1 Chronic lung disease in HIV-infected children established on antiretroviral

2 therapy

- 3 Jamie RYLANCE^{1*}, Grace MCHUGH², John METCALFE³, Hilda MUJURU⁴, Kusum NATHOO⁴,
- 4 Stephanie WILMORE^{4,7}, Sarah ROWLAND-JONES⁵, Edith MAJONGA^{2,6}, Katharina
- 5 KRANZER⁶, Rashida A FERRAND^{2,6}

6 **AFFILIATIONS**

- 7 1. Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- 8 2. Biomedical Research and Training Institute, Harare, Zimbabwe,
- 9 3. University of California, San Francisco, San Francisco, USA
- 10 4. University of Zimbabwe, Zimbabwe
- 11 5. University of Oxford, United Kingdom
- 12 6. London School of Hygiene and Tropical Medicine, London, UK
- 13 7. Royal Free Hospital, London, UK

14 **RUNNING TITLE**

15 Chronic lung disease in HIV-infected children

16 **CORRESPONDING AUTHOR (*)**

- 17 Dr Jamie Rylance, Department of Clinical Sciences, Liverpool School of Tropical Medicine,
- 18 Liverpool, UK, L3 5QA. Telephone +44 1517053775, fax +44 1517053370
- 19 Email: jamie.rylance@lstmed.ac.uk (JR)

20 WORD COUNT

22 FUNDING

- 23 The study was funded by the Nina Ireland Program for Lung Health and the Wellcome Trust (RAF,
- 24 grant number 095878/Z/11/Z)

26 **ABSTRACT**

27 **Objective**

28 Respiratory disease is a major cause of morbidity and mortality in HIV-infected children. Despite

- 29 antiretroviral therapy (ART), children suffer chronic symptoms. We investigated symptom
- 30 prevalence, lung function, and exercise capacity among older children established on ART, and an
- 31 age-matched HIV-uninfected group.

32 Design

A cross-sectional study in Zimbabwe of: 1) HIV-infected children aged 6-16 years receiving ART
 for over six months; 2) HIV-uninfected children attending primary health clinics from the same
 area.

36 Methods

37 Standardised questionnaire, spirometry, Incremental Shuttle Walk Testing (ISWT), CD4 count,

38 HIV viral load, and sputum culture for tuberculosis were performed.

39 Results

202 HIV-infected and 150 uninfected participants (median age 11.1 years in each group) were 40 41 recruited. Median age at HIV diagnosis and ART initiation was 5.5 (IQR 2.8-7.5) and 6.1 years 42 (IQR 3.6-8.4) respectively. Median CD4 count was 726 cells/µl, and 79% had HIV viral 43 load<400copies/ml. Chronic respiratory symptoms were rare in HIV-uninfected children (n=1 44 [0.7%]), but common in HIV-infected participants (51 [25%]), especially cough (30 [15%]) and dyspnoea (30 [15%]). HIV-infected participants were more commonly previously treated for 45 46 tuberculosis (76 [38%] versus 1 [0.7%], p<0.001), had lower exercise capacity (mean ISWT 47 distance 771m versus 889m respectively, p<0.001), and more frequently abnormal spirometry (43 48 [24.3%] versus 15 [11.5%], p=0.003) compared to HIV-uninfected participants. HIV diagnosis at

- 49 an older age was associated with lung function abnormality (p=0.025). No participant tested
- 50 positive for *M. tuberculosis*.

51 **Conclusions**

- 52 In children, despite ART, HIV is associated with significant respiratory symptoms and functional
- 53 impairment. Understanding pathogenesis is key, as new treatment strategies are urgently required.

54 **KEYWORDS**

55 HIV, Sub-Saharan Africa, Lung Function, Chronic lung disease, Antiretroviral therapy (ART)

57 **INTRODUCTION**

58

59 for more than 50% of HIV-associated mortality.[1-4] The use of antiretroviral therapy (ART) and 60 co-trimoxazole prophylaxis has contributed to a reduction in the rate of acute respiratory tract 61 infections and mortality among HIV-infected children in both high- and low-resource settings.[5] In 62 the pre-ART era, 30-40% of HIV-infected children also developed chronic lung disease, most 63 commonly due to lymphoid interstitial pneumonitis (LIP), but this condition responds well to ART 64 and is now uncommon in clinical practice, except in children under 5 years old.[6-8] 65 Nevertheless, recent studies in southern Africa have demonstrated that about 30% of African HIVinfected older children have chronic respiratory symptoms, classically a chronic cough (often 66 67 leading to presumptive treatment for tuberculosis (TB)) and reduced exercise tolerance.[3, 4] In 68 these studies, even participants with pronounced respiratory impairment looked well at rest, not all 69 had cough, and plain radiological abnormalities were subtle, and not consistent with LIP.[9] 70 However, these studies did not include HIV-uninfected controls, and included a mix of children 71 who were ART naïve as well as those taking ART. The aim of this study was to investigate the

Respiratory disease is the most common manifestation of HIV/AIDS among children, accounting

burden and features of chronic lung disease among HIV-infected children established on ART and
in an age-matched HIV-uninfected group.

