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Abstract

Background: Malaria control in Africa is most tractable in urban settlements yet most research has focused on rural settings.
Elimination of malaria transmission from urban areas may require larval control strategies that complement adult mosquito
control using insecticide-treated nets or houses, particularly where vectors feed outdoors.

Methods and Findings: Microbial larvicide (Bacillus thuringiensis var. israelensis (Bti)) was applied weekly through
programmatic, non-randomized community-based, but vertically managed, delivery systems in urban Dar es Salaam,
Tanzania. Continuous, randomized cluster sampling of malaria infection prevalence and non-random programmatic
surveillance of entomological inoculation rate (EIR) respectively constituted the primary and secondary outcomes surveyed
within a population of approximately 612,000 residents in 15 fully urban wards covering 55 km2. Bti application for one year
in 3 of those wards (17 km2 with 128,000 residents) reduced crude annual transmission estimates (Relative EIR [95%
Confidence Interval] = 0.683 [0.491–0.952], P = 0.024) but program effectiveness peaked between July and September
(Relative EIR [CI] = 0.354 [0.193 to 0.650], P = 0.001) when 45% (9/20) of directly observed transmission events occurred.
Larviciding reduced malaria infection risk among children #5 years of age (OR [CI] = 0.284 [0.101 to 0.801], P = 0.017) and
provided protection at least as good as personal use of an insecticide treated net (OR [CI] = 0.764 [0.614–0.951], P = 0.016).

Conclusions: In this context, larviciding reduced malaria prevalence and complemented existing protection provided by
insecticide-treated nets. Larviciding may represent a useful option for integrated vector management in Africa, particularly
in its rapidly growing urban centres.
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Introduction

Although awareness and support for controlling malaria has

increased greatly in recent years, current financial commitments

total only 20% of that required [1,2] and malaria remains a major

contributor to the global disease burden [3]. Malaria research and

control has traditionally focused on rural areas but it is

increasingly recognized that malaria also poses a major problem

in urban settings [4–6]. Malaria transmission is generally lower in

urban areas but improved understanding and evidence–based

strategies for controlling urban malaria [4–6] are urgently needed

because more than 50% of the African population will live in

towns or cities by 2030 [7]. Indeed many of the billion people

exposed to low-level malaria risk globally, for whom elimination of

local transmission exposure is a feasible ambition [8], live in urban

settlements across the tropics [6]. Crucially, malaria is considered

easier to control or even eliminate in urban centres because lower,

more tractable levels of transmission often coincide with higher
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population densities, better access to health services, social

inclusion and institutional capacity [4–6].

In Dar es Salaam, the largest city of the United Republic of

Tanzania, inhabitants use different protective measures like ceiling

boards, window screening, sprays, coils, repellents and insecticide

treated nets (ITNs), depending on what they can afford and on their

knowledge and perception of risk [9]. Tanzania has emphasized

widespread use of ITNs as a priority malaria vector control strategy

[10] but recent observations indicate that malaria vectors tend to

bite outdoors in Dar es Salaam so ITNs confer less protection than

in rural areas [9]. Alternative strategies which reduce larval

abundance and hence adult vector populations [11–17] may be of

great utility in urban areas with high human population densities,

particularly those with similarly exophagic vectors. Successes of

larval control and integrated vector control programs including

environmental management have been clearly recorded in the past

but no consistently sustained example remains today [14,15,17,18].

An Urban Malaria Control Program (UMCP) has recently been

initiated by the Dar es Salaam City Council in Tanzania as a pilot

program to develop sustainable and affordable systems for larval

control as part of routine municipal services. Specifically, the UMCP

implements the regular application of microbial larvicides (Bacillus

thuringiensis var. israelensis (Bti) and B. sphaericus (Bs) [19–25]) through

community-based, but vertically managed, delivery systems [26,27].

Here we evaluate the impact of this programmatic system for

regular application of microbial larvicides in urban Dar es Salaam

[27]. Specifically, we describe the benefits of this program in terms

of reduced malaria transmission and infection prevalence,

considering local malaria epidemiology and seasonality, as well

as the presence of existing malaria control measures such as ITNs,

ceiling boards, and window screening and therapeutic drugs.

Methods

Study site and experimental design
This study was conducted in Dar es Salaam, the biggest and

economically most important city in Tanzania, which is situated

on the shores of the Indian Ocean [14]. Dar es Salaam is a city

with a well documented history of successful health sector reform

and vector control operations [14,28–38]. It covers a total area of

1400 km2 with approximately 2.5 million inhabitants [39]. Dar es

Salaam is divided into 3 municipalities: Temeke, Ilala and

Kinondoni, which together comprise 73 wards. The wards are

further subdivided into neighbourhood-sized administrative sub-

units known as mitaa (singular mtaa), the Kiswahili word for street.

Such neighbourhoods normally compromise between 20 and 100

mashina (singular shina) or Ten Cell Unit (TCU). The TCU is the

smallest subunit of local government in Tanzania, typically

including 20–30 houses but some even exceed 100 (Ref. [40]).

