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Abstract

Dengue fever has rapidly spread in recent decades to become the most globally expansive

viral vector-borne disease. In mainland China, a number of dengue outbreaks have been

reported since 1978, but the worst epidemic in decades, involving 45230 cases and 76

imported cases, resulting in six deaths in Guangdong province, emerged in 2014. Reasons

for this ongoing surge in dengue, both imported and autochthonous, are currently unclear

and demand urgent investigation. Here, a seasonally-driven dynamic epidemiological

model was used to simulate dengue transmission data recorded from the unprecedented

outbreak. Sensitivity analysis demonstrate that delayed mosquito control, the continuous

importations between the end of April to the early of July, the transmission of asymptomatic

dengue infections, and the abnormally high precipitation from May to August might be the

causal factors for the unprecedented outbreak. Our results suggested that the earlier and

more frequent control measures in targeting immature and adult mosquitoes were effective

in preventing larger outbreaks, and enhanced frontier health and quarantine from the end of

April to the early of July for international communications and travelers.

Introduction

Dengue is a mosquito-borne viral infection causing a severe flu-like illness, and sometimes

causing a potentially lethal complication called severe dengue [1]. In recent decades, the signif-

icance of dengue as a threat to health and a burden on health services and economies has

increased substantially. Almost half the world’s population lives in at risk regions for dengue

virus transmission, and the World Health Organization (WHO) estimates that 50–100 million

dengue infections occur annually in over 100 endemic countries in Africa, America, Southeast

Asia and the Western Pacific. More than 70% of people at risk reside in the Asia Pacific region,

making this region the global epicenter of dengue activity [2]. Dengue can be transmitted by
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the bite of a female mosquito infected with one of the four dengue virus serotypes. The primary

vector are the Aedes aegypti and Aedes albopictusmosquito which mostly thrive in urban and

semi-urban areas with tropical or sub-tropical climates [3]. Currently, the method to control

or prevent the transmission of dengue virus is through vector management [4] which is often

logistically difficult, and which has demonstrated considerable variability in effectiveness.

Hence, new insights and tools to improve public health system preparedness are of increas-

ingly high priority [5, 6].

In 1978, an outbreak in Foshan Guangdong province signalled the reemergence of dengue

in mainland China after being absent for 30 years [7]. Dengue became a nationally notifiable

disease on 1 September 1989; and all cases of dengue fever were diagnosed according to the

unified diagnostic criteria issued by the National Health and Family Planning Commission,

which includes definitions of clinically diagnosed and laboratory-confirmed cases [8].

Although dengue epidemics have frequently occurred since the 1990s, dengue fever is still

characterized as an imported epidemic disease and has not yet been confirmed to be endemic

in mainland China [9]. However, with the rapid growth of the Chinese economy, international

travel, particularly between Southeast Asia and China, importation of people traveling is more

frequent than ever. This human movement creates major challenges in preventing and con-

trolling the spread of non-endemic infectious diseases.

Guangdong province lies in southeastern China, characterized by a humid subtropical cli-

mate, where the Aedes albopictusmosquitos are widely distributed and regarded as the sole vec-

tor for dengue transmission [10–13]. Dengue cases reported for mainland China and specifically

Guangdong province from 1990 to 2013 are shown in Table 1. Guangdong province has the

highest incidence of dengue cases in mainland China, with frequent, sporadic epidemics sparked

from imported infections [14]. In 2014, an unexpectedly large dengue epidemic was reported in

Guangdong, involving 45230 cases and 76 imported cases in Guangdong province, and exceed-

ing the cumulative number of cases from 1990 to 2013. Understanding the factors influencing

modern dengue outbreaks in Guangdong has become a major national public health priority.