74 **METHODS**

The study was carried out between September 2014 and June 2015 at the Harare Children's Hospital HIV clinic in Harare, Zimbabwe, a public sector clinic that provides HIV care for more than 4000 children. Children were eligible for the study if they were aged between 6 and 16 years, had been taking ART for at least 6 months, were not acutely unwell and were not taking TB treatment. We consecutively recruited up to five eligible participants per day, restricted to this number due to logistical constraints. A comparison group of HIV-uninfected children in the same 81 age group was also recruited from 7 clinics which provided HIV testing and counselling to all 82 attendees regardless of the reason for attendance, and which served the same population as that of 83 Harare Hospital (high population density suburbs, with small dwellings being typical). We enrolled children who had tested HIV-negative and who were not acutely unwell and who were not receiving 84 85 treatment for respiratory infection or tuberculosis. A sample size of 200 HIV-1 infected children 86 was selected to provide a precision of $\pm 6\%$ around an estimated 25% prevalence of chronic lung 87 disease (CLD), defined as any one of: unexplained chronic cough for ≥ 3 months; hypoxaemia 88 (SpO2 <90%) at rest or desaturation on exertion by more than 4% from baseline; abnormal 89 spirometry without another medical explanation e.g. asthma; chronic dyspnoea (MRC 90 breathlessness score >1)[10].

91 Data collection

A nurse-administered questionnaire was used to collect details of socio-demographic indices,

93 clinical history and current symptoms. A standardised examination was performed including WHO

94 staging of HIV infection, measurement of height and weight, spirometry and exercise testing.

95 Spirometry was performed according to ATS standards using EasyOne World spirometers (ndd 96 Medical Technologies, Inc., Andover, MA, USA).[11] Up to 8 forced exhalations were recorded 97 while sitting. We analysed only data from individuals who produced three consistent traces which 98 met ATS quality criteria. The highest FEV1 and FVC measurements for each individual were used, 99 with other indices recorded from the best trace (largest total of FEV_1 and FVC). Obstruction was 100 defined as a reduced FEV₁:FVC. For clarity, we use the term "reduced FVC" where FVC was low 101 with a normal FEV₁:FVC. We avoided the term "restriction" as we were unable to measure lung 102 volumes. Where any spirometric abnormality was found, participants underwent repeat spirometry 15 minutes after administration of 2.5mg nebulised salbutamol. An improvement in FEV₁ of \geq 12% 103 104 was considered to represent significant reversibility.

105 An incremental shuttle walk test was performed as a measure of cardiorespiratory fitness. This was 106 devised for adults,[12] but has been validated for use in children with chronic respiratory 107 disease.[13] Participants were not tested if, at rest: $SpO_2 < 88\%$; heart rate >110; respiratory rate 108 >30 breaths/min. On flat ground, participants were instructed to walk between two markers placed 109 10 metres apart. A pre-recorded series of "bleeps" were played, which determined how quickly each 110 10 metre segment should be completed. The standardised protocol demanded that the participant 111 walked 30 metres in the first minute, with each subsequent minute escalating the distance by 10 112 metres (i.e. 40, 50 and 60 metres in the 2nd, 3rd and 4th minutes respectively). The test was 113 terminated when participants were unable to reach the next marker by the time the beep was issued. 114 The respiratory rate, heart rate and oxygen saturations were measured before and immediately after 115 the end of the test. Only the first 82 participants in the HIV-uninfected group underwent SWT due 116 to limited staffing. Predicted maximal heart rates were calculated by the Tanaka equation: 208 -117 0.7*age.[14]

118 Laboratory investigations

Where possible, all HIV positive participants had sputum samples obtained by spontaneous
expectoration or by induction using nebulised hypertonic saline. Sputum smears were examined by
Ziehl-Neelson stain microscopy and a single mycobacterial culture was performed on LowensteinJensen media. Sputum from HIV uninfected participants was sought only if the WHO TB symptom
screen was positive.[15] HIV viral load was measured with COBAS Ampliprep/Taqman 48 Version
2.0 and CD4 count was measured using an Alere PIMATM CD4 machine (HIV-positive participants
only).

126 **Data Analysis**

127 Data were extracted from paper forms using optical character recognition software (Cardiff

128 TELEFORM Intelligent Character, Version 10.7). Data analysis was carried out using Stata v12

129 (StatCorp, TX) and GraphPad Prism v6 (GraphPad, CA). Height-for-age and BMI-for-age z-scores 130 were calculated using the WHO reference standards.[16] Normal spirometric ranges were defined 131 using the GLI 2012 equation which determines race and sex specific reference values, taking 132 account of height and age.[17] The lower limit of normal (LLN) is defined as 1.64 standard 133 deviations below the mean expected value (which describes the lowest 10 centiles as "abnormal"). 134 Shuttle walk and CD4 results were treated as parametric data, with Student t test used to compare 135 means between HIV-infected and non-infected groups. Other continuous variables were non-136 parametric: central tendency was reported by the median and interquartile range (IQR), using the Mann-Whitney U test for equivalence testing between groups. Frequencies of categorical data -137 138 symptoms, past medical complaints and rates of abnormal spirometry and growth indices - were 139 compared between HIV-infected and non-infected by chi squared test. Results were considered 140 statistically significant at p<0.05. The association of abnormal lung function with a priori defined clinical data were investigated using univariable logistic regression, and reporting Odds ratios with 141 142 a Wald 95% confidence interval. Stepwise backward multivariate logistic regression was then used; 143 this incorporated age and sex, and those variables with individual p<0.1 on univariate testing. 144 Ethical approval was granted by the Medical Research Council of Zimbabwe, the Harare Hospital 145 Ethics Committee, the Biomedical Research and Training Institute Institutional Review Board and the London School of Hygiene and Tropical Medicine Ethics Committee. All guardians gave 146

148 **RESULTS**

147

149 **Participant characteristics**

A total of 202 HIV-infected participants were recruited: median age 11.1 years (IQR 9.0 – 12.9),
and 55% male. Summary statistics are given in Table 1, and a flow diagram of participation and
testing is given in Figure 1. Of the 150 HIV-uninfected participants recruited as a comparison
group, 42% were male and the median age was 11.0 (IQR 9.0-13.9). All but one HIV-infected
participants were vertically-infected and the median age at HIV diagnosis was 5.5 (IQR 2.8 – 7.5)

written consent and participants gave assent to participate.in the study.

