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Abstract

In cluster randomised cross-over (CRXO) trials, clusters receive multiple treatments in a

randomised sequence over time. In such trials there is usually correlation between patients

in the same cluster. In addition, within a cluster, patients in the same period may be

more similar to each other than to patients in other periods. We demonstrate that it is

necessary to account for these correlations in the analysis to obtain correct Type I error

rates. We then use simulation to compare different methods of analysing a binary outcome

from a two-period CRXO design. Our simulations demonstrated that hierarchical models

without random effects for period-within-cluster, which do not account for any extra within-

period correlation, performed poorly with greatly inflated Type I errors in many scenarios.

In scenarios where extra within-period correlation was present, a hierarchical model with

random effects for cluster and period-within-cluster only had correct Type I errors when

there were large numbers of clusters; with small numbers of clusters the error rate was

inflated. We also found that generalised estimating equations did not give correct error rates

in any scenarios considered. An unweighted cluster-level summary regression performed best

overall, maintaining an error rate close to 5% for all scenarios, although it lost power when

extra within-period correlation was present, especially for small numbers of clusters. Results

from our simulation study show that it is important to model both levels of clustering in

CRXO trials, and that any extra within-period correlation should be accounted for.

1 Introduction

Cluster randomised trials are used in a number of situations including when an intervention

is aimed at the cluster level, when a parallel group trial would be unfeasible, or for logistical

reasons. However, cluster randomisation can lead to a substantial reduction in power compared

to an individually randomised trial. Power in a cluster randomised trial can be increased by

adding more clusters, or by recruiting more people from each cluster. However, there is a limit

on the amount of power that can be gained using the latter approach [1], and the ability to

increase the number of clusters in a trial may be limited by financial or logistical constraints.

An alternative method that may increase the power of a cluster randomised trial is to add a

cross-over element [2, 3]. Cluster randomised cross-over (CRXO) trials use a design in which
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clusters receive multiple treatments in a random order. For example, in a CRXO trial with two

treatments and two periods, clusters would be randomly assigned to receive either treatment A

followed by treatment B, or B and then A. Including a cross-over element in a trial with cluster

randomisation allows each cluster to act as its own control, which may reduce the number of

clusters or patients needed to achieve the desired power [2, 3]. The CRXO design may also help

to counteract imbalances in baseline patient characteristics that can occur in cluster randomised

trials with a small number of clusters [3].

Despite the potential advantages of a CRXO study design, the cross-over element leads to

a more complicated data structure, which in turn leads to a more complex analysis. If the

analysis is not handled appropriately it could lead to incorrect or misleading results. However,

a systematic review of CRXO trials [4, 5] deemed that only 10% (14/139) of analyses used

potentially appropriate methods that accounted for both the cluster and cross-over components

of the design. To date, much of the research regarding methods of analysis for CRXO trials

has focused on continuous outcomes [6] or case studies of individual CRXO trials [7]. Forbes

et al. [8] have considered the analysis of a binary outcome from a CRXO trial, but with an

emphasis on cluster-level summary methods, in which cluster-level summaries are modelled

instead of individual-level data. They also performed a limited assessment of individual-level

models using generalised estimating equations (GEEs) with an identity link. It is currently

unclear which individual-level methods of analysis are most appropriate for binary outcomes

from CRXO trials, and in particular whether hierarchical models might be a useful approach.

In this paper we use simulation to compare methods of estimating a treatment effect for a

binary outcome. We consider both models that estimate a treatment odds ratio (OR), including

hierarchical models and GEEs, and also cluster-level summary methods of analysis that estimate

the treatment effect as a difference in proportions. Our simulation study incorporates a wide

range of scenarios and uses a standard statistical software package, Stata 13 [9], to implement

the methods. We only consider a CRXO design with two time periods with a different set of

patients in each period.

We start by outlining the structure of the data that are obtained from such a trial design in

Section 2. In Sections 3 and 4 we outline the methods of analysis examined, and describe the

structure of our simulation study. In Sections 5-7 we present results from our simulation study.

We discuss the application of the CRXO design to a particular trial, TRIGGER2, in Section 8.

Discussions and conclusions are given in Sections 9 and 10.

2 The structure of CRXO data

In cluster randomised trials outcomes from individuals in the same cluster are frequently more

similar to each other than they are to outcomes from individuals in different clusters. This

correlation between outcomes in the same cluster, called the intra-cluster correlation coefficient

(ICC), violates the usual assumption that all patients are independent, and therefore requires

that the clustering be taken into account in the analysis [1, 10–12].

CRXO trials have a more complicated structure. In addition to outcomes being correlated

within clusters, there may be clustering within the same cluster-period (any given period within

a single cluster): within each cluster, outcomes in one period may be more similar to each other

than they are to outcomes in another period. Equivalently, there are two potential sources of

variation — between clusters, and between periods within a cluster. For example, this may
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occur in a trial where the members of clinical staff differ between periods. Different teams

of clinical staff may have differing approaches to concomitant care that may in turn produce

differing health outcomes of their patients. Two ICCs are therefore required to describe the

data. In this paper we use one ICC to represent the correlation between two outcomes in the

same cluster-period, and one ICC to represent the extra correlation between two outcomes in

the same cluster-period compared with outcomes in different periods.

In Figure 1 we show two different ways of modelling how the mean outcome changes in

each cluster and period for a simple CRXO trial with three clusters and two periods. The

mean outcome could be the proportion of successful events, or the odds of a successful event,

in the case of a binary outcome. Here, we use hierarchical models to model the log odds of a

successful event. These models are discussed further in Section 3.1. We consider these models

in the absence of a treatment effect for clarity. The first model, shown in panel A, assumes the

mean outcome varies across clusters, and across time periods; however, the variation over time

is assumed to be the same for all clusters:

logit(Pr{Yijk = 1|ci}) = µ+ βππj + ci , (1)

where Yijk is the outcome for person k in period j of cluster i, Yijk = 1 is considered to be a

“successful” event, µ is an intercept, ci is a cluster effect that could be modelled either as a

fixed or a random effect, βπ is a fixed period effect and πj is an indicator variable that is 1 for

the second period and 0 for the first. This model assumes that all observations in a cluster are

equally correlated regardless of whether they belong to the same period, once the fixed effect

of period has been taken into account.

