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With the UK climate projected to warm in future decades, there is an increased research focus on the risks
of indoor overheating. Energy-efficient building adaptations may modify a buildings risk of overheating
and the infiltration air pollution from outdoor sources. This paper presents the development of a national
model of indoor overheating and air pollution, capable of modelling the existing and future building
stocks, along with changes to the climate, outdoor air pollution levels, and occupant behaviour. The
model presented is based on a large number of EnergyPlus simulations run in parallel. A metamodelling
approach is used to create a model that estimates the indoor overheating and air pollution risks for the
English housing stock. The performance of Neural Networks (NNs) is compared to a Support Vector
Regression (SVR) algorithm when forming the metamodel. NNs are shown to give almost a 50% better
overall performance than SVR.
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1. Introduction

The role of housing in population exposure to environmental hazards is an important area of
research in the UK due to the fact that the population spends around 90% of its time indoors
(ONS 2005; Kornartit et al. 2010). Two areas of particular interest are indoor overheating and
air pollution exposure which are predicted to change due to the warming climate and the need
to improve housing energy efficiency, and therefore airtightness, to meet greenhouse gas reduction
targets.

A warming climate and an increase in heatwave events is predicted to lead to greater heat-related
mortality in England (Hajat et al. 2014). Recent history shows the health impacts of hot periods,
with the 2003 heatwave in Europe estimated to have contributed to over 2,000 excess deaths
across England and Wales (Johnson et al. 2005). Heatwave events similar to this are projected
to become commonplace by the 2040s (Murphy et al. 2009). Recent work has examined the issue
of overheating using both indoor monitoring (e.g. in Beizaee, Lomas, and Firth (2013); Wright,
Young, and Natarajan (2005); Lomas and Kane (2012); Mavrogianni et al. (2010)) and modelling
approaches (e.g. in Mavrogianni et al. (2012); Oikonomou et al. (2012); Hamdy and Hensen ((2015);
Taylor et al. (2015a); Porritt and Cropper (2010); Peacock, Jenkins, and Kane (2010); Gupta and
Gregg (2013); Taylor et al. (2015b, 2016)), with results indicating a wide range in overheating risks
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with top-floor flats, bungalows, and those with poor ventilation at increased risk. Overheating in
UK homes has been comprehensively reviewed by the Zero Carbon Hub (ZCH 2015b).

Indoor air pollution is another health risk that may be influenced by environmental and dwelling
characteristics. Indoor air quality is inherently coupled to indoor temperatures due to the need for
ventilation during hot weather (Taylor et al. 2015a) which is typically achieved through increased
window opening in the predominantly naturally-ventilated UK housing stock. Health risks due to air
pollution are significant: a study by Gowers, Miller, and Stedman (2014) showed that the mortality
burden attributable to human-made particulate air pollution was equivalent to approximately
25,000 deaths or around 5.6% of all-cause adult mortality in England in 2010. Particles smaller
than 2.5 micrometres (PM2.5) are thought to cause around 3,500 premature deaths a year in
London (Walton et al. 2010), and is acknowledged to play an important role in air quality and
health. Modelling (Shrubsole et al. 2015; Taylor et al. 2014b; Shrubsole et al. 2012) and monitoring
studies (Nasir and Colbeck 2013; Jones et al. 2000; Lai et al. 2006; Hoek et al. 2008) suggest that
the levels of indoor air pollution in UK dwellings are affected by various building, environmental,
and occupancy characteristics. There is, therefore, a growing need to understand how climate,
housing stock, and population changes may alter population exposure to both overheating and
indoor air pollution in England under a range of different scenarios (Vardoulakis et al. 2015).

This paper describes the development of an overheating, outdoor pollution infiltration, and energy
use model for the English housing stock, to be applied in epidemiological research. The model
must be capable of modelling the existing stock, energy-efficiency improvements to the stock,
the construction of new buildings, changes to climate and outdoor pollution levels, and occupant
adaptations to hot weather. There are a large number of parameters which may influence indoor
overheating risks, and which need to be accounted for in the model. Previous research shows
that indoor temperatures in England and the UK may be influenced by; building geometry and
orientation; fabric characteristics such as the thermal mass and conductivity of walls, windows,
floors, and roofs (Mavrogianni et al. 2012); natural or purpose-provided ventilation (Taylor et al.
2015a); occupant behaviour (Mavrogianni et al. 2013); adaptation measures (Porritt and Cropper
2010; Gupta and Gregg 2013); and climate, including region (Taylor et al. 2014a) or locations within
an Urban Heat Island (UHI) (Oikonomou et al. 2012). In order to model all of these influences,
a large set of building physics simulations are required. EnergyPlus (US-DoE. 2013) is a building
physics software capable of modelling all of these variables. EnergyPlus was initially intended for
use as an application to be run on a desktop computer. The computational challenges faced when
using EnergyPlus as a tool for the simulation of thousands of scenarios in parallel have been
highlighted by Sanyal and New (2013). We harness the power of parallel computing in order to
streamline the model development process.

Health-relevant performance metrics and the energy-use of domestic buildings are calculated
using the outputs produced by EnergyPlus. A metamodelling framework is created to enable the
rapid estimate of these performance metrics for the current English housing stock and potential
future stocks under a range of scenarios. Replacing a run time intensive physics model with a quick
approximate model allows sensitivity analyses and multi-criteria optimisation to be performed.
Metamodelling techniques have been shown to give reliable estimates of complex models (Barton
and Meckesheimer 2006), and have been used in previous studies to enable the rapid calculation of
building performance estimates from EnergyPlus simulations (Van Gelder et al. 2014; Eisenhower
et al. 2012; De Wilde and Tian 2010; New et al. 2012). We compare the performance of Neural
Networks (NNs) and Support Vector Regression (SVR) machine learning algorithms for several
domestic building and occupancy types.