- 155
- years. The median duration of ART was 4.7 (IQR 2.6 6.4) years, with 161 (80%) taking non-nucleoside reverse transcriptase inhibitor-based (first-line) ART and the remainder taking a protease 156
- inhibitor based regimen (157

Table 3). The median CD4 count at HIV diagnosis (available for 105 participants) was 353 (IQR

159 134 - 696) cells/µl and the CD4 count at enrolment was 726 (IQR 476 - 941) cells/µl. The majority

of participants (79%) had an HIV viral load <400copies/ml (Table 1), and 194 (96%) were taking
co-trimoxazole.

162 None of the HIV-uninfected participants screened positive using the WHO TB symptom screen.

Within the HIV infected group, 153 participants produced samples for mycobacterial culture, 35 could not despite sputum induction, and 16 were too ill or did not return for the procedure. None grew *Mycobacterium tuberculosis*, but 3 grew non-tuberculous mycobacteria (not speciated).

166 A significantly higher proportion of HIV-infected participants were stunted than HIV-uninfected

167 participants (35.8% vs. 7.3%, p<0.001), but prevalence of wasting was similar in the two groups

168 (Table 1). Seventy-six HIV-infected children had been previously treated for tuberculosis,

169 compared with one from the HIV-uninfected group.

170 The proportion treated for asthma was similar in both groups. Chronic respiratory symptoms

171 (breathlessness, cough or wheeze) were reported by 25.3% of HIV-infected children but only by

172 one (0.7%) HIV-uninfected child. Wheeze was infrequently reported in either group (Table 1).

173 Incremental Shuttle Walk Test (ISWT) could not be performed in 15 HIV infected participants due

to resting hypoxaemia (n=2), resting dyspnoea (n=9), or loss to follow-up (n=4). One HIV-

175 uninfected participant had tachypnoea at rest. The distance attained during ISWT was significantly

reduced in the HIV-infected group (mean 771m [SD 216] compared with 889m [SD 227] in the

177 HIV-uninfected group, p<0.001). Shortly after completion of the test, mean heart rate was not

178 significantly difference at 62% (SD 12.0) and 67% (SD 10.5) of their predicted maximal heart rates

179 for the HIV infected and non-infected groups respectively.

One hundred and seventy-seven (88%) HIV-infected and 130 (87%) HIV-uninfected participants 180 181 had high-quality spirometry traces. Quality grading according to ATS standards did not differ 182 between groups either before or after reversibility testing. Of those high quality (interpretable) 183 traces, a quarter of all HIV-infected participants had abnormal lung function on spirometry. This 184 was significant higher than among HIV-uninfected participants (24.3% vs 11.5%, p=0.01). This 185 was reflected in lower FEV₁, FVC and FEF25-75 indices in the HIV-infected group (p<0.05) 186 (Figure 2). There was no significant difference in the FEV₁:FVC ratio (p=0.08) between the two 187 groups, although those with a history of lung infection had a lower FEV₁:FVC than those without 188 (p=0.03). For those with spirometric abnormality, post bronchodilator reversibility traces were 189 complete and adequate in 31 HIV-infected and 6 HIV-uninfected participants, demonstrating 190 reversibility in 11 (35.4%) and 2 (33.33%) respectively.

Predictors of abnormal lung function are summarised in Table 4. When subdivided into restrictive and obstructive types, numerators were insufficient to draw robust conclusions: data are therefore presented as "normal" or "abnormal". The presence of any respiratory symptom, except wheeze, was significantly associated with abnormal lung function. Older age at HIV diagnosis was positively associated with abnormal lung function (p=0.025), as was wasting (OR 8.1, 95% CI 2.3-31.7). After fitting a multivariate model, wasting was the only independent predictor: OR 4.7 (95% CI 1.2 – 18.6).

We investigated the potential for prior respiratory infection to impact on lung function by stratified
analysis (Figure 2 and Supplemental Table S1). Among those with previous infection (any of: TB;
PCP; NTM by sputum culture; hospitalisation for chest infection), those with later presentation and
ART initiation were more likely to have abnormal lung function (p<0.05). Dyspnoea, tachypnoea,
oxygen desaturation and wasting were also disproportionately apparent (p<0.05 for each). However,

among those without previous infection, cough and sputum production were more commonly seen
in those with abnormal spirometry (p<0.05)

205 **DISCUSSION**

A quarter of HIV infected children experienced chronic respiratory symptoms, despite being treated with ART and with good virological control in the majority. In contrast, only one HIV-uninfected participant reported respiratory symptoms. More than one third of the HIV-infected children in our study had been previously treated for TB, although we were unable to determine how the diagnosis of TB had been made due to a lack of robust records. As noted in other cohorts, where background TB rates are high, over-treatment is likely in those with chronic respiratory symptoms due to a lack of diagnostic and alternative therapeutic strategies for chronic respiratory symptoms.[18, 19]

213 Notably, no TB was found in our study on microbiological investigation.

214 We found much higher rates of abnormal lung function among HIV-infected compared to HIV-215 uninfected children. Development of airways disease in early life has been described in the context 216 of HIV infection: airway resistance measurements indicate that abnormalities of airway calibre are 217 established in those as young as one year old.[20] However, in resource limited settings, no 218 longitudinal studies have been conducted to define how such abnormalities change over time, or 219 how they respond to ART. Interestingly, in our current study, obstructive lung disease was less 220 common than in a study conducted in Malawi (4% vs 26%).[21] In the Malawi study, however, 221 31% of individuals were ART-naïve or had been taking ART for a relatively shorter duration 222 (median 20 months).[2]