The second model (panel B) assumes that the mean outcome varies across clusters and over

time, and that the variation across time periods is different for each cluster:

logit(Pr{Yijk = 1|ci, pij}) = µ+ βππj + ci + pij , (2)

where pij is a normally distributed random effect for cluster-period (i.e. a random effect for

cluster-by-period interaction) with mean 0 and variance component σ2
p. This model assumes

that all observations within a cluster are correlated, and that within a cluster two observations

in the same period are more correlated than two observations from different periods.

2.1 Impact of ignoring extra correlation within cluster-periods

The model in Panel A of Figure 1 is sometimes used to analyse CRXO trials [5]. These models

assume that outcomes from all patients within a cluster are equally correlated, regardless of

which period they are in. If this assumption is incorrect, and patient outcomes in the same

period are more similar to each other than to outcomes in other periods, then cluster-period

will be a source of non-ignorable clustering, a concept that is discussed in Ref. [13]. Briefly,

a source of clustering is non-ignorable if both the outcomes and treatment assignments within

the cluster are correlated. Treatment assignments within a cluster-period are correlated, as all

patients in the cluster-period receive the same treatment; hence the correlation is equal to one.

Outcomes within a cluster-period will also be correlated if patients are more similar to other

patients in the same cluster-period than to patients in other periods within the cluster.

When clustering is non-ignorable it must be included in the trial analysis to obtain correct
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Figure 1: A sketch to illustrate how mean outcomes might be modelled in a CRXO trial. Each
line represents a cluster, and each dot a cluster-period. Panel A shows a model where the mean
outcome varies between the three clusters and by period, but the period effect is assumed to be
the same for all clusters. Panel B allows the outcomes to change differently over time depending
on the cluster.

Type I error rates. For CRXO trials, ignoring extra cluster-period correlation in the analysis

may lead to inflated Type I error rates, increasing the chance of a false-positive result. Therefore,

if there is extra correlation within cluster-period, the model in Panel A will give incorrect and

potentially misleading results. Hence, a model such as that in Panel B should be used instead.

2.2 CRXO trials and intra-cluster correlation coefficients

As discussed in Section 2, in a CRXO trial there are two possible types of correlation — within a

cluster, and additional correlation within a cluster-period — and two ICCs are therefore required

to describe the data. We denote the first as ρc [6], the correlation between two outcomes in the

same cluster-period, and define it on the logistic scale (see e.g. Refs. [14, 15] for a discussion of

ICC definitions for binary outcomes on the logistic scale) as:

ρc =
σ2
c + σ2

p

σ2
c + σ2

p + π2/3
, (3)

where σ2
c is the variance between the cluster means, σ2

p is the variance between the cluster-period

means conditional on the cluster mean, and π is the mathematical constant. This ICC is based

on an underlying linear model for a latent continuous outcome [16]. The π2/3 term represents

the residual variance of a standard logistic model. The continuous outcome is then dichotomised

to produce a binary outcome following a logistic model. ρc represents the correlation between

two outcomes in the same cluster-period on the original continuous (logistic) scale.

We denote our second ICC ρp and define it as:

ρp =
σ2
p

σ2
c + σ2

p + π2/3
. (4)

It represents the additional correlation between two outcomes in the same cluster-period com-

pared with two outcomes from different periods in the same cluster:
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ρp = Corr(Y ∗
ijk, Y

∗
ijk′)− Corr(Y ∗

ijk, Y
∗
ij′k′) , (5)

where:

Corr(Y ∗
ijk, Y

∗
ijk′) =

σ2
c + σ2

p

σ2
c + σ2

p + π2/3
= ρc , (6)

is the correlation between two latent continuous outcomes Y ∗
ijk, Y

∗
ijk′ from cluster i, period j

and subjects k and k′, and:

Corr(Y ∗
ijk, Y

∗
ij′k′) =

σ2
c

σ2
c + σ2

p + π2/3
= η , (7)

is the correlation between two outcomes in cluster i but different periods j and j′.

3 Methods of analysis

In this section we start by outlining a number of methods of analysis which we then evaluate

in Sections 5-7 via a simulation study. We use the subscript i = 1, . . . , C to denote cluster,

where C is the total number of clusters, j = 1, 2 to denote period, and k = 1, . . . , nij to denote

individual, with nij individuals in cluster i during period j. The number of events in each

cluster-period will be denoted Yij =
∑nij

k=1 Yijk, where Yijk is the binary outcome for person k

in period j and cluster i.

3.1 Individual-level methods

Hierarchical models

Hierarchical models can be used to describe data with a multi-level structure [16]. Variables

that describe the structure of the data, such as cluster, can be included either as fixed effects,

each with their own regression coefficient, or as random effects, which follow a distribution.

Hierarchical models allow complex correlation structures to be modelled in a way that utilises

the power available from individual-level data. They are also easily extended to account for

baseline covariates. [16]

In this study we consider four different hierarchical models. The first model has fixed effects

for cluster:

logit(Pr{Yijk = 1}) = µ+ βττij + βππj + γi , (8)

where µ is an overall mean, βτ is the treatment effect, τij and πj are indicator variables for

treatment and period respectively, βπ is a fixed period effect, and γi are fixed effects for cluster.

Note that clusters can be modelled as fixed effects for a CRXO trial because each cluster receives

both the intervention and control, and such models utilise within-cluster information alone to

estimate treatment effects. We refer to this model as “Fixed” as it has fixed effects for cluster.