The findings presented here are based on data derived from the

first 3 years of the UMCP, where household surveys including

malaria infection status were initiated in May 2004. The project

area includes 5 wards in each of the three municipalities, comprising

a total of 67 mitaa (Figure 1). This study site covers a surface area of

55 km2 in which 611,871 people resided in 2002 [39]. The new

management and delivery systems developed which underpin this

program are described in detail elsewhere [27]. The surveillance

activities of the UMCP are briefly described below and rely on 3

crucial components: 1) Mapping and surveillance of potential

Anopheles breeding sites [27,40], 2) Monitoring of adult mosquito

densities [9,27], and 3) Cluster-sampled household surveys of

parasite infection status and potential determinants thereof

(Figures 2 and 3). In the third year of the UMCP, beginning in

March 2006, the routine application of the microbial larvicide Bti to

open habitats and Bs to closed habitats was initiated in 3 of the 15

wards in the study area [27], adding to existing interventions such as

bednets, house screening, ceiling boards, repellents, coils and spray

(Figures 1, 2 and 3). Buguruni, Mikocheni and Kurasini wards in

Ilala, Kindondoni and Temeke Municipalities, respectively, are

home to a total of approximately 128,000 residents and were chosen

non-randomly for intervention with larvicides because comprehen-

sive and detailed maps had been completed and larval surveillance

teams in these wards were considered most effective [27,40].

Programmatic implementation of larvicide application
Larviciding started in March 2006 in one ward of each

municipality, namely Buguruni, Mikocheni and Kurasini, encom-

passing a total surface area of 17 km2. These intervention wards

were chosen based on the ability of the ward supervisors and the

ward-based CORPs to collect, understand, use and submit high

quality data during the baseline data collection period [27]. The

microbial insecticides applied were Bacillus thuringiensis var. israelensis

(VectoBacH) for open (light-exposed) habitats and Bacillus sphaericus

(VectoLexH) for closed (covered, often highly polluted) habitats.

Open habitats, which have the potential to produce Anopheles larvae,

were treated weekly by the Mosquito Control CORPs, each of

whom was assigned to a specific mtaa or portions of an mtaa. Open

habitats were treated every week with Bti at dosages of 0.04 and 1 g

per m2 for water-dispersible granule and corn cob granule

formulations, respectively. Closed habitats, which mainly produce

Culex quinquefaciatus, were treated every three months by an additional

team of CORPs, using Bs corn cob granules [27] at a dosage rate of

1 g per m2. It should be noted, however, that unlike the open

habitats which were the primary focus of this program, no rigorous

monitoring and follow up of these closed habitats was implemented.

The primary operational surveillance system used to monitor and

manage the application of larvicides was a continuously repeated

and comprehensive weekly survey of every potential breeding site in

the study area, which included dipping for aquatic-stage mosquito

larvae [27]. Before surveillance or control activities started, all active

or potential breeding sites in each TCU were recorded by

community own resource persons (CORPs) using a set of formalized

sketch maps as a rigorous geographic framework that is applicable

at community level [40]. Approximately 90 larval surveillance

CORPs surveyed all water bodies in their assigned area on a weekly

basis for the presence of Anopheles and Culicine mosquitoes and

report their observations using standardized forms [27].

These larval data are not described in detail here for a number

of reasons. Firstly, they were developed as a tool to enable

decentralized, daily operational management of larval control at

ward level rather than as a rigorous and consistently collected

indicator of impact on vector populations. The ward supervisors

who collate such data have intrinsic competing interests in

reporting shortcomings of control. Secondly, rigorous quality

assurance of the larval surveillance was limited to a subset of six

wards as previously described [27] so as to enhance control and

provide a minimal comparative data set rather than to achieve

uniform data quality. Thirdly, larval surveillance is, by definition,

biased towards habitats which are already known and therefore

most likely to be covered by control activities, so this is an

indicator which tends to overestimate impact on mosquito

populations. Larval surveillance data are not considered further

in this evaluation except as a methodological means for

operational teams to monitor and manage control activities.

Outcome measures
This report focuses on the impact of larviciding on rigorous

indicators of malaria transmission and infection risk which are

Larviciding Prevents Malaria
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collected completely independently of the teams responsible for

control activities so that no biases are introduced. The primary

outcome considered here is malaria infection status determined by

quality-controlled microscopy of Giemsa-stained thick smears on

glass slides, obtained through randomized, cluster-sampled

household surveys that also recorded factors which might influence

infection risk among these residents. The secondary outcome

considered is Entomologic Inoculation Rate (EIR), estimated

Figure 1. A map of the study area in central Dar es Salaam, Tanzania. Wards included in the study area of the Dar es Salaam Urban Malaria
Control Program (UMCP) are outlined, specifying those targeted for larviciding from March 2006 onwards (intervention) and those which did receive
any larviciding over the course of the study (non-intervention wards).
doi:10.1371/journal.pone.0005107.g001
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through routine programmatic entomological surveillance of

vector mosquito densities in fixed, non-randomly chosen locations

combined with subsequent laboratory analysis of captured

specimens for sporozoite-stage parasite infection prevalence.