2. Modelling Methods

The development of the model involves several steps as shown in Figure 1. These steps include
the random sampling of input parameters, EnergyPlus input file generation, building physics sim-
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Figure 1. Workflow for the development of a national indoor overheating, air quality and energy use model using High

Performance Computing (HPC). The first step involves the generation of EnergyPlus input definition files (.idfs). For each
combination of categorical variant, independent sets of 500 and 100 idfs are produced for training and testing, respectively.

Eight continuous building and occupancy relevant variables are sampled using a latin hypercube experimental (LHE) design

for each idf. The idfs are then simulated with EnergyPlus in parallel sets of 25 simulations. The next step is to calculate
the relevant metric from the EnergyPlus output files. Finally, the training and then the testing of candidate metamodels

is performed. The best performing metamodel is selected for the inclusion in the metamodelling framework. All model

development steps are performed in parallel for each combination of the categorical variants using HPC.

ulation, the calculation of health-relevant and energy use output metrics, and the training and
testing of candidate metamodels. Due to the large scale of the model, it is built entirely on the
University College London (UCL) high performance computing (HPC) resource, Legion which has
7,500 CPU cores. This allows many of the steps shown in Figure 1 to be run in parallel saving
vast amounts of time. A set of metamodels (metamodel framework) is created rather than a large
individual metamodel encompassing all categorical variants. An advantage of this, is we are able
to exploit the use of HPC to build individual metamodels for each combination of the categorical
variants (built form, wall type, occupancy type and location). A set of 384 (8 building archetypes
× 4 occupancy types × 2 wall types × 3 locations × 2 epochs) metamodels are therefore produced.
Producing metamodels individually also makes the model scalable such that it can be expanded
to include additional locations, occupancies or building types without having to rebuild the entire
model from scratch.

At the base of the metamodelling framework are 230,400 simulations run using EnergyPlus (US-
DoE. 2013). A set of 500 simulations are used for the training of each individual metamodel based
on convergence results shown in section 3. An independent sample of 100 simulations is used to test
the goodness fit of each trained metamodel. EnergyPlus is a dynamic thermal physics simulation
tool with a generic contaminant model that is able to model the movement of harmful particulates
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within the building. EnergyPlus has been used in previous studies to model both hourly indoor
temperatures (Mavrogianni et al. 2012; Oikonomou et al. 2012; Taylor et al. 2015a,b) and indoor air
pollutant levels (Taylor et al. 2014b, 2015a; Shrubsole et al. 2015) for dwellings representative of the
English housing stock. A Red Hat Enterprise Linux 5 (RHEL5) version of EnergyPlus 8.1 provided
by the United States - Department of Energy (US-DoE) enables the simulations to be performed on
Legion. Each EnergyPlus simulation takes between five and 25 minutes of CPU time to complete
depending on the complexity of the archetype with high rise flats taking the longest. HPC enabled
19,200 building physics simulations to be run within about 5 hours by parallel processing 768 sets
of 25 simulations.

EnergyPlus simulation input definition files (idf) are generated using an in-house tool, EnergyPlus
Generator 2 (EPG2); written using the Python programming language (Van Rossum and eds).
EPG2 is designed for the batch generation of building input files based on user-defined variables.
The tool is able to generate a few hundred idf files in several minutes CPU time. Time can again be
saved by producing idf files in parallel for each building archetype. The EPG2 tool is supplemented
with the pyDoE (Baudin 2015) package (an experimental design package for Python) to enable the
selection of input variable values based on a Latin Hypercube Experimental (LHE) design. LHE
is a space-filling sampling method that allows for the random generation of various parametric
values, according to underlying distributions and ensures that similar runs are never repeated
(Tang 2012). A LHE design was previously used for building simulation modelling, for example, to
examine indoor thermal comfort with EnergyPlus (De Wilde and Tian 2010) and indoor air quality
in CONTAM (Das et al. 2014). An advantage of the LHE sampling technique is that different
distributions can be used for different input variables. If a certain input parameter’s range and
shape of probability distribution is well known, a specific distribution can be chosen for sampling.
Otherwise, a uniform distribution or a normal distribution with a large standard deviation is chosen.
The variable ranges are designed to be large such that the entire existing English housing stock
database and future retrofit scenarios can be represented. Correlations between input parameters
using the current building stock are not included since the model is designed to be adaptable to
include various future building stock scenarios.

2.1. Model Inputs

In this section, the input variables and the assumptions used in the EnergyPlus simulations are
described. The model’s input parameters can be categorical, continuous, or discrete in nature.
Individual metamodels are created for each combination of the categorical variants, whilst the
continuous and discrete variants are randomly sampled within the creation of each metamodel.
The input parameters cover a range of building, environmental, and occupancy variants described
in sections 2.1.1 and 2.1.2.

2.1.1. Categorical Variants

The categorical variants were chosen to cover a large range of housing types, external environments,
and occupancy behaviours such that the majority of cases in England and future England are
covered. The full range of categorical variants is shown in Table 1. The number of combinations of
these categorical variants yields the creation of 384 individual metamodels.

Building archetypes representative of the English housing stock are used as inputs to the model.
Eight building types are used as defined in the English Housing Survey (EHS) (DCLG 2011) as
shown in Table 1. These built forms were developed by Oikonomou et al. (2016) using informa-
tion on floor areas, window sizes, and ceiling heights from the EHS, and typical floor plans from
architectural drawings. Whole buildings are modelled, with flats containing ground, middle, and
top-floor levels within each building. Geometric and layout variations within built forms are not
considered due to the complexity of producing EnergyPlus input files with different geometries for
all zones within the building. More information on the archetypes is given in the supplementary
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Table 1. Categorical input variables with the corresponding categories modelled.