The second model has a random effect for cluster rather than fixed effects:

logit(Pr{Yijk = 1|ci}) = µ+ βττij + βππj + ci , (9)

where ci is a normally distributed random effect with mean zero and variance σ2
c . We refer to

this model as “Random” as it uses random effects for the clusters.

5



These two models allow the mean outcome to change going from period 1 to period 2, but

all clusters change by the same amount, as in panel A of Figure 1. As discussed in Section 2.1,

if there is extra correlation within cluster-period then these models will be mis-specified and

may give incorrect and misleading results.

We also consider two further models. The first has fixed effects for cluster and a random

effect for cluster-period:

logit(Pr{Yijk = 1|pij}) = µ+ βττij + βππj + γi + pij , (10)

where pij is a normally distributed random effect with variance σ2
p, and other terms are defined

as above. We refer to this model as “Fixed-random”.

Lastly we consider a model with random effects for both cluster and for period within cluster,

which we refer to as “Random-random”:

logit(Pr{Yijk = 1|ci, pij}) = µ+ βττij + βππj + ci + pij , (11)

The variance components σ2
c and σ2

p from this model are used in the ICC definitions given in

Section 2.2.

The Fixed-random and Random-random models allow the variation seen in panel B of

Figure 1, where mean outcome in each cluster can change over time in a different way.

Generalised estimating equations

An alternative to likelihood based methods such as hierarchical models is to use generalised

estimating equations (GEEs) [16–18]. In GEEs marginal probabilities are modelled and the

resulting odds ratios (ORs) are population averaged [17, 18]. Unlike the ORs from the Random-

random hierarchical model that compares the odds of outcome from two people chosen at

random within the same cluster-period, population averaged ORs compare the odds of outcome

of two people picked at random from the entire study population regardless of which cluster or

cluster-period they belong to. Cluster and cluster-period are averaged over, and hence GEEs

model marginal probabilities rather than probabilities that are conditional on cluster-period.

The two types of OR are often very similar in practice, but they estimate two different population

parameters. The extent to which the two ORs differ will depend on the size of the variance

components in the Random-random hierarchical model [1].

In GEEs clustering is not accounted for by adding terms to the model, but the correlations

are modelled explicitly in a working correlation matrix [16]. Standard errors (SEs) can be calcu-

lated using a robust sandwich estimator which can account for mis-specification of the working

correlation matrix, although this relies on a sufficient number of clusters being available [16, 17].

The basic marginal model we consider for the GEEs is:

logit(Pr{Yijk = 1}) = µ+ βττij + βππj , (12)

where Pr{Yijk = 1} is now a marginal probability and βτ is a population averaged treatment

effect.

This basic marginal model can be used in conjunction with different working correlation

matrices, both with and without a robust sandwich estimator. To our knowledge, it is not
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currently possible to specify a working correlation matrix that captures two different correlations

for cluster and cluster-period in the Stata command xtgee [19], and manual coding of such

a working correlation matrix and its inverse in the GEE algorithm would be required. We

therefore chose to look at working correlation matrices that model the higher level of clustering

(an exchangeable correlation matrix that captures a constant correlation within clusters but

ignores any clustering at the cluster-period level) and that model the lower level of clustering

(an “exchangeable in cluster-period” matrix that captures correlation within cluster-period but

ignores additional correlation within clusters). The exchangeable correlation matrix assumes

that there is a common correlation ρ between all observations in a cluster, regardless of which

period the observation belongs to, corresponding to σ2
p = 0 in the Random-random hierarchical

model. The “exchangeable in cluster-period” correlation matrix assumes that observations

within the same period are exchangeable with a common correlation ρ, but observations from

different periods in the same cluster are uncorrelated. This is equivalent to the assumption

that the variance σ2
c is zero and that there is only correlation between outcomes in the same

cluster-period, as would be the case in a parallel group cluster randomised trial. This working

correlation assumes ρc = ρp, or η = 0, and therefore does not exploit the correlation between

individuals in different cluster-periods that allows the cross-over element to improve efficiency

over a cluster randomised design. We also consider an independent working correlation matrix.

Estimates of the SE from all GEEs were considered both with and without the use of a

robust sandwich estimator.

3.2 Linear regressions on summary measures

Cluster-level methods can be used to model summary statistics for each cluster-period. The

main advantages of cluster-level methods are their robustness and ease of implementation, while

a potential disadvantage is that they do not make full use of the data which may lead to a loss

in power [10].

We can fit a linear regression to model the proportion of events in each cluster-period. Since

we are analysing cluster-period summaries we no longer need to account for correlations within

cluster-period, but we do still need to account for cluster effects. Defining Pij = Yij/nij as the

proportion of events in period j of cluster i, we can fit the following linear regression model

with fixed cluster effects:

Pij = α+ βτ,Lτij + βππj + γi + ϵij , (13)

where α is an overall mean, βτ,L is the treatment effect and τij is an indicator variable for

treatment of interest, βπ is a fixed period effect and πj is an indicator variable for period, γi

are fixed cluster effects, and ϵij is a normally distributed residual error term with mean zero

and variance σ2
e . We add an L subscript to βτ,L to highlight that the treatment effect given

by this model is measured on the linear scale, i.e. it corresponds to a difference in proportions

rather than an OR as in the individual-level models. Note that using fixed effects and random

effects for cluster in this model will give identical results [20]. This model is equivalent to the

cluster-level method used by Turner et al. [6].

An unweighted linear regression assumes that all data points have the same error variance.

It is also possible to use weights in conjunction with this regression model, which may help to

increase efficiency if this assumption does not hold. We therefore chose to look at the following

three weightings in our simulation study, in addition to the unweighted regression. The first
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weights by size of cluster, with the weight for cluster i set proportional to [6, 8]:(
1

ni1
+

1

ni2

)−1

, (14)

where ni1 and ni2 are the number of patients in cluster i in the first and second periods re-

spectively. This weighting assumes that ρc = η or equivalently that ρp = 0 (there is no extra

cluster-period correlation), and that the variances for the two treatments are equal and the

same for all clusters.