These indicators are not only collected independently of larval

control activities, they are also direct measures of actual

transmission and therefore capture all local, household and

personal variations in all the underlying processes which determine

malaria risk.

Entomologic Inoculation Rate. In each of the 67 mitaa, one

resident was recruited as an Adult Mosquito Surveillance CORP

in order to conduct human landing catch (HLC) [41]. In each

mtaa, four different, well-distributed sampling locations were

chosen non-randomly in order to maximize coverage of

Figure 2. Schematic representation of the timeline of activities described in this study. The study is divided into years of programmatic
activity as follows: Year 1: April 2004 till March 2005 was the first year, during which household surveys were initiated and systems for mapping and
monitoring larval habitats were developed [27,40]. Year 2 spans the period April 2005 to March 2006 and was also defined as a pre-intervention year
because no larviciding was implemented. In year 2 household surveys were complemented with entomological baseline data (larval and adult
surveys) allowing subsequent rational implementation and evaluation of larviciding. Year 3 is the subsequent intervention year during which
systematic larviciding was introduced to the three selected wards and spanned the period of April 2006 to March 2007.
doi:10.1371/journal.pone.0005107.g002

Figure 3. Study area, population, experimental design and sample sizes.
doi:10.1371/journal.pone.0005107.g003

Larviciding Prevents Malaria

PLoS ONE | www.plosone.org 4 March 2009 | Volume 4 | Issue 3 | e5107



surveillance, resulting in a total of 268 routinely maintained

surveillance sites [9]. HLC was conducted once every four weeks

at each location outdoors from 6pm to 6am for 45 minutes of each

hour, allowing 15 minutes break for rest. Measured biting

densities were therefore divided by 0.75 to obtain biting rates for

a full hour. In order to estimate the total true exposure

experienced both indoors and outdoors by residents, these

directly measured outdoor mosquito densities were multiplied by

the coefficient of the estimated total true human exposure divided

by the estimated total outdoor biting rate obtained from detailed

studies of mosquito-human interactions [9]. These coefficients

(Anopheles gambiae: 0.670, An. funestus: 0.725, An. coustani: 0.448 and

Culex: 0.94) were derived from an in-depth behavioural survey of

both mosquitoes and humans which was conducted during the

main rainy season of April to June 2006 [9]. All mosquitoes were

identified morphologically to genus and, in the case of Anopheles, to

species complex level [42,43]. Members of the An. gambiae complex

were further identified to sibling species level by polymerase chain

reaction (PCR) [44]. The sporozoite infection status of each

mosquito was determined by enzyme-linked immunoabsorbent

assay as previously described [45]. Note that adult mosquito

surveillance for the entire study area was coordinated centrally and

independently of the decentralized larvicide application teams to

provide unbiased, uniform and independently collected data for

both programmatic monitoring [27] and rigorous evaluation.

Generalized estimating equations (GEE) were used to estimate

impact on mosquito densities and EIR by treating active

larviciding in that time and place as a categorical independent

factor in the model (SPSSH 15.0). Although the first larviciding

began in March 2006, these activities took some weeks to scale up

across the full extent of the three targeted wards so for analytical

purposes we consider March 2006 to be the last month of pre-

intervention year 2. Apart from the programmatic rationale for

this assumption, biologically-determined time lags in the affected

processes suggest that substantial impact upon either adult

mosquito density or, even more so, upon malaria infection

prevalence cannot be expected any earlier. In all cases, EIR was

calculated as the product of the mean biting density of the vector

species over the periods in question, multiplied by the mean

sporozoite prevalence for that species over the course of the entire

year. Total EIR was calculated as the sum of the EIR values for

each vector over the period in question. TCU was treated as the

unit of geographic location and year as the indicator of time, with

vector densities and EIRs estimated as means for each TCU over

either the full year or the duration of the July–September dry

season when control appeared most effective [27] and almost half

of infected mosquitoes were caught (Results). TCU identity

uniquely identifies the 268 sampling sites utilized for these surveys

and was therefore treated as a subject variable with mosquito

density or total EIR as the dependent variable, using a logarithmic

link function and normal distribution, weighted according to the

number of catcher nights for each location. The repetition of

measurements within the same TCU experimental units was

accounted for by treating year as a source of first order

autoregressive within-subject variance. Note that in this analysis

all 12 non-intervention wards were used for comparison with the 3

intervention wards which differs from an earlier report limited to

the 3 non-intervention wards for which quality-controlled larval

habitat data was available [27].

Malaria infection prevalence. Four rounds of cluster-

sampled household surveys were conducted, the first of which

took place from May until September 2004. The second started in

November 2004 and ended in July 2005. Round 3 went from

September 2005 till May 2006 and round 4 from July 2006 till

March 2007. During each round, 10 new TCUs were randomly

sampled in each of the 15 UMCP wards and every consenting and

assenting individual in the entire cluster was surveyed as follows,

regardless of whether that individual had been surveyed in

previous rounds. While approximately 150 fresh TCUs were

surveyed in each survey round, the full cohort of TCUs sampled

on the first and second rounds were also followed-up longitudinally

for the duration of the study by inclusion in subsequent rounds.