Parameter Number of Variants Categories

Built Form 8 End Terrace/Mid Terrace/
Semi-Detached/Detached/Bungalow/

Converted Flat/Low-rise Flat/High-rise Flat
Wall Type 2 Solid/Cavity
Location 3 London/Birmingham/Newcastle
Epocha 2 Present/2050
Occupancy Type 2 Pensioners/Family
Retrofit 2 With/Without Shutters

aWeather scenarios are modelled using data produced by the PROMETHEUS project
(Eames, Kershaw, and Coley 2010).

material (section 1).
The construction of the wall type and placement of the insulation can influence the overheating

risk (Mavrogianni et al. 2012). We model wall type as a binary categorical variant, selecting from
either solid or cavity walls in order to account for the differences in thermal mass between the
two types. In the case of solid walls, those with a U-value below 0.6 W/m2K are assumed to have
internal solid wall insulation. This represents a worst case scenario for retrofit, as internal solid-wall
insulation is linked to an increase in potential overheating risk in some studies (Peacock, Jenkins,
and Kane 2010).

Trickle vents in windows have been required in UK Building regulations since 2002 in order to
allow for compensatory ventilation (HM-Government 2010); their presence may influence building
ventilation rate and consequently indoor air pollution and overheating risk (Taylor et al. 2015a).
All windows where U-values are representative of those post-2002 (window U-value ≤ 2.0 W/m2K),
are therefore modelled with trickle vents installed.

Input weather data for England has been selected based on previous research which indicates
that London, South and Central England, and Northern England have climates which result in sta-
tistically significant differences in relative overheating risk amongst dwellings (Taylor et al. 2014a).
These climates can therefore be modelled using hourly weather data from a recent hot summer
year, produced by the UKCP09 data-based PROMETHEUS project (Eames, Kershaw, and Coley
2010) for London, Birmingham, and Newcastle, respectively. Simulations will also be performed
under future high CO2 emission scenarios which will lead to a warmer climate. Metamodels can be
trained on various locations and climates such that the whole of England is covered.

A buildings’ exposure to the sun is specified by the presence of adjoining and neighbouring
dwellings. Houses are modelled with adjoining surfaces according to the built form when it is
implied (e.g. mid-terrace, semi-detached, end-terrace and flats). Bungalows are modelled as being
detached. Flats are modelled with adjoining dwellings on either side and above and/or below
depending on the level.

We model the infiltration of outdoor PM2.5 pollution into the indoor environment using the
approach of Taylor et al. (2014b). PM2.5 is modelled with an external concentration of 9.8 µg/m3,
reflecting the UK average. Infiltration of outdoor PM2.5 is modelled with a penetration factor of
0.8 when windows are closed and 1.0 when windows are open (Long et al. 2001), representing
the deposition of the particulates inside cracks as it enters the dwellings. Once inside, PM2.5 is
modelled with a deposition rate of 0.18 hour−1 (Long et al. 2001). Pollution from indoor sources
is not modelled due to the inability of the current EnergyPlus Generic Contaminant Model to
simulate multiple pollutants.

Occupant behaviour has a significant impact on the risk of overheating within dwellings through
ventilation and shading behaviour, occupied hours, and internal gains (Mavrogianni et al. 2013;
Porritt and Shao 2010). Previous studies, for example (Taylor et al. 2014a), used occupancy sce-
narios representing a family out during the day or two pensioners home all day. In addition, there
are a number of preventative measures occupants may take to reduce risk, with a number of studies
suggesting that installing external shutters may be the most effective means of reducing indoor
temperatures (Porritt and Cropper 2010; Gupta and Gregg 2013; Porritt et al. 2010). Therefore,
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four occupant-behaviour scenarios are modelled:

(1) Two pensioners, spending all day at home, who open windows during the summer months
(May-September);

(2) Same as occupancy type-1 but with external shutters closed from 9am to 6pm during summer
months, with lights turned on when shutters are closed;

(3) A family of five, out all day (8am−6pm), who open windows when at home, and with no
adaptive shading;

(4) Same as occupancy type-3 but with external shutters closed during work hours (8am−6pm)
in the summer.

In order to model the impact of changes in the building fabric on energy consumption, space
heating is modelled year-round. Simple electric radiators, sized for rooms based on (CIBSE 2003)
guidelines (see section 2 of the supplementary material), heat rooms to the temperature setpoint for
9 hours on weekdays (6am-8am, 5pm-12pm) and 16 hours on weekends (7am-11pm) (BRE 2009).
Internal heat gains from individual occupants, lighting, cooking, and other electrical equipment are
prescribed according to building occupancy schedules. More information on internal gains and the
occupancy schedules used is given in the supplementary material (section 3).

2.1.2. Continuous and Discrete Variants

The shapes and ranges of the continuous distributions are chosen in order to cover the full English
housing stock and future stocks. Sufficient simulation data was produced in order for the meta-
models to be able to make meaningful estimations across the full range of input variants shown in
Table 2.

Table 2. Continuous and discrete input variables and the corresponding value ranges sampled from
during metamodel training. The continuous variables are randomly sampled from; Truncated Normal

(TN) with mean (µ) and standard deviation (σ), and Uniform (U) distributions.