The second set of weights are based on the inverse of the variance of Pi2 − Pi1 and are

a combination of cluster-period size and estimated ICC. The weights for each cluster are set

proportional to [6, 8]: (
1 + (ni1 − 1)ρ̂c

ni1
+

1 + (ni2 − 1)ρ̂c
ni2

− 2η̂

)−1

, (15)

where ρ̂c is a sample estimate of ρc and η̂ is a sample estimate of the correlation between two

outcomes in different periods in the same cluster (and is equal to the difference between ρc and

ρp — see Section 2.2). These weights relax the assumption that ρc = η, although still assume

that the variances are the same for both treatments. For a full derivation and description of

assumptions for these weights see Ref. [8].

The third set of weights uses the inverse of the binomial variance for each cluster-period:(
pij(1− pij)

nij

)−1

. (16)

A zero-cell correction, a technique used in meta-analysis [21] in which 0.5 is added to each pij

and 1− pij for any pij equal to zero or one, was used to avoid undefined weights.

In addition to these three methods of weighting, we also considered a variety of other weight-

ings which gave results that were very similar to the size and ICC weights specified above —

see Sections 1 and 6 of the online appendix for more details.

Some of these weights require estimates of the ICCs on the linear scale. For ρc we use an

ANOVA estimator that is defined in references such as [10, 15, 22, 23]. For the correlation η we

use the pairwise estimator that is given in Donner et al. in [23]. Both of these definitions are

given in Section 2 of the online appendix.

4 Simulation study: data generation

In our simulation study we started by conducting two small initial simulation studies to identify

which methods of analysis appeared to perform well (Section 5). This was followed by a full

factorial simulation study on the subset of methods that performed well in the initial simulation

study (Sections 6 and 7). In this section we describe the data generation process used in our

simulation study. The parameters used in our simulations are outlined in Sections 5-7.

We generated data sets using Equation (11). Simulations were carried out in Stata 13 [9].

Data sets were generated such that the number of subjects varied across clusters and cluster-

periods. The number of patients in each cluster-period was generated in the following way:

• Let m represent the average number of patients per cluster-period across the study. A
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value of m was chosen for each scenario (see Section 6 for further details).

• A value for the average size of each cluster in the study was sampled from a negative

binomial distribution with mean m and standard deviation (SD) 0.65 × m. A value

of 0.65 was chosen as this is the coefficient of variation found in general practice list

size by Eldridge, Ashby and Kerry [24] (see Section 4 of the online appendix for further

discussion). Any zeros were redrawn. This gives a number mi for each cluster, with all

mi greater than zero, representing the average size of a particular cluster.

• For each cluster, we selected the number of individuals in each cluster-period by sampling

from a normal distribution with mean mi and SD 0.65/100×mi. A coefficient of variation

of 0.65/100 was chosen to ensure a smaller variation in size between periods than variation

across clusters. Numbers less than or equal to zero were redrawn.

For each scenario we compared the different methods of analysis in terms of the mean

estimated treatment effect, bias in the estimated SEs, failure rates, power, and Type I error

rate across 5000 simulated data sets. This number of replications gives a Monte Carlo error of

0.3% when estimating the Type I error rate, assuming a true rate of 5% [25]. Methods were

classed as failing to run when applied to a specific simulated data set if they did not produce

parameter and standard error estimates, for example if the model did not converge.

Bias in the estimated SEs was calculated as the ratio of the model based SE to the empirical

SE; empirical SEs were calculated as the SD of the individual treatment effects, and model

based SEs were calculated as the square root of the mean of the treatment estimate variances.

All summary measures were calculated only for scenarios where the analysis method did not

fail to run (e.g. due to non-convergence).

5 Initial simulation study

We started by conducting two small simulation studies to rule out any methods of analysis that

did not perform well across any scenarios. The first set of simulations varied the number of

clusters while keeping other parameters fixed; the second set of simulations varied the size of ρp

while keeping other parameters fixed. For each set of simulations, we set the treatment effect to

zero to evaluate the Type I error rate. We used an event rate of 15% in the control arm during

the first period, which corresponds to µ = log
(

0.15
1−0.15

)
= −1.735 in Equation (11), with a fixed

period effect OR of 0.85 (βπ = log(0.85) = −0.163 in Equation (11)), and a ρc of 0.062.

For the scenarios looking at increasing the number of clusters we used a ρp of 0.023, which

corresponds to variance components of (σ2
c = 0.137, σ2

p = 0.081). The following values were

used for the number and size of clusters:

• 6 clusters, with an average of 200 patients per cluster-period,

• 12 clusters, with an average of 60 patients per cluster-period,

• 20 clusters, with an average of 34 patients per cluster-period,

• 30 clusters, with an average of 22 patients per cluster-period,

• 50 clusters, with an average of 14 patients per cluster-period,

• 80 clusters, with an average of 8 patients per cluster-period.

The average numbers of patients per cluster-period were found by simulation as those required to

give 80% power using an unweighted cluster-summary level regression for (ρc = 0.062, ρp = 0).

Note that, since ρp = 0 for this ICC combination, ρc = η, i.e. the correlation between two

observations in a cluster is the same regardless of period.
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For the scenarios increasing ρp we used 6 or 30 clusters, with their respective average sizes of

200 and 22 patients per cluster-period. A ρc of 0.062 was used, as before, and ρp was allowed to

take the following values: 0.001, 0.005, 0.01 and 0.05. These ICCs correspond to the following

variance component combinations: (σ2
c = 0.214, σ2

p = 0.003), (0.200, 0.017), (0.182, 0.035) and

(0.042, 0.176).

A discussion of our reasons for particular parameter choices is given in Section 4 of the

online appendix.