This sample size was estimated, based on mean TCU population

size, to enable detection of a 5% absolute difference in the

proportion infected or re-infected, equivalent to 650% relative

risk from a baseline prevalence of 10%, at a significance level of

5% with 80% power.

The household surveys utilized a questionnaire that recorded the

following information about the household: (i) geographical identi-

fication of the area, (ii) house structure with an emphasis on features

that prevent mosquito entry, (iii) information about education,

occupation and knowledge about malaria of the head of the

household, (iv) assets, expenditures and income sources, (v) anti-

malarial measures in use, including specific drugs used in the previous

two weeks, and (vi) individual, demographic, behavioural and health

related information like sleeping behaviour, travelling habits and

treatment-seeking behaviour. All consenting participants also pro-

vided finger-pricked blood samples for Giemsa-stained thick and thin

smear microscopic examination. The accuracy of these blood smear

diagnoses was quality controlled internally as previously described

[28]. Individuals who were found to be infected with malaria parasites

were then treated with appropriate front-line anti-malarial drugs

(until August 2004 it was sulphadoxine-pyrimethamine (FansidarH)

which was subsequently replaced by artesunate-amodiaquine

(MaladarH)), retested a week later and, if necessary, referred to

hospital for treatment of recrudescent infections.

In order to calculate an asset index as a proxy for the

socioeconomic status (SES), we applied principal component

analysis (PCA) to the recorded possessions of each household [46].

All potentially protective assets, such as mosquito nets, window

screenings and ceiling boards, were excluded as this would have

compromised the value of such an index as an independent

determinant of malaria risk. All livestock ownership variables were

also excluded because only a few people owned animals while

ownership of beds and mattresses were excluded because almost all

households had them. Factor 1, which was concluded to best reflect

the asset index, accounted for 28.6% of the variance (Table S1).

Determinants of malaria infection prevalence were estimated

using GEEs treating infection status as the dependent variable with

a binary distribution (infected or not infected) and logit link

function. Follow-up records of infection status in subjects treated

for malaria and then retested a week after therapy were not

included in this analysis so the only repeated measures in this data

set are for those subjects in the cohort of TCUs followed up every

6 to 9 months over the course of the study. Such re-testing of the

same individuals was treated as a repeated measure with first order

autoregressive covariance. As individual participants were selected

using a cluster sampling approach, the identities of these TCUs

were treated as a cluster effect.

Initial evaluation of the effect of age upon the relationship

between measured EIR exposure and infection status used a GEE

that included the logarithm of the total EIR plus one as a

continuous variable in the model and stratified the data by age

group. These analyses revealed that prevalence was only positively

associated with local exposure levels among young children of five

years or less (Box S1). All subsequent analyses to estimate the

impact of interventions, such as larviciding and insecticide-treated

nets, were therefore restricted to this age group.

Larviciding Prevents Malaria
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Although preliminary analysis examined data from each year or

round, these were pooled for the final analysis and survey round

was treated as the unit of temporal variation. The final model fit

was optimized by forward stepwise selection (exclusion criterion;

P.0.10) of all potential determinants of malaria risk, such as

socioeconomic status and protective measures like coils, sprays,

repellents and recent drug use. Initial attempts to fit the model to

the entire 7135 human subjects controlling for cluster effects were

confounded by the covariance between time, location and

intervention which occurred because many TCUs were only

surveyed either before or after the introduction of larviciding.

Although treating the TCU as the experimental unit overcame this

problem and allowed the impact of larviciding to be estimated, this

approach precluded the detection of important risk factors

operating at the individual level, such as personal use of

insecticide-treated nets. We therefore confirmed this estimate

while controlling for individual-level factors by treating individual

human subject as the experimental unit and preventing TCU-

larviciding covariance by restricting our analysis to the 4450

individuals from TCUs which were surveyed at least once before

and once after larviciding was introduced to three of the 15 wards.

Ethics Statement
All activities of the UMCP, including these field surveys were

approved by the Medical Research Coordination Committee of

the National Institute for Medical Research, Ministry of Health,

Government of Tanzania (Reference numbers NIMR/HQ/R.8a/

Vol. IX/279 and 324) and Durham University’s Ethics Advisory

Committee. No persons in high risk groups, namely people under

18 years or women of reproductive age, were recruited to conduct

human landing catch. Furthermore, all human landing catchers

were screened weekly for malaria by microscopic examination of

thick smear peripheral blood samples and, when found infected,

treated with artemisin-based combination therapy. Participating

residents in the household survey signed an informed consent form

after receiving information about the goal, objectives, risks and

benefits of the study. For children under 18 years, parents or

designated guardians granted consent. Individual information was

kept in strict confidence by storing in locked rooms and cabinets

and password-protected computers.