Mathematical models can provide useful strategic insights into control measures for infec-

tious diseases [15–17]. Several dynamic models of dengue have been published in recent years

and have proven useful in informing vector control strategies which target either immature or

mature mosquito stages [18–25]. Based on temperature-controlled mosquito experiments of

Yang et al. [25], a series of theoretical analysis were published utilizing these novel data to

inform more flexible approaches to understanding temperature effects on various life history

traits [26–30]. In recent two years, some researches on 2014 Guangzhou outbreak data (only

including the symptomatic data) were published [31–34]. Sang et al. [31, 32] claimed that the

number of imported cases, minimum temperature with a one-month lag and cumulative pre-

cipitation with a three month lag predicted the outbreak in 2013 and 2014 by using a multivar-

iate Poisson regression analysis of the Guangzhou outbreak data. Cheng et al. [33] used a

mathematical model to obtain that climate and the timing of imported cases as the causal

Table 1. Comparison dengue cases between mainland China and Guangdong from 1990 to 2013. The mainland China data are from Refs. [8] and the

Guangdong data are from Refs. [9, 13].

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

Mainland China 376 902 2 367 4 6836 2 634 490 1868 405 375

Guangdong province 374 371 2 359 4 6812 2 632 480 290 401 365

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Mainland China 1606 93 247 59 1063 551 254 322 260 160 610 4779

Guangdong province 1576 82 49 23 1010 397 87 19 139 49 474 2894

doi:10.1371/journal.pone.0166211.t001
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factors of dengue outbreak in Guangzhou (The authors assumed that only one case was

imported to Guangzhou in the model, this assumption was actually wrong). Zhu et al. [34]

found that urbanization, vector activities, and human behavior play significant roles in shaping

the dengue outbreak and the patterns of its spread by using a spatio-temporal patterns model.

In recent study, Chastel [35] concluded that asymptomatic dengue infections could cause

new foci of disease or eventually an epidemic in non-endemic regions. In fact, it is difficult to

address the real number of infected dengue fever cases, since most of them are asymptomatic

[3, 35, 36], and low dengue reporting rates have previously been found in South Asia and

Southern China [33, 34, 37, 38]. As a result, the transmission of asymptomatic dengue virus

infections was ignored in most studies.

In this paper, to investigate the causal factor for 2014 dengue outbreak of Guangdong,

we developed a seasonally-driven dynamic epidemiological model of dengue transmission

between human and mosquito hosts that takes into account the transmission both imported

dengue cases and asymptomatically infected cases. Then the parameters in the model were

estimated, and numerical simulations support the data reasonably well. Finally, sensitivity

analyses are conducted to investigate the causal factor for the unprecedented outbreak of den-

gue in 2014 in Guangdong.

Materials and Methods

The 2014 dengue outbreak of Guangdong, China

During the 25-year period from 1990 to 2014, 69,321 cases of dengue including 11 deaths were

reported to the national dengue surveillance system in mainland China [8]. A major outbreak

in 2014 constituted most of this total including 47056 dengue cases, 45230 of which were in

Guangdong province. Dengue is a nationally notifiable disease in China—physicians must

report all diagnosed cases to the China Center for Disease Control and Prevention through the

China Information System for Disease Control and Prevention (CISDCP). Fig 1 shows the

symptomatically reported dengue case data for Guangdong province per week in 2014. The

2014 dengue outbreak in Guangdong presents a sharp initial rise in the number of reported

cases and an equally fast decline towards the end of the epidemic. The first symptomatically

imported dengue infection (The infection had recent overseas travel history recorded) was

reported on 26 January (the fourth week), and the first symptomatically autochthonous case

was not recorded until 11 June (the 24th week) 2014. The weekly imported dengue cases for

Guangdong province in 2014 is shown in Fig 2, which mainly contains international commu-

nications and travelers from Southeast Asia. Fig 3 shows the weekly temperature and precipita-

tion data for Guangzhou. We use climate data for Guangzhou, given the city’s predominant

role in this outbreak with approximately 83% of the total cases [33].