In the pre-ART era, the most common cause of CLD was lymphocytic interstitial pneumonitis (LIP) found in 30-40% of HIV-infected children.[7, 22] LIP responds well to ART and the prevalence has significantly declined with increased availability of ART.[23] We found low rates of wheeze and bronchodilator response which would suggest that the chronic respiratory symptoms are not likely to be due to asthma. Similarly, although household air pollution is detrimental to lung function and
can cause these symptoms, rates of biomass as the main fuel for cooking or lighting are lower in our
cohort (less than 1 in 5) than other reported peri-urban series in sub-Saharan Africa, due to access to
mains electricity.[24]

231 In the ART era, multiple aetiological factors may contribute to lung disease, including long-term 232 sequelae of repeated bacterial and viral respiratory tract infections and possibly HIV-induced 233 chronic inflammation and immune senescence caused by dysregulated immune activation. [25, 26] 234 Such processes account for the high prevalence of bronchiectasis in this population, and may also contribute to obliterative bronchiolitis (OB).[18, 22] The latter has been described in a previous 235 236 study from Zimbabwe. It seems to represent, as in non-HIV related OB, a final common pathway of 237 lung injury typified radiologically by air trapping and mosaic attenuation of the lung 238 parenchyma.[2, 9] The features on plain chest radiography are subtle and non-specific, and high 239 resolution CT is the definitive imaging modality. The lack of HRCT facilities may explain why OB 240 is not recognised in Africa, despite the high prevalence of chronic respiratory symptoms.[27-30] 241 Clinically, OB usually presents as an obstructive lung disease with minimal response to inhaled beta 242 agonists. However, the pattern of spirometry abnormalities observed in our study was mainly 243 restrictive. This might be explained by chronic immune activation causing scarring and fibrosis, 244 resulting in a restrictive lung function abnormality.[31-33] We found a reduced FEV₁/FVC ratio - a 245 more obstructive pattern - in those with a previous history of infection. This would be consistent 246 with unrecognised OB which has been treated as TB or other infection. However, TB in adults is 247 itself known to leave evidence of airway obstruction, even in those cured of disease.

248 . our finding that later diagnosis is associated with abnormal spirometry suggests that early

249 diagnosis and treatment of HIV may prevent development or progression of chronic lung disease.

250 Established disease appears to persist despite otherwise effective ART. This was apparent children

with a history of infection, where later initiation of ART, and signs of reduced gas-exchange
capacity (oxygen desaturation and tachypnoea) predicted lung function abnormality. Wasting, also a
predictor of lung function abnormality, could represent by association many risk factors for lung
disease, including nutrition and chronic inflammatory disease.

In our cohort, there was no significant correlation between lung function abnormality and SWT distance. The Incremental Shuttle Walk Test (ISWT) is a valid and reproducible predictor of aerobic exercise capacity (VO₂ peak). As a maximal test, it is less variable than self-paced protocols such as the six-minute walk test.[13] VO₂ peak is determined by both respiratory and cardiovascular fitness. It is possible that the reduced exercise capacity in HIV infected children might be partly due to cardiac disease. Previously noted echocardiographic abnormalities in Zimbabwean children include LV hypertrophy and diastolic dysfunction, seen in 74/110 (67%) and 27/110 (24%)

respectively.[34] We are further investigating this possibility using echocardiography in our cohort.

263 The strengths of this study was that it was prospectively conducted, recruitment was unselective 264 (i.e. not based on presence of respiratory symptoms) and from a general HIV clinic. It included an 265 HIV-uninfected comparison group recruited from the same geographical area. Study limitations 266 include self-report of illness which may result in recall bias. Spirometry was not available for all 267 participants due to exclusion of poor quality traces and ISWT was not universally performed in 268 HIV-uninfected participants due to staff shortages. Furthermore, we were unable to measure lung 269 volumes. Our HIV-uninfected group were not matched by sex, resulting in females being slightly 270 more frequently represented compared to in the HIV-infected group. However, this should not 271 affect interpretation for spirometry data as lung function indices use sex-specific normal ranges. For 272 exercise capacity, male children tend to outperform females, but sub-analysis of our data stratified 273 by sex revealed no difference in findings (data not shown).[35]

Our study demonstrates that there is a large burden of chronic respiratory morbidity among HIV-274 275 infected children established on ART. Despite efforts to eliminate mother to child transmission, 300,000 infants were newly infected with HIV in 2011, and a record number (630,000) were 276 277 receiving ART in low income countries.[36, 37] Thus, HIV will continue to place a heavy burden 278 on paediatric clinical services in sub-Saharan Africa, where 90% of the world's HIV-infected 279 children live.[38] Delay in diagnosis of HIV infection and initiation of ART may increase the risk 280 of developing chronic lung disease. The WHO until 2015 had recommended that children aged over 281 five years should be treated with ART once CD4 count drops to 500cells/µl or Stage 3 or 4 disease. 282 The recent START and TEMPRANO trials in adults demonstrated that treating HIV infection 283 irrespective of immunological status reduces the risk of AIDS and non-AIDS events.[39, 40] In 284 children, earlier HIV recognition, may reduce the risk of developing chronic lung disease by preventing recurrent respiratory tract infection and by reducing chronic pulmonary inflammation. 285 Adoption of universal treatment of all HIV-infected individuals regardless of disease stage may 286 287 therefore be advantageous, and some additional benefit might be expected from co-trimoxazole prophylaxis by lowering the rates of lower respiratory tract infection. However, once established, 288 289 chronic lung disease appears to persist despite ART. Hitherto the main focus of HIV programs has 290 been on meeting the need for massive scale-up of paediatric antiretroviral therapy (ART) and on 291 improving infant survival. There is now a pressing need to address the long term complications of 292 HIV infection among the increasing numbers of children growing up with HIV, and novel diagnostic and therapeutic strategies for chronic lung disease are urgently required. 293

294 ACKNOWLEDGEMENTS

295 We would like to thank the clinic staff and the participants and their families.

296 CONTRIBUTIONS

- 297 Study conception: RAF, JR, KK, JM; Study design: RAF, JR, KK, JM; Protocol development:
- 298 RAF, JR, KK, JM; Training, quality control: JR; data collection: GM, RAF, EM, SW; Data
- analysis: JR, RAF, KK; Drafting and revision of manuscript: all authors.