Results

Mosquito densities, malaria prevalence and seasonality
All three species of Anopheles we recorded in Dar es Salaam,

namely An. gambiae s.l., An. funestus and An. coustani, were identified

as malaria vectors but their generally low densities and sporozoite

infection prevalence resulted in relatively modest transmission

intensity of just over 1 infectious bite per year (Table 1).

Correspondingly, the prevalence of malaria infection amongst

humans was also moderate: between May 2004 and March 2007

the crude prevalence of malaria infection across all age groups

averaged 11.7% (4969/42,447) but steadily declined from 17.6%

in year 1 (2189/12,431) to 11.9% (1614/13,563) in year 2 and

7.1% (1166/16,453) in year 3. As described in Box S1, the age-

prevalence profile indicated substantial levels of immunity, and

therefore historical exposure, among older age groups.

Mosquito abundance and malaria prevalence followed seasonal

patterns in Dar es Salaam (Figure 4 and 5). Peak An. gambiae s.l.

densities occurred shortly after the peak of the main rains in April–

May (Figure 4B and 5B), whilst An. funestus had a much longer time

lag, peaking around July and August (Figure 4C and 5C). An.

coustani densities were highest in January shortly after the short

rainy season, following which they almost disappear, reappearing

and persisting immediately after the main rains. Note, however,

that An. coustani densities in the intervention areas were generally

very low, only appearing in June and July (Figure 4D and 5D).

Culex sp. densities were also highest during and shortly after the

main rainy season (Figure 4E). Interestingly, malaria prevalence

peaked at different times each year (Figure 4F). In 2004,

prevalence reached extremely high levels in November, appearing

to reflect an active epidemic. Epidemic-prone conditions may have

resulted from the low prevalence and immunity levels experienced

during the exceptionally dry periods in 2003 and early 2004 [28].

In both 2005 and 2006 there was a clear peak of infection

prevalence in or around May (Figure 4F).

Impact of larvicides upon mosquito densities and malaria
transmission

Larviciding substantially suppressed annual mean densities of

both secondary vectors in Dar es Salaam, namely An. funestus and

An. coustani (Table 2). Although no significant suppression of the

primary vector An. gambiae was observed over the course of the

year, total EIR calculated from the combined annual mean

densities and sporozoite prevalences of all three malaria vectors

was reduced by 32% (Table 2). Densities of Culex sp. were only

slightly reduced so it is unlikely that any worthwhile suppression of

biting nuisance or transmission of other pathogens was achieved

(Table 2).

The modest and non-significant impact of larviciding upon

annual mean densities of An. gambiae (Figure 4B, Table 2) is

consistent with analyses restricted to 6 of the study wards from

which quality-controlled larval data was available [27]. However,

it is noteworthy that An. gambiae was controlled most effectively

Table 1. Crude entomological estimates of mosquito density and malaria transmission in Dar es Salaam.

Parameter An. gambiae An. funestus An. coustani All Anopheles Culex sp.

Total mosquitoes caught 3868 160 936 4964 240295

Estimated mean biting rate (bites per person per night)a 0.63 0.03 0.10 0.76 55.1

Number sporozoite positive 16 2 5 23 NA

Sporozoite prevalence (%) 0.41 1.25 0.53 0.46 NA

Entomological inoculation rate (infectious bites per person per year)b 0.95 0.13 0.20 1.28 NA

The parameters presented are directly derived from or estimated from a total of 5463 nights of human landing catches distributed across the UMCP area (Figure 1) in
years 2 and 3 of the study (Figure 2).
aTotal number caught6(species-specific quotient of mean overall exposure / mean outdoor biting rate as per reference [9]) / (0.756 total catcher nights).
bEstimated biting rate 6365 days per year6mean sporozoite prevalence.
doi:10.1371/journal.pone.0005107.t001
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during drier periods while control during the two wet periods of

year 3 was generally poor [27]. Inadequate control during the

main rainy season was primarily due to cash flow restrictions

which delayed procurement so that larviciding did not begin early

enough to prevent the bulk of An. gambiae proliferation [27].

Control effectiveness also relapsed during the short rains due to

newly generated, inaccessible larval habitats in waste water

settlement ponds [27]. Taken at face value, such an apparently

modest overall reduction of transmission would not be expected to

yield major public health benefits [5,6,47,48]. However, these

conventional analyses are based on mean sporozoite prevalence

rates which are assumed to be constant throughout year. This

approach fails to capture a more encouraging feature of the data:

seasonal coincidence of optimal control effectiveness with the peak

of actual transmission rather than with mosquito densities.

Effectiveness of An. gambiae control varied seasonally and

previous analyses have shown that reduction of An. gambiae

densities [27] was greatest during the dry season following the

main rains (Figure 5E and 5F). Although some sporozoite-infected

An. gambiae were caught when their abundance peaked in April and

May, most were caught during drier months following the cold

season when warmer conditions allowed faster parasite develop-

ment and higher mosquito survival. In fact, almost half of all

directly observed transmission events occurred between July and

September (Figure 5G) when control of all three confirmed

vectors, including An. gambiae, was most effective (Figure 5E and

4F): 45% (9/20) of all sporozoite-infected mosquitoes caught in the

12 non-intervention wards occurred in this three month period

(Figure 5G). The ratio of An. gambiae biting densities for

intervention versus non-intervention areas was particularly

reduced by larviciding in July and August of year 3 compared to

the same period of the pre-intervention year 2 (Figure 5E and 5F).