Parameter Range Distribution

Wall U-value 0.15-2.55 W/m2K U
Roof U-value 0.10-2.25 W/m2K U
Window U-value 0.85-4.80 W/m2K U
Floor U-value 0.15-1.30 W/m2K U
Fabric air permeability 0-∞ m3/h/m2 @ 50 Pa TN(µ = 20, σ = 10)
Orientation 0-360◦ U
Terrain Type City/Urban/Rural Discrete
Occupant window opening temperature threshold 10-∞ ◦C TN(µ = 24, σ = 5)
Occupant thermostat setting 15-26 ◦C TN(µ = 22, σ = 3)

Built forms are simulated with building fabrics (windows, walls, roofs, and floors) sampled from
a uniform range of U-values representing the thermal performance of the element shown in Table
2. We use the Governments Standard Assessment Procedure (SAP) (BRE 2015) for Energy Rating
of Dwellings which uses the age, fabric type, and geometry of buildings to estimate the range
of U-values expected for fabric elements in the existing English housing stock. This range has
been extended to represent minimum U-values required to meet Passivhaus standards (PassivHaus
2015). This will allow us to explore the potential of future, strict building regulations. U-values are
implemented in EnergyPlus by adjusting the thermal resistance and/or thickness of the composite
construction materials. Window solar transmittance is adjusted according to window U-value,
assuming a positive linear relationship (BRE 2015).

Building air change rate is modelled by assigning a permeability (m3/h/m2 @ 50 Pa) to external
building fabric elements. Modelling air infiltration due to envelope permeability, enables us to
account for the role of wind exposure on air change rate and therefore pollutant infiltration. The
range of building permeabilities is chosen based on the distribution of values found in the English
housing stock, as described by Stephen (2000). The buildings orientation is randomly selected from
a uniform distribution in the range 0-360 degrees East of North.
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Wind exposures are attributed to buildings in terms of shelter and shading from nearby buildings.
EnergyPlus allows for the terrain of the buildings surroundings to be defined as city, urban, or rural.
This impacts on the exposure of the building to wind, and therefore the background ventilation rate
and pollution infiltration. Although terrain is a categorical variant, it is trained within individual
metamodels as a discrete variant with city, urban, and rural being assigned values of minus one,
zero, and plus one, respectively. This enabled the number of EnergyPlus simulations required to
be reduced by a factor of three.

The thermal comfort of occupants is modelled in terms of the window opening threshold during
the summer (May-September) and the thermostat setpoint during the winter (October-April).
These values are both randomly sampled according to a truncated normal distribution within the
ranges specified in Table 2.

2.2. Building Performance Output Metrics

EnergyPlus output files are analysed using a Python script which calculates the overheating, indoor
air pollution, and energy-use metrics. Several health-relevant indoor environment variables and an
energy use metric are modelled as shown in Table 3.

Table 3. Health-relevant and energy use output metrics with corresponding

symbols, units and the zones for which they are calculated. I/O and RH are

an average over the living room and bedroom for the whole year, whilst Eheat

is a sum over all rooms with heaters installed.

Parameter Symbol Unit Zones

Overheating metrica TOH
◦C Liv,Bed

PM2.5 Indoor/Outdoor ratio I/O NA Mean(Liv,Bed)
Relative Humidity RH % Mean(Liv,Bed)
Annual Heating Energy Use Eheat kWh Sum(All Heated Zones)

a The overheating metric is calculated during the day (8am-10pm) and at
night(10pm-8am) for both the living room and the master bedroom.

2.2.1. Overheating metric (TOH)

There are a number of different indoor overheating metrics available based on research from different
fields (Carlucci and Pagliano 2012; Hamdy and Hensen (2015; ZCH 2015a). We have elected to
use a health-relevant metric developed by Armstrong et al. (2011), and implemented in the indoor
environment by Taylor et al. (2015b), where it was used to assess the overheating risk on excess
heat-related mortality for London. This metric can be used to quantify the indoor overheating
risk of a home when outdoor temperatures exceed regional mortality thresholds (T thresh.

region ). This
threshold is defined as the outdoor temperature above which excess overheating related deaths are
observed. In Birmingham, for example, this threshold is 23 ◦C (Armstrong et al. 2011). The metric
is calculated as the mean of the maximum indoor temperature (Tmax

in,d ), on days, d, where the two

day mean of the maximum outdoor temperature (Tmax
ext ) exceeds T thresh.

region :

TOH =

∑
d=1...Nd

Tmax
in,d

Nd
(1)

Here, Nd =
∑
I(Tmax

ext > T thresh.
region ) where I is the indicator function, with I(A) = 1 if A is true,

and I(A) = 0 if A is false. Tmax
ext is calculated using days, d and d − 1. This metric is calculated

for the living room and the bedroom during both the day time (8am-10pm) and the night time
(10pm-8am).
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2.2.2. PM2.5 indoor/outdoor ratio (I/O)

The estimated absolute concentration of indoor PM2.5 from outdoor sources is modelled by Ener-
gyPlus and converted to an hourly indoor/outdoor (I/O) ratio during post-processing. The average
of the living room and master bedroom is calculated. I/O ratios are used, as they allow indoor air
pollution levels to be estimated based on spatially or temporally-varying levels of outdoor pollution.

2.2.3. Relative Humidity (RH)

Relative humidity is included as an additional health-relevant metric as it can be used to estimate
the mould severity index (MSI). MSI is a metric which can be used to assess the damage of moisture
on buildings and also the health impact caused to asthma sufferers (Fisk, Lei-Gomez, and Mendell
2007). The mean RH is calculated for the living room and master bedroom.

2.2.4. Energy Use (Eheat)

We calculate annual energy use for space heating as a sum over all rooms with 100% efficiency
electric heaters installed. It will be used in order to demonstrate the potential for energy savings
in a retrofitted stock, under the assumption that an increase in building fabric energy efficiency
will result in a reduction in energy use. However, we recognise this may not be the case in reality,
as it has been reported that an increase in energy-efficient retrofit levels may not always result in
a decrease in space heating energy consumption (BRE 2015), as occupant heating behaviours may
change in more energy-efficient housing (Hamilton et al. 2011).

