alternative would be to develop a fully Bayesian strategy to 

address bias in physician coding. We have chosen not to do this because the VA data we 

have is usually interpreted by a small number of physicians who assign causes to a large 
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number of deaths. Consequently there is a large amount of information about the specific 

tendencies of each physician, and thus the physician-specific bias matrix can be estimated 

with limited uncertainty. A fully Bayesian approach would involve estimating many 

additional parameters, but sharing information would be of limited value because there are 

many cases available to estimate the physician-specific matrix. We believe the uncertainty in 

estimating the physician-specific matrix is very small compared to other sources of 

uncertainty.

4.2 Comparing results using physician coding

We turn now to results that incorporate physician coding. We implemented the physician 

coding algorithm described above on the Karonga dataset described in Section 3.2.1. The 

Karonga site has used physician and clinical officer coding from 2002 to the present. The 

1,469 deaths in our data have each been reviewed by physician. Typically each death is 

reviewed by two physicians; deaths where the two disagree are reviewed by a third. Over the 

period of this analysis, 18 physicians reviewed an average of 217 deaths each.

We first evaluate the difference in CSMFs estimated with and without incorporating 

physician-coded causes. We use the six broad categories of physician coding described in 

Section 4.1. Figure 5 compares the CSMFs using InSilicoVA both with and without 

physician coding. Including physician coding reduces the fraction of deaths coded as other/

unspecified infectious diseases and increases the fraction of deaths assigned to HIV/AIDS. 

This is likely the result of physicians with local knowledge being more aware of the 

complete symptom profile typically associated with HIV/AIDS in their area. They may also 

gather useful data from the VA narrative that aids them in making a decision on cause of 

death. Having seen multiple cases of HIV/AIDS, physicians can leverage information from 

combinations of symptoms that is much harder to build into a computational algorithm. 

Physicians can also use knowledge of the prevalence of a given condition in a local context. 

If the majority of deaths they see are related to HIV/AIDS, they may be more likely to 

assign HIV/AIDS as a cause even in patients with a more general symptom profile.

Figure 6 shows the estimated physician-specific bias matrices for the nine physicians coding 

the most deaths. Since each physician has unique training and experience, we expect that 

there will be differences between physicians in the propensity to assign a particular cause, 

even among physicians working in the same clinical context. Figure 6 displays the 

matrix described in Section 4.1. The shading of each cell in the matrix represents the 

propensity of a given physician to code a death as the cause category associated with its row, 

given that the true cause category is the cause category associated with its column. If all 

physicians coded with no individual variation, all of the blocks would be solid black along 

the diagonal. Figure 6 shows that there is substantial variability between the physicians in 

terms of the degree of their individual proclivity to code specific causes. This variation is 

especially persistent in terms of non-communicable diseases, indicating that physicians’ 

unique experiences were most influential in assigning non-communicable diseases.
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5 Discussion

Assigning a cause(s) to a particular death can be challenging under the best circumstances. 

Inferring a cause(s) given the limited data available from sources like VA in many 

developing nations is an extremely difficult task. In this paper we propose a probabilistic 

statistical framework for using VA data to infer an individual’s cause of death and the 

population cause of death distribution and quantifying uncertainty in both. The proposed 

method uses a data augmentation approach to reconcile individuals’ causes of death with the 

population cause of death distribution. We demonstrate how our new framework can 

incorporate multiple types of outside information, in particular physician codes. However, 

many open issues remain. In our data, we observe all deaths in the HDSS site. Inferring 

cause of death distributions at a national or regional level, however, would require an 

adjustment for sampling. If sampling weights were known, we could incorporate them into 

our modeling framework. In many developing nations, however, there is limited information 

available to construct such weights.

In practice, the proposed method is intended for situations where “gold standard” death are 

not available and where priors have been elicited from medical experts in the form of the 

matrix of conditional probabilities Ps|c. The method is also suitable for situations where 

there is partial physician coding, especially in situations where the same physician codes a 

large number of VA surveys. Through our evaluation experiments using the PHMRC gold 

standard dataset, we also now suggest that the Ps|c matrix should be updated to reflect 

regional and temporal changes in symptom-cause associations.

We conclude by highlighting two additional open questions. For both we stress the 

importance of pairing statistical models with data collection. First, questions remain about 

the importance of correlation between symptoms in inferring a given cause. In both 

InSilicoVA and InterVA the product of the marginal probability of each cause is used to 

approximate the joint distribution of the entire vector of a decedent’s symptoms. This 

assumption ignores potentially very informative information about comorbidity between 

signs/symptoms, i.e. dependence in the manifestation of signs/symptoms. Physician 

diagnosis often relies on recognition of a constellation of signs and symptoms combined 

with absence of others. Advances in statistical tools for modeling large covariance matrices 

through factorizations or projections could provide ways to model these interactions. 