Furthermore, the density ratio of both An. funestus and An. coustani,

which are responsible for about a quarter of all transmission, were

greatly reduced throughout the whole intervention year (Table 2,

Figure 5E and 4F and Table S2). Consistent with previous analyses

restricted to 6 of the study wards, analyses of mosquito densities

over the July to September period (Table 2) reveal useful

reductions of An. gambiae densities (272%) and malaria transmis-

sion (265%). Thus the seasonal peak in control effectiveness

coincided optimally with the period when the vector population

was most infectious to humans. Unfortunately, a mere 23

sporozoite-infected mosquitoes are insufficient to estimate the

impact of larviciding upon directly measured transmission events

by Poisson regression [49]. It is nevertheless encouraging to

qualitatively observe fortuitous temporal targeting of effective

control of the primary malaria vector, complemented by successful

all-year-round abatement of the secondary vectors.

Impact of larvicides and personal protection measures
upon malaria infection prevalence

Initial examination of figure 4F suggests that larviciding had

little impact, if any, upon malaria prevalence among all age

Figure 4. Longitudinal trends in overall malaria prevalence and
its environmental determinants in Dar es Salaam, Tanzania.
Monthly variations in rainfall, temperature (A), mosquito biting densities
(B–E) and malaria prevalence (F) in the intervention and non-intervention
areas over the first three years of the urban malaria control program
(UMCP). Climatic and prevalence data was available from May 2004 till
March 2007 whereas mosquito data was only collected from April 2005
till March 2007. Meteorological data was derived from meteorological
station at Nyerere International Airport and assumed representative of
both intervention and non-intervention areas.
doi:10.1371/journal.pone.0005107.g004
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groups. The observation that infection prevalence and respon-

siveness to exposure was concentrated in young children (Box S1)

prompted us to restrict our analysis of determinants of malaria risk

to this youngest age stratum. Crude analysis of prevalence within

this age stratum tentatively suggests some benefit of larviciding:

Although modest and inconsistent differences do exist between the

intervention and non-intervention wards in years 1 and 2,

prevalence appears more clearly and significantly lower in the

former during year 3 when larviciding was applied (Figure 6).

Given that the spatial aggregation of malaria risk is particularly

acute in cities [4,5] and a cluster sampling procedure was used,

with different sets of TCUs sampled in each survey round, it is

perhaps unsurprising that the crude relationship between inter-

vention and non-intervention areas before the actual introduction

of larviciding was slightly inconsistent (Figure 6).

Logistic regression analysis of data from each year revealed that

when the effects of cluster sampling was taken into account (Table

S3), malaria prevalence in the intervention and non-intervention

areas was more readily comparable in years 1 and 2 and that the

only significant determinant of infection risk in any year was being

in an area with larviciding during year 3 (OR [95% CI] = 0.536

[0.361 to 0.796]). In order to clearly resolve spatial and temporal

variation in malaria risk from the impact of larviciding which was

delivered to specific geographic areas at specific times, infection

status and questionnaire data for all three years were analysed

treating survey round and TCU as units of temporal and spatial

variation, respectively. Preliminary analyses which also consider

TCU as the experimental unit indicated an impressive protective

effect of larviciding (OR = 0.313 [0.118–0.830], P = 0.019) and

this observation was confirmed by individual-level analyses which

Figure 5. Seasonal patterns of malaria transmission in Dar es Salaam, Tanzania. Seasonal patterns of rainfall and temperature (A), seasonal
distribution of mosquito biting densities (B–D) and sporozoite-infected mosquitoes in the non-intervention areas (G), as well as relative biting rates in
the pre-intervention and the intervention year (E, F). Relative biting densities were aggregated over pre-intervention year 2 (E: April 2004 till March
2005) and intervention year 3 (F: April 2005 till March 2006)) while direct observations of transmission in the non-intervention areas (G) were summed
over both years to consolidate the limited numbers of observations in a qualitatively useful manner.
doi:10.1371/journal.pone.0005107.g005
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also reveal the benefits of selected personal protection measures

(Table 3). Apart from survey round and location, the only other

factors which even approached significance as determinants of

malaria risk were all interventions which prevent exposure to

mosquitoes (Table 3). Use of a topical repellent may provide

considerable protection and the benefits of either using an

insecticide-treated net (ITN) or living in an area which is treated

with larvicide are clearly significant. While this individual-level

analysis does not capture the mass effect of ITNs upon malaria

transmission [50], it is notable that larviciding appears to offer

protection against malaria that is at least comparable with actually

using an ITN and may well be better (Table 3).