300 COMPETING INTERESTS

301 The authors confirm that they have no competing interests.

302

304 **REFERENCES**

- 3051.Weber HC, Gie RP, Cotton MF. The challenge of chronic lung disease in HIV-infected306children and adolescents. J Int AIDS Soc 2013, 16:18633.
- Ferrand RA, Desai SR, Hopkins C, Elston CM, Copley SJ, Nathoo K, *et al.* Chronic lung
 disease in adolescents with delayed diagnosis of vertically acquired HIV infection. *Clin Infect Dis* 2012,55:145-152.
- 3103.McHugh G, Rylance J, Mujuru H, Nathoo K, Chonzi P, Dauya E, et al. Chronic morbidity311among older children and adolescents at diagnosis of HIV infection. In submission 2015.
- Mwalukomo T, Rylance SJ, Webb EL, Anderson S, O'Hare B, van Oosterhout JJ, *et al.* Clinical Characteristics and Lung Function in Older Children Vertically Infected With Human Immunodeficiency Virus in Malawi. *JPIDS* 2015.
- 5. Peacock-Villada E, Richardson BA, John-Stewart GC. Post-HAART outcomes in pediatric
 populations: comparison of resource-limited and developed countries. *Pediatrics*2011,**127**:e423-441.
- Pitcher RD, Lombard CJ, Cotton MF, Beningfield SJ, Workman L, Zar HJ. Chest
 radiographic abnormalities in HIV-infected African children: a longitudinal study.
 Thorax 2015,**70**:840-846.
- Jeena PM, Coovadia HM, Thula SA, Blythe D, Buckels NJ, Chetty R. Persistent and
 chronic lung disease in HIV-1 infected and uninfected African children. *Aids*1998,**12**:1185-1193.
- Sharland M, Gibb DM, Holland F. Respiratory morbidity from lymphocytic interstitial
 pneumonitis (LIP) in vertically acquired HIV infection. *Arch Dis Child* 1997,**76**:334-336.
- 326 9. Desai SR, Copley SJ, Barker RD, Elston CM, Miller RF, Wells AU, *et al.* Chest radiography
 327 patterns in 75 adolescents with vertically-acquired human immunodeficiency virus
 328 (HIV) infection. *Clin Radiol* 2011,**66**:257-263.
- Fletcher C. Standardised questionnaire on respiratory symptoms: a statement
 prepared and approved by the MRC Committee on the Aetiology of Chronic Bronchitis
 (MRC breathlessness score). *BMJ* 1960,2:1665.
- Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, *et al.*Standardisation of spirometry. *Eur Respir J* 2005, 26:319-338.
- Singh SJ, Morgan MD, Scott S, Walters D, Hardman AE. Development of a shuttle
 walking test of disability in patients with chronic airways obstruction. *Thorax*1992,47:1019-1024.
- 33713.Selvadurai HC, Cooper PJ, Meyers N, Blimkie CJ, Smith L, Mellis CM, *et al.* Validation of338shuttle tests in children with cystic fibrosis. *Pediatr Pulmonol* 2003, **35**:133-138.
- Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. *J Am Coll Cardiol* 2001,**37**:153-156.
- World Health Organization. Guidelines for intensified tuberculosis case-finding and
 isoniazid preventive therapy for people living with HIV in resource-constrained
 settings. 2011.
- 344 16. WHO. Growth reference data for 5-19 years. In; 2007.
- 345 17. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, *et al.* Multi-ethnic
 346 reference values for spirometry for the 3-95-yr age range: the global lung function
 347 2012 equations. *Eur Respir J* 2012,**40**:1324-1343.
- Masekela R, Anderson R, Moodley T, Kitchin OP, Risenga SM, Becker PJ, *et al.* HIVrelated bronchiectasis in children: an emerging spectre in high tuberculosis burden *areas. Int J Tuberc Lung Dis* 2012, **16**:114-119.