In these initial simulations we looked at the methods outlined in Section 3; consisting of an

unweighted linear regression on the cluster-level summaries plus six different types of weighting,

four hierarchical models and GEEs implemented in three different ways, each with and with-

out robust SEs. Wald test statistics for all hierarchical models and GEEs were based on the

normal distribution. Test statistics for the cluster-level summary regressions were based on a

t-distribution with C − 2 degrees of freedom. In the online appendix we also include results

using a t-distribution with C − 2 degrees of freedom for the hierarchical models and GEEs, to

enable direct comparison with the results from the cluster-level summary regressions.

5.1 Results of initial simulations and discussion

The effect of increasing number of clusters on Type I error is displayed in Figure 2. The effect

of increasing ρp on Type I error is shown in Figure 3. We also looked at some weightings and

GEEs that are not presented in the figures but that displayed very similar behaviours to other

models. The full results for all methods can be found in the online appendix in Tables 1-7.

The Fixed-random hierarchical model in Equation (10) that uses fixed effects for cluster and

a random effect for cluster-period was found to have a very high failure rate, for as few as 12

clusters (see Table 1 of the online appendix). We therefore chose not to include this method in

any further scenarios. All GEEs displayed in the figures use robust SEs.

None of the methods showed any bias in the treatment effect estimates. However, we found

that many of the methods have Type I errors considerably above 5%. The hierarchical models

had Type I errors that were inflated to over 10% for scenarios with only a few clusters and a non-

zero ρp. This was also the case for most of the GEEs, while the GEE using an exchangeable in

cluster-period correlation matrix had Type I errors that were generally too conservative, falling

to below 4% in several of the scenarios. This is because this working correlation matrix does

not exploit the correlation between individuals in different cluster-periods.

The unweighted linear regression gave a Type I error rate of between 4.2 and 5.0% across

all scenarios considered in this initial study. We therefore chose to study this model further in

our factorial simulation study. The linear regression that is weighted by size has inflated Type I

errors (above 5.6%) for all numbers of clusters when ρp is 0.023. For 6 clusters the Type I error

is inflated for ρp values of 0.005 and above. However, we decided to look further at this method

across a wider range of scenarios since it is a commonly used weighting scheme in parallel group

cluster randomised trials.

The ICC weighted regression suffers from a relatively high failure rate (up to 4% — see

Table 6 of the online appendix) in some scenarios, in addition to having a slightly inflated Type

I error. Note that if the ICCs estimated from the data gave negative weights to some clusters,

which led to those clusters being excluded from the analysis, we classed these data sets as failing

to run. We therefore did not take this method forward. The binomial variance weighting gave
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Figure 2: Type I errors across different numbers of clusters: the top left panel shows the linear
regression methods, the top right panel shows the hierarchical models and the bottom left panel
shows the GEEs. Random-random is a hierarchical model with random effects for cluster and
cluster-period. Random and Fixed have random and fixed effects for cluster respectively. GEEs
are labelled by their working correlation matrix, and all use robust SEs. Simulation parameters
are set to an event rate of 15%, no treatment effect, fixed period effect OR of 0.85, ρc = 0.062
and ρp = 0.023. For clarity, Type I errors of greater than 10% have been plotted together and
labelled individually.

appropriate Type I errors in the initial simulation study that increased number of clusters, but

gave an inflated Type I error for larger values of ρp in the second initial simulation study. We

therefore did not take this method forward.

Importantly, the Random hierarchical model, which has random effects for cluster but ig-

nores any extra correlation within cluster-periods, did not perform well in these initial scenarios.

It has an inflated Type I error when (ρc = 0.062, ρp = 0.023) even for 80 clusters, where the

Type I error is 6.4%. Although the Type I error is close to the nominal value of 5% for smaller

ρp values (up to ρp = 0.005) when there are 30 clusters, the false positive rate is too high for all

values of ρp considered when there are only 6 clusters. Aside from a small number of scenarios

(30 clusters, ρp ≤ 0.005), the false positive rate for this method is inflated, in the worst cases

to over 40% (6 clusters, ρp = 0.05). The results for this method, and for the Fixed model, were

so poor that they were not carried forward to the full factorial simulation.

Although the Random-random hierarchical model does have inflated error rates for small

numbers of clusters there is a suggestion that this behaviour improves for larger numbers of

clusters — the Type I error rate is only 5.4% for 80 clusters. Although for six clusters the Type

I error is 5.7% even for a very small ρp of 0.001, when the number of clusters is increased to
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Figure 3: Type I errors across different values of ρp: the top panel shows the linear regression
methods, the middle panel shows the hierarchical models and the bottom panel shows the
GEEs. The left hand column is for 6 clusters, and the right is for 30 clusters. Other simulation
parameters are set to an event rate of 15%, no treatment effect, fixed period effect OR of 0.85,
and ρc = 0.062.

30 the Type I error is close to nominal until ρp is raised to above 0.01. The Random-random

model also performs consistently better than any of the other hierarchical models. We therefore

decided to take forward this model to the factorial simulation study.

6 Factorial simulation study

As described in Section 5.1, we took forward three methods to a fully factorial simulation study:

an unweighted linear regression, a linear regression weighted by size and the Random-random

hierarchical model. We have provided the Stata [9] code for these methods in Section 3 of the
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online appendix.

The simulation parameters we varied in this study were:

• Event rate in the control arm during the first period: 15% or 45% (µ = log
(

0.15
1−0.15

)
=

−1.735 or µ = log
(

0.45
1−0.45

)
= −0.201 in Equation (11)).

• Treatment effect: no treatment effect or a non-zero treatment effect (OR 0.5 for an event

rate of 15%, corresponding to a decrease to an event rate of around 8%, βτ = log(0.5) =

−0.693 in Equation (11); OR 0.75 for an event rate of 45%, corresponding to an event

rate on treatment of 38%, βτ = log(0.75) = −0.288).