Modest increases in the use of effective drugs, perhaps

combined with increasing use of screening and complete ceilings,

may well have played a role in the overall reduction of malaria

prevalence over these three years (Box S2). Significant differences

were observed in the usage of different control measures in the

sampled households of the intervention versus non-intervention

areas (Table S4) but none of these differences were consistent with,

or of a sufficient magnitude to plausibly explain, the massive

reduction of malaria risk in the intervention wards during year 3

(Table S4). The usage rates of personal protection measures,

namely ITNs, ceilings and screening differed significantly between

intervention and non-intervention wards in year 3 but the

magnitude of these differences was very slight and, with the

exception of ceilings, would bias towards underestimation of the

impact of larviciding (Table S4). Although there were significant

variations in proportional use of different types of drugs, the

absolute number of individuals was small (Table S4): Only 16% of

surveyed individuals had recently used antimalarials and no

statistically significant influence upon risk was detected (Table 3,

Table S3).

Discussion

It is well established that Bti effectively kills malaria vector

mosquito larvae under field conditions in Africa [23,25,51] and

can reduce malaria vector population densities [19–25,27]. The

Figure 6. Crude prevalence of malaria infection amongst
children of five years or less in intervention and non-
intervention wards over each year of the study. Error bars
represent 95% confidence intervals with the significance of the
differences between intervention and non-intervention wards estimat-
ed by x2 analysis (n = 1908, 1983 and 1910 for non-intervention and
414, 456 and 456 for intervention wards in years 1, 2 and 3,
respectively).
doi:10.1371/journal.pone.0005107.g006

Table 2. Impact of larviciding on mosquito density and crude
malaria transmission intensitya in year 3 of the study
estimated using generalized estimating equations as
described in the methods section (n = 268 mosquito sampling
sites which were non-randomly assigned to 4 fixed TCUs per
neighbourhood and monitored throughout the second and
third years of the study).

Parameter
Relative biting or transmission
intensity [95% CI] P-value

Full year

An. gambiae 0.769 [0.551–1.073] 0.123

An. funestus 0.342 [0.113–1.039] 0.058

An. coustani 0.020 [0.003–0.149] ,0.001

Total EIR 0.683 [0.491–0.952] 0.024

Culex sp. 0.862 [0.756–0.983] 0.027

July–September

An. gambiae 0.278 [0.145–0.531] ,0.001

An. funestus 0.270 [0.052–1.41] 0.121

An. coustani 0.926 [0.799–1.023] 0.306

Total EIR 0.354 [0.193–0.650] 0.001

Culex sp. 0.790 [0.672–0.928] 0.004

aAnnual or seasonal mean biting rate6mean annual sporozoite prevalence.
doi:10.1371/journal.pone.0005107.t002

Table 3. Impact of larviciding on malaria infection prevalence
in children up to five years of age, as determined using
generalized estimating equations (n = 4450 individuals from
283 TCUs sampled over the three years of the study).

Parameter OR [95% CI] P-value

Included in the model

Location (Ten Cell Unit) NP ,0.001

Survey Round NP ,0.001

Larviciding 0.284 [0.101–0.801] 0.017

Insecticide-treated net 0.764 [0.614–0.951] 0.016

Repellent 0.563 [0.286–1.107] 0.096

Not included in the model

Socio-economic status 0.258

Education level 0.529

Anti-malarial drug use in the
previous two weeks

0.768

Sleep elsewhere 0.357

First or subsequent survey of individual 0.835

Ceiling board 0.331

Any net 0.973

Window screening 0.881

Coil 0.231

Spray 0.483

NP = Not presented as values for each level are both trivial and numerous.
doi:10.1371/journal.pone.0005107.t003
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impact upon malaria disease burden of microbial larvicides and

other forms of larval control against African malaria vectors has

been demonstrated in qualitative terms [11–15,17] by historical

programs, all of which predate modern standards of rigorous

evaluation. More recent efficacy trials in the rural highlands of

Western Kenya illustrate that microbial larvicide application

protects against malaria infection when delivered as a supplemen-

tary measure alongside ITNs [52]. Here we demonstrate the

effectiveness of a large-scale, community-based but vertically

managed operational program using Bti in sub-Saharan Africa in

terms of reduced malaria infection prevalence.

Community-based larval control with Bti, delivered using the

novel management and delivery systems developed by the UMCP

[27,40] reduced malaria prevalence in this setting, suggesting that

such approaches might be useful in towns and cities elsewhere in

Africa. At an annual cost of approximately US$0.94 per person

protected [53], the routine application of larvicides in Dar es

Salaam, compares well with the US$1.48 to US$2.64 estimated

per year of protection for a long lasting ITN [54] although it

should be remembered that the latter often protects more than one

person. It is particularly notable that the application of larvicides

provides protection which is at least as good as personal use an

ITN in both urban Dar es Salaam (Table 3) and the rural

highlands of western Kenya[52]. Neither study captures the

communal effects of ITNs, which can be just as important as

personal protection [50]. However, such area-wide effects require

the combined contributions of personal protection by a large

proportion of individuals within a population [50]. It is therefore

worrying that such a modest individual-level benefit of ITN use

was detected in Dar es Salaam (Table 3), particularly when

malaria vectors in this context have recently been observed to feed

outdoors more frequently than their rural counterparts and, in the

case of An. arabiensis, feed early in the evening before people go

indoors [9]. Larviciding may therefore be at least as cost-effective

as ITNs in cities and merits consideration for broader develop-

ment and evaluation in urban Africa.