2.3. Metamodel Development

There are a number of different metamodelling methods that can be used to approximate the
compiled output metrics described in section 2.2. Feed-forward Neural Networks and radial basis
function (RBF) machine learning algorithms can both be used. These methods are examples of
supervised machine learning, and are able to reproduce non-linear and non-monotonic relations
between model input and output variables.

2.3.1. Neural networks (NNs)

Neural networks comprise of a set of neurons that connect input and output model variants (Mc-
Culloch and Pitts 1988). The inputs, outputs and hidden neurons are connected to one another
by synapses that carry weights and biases, which determine the strength of the connections. Each
neuron is associated with a transfer or activation function. Linear transfer functions are used at
the input and output layers, whilst connections to hidden neurons are charactersed by a sigmoid
transfer function. The value given by an output neuron, y, is given by:

y =
1

1 + e−η
(2)

where η =
∑

i=1...n
wixi + β, with the inputs to a hidden neuron denoted by {x1, x2, . . . , xn}. The

regression weights and the bias value are represented by wi and β, respectively. The weights and the
bias values are updated in the fitting of the output metrics over a pre-defined number of training
epochs.

The Python-Based Reinforcement Learning, Artificial Intelligence and Neural Network (PyBrain)
Library (Schaul 2015) is used to implement the NN algorithm. This software is flexible and allows
the user to construct the network architecture in terms of the number of layers and neurons, the
connections and also the transfer functions.
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Networks were set up with various architectures having either one or two hidden layers with each
layer containing 4-20 neurons. When two hidden layers were used, the same number of neurons are
present in both layers. A backwards propagation training algorithm is performed where the errors
on the input variables are minimised with respect to the weights and the biases (Rumelhart, Hinton,
and Williams 1988). Training for each NN is performed until the training error has converged. This
is typically after about 100 training epochs.

2.3.2. Radial basis function (RBF)

This method uses a kernal for parameter estimation and is a type of support vector machine (SVM)
(Broomhead and Lowe 1988). RBFs are real valued functions whose values depend on the radial

distance, r =
√ ∑
i=1...n

(x0 − xi)2, relative to a point of origin, x0. Each output metric value is then

given by:

y =
∑
i=1...n

viφ(r) (3)

A Gaussian function is commonly used to represent φ(r), e.g. φ(r) = e−εr
2

. Training is performed
in order to determine the parameters vi, ε and x0. A least squares method is used to do this
such that metamodel output values are close to that of the true (original model) output values.
The scikit-learn, SVM Python module (Pedregosa et al. 2011) was used to implement the RBF
algorithm.

2.3.3. Metamodel validation

Testing of the metamodelling techniques involves passing an independent set of input values through
each trained metamodel. The outputs produced by a metamodel are then compared to the outputs
produced by the true EnergyPlus model.

Several goodness of fit metrics used in previous studies (Van Gelder et al. 2014) allow the accuracy
of the different algorithms to be compared. These metrics include the Root Mean Square Error
(RMSE), the coefficient of determination (R2), and the Maximal Absolute Error (MAE) and are
defined as follows:

RMSE =

√
1

m

∑
j=1...m

(ŷj − yj)2 (4)

R2 = 1−

∑
j=1...m

(ŷj − yj)2∑
j=1...m

(ȳj − yj)2
(5)

MAE = max(|ŷ1 − y1|, . . . , |ŷm − ym|) (6)

where yj represents the original model outputs (EnergyPlus), ȳ the mean original model output
value, ŷj the metamodel output, and m the number of testing samples. These performance metrics
are calculated for each output variable. Since metamodels are fitted using several input and output
variables, the values for all of the continuous variables shown in Tables 2 and 3 are normalised
to have a mean of zero, and a standard deviation of one prior to training. This ensures that the
algorithms are not biased towards a particular variable and allows the performance of individual
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Figure 2. Number of training simulation runs used vs. the performance (R2 averaged over output metrics and NN ar-

chitectures with between 12 and 20 neurons) and the training CPU time (seconds) of the neural networks. The error bar
represents the standard deviation of the nine networks. The study was performed for networks with one layer (left) and two

layers (right) for a semi-detached dwelling with pensioner occupants.

output metrics to be compared. The sum of each normalised error gives the overall performance
for a particular metamodel for both the RMSE and MAE, whilest an average is calculated for
the R2.

3. Results

We present results detailing the performance of the metamodels for several built form and occu-
pancy types. The number of training samples required to give a reasonable metamodel performance
is first needed to be determined. This was implemented by calculating the performance of the meta-
model using varying numbers of training samples in the range 200 to 1000 EnergyPlus simulations.
An independent sample of 100 simulations was used to test the performance of each trained NN.
In this study, a semi-detached house was used (the most common built form in the EHS) with two
pensioner occupants (type-1 as described in section 2.1.1). The NN performance (R2) averaged over
all output metrics and NN architectures is shown as a function of the number of training samples
used in Figure 2. The average CPU time taken to train the networks is also displayed.

The results indicate that the performance of the metamodel improves as the number of training
runs increases from 200 to 500. A significant improvement in performance is not observed when
beyond 500 simulations are used. Due to computational limits on time and storage space (each En-
ergyPlus output file is about 2.5MB), we have therefore elected to use 500 EnergyPlus simulations
to train each metamodel. There is not a significant difference in the overall performance between
NNs with one or two layers.