Information describing these dependencies needs to be present in Ps|c, the matrix of 

conditional probabilities associating signs/symptoms and causes elicited from physicians. 

Until now physicians have not been asked to produce this type of information and there does 

not exist an appropriate data collection mechanism to do this. When producing the Ps|c 

matrix, medical experts are only asked to provide information about one cause at a time. 

Obtaining information about potentially informative co-occurences of signs/symptoms is 

essential but will involve non-trivial changes to future data collection efforts. It is practically 

impossible to ask physicians about every possible combination of symptoms. A key 

challenge, therefore, will be identifying which combinations of symptoms could be useful 

and incorporating this incomplete association information into our statistical framework. 

The Ps|c matrix entries are also currently solicited by consensus and without uncertainty. 

Adding uncertainty is straightforward in our Bayesian framework and would produce more 
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realistic estimates of uncertainty for the resulting cause assignment and population 

proportion estimates.

Second, the current VA questionnaire is quite extensive and requires a great deal of time, 

concentration and patience to administer. This burden is exacerbated since interviewees have 

recently experienced the death of a loved one or close friend. Further, many symptoms occur 

either very infrequently or extremely frequently across multiple causes of death. Reducing 

the number of items on the VA questionnaire would ease the burden on respondents and 

interviewers. This change would likely improve the overall quality of the data, allowing 

individuals to focus more on the most influential symptoms without spending time on 

questions that are less informative. Reducing the number of items on the questionnaire and 

prioritizing the remaining items would accomplish this goal. Together the increasing 

availability of affordable mobile survey technologies and advances in item-response theory, 

related areas in statistics, machine learning, and psychometrics provide an opportunity to 

create a more parsimonious questionnaire that dynamically presents a personalized series of 

questions to each respondent based on their responses to previous questions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Comparison using random splits
Results across 100 test-train splits using a randomly sampled 25% of deaths as the test set. 

InSilicoVA demonstrates good performance for both population cause distribution and 

individual assignment.
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Figure 2. Comparison using random splits and re-sampled test set
Performance over 100 simulations using the test-train splitting approach proposed by 

Murray et al. (2011b). The Dirichlet sampling approach used by the Murray et al. (2011b) 

method produces testing sets that do not necessarily have CSMF distributions similar to the 

training set. InSilicoVA again demonstrates substantial performance improvements.
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Figure 3. Confusion matrices
Confusion matrix for four methods, with InSilicoVA and InterVA using the default prior. 

Shading on the diagonal represents the fraction of correct classifications across 100 test-train 

splits using the Dirichlet resampling strategy; Off-diagional shading represents the fraction 

of misclassifcations.
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Figure 4. The 10 largest CSMFs
Estimation comparing InsilicoVA to InterVA in two HDSS sites. Overall we see that 

InSilicoVA classifies a larger proportion of deaths into ‘other/unspecified’ categories, 

reecting a more conservative procedure that is consistent with the vast uncertainty in these 

data. Point estimates represent the posterior mean and intervals are 95% credible intervals.
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Figure 5. The top 10 most different CSMFs
Estimation comparing InterVA with and without physician coding for the Karonga dataset. 

InSilicoVA without physician coding categorizes many more deaths as ‘Other and 

unspecified infectious diseases’ compared to InterVA. Including physician coding reduces 

the fraction of deaths in this category, indicating an increase in certainty about some deaths. 

Point estimates represent the posterior mean and intervals are 95% credible intervals.
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Figure 6. Physician variability
Each 6 × 6 square matrix represents a single physician coding verbal autopsy deaths from 

the Karonga HDSS. Within each matrix, the shading of each cell corresponds to the 

propensity of the physician to classify the death into the cause category associated with the 

cell’s row when the the true cause category is the one associated with the cell’s column. The 

physician bias estimates come from comparing cause assignments for the same death 

produced by multiple physicians. A physician with no individual bias would have solid black 

on the diagonal. The figure indicates that the variation in both the nature and magnitude of 

individual physician bias varies substantially between physicians.
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Table 1

List of common global health abbreviations used in this paper.

Acronym Meaning

CSMF Cause-specific mortality fraction

COD Cause of death

HDSS Health & demographic surveillance system

PHMRC Population Health Medical Research Consortium

VA Verbal autopsy

WHO World Health Organization
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Table 2

InterVA Conditional Probability Letter-Value Correspondences from Byass et al. (2012b).

Label Value Interpretation

I 1.0 Always

A+ 0.8 Almost always

A 0.5 Common

A− 0.2

B+ 0.1 Often

B 0.05

B− 0.02

C+ 0.01 Unusual

C 0.005

C− 0.002

D+ 0.001 vRare

D 0.0005

D− 0.0001

E 0.00001 Hardly ever

N 0.0 Never
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