A crucial point we emphasize is that the benefits of larviciding

are complementary to those of ITNs and no evidence is presented

here, or in the recent report from rural Kenya [52], that

larviciding represents an alternative to the current front-line

vector control tools, namely indoor residual spraying or ITNs.

Although the numerical estimates of protection are greater for

larvicides than for personal use of ITNs, particularly in Dar es

Salaam, these differences are not significant and ignore the area-

wide benefits of widespread net use. We therefore suggest that

larviciding should be viewed as a supplementary means to control

or even malaria eliminate malaria transmission as a component of

integrated vector management packages which are rationally

adapted to specific settings where it may be an appropriate option.

ITNs and indoor residual spraying are, and should remain, the

highest priority and most broadly applicable front-line malaria

vector control measures. These personal and household protec-

tions measures may be augmented with, but not replaced by, larval

control where and when it is likely to be feasible and effective. It

remains to be determined what those criteria for inclusion of larval

control into integrated vector management packages may be. A

considerable body of research remains to be completed before the

full potential and limitations of larval control are adequately

understood.

While these results, and those from a recent trial in rural Kenya

[52], are encouraging, this study has substantial limitations. At this

early stage, these two reports merely re-open the subject of larval

control as an option for discussion. Further studies, with larger

sample sizes distributed across larger, more heterogeneous

populations in a diversity of settings will be required to determine

whether these results are reproducible and broadly applicable. The

substantial but nevertheless limited scale of this evaluation in only

one geographic location, with non-random assignment of the

intervention, using one implementation model over only one year

means that this report raises far more questions than it answers. It

remains to be seen whether larval control can be sustained

effectively in Dar es Salaam, the highlands of Kenya [52] or

elsewhere in Africa. If larvicides do indeed have a place in the

repertoire of local and national malaria control programs of the

future, optimal models for funding, governance, implementation,

monitoring and evaluation remain to be elucidated. Nevertheless,

these encouraging recent results from both an urban and a rural

African context [52] may be very useful in that they prompt re-

opening of a discussion which has been considered closed for

decades [15,55].

The observation that larval control can have such clear benefits,

even when applied sub-optimally, is surprising and questions the

assumption that very high levels of programmatic performance are

essential for this approach to deliver epidemiological impact

[55,56]. The surprisingly dramatic impact of larviciding upon

malaria prevalence supports the view that actual reductions of

transmission in Dar es Salaam were far greater than those

obtained from crude estimates based annual mean vector densities

and sporozoite prevalence levels (Table 2) because of the fortuitous

seasonal interaction of transmission intensity and program

effectiveness. This point is further reinforced when one considers

that ITN use reduces exposure to malaria vectors by approxi-

mately 59% in Dar es Salaam [9] yet the measured protection

against blood-stage infection which larviciding provides appears to

be as good as this front-line vector control measure and may even

be substantially better (Table 3). However, we anticipate that even

greater impacts can be achieved as the proficiency of operational

teams matures through direct experience and innovation in

response to locally-specific operational challenges, as well as

improved institutional and financing mechanisms [27]. Tactically,

we emphasize the specific need to tackle malaria vector

populations in Dar es Salaam more effectively during the long

rains while building upon successes during drier times of the year

when much transmission occurs but larval habitats are both less

abundant and easier to access. Strategically, we conclude that

larviciding may well have potential for sustainable malaria control

in African cities but emphasize that the encouraging results

presented here merely represent an early demonstration which

prompts more extensive and intensive investigation of this long-

neglected approach.

Conclusions
Recent results from the rural highlands of western Kenya

demonstrate that well-implemented larval control can be highly

efficacious as a component of an integrated vector management

package which also includes ITNs [52]. Here we demonstrate that

similar levels of protective effectiveness can be achieved under

routine, real-world programmatic conditions in a major African

city. The community-based larval control program we evaluated

in Dar es Salaam applied Bti on a substantial operational scale

(128,000 residents protected) to achieve a dramatic reduction of

malaria prevalence. As the last programmatic successes of larval

control rapidly fade from living memory [15–17,55], perhaps it is

time to re-examine the theoretical considerations [57,58] which

led to half a century of exclusive emphasis upon adult mosquito

control for malaria prevention in Africa and beyond [15,17]. We

conclude that larval control should now be reconsidered as an

option for integrated malaria control programs in Africa. An
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immediate priority is to evaluate larval control strategies in further

rigor over the long term, particularly in urban areas where

feasibility and cost-benefit ratio may be highest. We caution that

the evidence base supporting larval control as an intervention

option for malaria prevention in Africa remains grossly underde-

veloped and needs to be strengthened. We nevertheless suggest

that the encouraging early results reported here may be improved

upon with time, investment, experience and creativity.
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