The range of neural network architectures to use has also been investigated. This was again es-
tablished using a semi-detached dwelling with pensioner occupants. Figure 3 graphically represents
the performance of the NNs as a function of the number of neurons for one and two layered net-
works. The performance improves with the number of neurons in the range 5 to 12 and then levels
off. To save CPU time due to training, we therefore only train networks for one or two layers with
the number of neurons in the range of 12 to 20. The best overall performing network will then be
selected. Tables 4-6 display the performance of NNs with various architectures for a semi-detached
dwelling with pensioners using 500 training samples. The performance of the RBF algorithm is
also shown for comparison. Results are shown for individual output variables as well as the overall
performance of each metamodel.

In support of previous findings (Van Gelder et al. 2014), the overall performance of the NNs
appear to be better than for the RBF method. The RBF does however have a superior perfor-
mance for the heating energy use variable. The relationships between input parameters such as the

10



March 3, 2016 Journal of Building Performance Simulation modelling˙paper

4 6 8 10 12 14 16 18 20 22

Number of hidden neurons

0.70

0.75

0.80

0.85

0.90

0.95

A
v
e
. 
R

2

46.2

46.4

46.6

46.8

47.0

47.2

47.4

T
ra

in
in

g
 C

P
U

 t
im

e
 (

s)

1 layer NN R2

CPU time (s)

4 6 8 10 12 14 16 18 20 22

Number of hidden neurons

0.70

0.75

0.80

0.85

0.90

0.95

A
v
e
. 
R

2

52.5

53.0

53.5

54.0

54.5

T
ra

in
in

g
 C

P
U

 t
im

e
 (

s)

2 layer NN R2

CPU time (s)

Figure 3. Number of hidden NN neurons vs. the performance of the network (R2 averaged over all output metrics) and

the training CPU time (seconds). The study has been performed for NNs with one layer (left) and two layers (right) for a
semi-detached dwelling with pensioner occupants using 500 training simulations. The training CPU time axis have different

scale ranges due to the training CPU time taking slightly longer for NNs with two layers.

Table 4. RMSE values for each output variable using neural networks (NNs) with various
architectures (layers, neurons) and a radial basis function (RBF). Results are shown for a

semi-detached dwelling with pensioner occupants.

Model I/O Eheat Tbed-day
OH Tbed-night

OH T liv-day
OH T liv-night

OH RH Tot.

NN(1,12) 0.29 0.22 0.21 0.35 0.34 0.35 0.45 2.22
NN(1,13) 0.36 0.22 0.15 0.28 0.25 0.25 0.43 1.94
NN(1,14) 0.33 0.21 0.24 0.34 0.43 0.87 0.48 2.92
NN(1,15) 0.34 0.20 0.17 0.31 0.29 0.37 0.50 2.19
NN(1,16) 0.30 0.23 0.17 0.30 0.33 0.61 0.43 2.37
NN(1,17) 0.34 0.22 0.18 0.29 0.31 0.48 0.46 2.30
NN(1,18) 0.34 0.21 0.23 0.36 0.43 0.64 0.43 2.64
NN(1,19) 0.33 0.22 0.18 0.30 0.29 0.34 0.48 2.13
NN(1,20) 0.33 0.20 0.15 0.28 0.23 0.27 0.44 1.90

NN(2,12) 0.34 0.28 0.28 0.36 0.47 0.86 0.54 3.13
NN(2,13) 0.36 0.29 0.32 0.43 0.37 0.34 0.42 2.53
NN(2,14) 0.31 0.24 0.23 0.34 0.32 0.29 0.42 2.15
NN(2,15) 0.44 0.29 0.28 0.36 0.41 0.61 0.55 2.93
NN(2,16) 0.34 0.31 0.24 0.36 0.34 0.43 0.41 2.42
NN(2,17) 0.40 0.25 0.19 0.32 0.34 0.53 0.50 2.52
NN(2,18) 0.38 0.23 0.25 0.38 0.35 0.36 0.47 2.42
NN(2,19) 0.31 0.22 0.18 0.30 0.29 0.32 0.38 2.00
NN(2,20) 0.36 0.28 0.21 0.35 0.26 0.29 0.42 2.17

RBF 0.29 0.15 0.69 0.70 0.86 0.91 0.46 4.06

thermostat setting and Eheat are linear in nature. This suggests that RBFs perform better when
modelling simpler types of relationship. The RBF, however, struggles to model more complicated
performance metrics such as day-time overheating which depends sinusoidally on the orientation of
the building due to the location of the windows. Figure 4 shows the output values simulated using
EnergyPlus plotted against the values output from the best performing NN (with one layer and
20 neurons) for a semi-detached house with pensioner occupants. It is clear that the metamodel
performs less well at the extremes, for example, for buildings with high relative humidity. This is
due to the lack of training simulation data for these buildings.

The performance of the metamodel has also been tested for all other built forms with the two
pensioner occupancy types. This is to ensure that our methods are robust and can be applied
in various scenarios. The performances of the selected metamodels for all built forms are shown
for pensioners with and without shutters in Tables 7 and 8, respectively. A good performance is
achieved for all built form and occupancy variants studied. The results suggest that the performance
is slightly better for pensioners without shutters than those with shutters. This could be a result of
the solar gains due to the building orientation variable having more of an influence on metamodel
training.
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Table 5. R2 values for each output variable using neural networks (NNs) with various

architectures (layers, neurons) and a radial basis function (RBF). Results are shown for a

semi-detached dwelling with pensioner occupants.

Model I/O Eheat Tbed-day
OH Tbed-night

OH T liv-day
OH T liv-night

OH RH Ave.

