Nutrient depleted soil is associated with the presence of Burkholderia pseudomallei.


Hantrakun, V; Rongkard, P; Oyuchua, M; Amornchai, P; Lim, C; Wuthiekanun, V; Day, NP; Peacock, SJ; Limmathurotsakul, D; (2016) Nutrient depleted soil is associated with the presence of Burkholderia pseudomallei. Applied and environmental microbiology, 82 (24). pp. 7086-7092. ISSN 0099-2240 DOI: https://doi.org/10.1128/AEM.02538-16

[img]
Preview
Text - Accepted Version
License:

Download (1MB) | Preview

Abstract

: Burkholderia pseudomallei is a soil-dwelling bacterium and the cause of melioidosis, which kills an estimated 89,000 people per year worldwide. Agricultural workers are at high risk of infection due to repeated exposure to the bacterium. Little is known about the soil physicochemical properties associated with the presence or absence of the organism. Here, we evaluated the soil physicochemical properties and presence of B. pseudomallei in 6,100 soil samples collected from 61 rice fields in Thailand. The presence of B. pseudomallei was negatively associated with the proportion of clay, proportion of moisture, level of salinity, percentage of organic matter, presence of cadmium, and nutrient levels (phosphorus, potassium, calcium, magnesium, and iron). The presence of B. pseudomallei was not associated with the level of soil acidity (P = 0.54). In a multivariable logistic regression model, the presence of B. pseudomallei was negatively associated with the percentage of organic matter (odds ratio [OR], 0.06; 95% confidence interval [CI], 0.01 to 0.47; P = 0.007), level of salinity (OR, 0.06; 95% CI, 0.01 to 0.74; P = 0.03), and percentage of soil moisture (OR, 0.81; 95% CI, 0.66 to 1.00; P = 0.05). Our study suggests that B. pseudomallei thrives in rice fields that are nutrient depleted. Some agricultural practices result in a decline in soil nutrients, which may impact the presence and amount of B. pseudomallei bacteria in affected areas.<br/> : Burkholderia pseudomallei is an environmental Gram-negative bacillus and the cause of melioidosis. Humans acquire the disease following skin inoculation, inhalation, or ingestion of the bacterium in the environment. The presence of B. pseudomallei in soil defines geographic regions where humans and livestock are at risk of melioidosis, yet little is known about the soil properties associated with the presence of the organism. We evaluated the soil properties and presence of B. pseudomallei in 61 rice fields in East, Central, and Northeast Thailand. We demonstrated that the organism was more commonly found in soils with lower levels of organic matter and nutrients, including phosphorus, potassium, calcium, magnesium, and iron. We also demonstrated that crop residue burning after harvest, which can reduce soil nutrients, was not uncommon. Some agricultural practices result in a decline in soil nutrients, which may impact the presence and amount of B. pseudomallei bacteria in affected areas.<br/>

Item Type: Article
Faculty and Department: Faculty of Infectious and Tropical Diseases > Dept of Pathogen Molecular Biology
Related URLs:
PubMed ID: 27694236
Web of Science ID: 388090500008
URI: http://researchonline.lshtm.ac.uk/id/eprint/2965116

Statistics


Download activity - last 12 months
Downloads since deposit
9Downloads
40Hits
Accesses by country - last 12 months
Accesses by referrer - last 12 months
Impact and interest
Additional statistics for this record are available via IRStats2

Actions (login required)

Edit Item Edit Item