The Mathematical Model

Fig 4 shows a flow diagram to describe the transmission dynamics of dengue virus between

humans and mosquitoes (which also calls vector population). For the dynamics of the vector

population, the mosquito hosts can be divided into immature stage A (eggs, larvae and pupae)

and mature mosquito stageM by using the study of Yang et al. [25]. Their population dynam-

ics are described by the following ordinary differential equations:

dA
dt
¼ kf yðTÞM �

A2

kðtÞ
� ðmaðTÞ þ εðTÞÞA;

dM
dt
¼ εðTÞA � mmðTÞM;

ð1Þ

8
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Fig 1. Number of dengue cases reported in Guangdong province, China, 2014.

doi:10.1371/journal.pone.0166211.g001

Fig 2. The weekly imported dengue cases in Guangdong, 2014.

doi:10.1371/journal.pone.0166211.g002
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where θ(T) is the intrinsic oviposition rate of an adult mosquito, κ(t) denotes the inhibition

rate of precipitation on larva, μa(T) and μm(T) are the respective mortality rate of immature

forms and adult mosquito, ε(T) is the transition rate from immature stages into adult mosqui-

toes. Eggs do not all hatch into larvae, nor do they all produce female mosquitoes. For these

reasons, k is the fraction of eggs hatching to larvae, and f is the fraction of female mosquitoes

hatched from all eggs.

We further extend the adult female class by subdivision into the epidemiologically relevant

stages for dengue transmission: susceptible Sm, incubating Em, and infectious Im. The incuba-

tion period is σm(T) days; b(T) is the biting rate and βmh is the infected human to susceptible

mosquito (human-to-vector) transmission probabilities per bite. The human population is

assumed to be fully susceptible to the virus. For humans, upon challenge with infectious mos-

quito bites, susceptible humans become exposed at a rate p, and become asymptomatic infec-

tious with a rate 1 − p. βhm is the infected mosquito to susceptible human (vector-to-human)

transmission probability per bite. The human host incubation period is σh days, the duration

of symptomatic infectious, asymptomatic infectious and imported infectious are γh, γy and γw
days, respectively. Recovery is assumed to yield life-long immunity. For the imported infection

Wh compartment, B(t) and
1� p
p BðtÞ are the recruitment rate of symptomatically and asymp-

tomatically infected individuals at time t. The human mortality was ignored for this model.

In Guangdong, on every Friday afternoon from September 24th to late November in 2014,

insecticidal fogging and mosquito repellents were used to kill mature mosquitos with a fraction

αm; Water containers were also emptied to remove immature mosquitos and destroy their

breeding sites with a fraction αA [33].

Fig 3. Climate for Guangdong province from January-2014 to December-2014. Weekly average temperatures (solid, blue),

and weekly precipitation (dotted, green).

doi:10.1371/journal.pone.0166211.g003

The Driving Force for 2014 Dengue Outbreak in Guangdong

PLOS ONE | DOI:10.1371/journal.pone.0166211 November 18, 2016 5 / 19



Hence, the following system of equations can be used to describe dengue transmission:

dA
dt
¼ kf yðTÞM �

A2

kðtÞ
� ðmaðTÞ þ εðTÞÞA � aAA;

dSm
dt
¼ εðTÞA � bðTÞbhm

SmðYh þ Ih þWhÞ

Nh
� mmðTÞSm � amSm;

dEm
dt
¼ bðTÞbhm

SmðYh þ Ih þWhÞ

Nh
�

1

smðTÞ
þ mmðTÞ

� �

Em � amEm;

dIm
dt
¼

1

smðTÞ
Em � mmðTÞIm � amIm;

dSh
dt
¼ � bðTÞbmh

ShIm
Nh

;

dEh
dt
¼ pbðTÞbmh

ShIm
Nh
�

1

sh
Eh;

dYh
dt
¼ ð1 � pÞbðTÞbmh

ShIm
Nh
�

1

gy
Yh;

dIh
dt
¼

1

sh
Eh �

1

gh
Ih;

dWh

dt
¼ BðtÞ þ

1 � p
p

BðtÞ �
1

gw
Wh;

dRh
dt
¼

1

gh
Ih þ

1

gy
Yh þ

1

gw
Wh;

dCh
dt
¼

1

sh
Eh þ BðtÞ;

ð2Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

where Ch is included to track the cumulative number of dengue infections. The newly infected

cases between t − 1 and t are expressed as follows,

XðtÞ ¼ ChðtÞ � Chðt � 1Þ:

To emphasize local characteristics in Guangdong, our model included local control strate-

gies, the transmission of imported infectious and asymptomatic infectious, which are absent

from other models.