• Number of clusters: 6 or 30.

• ICC combinations: (ρc = 0.023, ρp = 0), (0.062, 0), (0.023, 0.01) and (0.062, 0.023), with

values quoted on the logistic (underlying latent continuous variable) scale — see Section

4 of the online appendix for a discussion of these choices. These combinations correspond

to variance components of (σ2
c = 0.077, σ2

p = 0), (0.217, 0), (0.044, 0.034) and (0.137,

0.081), where σ2
c and σ2

p are defined in Equation (11). Note that scenarios with ρp = 0

will correspond to the variation seen in Panel A of Figure 1. When ρp is non-zero the

variation will be as in Panel B.

• Power/number of patients per cluster-period: for each scenario, we chose the average

number of patients per cluster-period, m, such that an unweighted linear regression model

gave the desired power (based on a t-distribution with C − 2 degrees of freedom) using

values for ρc and ρp of 0.062 and 0 respectively. This was done by using simulation. The

event rate was set as for the particular scenario. We used numbers of patients that were

needed to give either 80% or 90% power. This corresponds to 200 (80% power) and 330

(90% power) for 6 clusters and 15% event rate, 22 (80% power) and 31 (90% power) for

30 clusters and 15% event rate. For 45% event rate, averages of 400 and 600 patients per

cluster-period were used for 6 clusters, and 55 and 75 for 30 clusters.

In addition a fixed period effect was generated in each data set (OR 0.85 for an event rate of

15%, corresponding to a decrease of around 2% in event rate to about 13% in the second period,

βπ = log(0.85) = −0.163 in Equation (11); OR 0.92 for an event rate of 45%, corresponding to

the same absolute decrease of around 2%, βτ = log(0.92) = −0.083).

6.1 Results

In this Section we present the results of our factorial simulation study. Full tabulated results

can be found in the Section 6 of the online appendix.

6.1.1 Scenarios with an event rate of 15%

Figure 4 shows how the Type I error varies across the ICC combinations for the three methods

for 6 clusters (left-hand column), and an event rate of 15%. For 6 clusters with an average

of 200 patients per cluster-period (top left panel), the Type I error for the unweighted linear

regression is consistently below 5% for all ICC combinations (range: 4.2 to 4.4%). However,

the power drops from around 80% to below 60% for a ρp of 0.023, as can be seen in the top left

panel of Figure 5.

For scenarios with zero ρp the size-weighted regression has Type I errors close to or below

5% and gives better power than the unweighted linear regression. This is as expected since the
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variance in these scenarios depends on cluster size only and not ρp. However, when there is

a non-zero ρp the Type I error for this method rises to 5.7% for 6 clusters and 200 patients.

This behaviour is also observed for the Random-random hierarchical model, with the Type I

error rising to over 10% for non-zero ρp combinations. The power for this model is the highest,

but for scenarios with non-zero ρp this is not a valid comparison given the greatly inflated false

positive rates.

We used a normal distribution to calculate p-values for the Random-random model. Using

a t-distribution with C − 2 degrees of freedom can help to reduce inflated Type I errors, but

when the Type I error is already close to nominal the use of the t-distribution produces overly

conservative results (see tables in the online appendix). For example, for 6 clusters, an average

of 200 patients per cluster-period, 15% event rate, and (ρc = 0.062, ρp = 0.023), use of the t-

distribution gives a Type I error rate of 5.6% compared with 16.0% using a normal distribution.

However for the same number of clusters and patients but with (ρc = 0.023, ρp = 0) the Type

I error rate is 0.4% using a t-distribution, compared with 4.2% for a normal distribution. In

addition, use of the t-distribution is not always sufficient to reduce the Type I error to the

nominal rate. For example, for 6 clusters, 330 patients per cluster-period, 15% event rate, and

(ρc = 0.062, ρp = 0.023), use of the t-distribution gives a Type I error rate of 7.1% which is still

slightly inflated. It may therefore be beneficial to use a more sophisticated degree-of-freedom

correction, such as the Kenward-Roger method [26, 27]. However, more advanced degree-of-

freedom corrections are not always routinely available in standard statistical software packages,

and further research would be needed to assess any benefits of using such a correction.

Increasing the average number of patients per cluster-period to 330, shown in the bottom

left panel of Figures 4 and 5, results in a similar pattern of Type I errors and power for the

three models.

For 30 clusters, shown in the right-hand column of Figure 4, the unweighted linear regression

again gives appropriate Type I errors across all ICC combinations. The decrease in power for

the non-zero ρp combinations is much less for 30 clusters, as seen in the right hand column of

Figure 5. Both the size-weighted regression and the hierarchical model display inflated Type I

errors for some of the scenarios with larger ICCs, particularly when ρp is non-zero, although to

a lesser extent than with 6 clusters. They again both provide more power than the unweighted

regression, but sometimes at the cost of an inflated Type I error rate.

6.1.2 Scenarios with an event rate of 45%

Results for an event rate of 45% were qualitatively similar to those for an event rate of 15%,

and can be found in Section 5 of the online appendix. Unlike the scenarios with a 15% event

rate, the failure rate of the Random-random hierarchical model was found to be high for some

parameter values. For an event rate of 15% the failure rate was found to be lower than 0.5% in

all scenarios. For an event rate of 45% and 30 clusters the failure rate was similarly low, but

for only 6 clusters it varied between 1% and 9.3%, with the highest failure rates in scenarios

with large numbers of patients per period per cluster and high ICCs.
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Figure 4: Type I errors across different ICC combinations: combination one is (ρc=0.023, ρp=0),
combination two is (0.062, 0), combination three is (0.023, 0.01) and combination four is (0.062,
0.023). Graphs are labelled by number of clusters and average number of patients per cluster-
period. Other simulation parameters are set to an event rate of 15%, no treatment effect, and
a fixed period effect OR of 0.85.