- 19. Metcalfe JZ, Mason P, Mungofa S, Sandy C, Hopewell PC. Empiric tuberculosis treatment 351 352 in retreatment patients in high HIV/tuberculosis-burden settings. The Lancet Infectious Diseases,14:794-795. 353
- de Martino M, Veneruso G, Gabiano C, Frongia G, Tulisso S, Lombardi E, et al. Airway 354 20. 355 resistance and spirometry in children with perinatally acquired human 356
 - immunodeficiency virus-type 1 infection. *Pediatr Pulmonol* 1997,**24**:406-414.
- Mwalukomo T, Rylance SJ, Webb EL, Anderson S, O'Hare B, van Oosterhout JJ, et al. 357 21. Clinical Characteristics and Lung Function in Older Children Vertically Infected With 358 Human Immunodeficiency Virus in Malawi. J Pediatric Infect Dis Soc 2015. 359
- 360 22. Zar HJ. Chronic lung disease in human immunodeficiency virus (HIV) infected children. 361 *Pediatr Pulmonol* 2008,43:1-10.
- 362 23. Gona P, Van Dyke RB, Williams PL, Dankner WM, Chernoff MC, Nachman SA, et al. Incidence of opportunistic and other infections in HIV-infected children in the HAART 363 era. Jama 2006,296:292-300. 364
- 365 24. Piddock KC, Gordon SB, Ngwira A, Msukwa M, Nadeau G, Davis KJ, et al. A crosssectional study of household biomass fuel use among a periurban population in 366 Malawi. Ann Am Thorac Soc 2014, 11:915-924. 367
- 25. Collini P, Morris A. Maintaining lung health with longstanding HIV. Curr Opin Infect Dis 368 369 2016,29:31-38.
- 370 26. French MA, King MS, Tschampa JM, da Silva BA, Landay AL. Serum immune activation 371 markers are persistently increased in patients with HIV infection after 6 years of 372 antiretroviral therapy despite suppression of viral replication and reconstitution of 373 CD4+ T cells. *J Infect Dis* 2009, 200:1212-1215.
- 374 27. McShane PJ, Naureckas ET, Tino G, Strek ME. Non-cystic fibrosis bronchiectasis. Am J 375 *Respir Crit Care Med* 2013,**188**:647-656.
- Allwood BW, Myer L, Bateman ED. A systematic review of the association between 376 28. 377 pulmonary tuberculosis and the development of chronic airflow obstruction in adults. 378 Respiration 2013,86:76-85.
- 379 29. Angthong W, Angthong C, Varavithya V. Pretreatment and posttreatment radiography 380 in patients with pulmonary tuberculosis with and without human immunodeficiency 381 virus infection. *Japanese Journal of Radiology* 2011, **29**:554-562.
- 382 30. Baez-Saldana R. A Novel Scoring System to Measure Radiographic Abnormalities and 383 Related Spirometric Values in Cured Pulmonary Tuberculosis. PLoS One 2013.
- 31. Steenhoff AP, Josephs JS, Rutstein RM, Gebo KA, Siberry GK, Gaur AH, et al. Incidence of 384 and risk factors for community acquired pneumonia in US HIV-infected children, 2000-385 2005. *AIDS* 2011,**25**:717-720. 386
- 32. Younas M, Psomas C, Reynes J, Corbeau P. Immune activation in the course of HIV-1 387 infection: Causes, phenotypes and persistence under therapy. *HIV Med* 2015. 388
- 389 33. Leader JK, Crothers K, Huang L, King MA, Morris A, Thompson BW, et al. Risk Factors Associated With Quantitative Evidence of Lung Emphysema and Fibrosis in an HIV-390 Infected Cohort. J Acquir Immune Defic Syndr 2016,71:420-427. 391
- 34. Miller RF, Kaski JP, Hakim J, Matenga J, Nathoo K, Munyati S, et al. Cardiac disease in 392 393 adolescents with delayed diagnosis of vertically acquired HIV infection. *Clin Infect Dis* 394 2013,56:576-582.
- 395 35. Li AM, Yin J, Au JT, So HK, Tsang T, Wong E, et al. Standard reference for the six-minute-396 walk test in healthy children aged 7 to 16 years. Am J Respir Crit Care Med 397 2007,**176**:174-180.
- 398 36. Global HIV/AIDS response: Epidemic update and health sector progress towards 399 Universal Access. In. Geneva, Switzerland: UNAIDS and WHO; 2011.

- 400 37. UNAIDS WU. Global update on HIV treatment 2013: Results, impact and opportunities.
 401 In. Geneva, Switzerland; 2013.
- 402 38. Ferrand R, Lowe S, Whande B, Munaiwa L, Langhaug L, Cowan F, *et al.* Survey of
 403 children accessing HIV services in a high prevalence setting: time for adolescents to
 404 count? *Bull World Health Organ* 2010,**88**:428-434.
- 405 39. Group TAS, Danel C, Moh R, Gabillard D, Badje A, Le Carrou J, *et al.* A Trial of Early
 406 Antiretrovirals and Isoniazid Preventive Therapy in Africa. *N Engl J Med*407 2015,**373**:808-822.
- 408 40. Insight Start Study Group. Initiation of Antiretroviral Therapy in Early Asymptomatic
 409 HIV Infection. *N Engl J Med* 2015.
- 410

412	Table 1: Summary characteristics of study participants by HIV status
-----	--

	HIV uninfected	HIV infected	p-value
	(n=150)	(n=202)	
Age, median years (IQR)	11.1 (9.0 – 12.8)	11.1 (9.0 – 12.9)	0.77
Sex, female, n (%)	63 (42.0)	111 (55.0)	0.018
Orphan, n (%)	20 (13.5)	102 (51.0)	< 0.001
Mother known to be HIV infected	13 (8.7)	202 (100)	< 0.001
Active smoker, n (%)	0 (0)	0 (0)	-
Passive smoke exposure at home, n (%)	27 (18.0)	42 (20.9)	0.18
Any respiratory complaint [*] , n (%)	1 (0.7)	51 (25.3)	< 0.001
Dyspnoea (MRC grade>1), n (%)	0 (0)	30 (14.9)	< 0.001
Daily cough for >1 month, n (%)	1 (0.7)	30 (14.9)	< 0.001
Sputum production, n (%)	1 (0.7)	20 (10.0)	< 0.001
Wheeze, n (%)	0 (0)	9 (4.5)	0.007
Resting tachypnoea: rate >25, n (%)	9 (6.0)	28 (14.1)	0.016
Hospital admission for RTI in last year, n (%)	3 (2.0)	4 (2.0)	0.96
Antibiotics for RTI in last year, n (%)	3 (2.0)	45 (22.3)	< 0.001
Previously diagnosed or treated			
Asthma, n (%)	3 (2.0)	7 (3.5)	0.37
PCP, n (%)	0 (0)	6 (3.0)	0.029
Tuberculosis ever, n (%)	1 (0.7)	76 (37.8)	< 0.001
Tuberculosis more than once, n (%)	0 (0)	5 (2.5)	0.10
Stunted (HFA z score <2), n (%)	12 (7.9)	72 (35.8)	< 0.001
Wasting (BFA z score <2), n (%)	10 (6.7)	18 (9.0)	0.42
Incremental Shuttle Walk Test (ISWT)	(n=82)	(n=187)	
Desaturates during test, n (%)	5 (6.1)	22 (11.1)	0.16
ISWT distance, metres mean (SD)	889 (227)	771 (216)	< 0.001
Spirometry interpretation	(n=130)	(n=177)	
Normal, n (%)	115 (88.5)	134 (75.7)	0.003
Obstruction, n (%)	1 (0.8)	7 (4.0)	0.052
Reduced FVC, n (%)	14 (10.8)	36 (20.3)	0.012
Bronchodilator response	(n=6)	(n=31)	