Temperature-dependent parameters

Based on experiments by Yang et al. [25] on Aedes aegyptimosquitoes over the temperature

range of 10.54˚C� T� 33.41˚C, we also use the expressions of the intrinsic oviposition rate

θ(T), the mortality rate of aquatic forms μa(T) and adult mosquitoes μm(T), as well as the tran-

sition rate from pupae into adults ε(T) for Aedes albopictus in Guangdong, China. Here, T is

temperature in Celsius.

The intrinsic oviposition rate θ(T).

yðTÞ ¼ � 5:4þ 1:8T � 0:2124T2 þ 0:01015T3 � 1:515� 10� 4T4; ð3Þ

In order to ensure that the intrinsic rate θ(T) is positive, we assume the temperature interval of

eq (3) is T� 12˚C. When T< 12˚C, the intrinsic rate θ(T) is zero.

The Driving Force for 2014 Dengue Outbreak in Guangdong
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The mortality rate of aquatic forms μa(T) and adult mosquitoes μm(T).

maðTÞ ¼ 2:13 � 0:3797T þ 0:02457T2 � 6:778� 10� 4T3 þ 6:794� 10� 6T4: ð4Þ

mmðTÞ ¼ 0:8692 � 0:1599T þ 0:01116T2 � 3:408� 10� 4T3 þ 3:809� 10� 6T4: ð5Þ

The aquatic phase transition rate ε(T).

εðTÞ ¼ 0:131 � 0:05723T þ 0:01164T2 � 0:001341T3 þ 0:00008723T4

� 3:017� 10� 6T5 þ 5:153� 10� 8T6 � 3:42� 10� 10T7:
ð6Þ

Eq (6) is used to describe the aquatic phase transition rate ε(T) over the temperature range

of 10.54˚C� T� 33.41˚C. When T< 10.54˚C or T> 33.41˚C, ε(T) is zero.

Daily biting rate b(T). In the study of Scott et al. [39], a clear relationship between tempera-

ture and the blood feeding frequency b(T) was noted with the following equation:

bðTÞ ¼ 0:0043T þ 0:0943; 21�C � T � 32�C: ð7Þ

Eq (7) shows the average daily biting rate b(T) increases gradually and linearly with T at the

Fig 4. The transmission of dengue virus between mosquitoes and humans. Black dash-dotted lines show direction of transmission

between humans and mosquitoes. For mosquito, A denotes immature stage, and M describes mature mosquito stage (including susceptible

Sm, incubating Em, and infectious Im), and M = Sm + Em + Im. For human, all hosts are divided into six stages for dengue transmission:

susceptible Sh, incubating Eh, asymptomatic infectious Yh, infectious Ih, imported infectious Wh and recovered Rh, where Nh = Sh + Eh + Yh +

Ih + Wh + Rh is the total human population.

doi:10.1371/journal.pone.0166211.g004
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values from 0.18/day at T = 21˚C to 0.23/day at T = 32˚C. We extend this linear relationship

down to a lower limit of 10.54˚C for Aedes albopictus in Guangdong.

Extrinsic incubation period σm(T). Enzyme kinetics model based on absolute reaction rate

kinetics of enzyme was used to estimate the relationship between the extrinsic incubation

period and temperature [40–42]. The dengue temperature-dependent extrinsic incubation

rate is [33]:

1

smðTÞ
¼ 24�

0:00333�
Tk
298
� exp 60513:2

R
1

298
� 1

Tk

� �� �

1þ exp 705550

R
1

308:352
� 1

Tk

� �� � ; ð8Þ

where Tk = 273.15 + T is temperature in Kelvin and R is the Universal gas constant (1.987 cal
deg−1mol−1).

The descriptions of these six temperature-dependent parameters are listed in Table 2.