NN(1,12) 0.91 0.95 0.95 0.88 0.88 0.88 0.79 0.89
NN(1,13) 0.87 0.95 0.98 0.92 0.94 0.94 0.81 0.92
NN(1,14) 0.89 0.95 0.94 0.89 0.81 0.24 0.77 0.78
NN(1,15) 0.88 0.96 0.97 0.91 0.92 0.86 0.75 0.89
NN(1,16) 0.91 0.95 0.97 0.91 0.89 0.62 0.81 0.87
NN(1,17) 0.88 0.95 0.97 0.91 0.91 0.77 0.79 0.88
NN(1,18) 0.88 0.96 0.95 0.87 0.81 0.59 0.81 0.84
NN(1,19) 0.89 0.95 0.97 0.91 0.92 0.89 0.77 0.90
NN(1,20) 0.89 0.96 0.98 0.92 0.95 0.93 0.81 0.92

NN(2,12) 0.89 0.92 0.92 0.87 0.78 0.26 0.71 0.76
NN(2,13) 0.87 0.91 0.90 0.81 0.87 0.89 0.82 0.87
NN(2,14) 0.91 0.94 0.95 0.89 0.90 0.92 0.82 0.90
NN(2,15) 0.81 0.92 0.92 0.87 0.83 0.63 0.70 0.81
NN(2,16) 0.88 0.91 0.94 0.87 0.89 0.81 0.83 0.88
NN(2,17) 0.84 0.94 0.96 0.90 0.88 0.72 0.75 0.86
NN(2,18) 0.86 0.95 0.94 0.85 0.88 0.87 0.78 0.87
NN(2,19) 0.90 0.95 0.97 0.91 0.91 0.90 0.86 0.91
NN(2,20) 0.87 0.92 0.96 0.88 0.93 0.91 0.82 0.90

RBF 0.89 0.97 0.56 0.25 -1.44 -5.88 0.63 -4.02

Table 6. MAE values for each output variable using neural networks (NNs) with various

architectures (layers, neurons) and a radial basis function (RBF). Results are shown for a

semi-detached dwelling with pensioner occupants.

Model I/O Eheat Tbed-day
OH Tbed-night

OH T liv-day
OH T liv-night

OH RH Tot.

NN(1,12) 1.30 0.70 0.81 1.15 0.95 0.99 3.00 8.90
NN(1,13) 1.62 0.73 0.42 0.88 0.84 0.69 3.22 8.40
NN(1,14) 1.87 0.65 0.89 1.28 1.36 2.37 2.81 11.22
NN(1,15) 2.24 0.56 0.42 0.99 1.07 1.22 4.18 10.68
NN(1,16) 1.59 0.65 0.44 1.05 1.13 1.73 3.15 9.75
NN(1,17) 1.69 0.74 0.45 0.88 0.87 1.40 3.01 9.04
NN(1,18) 1.77 0.53 0.62 1.19 1.18 1.57 3.05 9.92
NN(1,19) 1.60 0.63 0.56 1.02 0.99 1.01 3.13 8.94
NN(1,20) 1.94 0.49 0.38 0.99 0.96 0.71 3.36 8.83

NN(2,12) 1.09 1.11 0.92 1.47 1.30 2.46 2.55 10.91
NN(2,13) 1.44 1.08 0.94 1.37 1.01 1.05 2.42 9.30
NN(2,14) 1.39 1.10 0.68 0.93 0.91 0.97 2.73 8.70
NN(2,15) 2.14 0.97 0.95 1.12 1.08 1.87 3.78 11.91
NN(2,16) 1.93 0.87 0.71 1.29 1.05 1.68 1.93 9.47
NN(2,17) 1.86 0.71 0.52 1.35 0.99 1.70 2.96 10.09
NN(2,18) 1.75 0.78 1.02 1.93 0.95 1.15 2.75 10.32
NN(2,19) 1.29 1.00 0.37 0.94 0.94 1.21 1.49 7.25
NN(2,20) 1.78 0.89 0.43 1.08 0.64 0.74 1.89 7.45

RBF 1.45 0.38 2.44 2.11 2.06 2.33 3.62 14.40

Table 7. R2 values for each output variable for the best performing metamodel for the various built forms

with cavity walls and pensioner occupants with shutters closed during the summer months. Results for the
flats are shown for the middle floor.

Built form Model I/O Eheat Tbed-day
OH Tbed-night

OH T liv-day
OH T liv-night

OH RH Ave.

End terrace NN(2,17) 0.89 0.97 0.90 0.81 0.88 0.79 0.83 0.87
Mid terrace NN(1,18) 0.93 0.94 0.97 0.96 0.83 0.82 0.80 0.89
Semi-detached NN(1,13) 0.88 0.97 0.94 0.92 0.84 0.83 0.81 0.89
Detached NN(1,16) 0.91 0.94 0.96 0.94 0.86 0.93 0.83 0.91
Bungalow NN(1,17) 0.75 0.98 0.90 0.93 0.94 0.94 0.63 0.87
Converted flat NN(2,14) 0.95 0.92 0.87 0.87 0.94 0.90 0.92 0.91
Low-rise flat NN(1,12) 0.90 0.91 0.72 0.78 0.72 0.80 0.82 0.81
High-rise flat NN(1,12) 0.91 0.94 0.83 0.94 0.93 0.94 0.72 0.89
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Figure 4. Original EnergyPlus simulation values plotted against the outputs of the best performing metamodel (NN with
one layer containing 20 neurons) using 100 testing samples for a semi-detached house with pensioner occupants. Distributions

are shown for T liv-day
OH (top left), T liv-night

OH (top right), Tbed-day
OH (upper middle left), Tbed-night

OH (upper middle right), I/O
(lower middle left), RH (lower middle right) and Eheat (bottom). The linear fits on the graphs indicate that the metamodels
do an excellent job of replicating the original model.

13



March 3, 2016 Journal of Building Performance Simulation modelling˙paper

Table 8. R2 values for each output variable for the best performing metamodel for the various built forms

with cavity walls and pensioner occupants. Results for the flats are shown for the middle floor.