Reversibility demonstrated, n (%)	2 (33.3)	11 (35.5)	0.92
-----------------------------------	----------	-----------	------

* wheeze, chronic cough or dyspnoea; IQR interquartile range; SD standard deviation; HFA height
for age; BFA body mass for age; RTI respiratory tract infection; missing data on n=2.

416	Table 2 HIV-specific summary	characteristics
-----	------------------------------	-----------------

	HIV infected (n=202)
Age at diagnosis, median (IQR)	5.5 (2.8 - 7.5)
Age at ART initiation, median (IQR)	6.1 (3.6 – 8.4)
Mode of HIV transmission, n (%)	
Mother to child	201 (99.5)
Sexual	1 (0.5)
Reason for HIV testing	
Chronic cough	113 (55.9)
Hospital admission	41 (20.3)
Repeated illness	32 (15.8)
Other ‡	16 (7.9)
CD4 at diagnosis, median (IQR) †	353 (134 - 696)
CD4, median (IQR) at recruitment	726 (476 – 941)
HIV VL <400 copies/ml, n (%)	155 (78.7)

418 [†] Data available for 105 participants from health records; [‡] Other reasons were: testing in elective

419 male circumcision (n=6); spontaneous healthcare worker initiated (n=2); TB diagnosed (n=1);

420 sexual debut prompted testing (n=1); don't recall (n=6).

422 **Table 3 HIV treatment regimes**

	NNRTI based		PI based	
	NVP	EFV	ATAZ/r	LPV/r
AZT/3TC*	72	23	7	2
TDF/3TC	32	32	25	-
ABC/3TC	-	1	2	-
ABC/DDI	-	1	2	1
Total †	161		39	

423 AZT = zidovudine; 3TC = stavudine; TDF = tenofovir; ABC = abacavir; DDI = didanosine; NVP =

424 nevirapine; EFV = efavirenz; ATAZ/r = ritonavir boosted atazanavir; LPV/r = ritonavir boosted

425 lopinavir.

426 *1 individual unknown NNRTI or PI. 1 individual DDI/ATAZ/r with 2nd NRTI unrecorded

	Normal	Abnormal	OR (95% CI)
	n=134	n=43	
Age at diagnosis†, n (IQR)	4.6 (2.7 – 6.7)	5.8 (3.8 - 8.8)	1.15 (1.02 – 1.29)*
Age at ART initiation [†] , n (IQR)	5.8 (3.5 - 8.3)	6.3 (4.3 – 8.8)	1.05 (0.95 – 1.17)
Years on ART, n (IQR)	4.6 (2.3 – 6.4)	5.1 (3.4 – 6.4)	1.08 (0.95 – 1.23)
Any symptom, n (%)	25 (18.7)	20 (46.5)	3.8 (1.7 – 8.5)*
Dyspnoea, n (%)	13 (9.7)	14 (32.6)	4.5 (1.7 – 11.5)*
Daily cough, n (%)	12 (9.0)	13 (30.2)	4.4 (1.7 – 11.7)*
Sputum production, n (%)	7 (5.2)	9 (20.9)	4.8 (1.5 – 16.2)*
Wheeze, n (%)	6 (4.5)	3 (7.0)	1.6 (0.2 – 7.9)
Passive smoker	33 (24.6)	9 (20.9)	0.8 (0.3 – 2.0)
Biomass fuel used for cooking	21 (15.7)	8 (18.6)	1.2 (0.4 – 3.2)
Biomass fuel or candles used for lighting	18 (13.4)	6 (14.0)	1.0 (0.3 – 3.0)
Previous TB treatment, n (%)	49 (36.6)	18 (41.9)	1.2 (0.6 – 2.7)
Stunting (HFA<-2), n (%)	45 (33.6)	19 (44.2)	1.6 (0.7 – 3.3)
Wasting (BFA <-2), n (%)	5 (3.7)	10 (3.8)	8.1 (2.3 – 31.7)*
Abnormal SpO ₂ at rest or exercise, n (%)	11 (8.5)	9 (23.1)	3.2 (1.1 – 9.4)*
Resting tachypnoea (rate >25), n (%)	16 (12.1)	8 (19.1)	1.7 (0.6 – 4.7)
Viral load suppressed <400 copies/ml ^a	105 (80.2)	32 (78.1)	0.9 (0.4 – 2.4)
ISWT distance, metres (SD) ^b	765 (212)	771 (241)	1.00 (1.00 – 1.00)
CD4 at recruitment ^c	774 (342)	688 (344)	1.00 (1.00 – 1.00)
* C · · · · · · · · · · · · · · · · · ·			