Other model parameters

Weekly temperature function. The change of temperature in Guangzhou with respect to time

is periodic and can be described by a Fourier function. Applying the MATLAB curve fitting

toolbox for the real historical (from January 2013 to December 2014) temperatures in Guang-

zhou from related website, the first-order Fourier function can be written as,

TðtÞ ¼ 22:45 � 7:826 cos ð0:1179tÞ � 2:007 sin ð0:1179tÞ; ð9Þ

And shown in Fig 5.

The function of symptomatic imported dengue cases (B(t)). According to previous

description of model, the following equation can be used to describe the cumulative of symp-

tomatic imported cases:

dZðtÞ
dt
¼ BðtÞ: ð10Þ

Weekly cumulative number of symptomatic imported dengue cases is carried out using a sec-

ond-order Gaussian function by using the MATLAB curve fitting toolbox, shown in Fig 6.

Hence, eq (11) can be used to describe the weekly imported dengue cases function.

BðtÞ ¼ Z0 ðtÞ ¼ �
2

b3

�
t � b2

b3

� b1 � e
�

t� b2
b3

� �2

�
2

b6

�
t � b5

b6

� b4 � e
�

t� b5
b6

� �2

: ð11Þ

The inhibition rate of precipitation on larva κ(t). Precipitation can change the water level

in the environment. When the water level is higher, the environmental carrying capacity also

Table 2. Temperature-dependent parameters.

Notation Description Value Reference

θ(T) intrinsic oviposition rate of adult mosquito Eq (3) [25]

μa(T) mortality rate of aquatic mosquito Eq (4) [25]

μm(T) mortality rate of adult mosquito Eq (5) [25]

ε(T) transition rate from aquatic into adult mosquito Eq (6) [25]

b(T) mosquito biting rate Eq (7) [39]

σm(T) extrinsic incubation period of adult mosquito Eq (8) [33]

doi:10.1371/journal.pone.0166211.t002
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increases; hence, the maximum number of mosquitoes the environment can support will also

increase [43]. Hence, the amount of rainfall is associated with the mosquito population by

increasing breeding sites or egg carrying capacity [27]. From Fig 3, we can obtain that the

rainy season is from April until the end of August, and the high precipitation from May to

August in the rainy season is abnormal in 2014. Hence, we used the following equation to

describe the inhibition rate of precipitation on larva κ(t):

kðtÞ ¼ kE km þ ð1 � kmÞ sin
2 pt

52
þ p

� �� �
; ð12Þ

where κE is the baseline carrying capacity and κm is the carrying capacity ratio between in dry

and rainy seasons. We assume that the value of κE is associated with the weekly maximum

rainfall whole year.

Constant Parameters. Several model parameters were available from the literature, and

some were assumed. These are listed in Table 3.

Results

Estimation of parameters

On every Friday afternoon from September 24th to late November in 2014, the strategies for

controlling mosquito vectors across many parts of Guangdong province were used [33].

Hence, the 2014 Guangdong dengue epidemic can be divided into three stages. the first stage

Fig 5. The comparison between the 2014 reported weekly average temperature and the simulated

result with Eq (9). The blue dots indicate weekly average temperature in Guangzhou, while black line shows

model output.

doi:10.1371/journal.pone.0166211.g005
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is from the first week (January 1-5) to the 39th week (September 22-28) which can be assumed

to have occurred without any intervention strategies; the second stage is from the 39th week

(September 22-28) to the 48th week (November 24-30) and includes a major control effort

(including clearing standing water and killing adult mosquitos); and, the third stage is from

the start of December to the end of the year without any intervention strategies.

Fig 6. The weekly simulation result of cumulative symptomatically imported dengue cases with

Eq (10) in 2014. The blue circles indicate the reporting weekly cumulative symptomatic imported dengue

cases, while black line shows model output. The expression is ZðtÞ ¼ b1 � e
�

t� b2
b3

� �2

þ b4 � e
�

t� b5
b6

� �2

, where

b1 = −9.252, b2 = 35.91, b3 = 5.854, b4 = 75.04, b5 = 52.94 and b6 = 22.61, respectively.

doi:10.1371/journal.pone.0166211.g006

Table 3. Some parameters description and values.