Built form Model I/O Eheat Tbed-day
OH Tbed-night

OH T liv-day
OH T liv-night

OH RH Ave.

End terrace NN(2,17) 0.92 0.95 0.96 0.93 0.93 0.95 0.90 0.93
Mid terrace NN(2,18) 0.91 0.96 0.95 0.92 0.91 0.88 0.85 0.91
Semi-detached NN(1,20) 0.89 0.96 0.98 0.92 0.95 0.93 0.81 0.92
Detached NN(1,20) 0.89 0.98 0.97 0.96 0.94 0.90 0.92 0.94
Bungalow NN(2,15) 0.94 0.97 0.92 0.90 0.91 0.91 0.91 0.92
Converted flat NN(2,18) 0.90 0.89 0.95 0.94 0.91 0.85 0.79 0.89
Low-rise flat NN(2,13) 0.94 0.90 0.87 0.89 0.90 0.88 0.91 0.90
High-rise flat NN(2,15) 0.90 0.95 0.84 0.92 0.96 0.77 0.87 0.89

4. Discussion, Limitations and Future Work

The model described is able to rapidly estimate the indoor overheating risk, air pollution levels,
and space heating energy use in a number of dwellings under current and future climate scenarios.
Due to the large number and range of categorical and continuous input variables, the model is built
entirely using parallel processing on HPC facilities. The model is able to account for changes in the
stock due to new builds and the retrofit of existing buildings. The metamodelling framework also
allows for optimisation and sensitivity analyses to be performed. Metamodel performance results
for the various built forms shown in Table 8 indicate that a high level of accuracy is achieved.
There are, however, several limitations to the model. Here, we acknowledge these and present some
potential solutions:

(1) While we enable the energy-efficient retrofit of building fabrics to passivhaus standards, we
do not model the addition of any supplementary ventilation systems such as Mechanical
Heat and Ventilation Recovery (MVHR). These systems may reduce overheating risks by
increasing ventilation above passive levels, while also reducing pollutant infiltration through
the use of filters. Further work will consider such an implementation.

(2) While four different occupancy scenarios are modelled, these do not capture the full range of
occupant behaviours and their potential influences on indoor temperatures and air pollution.
A handle on window opening and heating occupancy behaviour can be achieved by using
the Energy Follow Up Survey (EFUS) (BRE 2013) data set, which has indoor temperature
measurements for dwellings surveyed as part of the 2010-2011 EHS. This data can be indi-
rectly used to estimate the average and range of window opening and heating behaviour for
England, whilst validating the modelling of indoor temperatures;

(3) Uncertainties in the building fabric may be assessed in the metamodel due to the random
sampling of model inputs, but certain parameters such as building geometry and layout are
held static, and their uncertainty unquantifiable. Building geometry and layout is likely to
have a significant role in overheating and outdoor pollution infiltration risks. Accounting for
this additional level of complexity has not yet been implemented;

(4) We assume a constant outdoor air pollution level, and do not account for spatial or temporal
variations in pollution levels. Calculating I/O retains the option to estimate absolute indoor
concentrations of outdoor pollution should high-resolution outdoor pollution levels be made
available.

(5) Our calculations of energy use assume that there is no “take-back”, and that changes to
the building envelope result in a corresponding change to energy consumption. This is not
necessarily the case, as homeowners often prefer to heat their homes for longer and/or at
higher temperatures (Hamilton et al. 2011).

In future work, the metamodel will be used to calculate metrics for each entry within the EHS
based on the specified building type and fabric building characteristics within the database. U-
values of buildings within the EHS are inferred from fabric types, insulation levels, and ages based
on SAP. The Homes Energy Efficiency Database (HEED), a database of dwellings held by the
Energy Saving Trust (EST) that has details of energy-efficiency retrofits. This has physical dwelling
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information as well as postcode information. Postcode information in HEED allows for the results
to be mapped and adjusted by local weather data, where available. Furthermore, Office for National
Statistics (ONS 2011) data on small-area urban/rural classifications for Large Super Output Areas
may be used to estimate the wind and sun exposure of the individual buildings within the building
stock. Examining the relationship between indoor overheating and outdoor temperatures enables
the model to account for highly localised temperatures, such as UHI effects.

The rapid estimation of overheating and indoor air pollution exposure risks and energy use
for an entire housing stock, enables a number of different potential scenarios to be easily tested.
Modelling housing stocks with geographical references, allows results to be easily visualised across
a spatial area, as has been done for static housing stocks under current conditions for outdoor air
pollution and overheating (Taylor et al. 2015b). As a result, the model provides a useful tool for
policy makers, urban planners, and public health experts when estimating the influences of the
housing stock on population exposure to overheating and outdoor air pollution inside dwellings
across England.

5. Summary

A national overheating and indoor air pollution metamodelling framework is presented, developed
with the use of HPC. A statistical sampling technique and metamodelling approach allows the
tool to rapidly estimate a number of dwelling indoor overheating, pollution indoor/outdoor (I/O)
ratios, relative humidity, and energy use based on the characteristics of buildings. The results
indicate that using a neural network with between 12 and 20 hidden neurons with one or two
hidden layers produces metamodels with the best performance. We elected to use 500 training
simulations due to constraints on the storage of EnergyPlus output files and the computer time
taken to run these simulations. This metamodelling approach is able to build on existing national
models of overheating and indoor air pollution risk by being adaptable to changes in the building
stock in the coming years. Furthermore, adaptations to reduce overheating risks, such as shading
using external shutters, fabric and ventilation changes, and local environmental changes to the
UHI, can be accounted for. This model acts as a powerful tool for assessing changes to indoor risks
caused by policy, climate change, and a transforming housing stock.
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