7 Further exploration of the Random-random hierarchical model

Given the poor performance of the Random-random hierarchical model for certain ICC values

and numbers of clusters, we explored this model further over a wider range of simulation param-

eters. We ran further simulations using just the Random-random model as an analysis method

for the following parameters:

• Event rate: 15 %.

• Treatment effect: no treatment effect or a treatment OR of 0.5.

• Numbers of clusters: 6, 12, 20, 30, 50, 80 and 100.

• ICC combinations: (ρc = 0.023, ρp = 0), (0.062, 0), (0.023, 0.01) and (0.062, 0.023).

• Power: numbers of patients to give 80% power for an ICC combination (0.062, 0). This

corresponds to 200 patients per cluster-period for 6 clusters, 60 for 12 clusters, 34 for 20

clusters, 22 for 30 clusters, 14 for 50 clusters, 8 for 80 clusters and 6 for 100 clusters.

A fixed period OR of 0.85 was used.

7.1 Results

Figure 6 shows how the Type I error and power vary across the ICC combinations and numbers

of clusters for the Random-random model. Full tabulated results can be found in Section 6 of

the online appendix.
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Figure 5: Power across different ICC combinations. Simulation parameters and ICC combina-
tions are as in Figure 4 except that the treatment OR is 0.5.

For ICC combinations 1 and 2, i.e. those with ρp = 0, the Type I error remains close to

nominal levels for all numbers of clusters studied. For non-zero ρp, the Type I error grows as

the number of clusters is decreased. At least 50 clusters are needed for (ρc = 0.023, ρp = 0.01)

to get a Type I error close to 5%, and this rises to at least 80 clusters for the largest ICC

combination of (ρc = 0.062, ρp = 0.023).

The right hand panel of Figure 6 shows that the power remains high for all scenarios con-

sidered, although this comparison is not truly valid because of the elevated Type I error rates

for scenarios with high ICCs and small numbers of clusters.

These results show that if there is extra correlation within a cluster-period, it is necessary

to have a large number of clusters for the Random-random model to give Type I errors close to

5%.

8 Application to TRIGGER2

We now demonstrate how the results from the simulation study can be applied to inform the

design and analysis of a CRXO trial. TRIGGER1 [28–30] was a parallel group, cluster ran-

domised feasibility trial which compared two different haemoglobin thresholds for red blood cell

transfusions for patients with acute upper gastrointestinal bleeding. One of the primary aims

of TRIGGER1 was to inform the design and feasibility of a phase 3 trial, TRIGGER2.

TRIGGER1 took place in 6 UK hospitals, each of which recruited for a fixed period of 6

months. It is anticipated that TRIGGER2 will take place in between 20 and 40 hospitals, and

that the primary outcome will be all-cause mortality. Due to the limited number of clusters
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Figure 6: Type I errors (left hand panel) and power (right hand panel) for the Random-
random hierarchical model, increasing the numbers of clusters across different ICC combinations:
combination one is (ρc=0.023, ρp=0), combination two is (0.062, 0), combination three is (0.023,
0.01) and combination four is (0.062, 0.023). The average number of patients per cluster-period
is 200 for 6 clusters, 60 for 12 clusters, 34 for 20 clusters, 22 for 30 clusters, 14 for 50 clusters,
8 for 80 clusters and 6 for 100 clusters. Other simulation parameters are set to an event rate
of 15%, a fixed period effect OR of 0.85, and either no treatment effect (left hand panel) or a
treatment OR of 0.5 (right hand panel).

available, as well as the likelihood that the intervention would result in a relatively small (though

still clinically important) treatment difference, TRIGGER2 may be designed as a CRXO trial

to increase power and reduce the number of patients required in each cluster.

Our simulation study has demonstrated that it is important to consider not only ρc but also

ρp when calculating the sample size or choosing the analysis method for a CRXO trial. Because

TRIGGER1 was a parallel group cluster randomised trial, estimating ρp is difficult. However,

a crude estimate can be obtained by splitting the follow-up period into two halves; 0-3 months,

and 4-6 months. From this, we estimated ρp as 0.012.

This ICC estimate is large enough that it should be accounted for in both the sample size

estimate and the analysis. The sample size could be calculated using an analytical formula that

allows for between cluster-period variation [8, 31] or by using simulation [32]. The simulation

package created by Reich et al. [32] assumes that ρp is zero and would therefore not be suitable

for use in situations where it is suspected to be non-zero. Because of the relatively small number

of clusters, an individual-level analysis based on a hierarchical model is not likely to perform

well. Therefore, an unweighted cluster-level summary analysis may be preferred.

It should be noted that our estimate of ρp from TRIGGER1 may not be a reliable estimate.

We have assumed that each period lasts for three months, but the ρp estimate may not be

appropriate for different period lengths. Additionally, this estimate is based on only 6 clusters

and will therefore have a large error associated with it.

This demonstrates the challenges in trying to estimate ρp to help inform the design and anal-

ysis of CRXO trials. Estimates are unlikely to be routinely available from previously reported

CRXO trials, and estimates from existing datasets may face similar issues as TRIGGER1.
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9 Discussion

Cluster randomised cross-over trials may be useful in settings where recruiting larger numbers

of clusters is not possible and carry-over of an intervention will not be a problem. The potential

for carry-over should be carefully considered before using a cross-over design since any residual

effects of treatment that are present in later periods will bias estimates of treatment effect [20].

If there is no carry-over, using a cross-over element in the design may increase the power and

help counteract imbalance between the arms if there are only a small number of clusters [3].

However, it adds another level of clustering, periods within clusters, which may complicate the

sample size calculation and analysis.

We have demonstrated that it is necessary to model ρp in the analysis, and results from

our simulation study indicate that Type I errors can be substantially inflated (to over 20% in

some cases) if this is not done appropriately. Although it may be tempting to model only the

highest level of clustering for simplicity, our results show that this leads to inflated Type I errors.