Notation Description Value Range Reference

βhm transmission probability of human-to-vector 0.5 0.3-0.75 [44]

βmh transmission probability of vector-to-human 0.4 0.1-0.75 [45]

κm the carrying capacity ratio between in dry and rainy seasons 0.2 0-1 Assumed

σh human latency period (day) 7 4-10 [2, 46–49]

γh duration of symptomatic infection (day) 7 4-10 [46, 47, 50]

γy duration of asymptomatic infection (day) 7 4-10 Assumed

γw duration of imported infection (day) 5 2-10 Assumed

f fraction of female mosquitoes hatched from all eggs 0.5 0-1 [25, 33, 51, 52]

k fraction of eggs hatching to larvae 0.5 0-1 Assumed

p fraction of symptomatic infection 0.25 0-1 [3, 34]

doi:10.1371/journal.pone.0166211.t003
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Firstly, it is mainly to estimate the baseline of inhibition of precipitation on larva κE in eq

(12). Because rates of infection have historically been so low (prior to the major outbreak) in

Guangdong Province (see Table 1), the human population is assumed to be fully susceptible to

the virus. Suppose that the initial value Sh equals to 1.0644 × 108, which is the population for

Guangdong province at the end of 2013 [53]. Assume that A(0) = 1 × 107, and while all others

(including Sm(0), Em(0), Im(0), Eh(0), Ih(0), Yh(0),Wh(0), Rh(0)) are 0. The symptomatically

reported dengue human cases on the bases of exponential growth for the first stage of 2014

were used to implement parameter estimation. We employed the adaptive Metropolis-Has-

tings algorithm to carry out extensive Markov-chain Monte-Carlo simulations [54, 55] for Eq

(2) without any intervention strategies, and to estimate the mean and standard deviation value

of the baseline of inhibition of precipitation on larva (κE), which are 2.6042 × 106 and 35746,

respectively. We did not fit the initial value explicitly and performed a sensitivity analysis,

changing values of A(0). Although various initial values of A(0) changed as κE, it did not

change the overall shape of the epidemic (Fig 7).

Then, we used the symptomatically reported dengue human cases from the 39th week to

48th week with the second stage of 2014 to implement parameter estimation (intervention

parameters include the removal rate for adult mosquitos αm and immature mosquitos αA).

Here, suppose that αm = αA. The adaptive Metropolis-Hastings algorithm was also used to

carry out extensive Markov-chain Monte-Carlo (MCMC) simulations with Eq (2), and the

mean and standard deviation value of αm, αA are 0.8445 and 0.0134, respectively.

Fig 7. Sensitivity analysis on the initial value fitted to κE for each value of A(0).

doi:10.1371/journal.pone.0166211.g007
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Finally, eq (2) without any intervention strategies was used to simulate the symptomatically

reported dengue human cases from the 48th week to 52th week with the third stage of 2014.

Fitting results

Through using the available model parameters from the literature in Tables 2 and 3, weekly

temperature function in eq (9) and symptomatically imported dengue cases function in eq

(11), Fig 8 unveils the time evolution of both infection cases and comparison with empirical

record of dengue in Guangdong Province, and which also shows the 95% percent interval for

all 1000 passing simulation trajectories and the median of these 1000 simulation outputs. It is

clear that the theoretical prediction is nearly full agreement with real data, which also well vali-

dates the accuracy of proposed model.

Driving force of the unprecedented outbreak of dengue in Guangdong,

China

In Guangdong, dengue fever is still characterized as an imported epidemic disease and has

not yet been confirmed to be endemic [9]. While in 2014, an unexpectedly large dengue epi-

demic was reported. Involving 45230 dengue fever cases, resulting in six deaths, exceeding the

cumulative number of cases from 1990 to 2013. Reasons for this ongoing surge in dengue are

currently unclear, so the possible causal factors for the 2014 unprecedented outbreak with dif-

ferent scenarios were investigated.