427 Table 4: Association of factors with abnormal lung function in HIV-infected children

428 *Significant at p<0.05

429 ^a n=131 and n=41 respectively; ^b n=131 and n=38 respectively; ^c n=134 and n=42 respectively

430 Figure 1 Flowchart of participant recruitment and testing

431 Diagram showing recruitment of HIV-infected participants.

- 433 n=4 did not attend for follow-up appointment, and therefore did not undergo SWT
- 434 NTM: non-tuberculous mycobacteria

435	Figure 2 Spirometric abnormalities in HIV infected and uninfected participants
436	Dot plots of all participants with spirometry results, presented as z-scores compared with GLI 2012
437	reference ranges. Bars illustrate the mean and standard deviations of each group. Dotted horizontal
438	bars show the limits of normality. P values derive from t-tests. HIV infected individuals are further
439	shown by stratification by "Prior lung infection". This is a compound definition, including
440	individuals with any of: TB; PCP; NTM by sputum culture; hospitalisation for chest infection.
441	
442	
443	
444	
445	
446	
447	
448	
449	
450	
451	
452	
453	

Supplementary Table S1 Stratified analysis of the associations of pre-selected clinical and physiological characteristics with abnormal lung function.

	No prior infection (n=105)			Prior infection		
	Normal	Abnormal	OR (95% CI)	Normal	Abnormal	OR (95% CI)
	n=82	n=23		n=52	n=20	
Age at diagnosis [†] , n (IQR)	4.6 (2.2 – 6.7)	4.4 (3.7 – 7.5)	1.05 (0.90 – 1.23)	4.6 (3.3 – 6.7)	7.9 (5.0 – 9.0)	1.30 (1.07 – 1.59)*
Age at ART initiation [†] , n (IQR)	6.1 (3.2 – 8.4)	5.4 (3.7 – 7.9)	0.96 (0.83 – 1.10)	5.3 (3.6 - 8.3)	8.0 (5.7 – 9.9)	1.19 (1.00 – 1.41)*
Years on ART, n (IQR)	4.3 (2.1 – 6.4)	5.4 (3.7 – 6.7)	1.05 (1.00 – 1.42)*	4.6 (3.0 – 6.5)	4.5 (2.7 – 6.4)	0.94 (0.76 – 1.15)
Any symptom, n (%)	14 (17)	7 (30)	2.1 (0.7 – 6.1)	11 (21)	13 (65)	6.9 (2.2 – 21.5)*
Dyspnoea, n (%)	9 (11)	5 (22)	2.3 (0.7 - 7.5)	4 (8)	9 (45)	9.8 (2.6 - 37.8)*
Daily cough, n (%)	4 (5)	6 (26)	6.9 (1.7 – 27.1)*	8 (15)	7 (35)	3.0 (0.9 - 9.7)
Sputum production, n (%)	2 (2)	4 (17)	8.4 (1.4 – 49.3)*	5 (10)	5 (25)	3.1 (0.8 – 12.3)
Wheeze, n (%)	4 (5)	1 (4)	0.9 (0.1 – 8.3)	2 (4)	2 (10)	2.8 (.04 – 21.2)
Passive smoker, n (%)	22 (27)	6 (26)	1.0 (0.3 – 2.8)	11 (21)	3 (15)	0.7 (0.2 – 2.6)
Biomass fuel used for cooking, n (%)	12 (15)	5 (22)	1.6 (0.5 – 5.2)	9 (17)	3 (15)	0.8 (0.2 – 3.5)
Biomass fuel or candles used for lighting, n (%)	11 (13)	3 (13)	1.0 (0.2 – 3.9)	7 (13)	3 (15)	1.1 (0.3 – 4.9)
Stunting (HFA<-2), n (%)	22 (27)	7 (30)	1.2 (0.4 – 3.3)	23 (44)	12 (60)	1.9 (0.7 – 5.4)
Wasting (BFA <-2), n (%)	3 (4)	3 (13)	4.0 (0.7 – 21.2)	2 (4)	7 (37)	14.6 (2.7 – 79.3)*
Abnormal SpO ₂ at rest or exercise, n (%)	7 (9)	4 (19)	2.5 (0.6 - 9.3)	4 (8)	5 (28)	4.4 (1.0 – 18.9)*
Resting tachypnoea (rate >25), n (%)	13 (16)	3 (14)	0.8 (0.2 – 3.2)	3 (6)	5 (25)	5.3 (1.1 – 25.0)*

Viral load suppressed <400 copies/ml ^a	60 (75)	18 (86)	2.0 (0.5 - 7.5)	45 (88)	14 (70)	0.3 (0.1 – 1.1)
ISWT distance, metres (SD) ^b	803 (223)	804 (254)	1.00 (1.00 – 1.00)	704 (180)	730 (223)	1.00 (1.00 – 1.00)
CD4 at recruitment ^c , cells/µl (SD)	761 (343)	658 (259)	1.00 (1.00 – 1.00)	794 (342)	721 (423)	1.00 (1.00 – 1.00)

457 "Prior infection" uses a compound definition of any of the following: previous TB treatment; previous PCP treatment; admitted to hospital with

458 infection in the preceding 12 months; mycobacteria isolated in sputum culture

459 a: No prior infection - normal n=80, abnormal n=21; Prior infection - normal n=51, abnormal n=20

- 460 b: No prior infection normal n=80, abnormal n=21; Prior infection normal n=51, abnormal n=17
- 461 c: No prior infection normal n=82, abnormal n=22; Prior infection normal n=52, abnormal n=20

462 * significant at p<0.05

463