Using a hierarchical model without a random effect for cluster-period results in higher Type I

errors than a model which does include such a term. In addition using the Random-random

model when ρp is zero does not result in inappropriate Type I errors. It is therefore important

to model all levels of clustering, not just the highest. At present, this does not seem to be

generally acknowledged when analysing CRXO trials. The systematic review conducted by

Arnup et al. [4, 5] deemed that out of 127 analyses performed at the individual-level, only four

used potentially appropriate methods that account for both levels of clustering of the CRXO

design. Fifty-four of the individual-level analyses did not account for either the clustering or

cross-over, and no analyses used a random effect for cluster-period.

If ρp is zero then the unweighted and size-weighted cluster-level summary methods and the

Random-random hierarchical model all appear to perform well. When ρp is non-zero, our results

demonstrate that the number of clusters in a CRXO trial is very important in differentiating

between methods. Choosing an appropriate analysis for a small number of clusters becomes

very difficult. This is especially concerning given that not being able to recruit a large number

of clusters may be a common reason for conducting a CRXO trial. Arnup et al.’s review of 91

CRXO trials found the median number of clusters to be 9 (IQR 4-21) [5].

We found that an unweighted cluster-level regression method is robust across all scenarios

considered, but that this method can lose power when ρp is non-zero, especially for small

numbers of clusters. These results agree with those in Forbes et al. [8], who found that cluster

methods generally work well. Given this loss of power, it might be tempting to use a size-

weighted linear regression. However, we found that this method did not work well in a wide

variety of different scenarios.

Despite our results showing the robustness of an unweighted cluster-level regression method,

the review by Arnup et al. [5] found that only 9% (12/139) of analyses were performed at the

cluster-level. We have demonstrated that care needs to be taken as to whether it is appropriate

to use an individual-level method of analysis such as the Random-random hierarchical model

with random effects for cluster and cluster-period. For small numbers of clusters, as may be the

case in many CRXO trials in practice, the Type I error is inflated for this model. Adopting a

degree-of-freedom correction such as the Kenward-Roger method may reduce the Type I error

rate in these scenarios, although further study is required to verify this. For such study, we note

that implementation of Kenward-Roger degrees of freedom in generalised linear mixed models
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is available in the SAS software, but we are not aware currently of its implementation in Stata

or R outside of linear mixed models.

As discussed in Section 8, it can be difficult to find a reliable estimate for ρp for use in a

sample size calculation or when deciding on a method of analysis. In the absence of a good

estimate for the ICC, we recommend assuming a non-zero effect and accounting for it in the

analysis. This will help to ensure correct confidence intervals and p-values, and avoid inflating

the Type I error rate. For example, Gireaudeau et al. recommend in some circumstances

using ρp set to half the size of ρc [31]. A strategy such as this is preferable to alternatives

such as assuming that ρp is 0 and ignoring it in the analysis (which could lead to substantially

increased Type I error rates), or using data from the trial to estimate the ICC and choosing

whether to account for clustering by period in the analysis based on this estimate (as this type

of preliminary testing strategy has been shown to perform poorly in many situations [33–35]).

Given the particular issues of loss of power and small numbers of clusters that have been

highlighted by our simulation study, it would also be important to consider these issues at the

stage of planning the sample size to be used for a CRXO trial. Giraudeau et al. [31] and Forbes

et al. [8] have both published some work on sample size calculations for CRXO trials. It may

also be worth calculating sample size by simulation, in order to consider the effect of likely

values of ρp and numbers of clusters, extending the work of Reich et al. [32] to the case of

non-zero ρp. The risk of using too few clusters has also been discussed in Ref. [36].

Our study contained some limitations. For the hierarchical models, we considered only a

logit link as to our knowledge it is not possible to specify other link functions with a Random-

random model for a binary outcome in Stata. However, the Random-random model with other

link functions, such as log or identity, could be easily specified in other software packages such

as SAS; although further research is required to ensure these models perform adequately.

In our simulation study, we only considered CRXO trials with two time periods and different

individuals in each period. The Arnup systematic review [4, 5] of 91 CRXO trials found that

58 trials (69% of those with number of periods available) had two periods only, and that only

27 trials (30%) included the same individuals in all periods, suggesting that our results will be

relevant to many CRXO trials that have been conducted. The methods of analysis considered in

this paper could be extended to account for more periods. The methods could also be extended

to other trial designs with multiple periods and clustering, such as stepped wedge trials. Such

trials may have non-zero ρp and, given our results, it would be important to account for this in

the analysis. However, more research would be needed to evaluate how the methods perform in

those scenarios. For example, autocorrelation may become an important factor with increasing

numbers of periods.

We simulated data sets with unequal numbers of patients per cluster-period. Our results may

not be generalisable to situations with different distributions of patients across cluster-periods,

since loss of power for unequal cluster sizes versus equal cluster sizes depends on the cluster

size distribution [37]. However, allowing cluster sizes to vary is more realistic than assuming

equal cluster sizes and is likely to reflect what will happen in a CRXO trial in practice, so our

results offer a pragmatic comparison of methods and show what happens to the power under

one possible data generation method.
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10 Conclusions

Ignoring ρp in a CRXO trial can lead to inflated Type I errors if ρp is non-zero. Given that it

will be very difficult to completely rule out the existence of a non-zero ρp, an analysis method

that accounts for this should generally be chosen.

However, accounting for ρp is difficult. A hierarchical model with random effects for cluster

and cluster-period requires a very large number of clusters if there is additional correlation

within a cluster-period. For values of the extra correlation considered in this study, at least 50-

80 clusters were required for nominal Type I error rates, with more clusters required for larger

differences in correlation. An unweighted cluster-level summary method can be used with a

smaller number of clusters but may lose power. If using this method we therefore recommend

that the sample size used is large enough to account for this potential loss of power. Sample

size simulations which account for both levels of clustering may be of use to establish how large

a trial is needed.
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