Fig 8. The simulation result of weekly new infection dengue cases in Guangdong in 2014. Blue circles

indicate the number of weekly reported infection cases, light grey shaded area for the 95% confident interval

(CI) for all 1000 simulations, while the red, blue and purple dotted lines are the median for all model outputs with

the first, second and third stage, respectively. The first and third stage without any interventions, the second

stage with interventions.

doi:10.1371/journal.pone.0166211.g008
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Firstly, the impact of interventions on dengue epidemic was explored using our tempera-

ture-dependent parameters. Fig 9(A) shows the comparison simulations between with inter-

ventions from the 39th week (September 22-28) to 48th week (November 24-30) and without

any interventions for weekly new infection cases. Intervention strategies can decrease the epi-

demic peak significantly for 2014 and prevent the disease spread to the more general popula-

tion. Fig 9(B) shows the projected impact of initiating an equivalently conducted intervention

with differing dates with the final outbreak size for 2014. Simulations demonstrate substantial

gains that might be expected in implementing earlier control. For example, the final outbreak

cases are reduced to fewer than 20,000 when interventions are simulated two weeks earlier i.e.

from the 37th week (September 8-14) and to fewer than 10,000 when interventions are initi-

ated from the 35th week (August 25-31).

Then, to explore the impact of imported cases, we investigated the final outbreak size of

2014 with different importation rates and dates, and recorded the final epidemic size (Fig 10).

The final outbreak cases are anticipated to decrease as a direct proportion of the imported den-

gue cases (Fig 10(B)), and the dates and rates of imported case were crucial in producing the

outbreak pattern in 2014. The figure show that when the imported case occurs in the 22nd

week, the final epidemic size was the highest. And the 2014 unprecedented outbreak of dengue

in Guangdong can not happen with only one imported cases, whenever the case is imported.

From Fig 10, we can conclude that importations during the 17th week (April 21-27, 2014) to

the 27th week (June 30–July 6, 2014) are the most likely to initiate autochthonous dengue out-

break, and the continuously imported cases is one causal factor for the 2014 unprecedented

outbreak of dengue in Guangdong.

Finally, the impact of η and κE on weekly new cases were explored, where η is the propor-

tion of the transmission of asymptomatic infections. Fig 11(A) shows that the 2014 unprece-

dented outbreak of dengue in Guangdong will not be occurred if asymptomatic dengue

infections do not have transmission possibility or have low transmission possibility. Hence,

asymptomatic dengue infections may be one possible causal factor for the unprecedented

Fig 9. The comparison simulation result between with and without interventions. (A) Weekly new infection cases. (B) Simulations of the final

outbreak size for 2014 with different initiating intervention dates.

doi:10.1371/journal.pone.0166211.g009
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outbreak. To explore the relationship between precipitation and weekly new cases, the simula-

tion results on different values of κE were shown in Fig 11(B). The outbreak peak cases are

anticipated to decrease as a direct proportion of κE (the same as precipitation), so the high

precipitation from May to August (which can provide more breeding sites and increased the

environmental carrying capacity of mosquitos) may be another possible causal factor for the

unprecedented outbreak.

Fig 10. Simulation results for the final outbreak size of 2014 with different importation rates and dates. (A) Hot plot. (B) The final epidemic size for

2014 after changing the importation cases and dates. The blue line denotes the final epidemic size for 2014 after changing the date of 1 imported case.

Black, red, purple and green lines are 2, 3, 4 and 5 imported cases, respectively.

doi:10.1371/journal.pone.0166211.g010

Fig 11. Trajectories of weekly new cases under different scenarios. Blue circles indicate the number of weekly reported infection cases. (A) Changing

η. Red line denotes η = 100%. Black, purple and green lines are 20%, 10% and 0, respectively. (B) Changing κE. The black line describes κE = 3.0 × 106.

And red, cyan, purple and green lines are 2.6042 × 106, 2.0 × 106, 1.5 × 106, and 1.0 × 106, respectively.

doi:10.1371/journal.pone.0166211.g011
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Discussion

In 2014, an unexpectedly large dengue epidemic was reported in Guangdong, involving 45230

cases and 76 imported cases in Guangdong province and exceeding the cumulative number of

cases from 1990 to 2013, and this outbreak has posed a substantial socioeconomic burden. Fac-

ing up to the epidemic situation in Guangdong, the local government has been seeking forceful

methods to reduce dengue transmission. Various prevention and control measures for vector

control have been proposed by some researchers which include programs in community par-

ticipation and health education to reduce mosquito breeding in household water containers

[56]. No evidence yet exists to indicate this pathogen as endemic and local infections are attrib-

uted to imported cases [9]. From the reported cases (see Figs 1 and 2), the unprecedented

outbreak of dengue in Guangdong province was result from the introduction of the virus by

infected travelers from various areas of southeastern Asia where dengue is endemic. Here, a

temperature-driven coupled entomological-epidemiological model was presented and assessed

the role of seasonal vector dynamics and infection importation in driving dengue outbreaks.

The model was also used to explore effective, local control and prevention measures.

Temperature, with its influence on the the extrinsic incubation period, adult mosquito mor-

tality, immature stage developmental rates and bite rate, is an essential factor underlying den-

gue transmission. This has important implications in terms of the future epidemiology of

dengue in China and a full assessment of this association is needed under different climate

change scenarios.

Dengue virus infection in humans is often inapparent, and about 75% of all infectious are

inapparent [3]. Our result shows that the 2014 unprecedented outbreak of dengue in Guang-

dong will not be occurred if asymptomatic dengue infections do not have transmission possi-

bility or have low transmission possibility (See Fig 11(A)). It means that the large number of

inapparent infections and subclinical cases occurred during the outbreak, which could greatly

influence the transmission dynamics of dengue virus.

The intervention strategy has significant and long lasting effects on disease eradication, so

the time of beginning intervention strategy will become more important. Simulating infection

dynamics both pre- and post-interventions allowed an assessment of the approximate impact

on reducing disease. Additionally, very substantial returns benefit from reducing delays in

intervention following notification of local transmission (See Fig 9(B)). These results clearly

demonstrate the improved early warning systems for this region of southern China is an

urgent task.

Imported cases are the mainly predisposing factor for dengue transmission in Guangdong

Province, China. Since we have the detailed information about the date and number of symp-

tomatically imported cases, so eq (11) can be used to describe the weekly imported dengue

cases function, and simulation result of cumulative symptomatically imported cases was

shown in Fig 6. In terms of absolute numbers of imported cases, simulations suggested that the

importance of this factor was overshadowed by their timing. Importations during the 17th

week (April 21-27, 2014) to the 27th week (June 30–July 06, 2014) were the most likely to initi-

ate autochthonous dengue outbreak, and a case imported around the 22nd week (May 26–Jun

01, 2014) appears to have triggered the biggest outbreak in 2014, which is different with paper

[33] (See Fig 10). Identification of this critical window should enable efforts in surveillance

and prevention to focus on when identifying imported infections is most important to local

public health.

In 2015, there existed a little outbreak with 1547 autochthonous cases and 153 imported

cases in Guangdong. Although there are more imported cases than 2014, the possible factors

for little dengue outbreak in 2015 may be the early mosquito control (started in April), early
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detection and quarantine of imported cases [33]. Moreover, there are many reports on dengue

in media and network after the unprecedented outbreak in 2014, so residents could pay more

attention to the information on dengue and know how to avoid the transmission, this may be

another factor.

The current study suffers from several limitations. As with all models, the cost of transpar-

ency and simplicity of our model is realism and our model does not include spatial effects but

instead treats Guangdong province as a homogenous and well-mixed population. Targeting

specific sub-populations with control may be achievable more rapidly and therefore a spatial

age-structured model would be anticipated as an important tool to expedite intervention.

Additionally, data are based on passive case surveillance and hence only apply to the symptom-

atic proportion of infected individuals when the proportion of asymptomatic individuals can

be substantial and variable [57]. If data became available from active surveillance to identify

this proportion (and ascertain whether and how it varies over the time-course of an epidemic),

this information could easily be incorporated in the model as an additional epidemiological

compartment. Nevertheless, model fitting to data was generally good and derived parameteri-

zations were biologically intuitive, lending confidence to our outputs and justifying the mod-

el’s further use and development for future analysis.
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