What’s new in trichiasis surgery?

Introduction
There are approximately 10 million people living with trachomatous trichiasis (TT) worldwide. These individuals are at high risk of developing irreversible blinding corneal opacification (CO) if left untreated. Surgical correction of TT is believed to reduce the risk of progressive CO and blindness. During the five years since it was last reviewed in this journal there have been several important contributions to the field of TT surgery.

Who needs surgery?
Deciding who needs TT surgery varies between control programmes. Some advocate early surgery when one or more lashes touch the eye, whilst others practice epilation until more severe TT develops. No study has compared these two approaches. However, data on the natural history of TT from The Gambia indicate that disease progression can be quite swift. In one year, 33 per cent of cases of minor trichiasis (<5 lashes touching the eye) progressed to major trichiasis (5 or more lashes touching the eye). Therefore, where people do not have frequent contact with eye care services, surgery for mild disease is a logical approach. In addition, the surgery is technically easier and is likely to have a better outcome.

Who should do the surgery?
In most trachoma endemic areas there are not enough ophthalmologists to perform the required number of TT surgeries. Therefore, many programmes train nurses and other para-medical staff to perform lid surgery. A randomised controlled trial (RCT) in Ethiopia compared the results of TT surgery performed by trained nurses to those obtained by ophthalmologists, and found no difference in outcome.2 A retrospective review of TT surgery in Morocco found that, of patients operated on by nurses, 12.3 per cent had recurrent disease at the time of follow-up: significantly less than patients operated on by ophthalmologists, possibly because ophthalmologists tend to do more difficult cases.3 These studies support the practical decision to train non-opthalmologists to do TT surgery.

Where should the surgery be done?
Distance to surgical services has been consistently identified as a barrier to uptake of TT surgery. Performing surgery in villages might be expected to improve uptake. In a community RCT from The Gambia the acceptance rate was 45 per cent higher with village-based TT surgery than with health centre-based surgery (though the difference did not reach statistical significance, p = 0.15).4 There was no difference between village and health centre-based surgery in the rates of recurrent trichiasis or complications. The cost to the patient was significantly less for those who had village-based surgery.

Which procedure should be used?
A number of alternative procedures are used to correct TT. An RCT in Oman compared several of these and identified the Bilamellar Tarsal Rotation (BLTR) to have the lowest TT recurrence rate.5 Subsequently the WHO endorsed BLTR as the preferred procedure for trachoma control programmes.6 Several countries use a similar procedure called the Posterior Lamellar Tarsal Rotation (PLTR). These two procedures were formally compared in a RCT in Ethiopia, which found no difference between the two in the rate of recurrence three months after surgery; however, longer follow-up data are still needed.7
What is the outcome of surgery?

The outcome of trichiasis surgery has been measured in several ways: trichiasis recurrence rates, change in visual function, progression of corneal opacification and patient-reported symptoms. Previously, it was generally believed that the rate of recurrent trichiasis was about 20 per cent one year after surgery.8 However, recent studies indicate that the rate of recurrent trichiasis is often higher than this, and that it continues to increase with time of follow-up. A three-year follow-up of individuals who had undergone BLTR surgery found recurrent TT in 62 per cent.9 A Gambian study estimated that the median time to recurrence was 10 years after surgery.6 The only prospective data on the impact of TT surgery on visual function indicates that there can be a modest improvement, equivalent to half a line of Snellen acuity, a year after surgery.4 This is probably due to some restoration of the corneal surface and a reduction in ocular secretions. There are presently no long-term outcome data on visual function. Trachomatous CO has a multifactorial aetiology. Whilst direct abrasion by in-turned lashes is probably the single most important factor, other insults to the cornea play a part, including dry eye, bacterial infection of the damaged cornea, and a rough tarsal conjunctival surface. Progression of CO occurs despite successful treatment of TT.1 Despite quite high recurrence rates, patient perception of surgery is generally positive with a large majority reporting improvement in vision and reduction in pain.9

Why does trichiasis recur after surgery?

There is little information on the causes of recurrent TT. It is likely that a number of factors contribute at different stages after surgery. The choice of procedure is important and has, in part, been discussed above. Inter-surgeon variability is rarely reported, however, it is probably very important. Recent studies from Nepal suggest that BLTR patients who have post-operative ocular C. trachomatis infections are more likely to develop recurrent TT than uninfected patients.10 It is possible that ocular infection with other bacteria could also play a role.11

How can surgical results be improved?

Given the somewhat disappointing recent reports of relatively high trichiasis recurrence rates, there is a pressing need to develop strategies to improve the quality and long-term outcome of TT surgery. Ongoing audit of results is needed to identify surgeons in need of additional training and support. In areas where there is a low prevalence of TT, it may be appropriate for a small number of mobile surgeons to undertake all TT surgery, ensuring that all operations are done by individuals with regular experience. A number of ongoing studies are examining whether enhanced infection control with peri-operative azithromycin can influence surgical outcome. Uptake of surgery remains low in many endemic areas. Various barriers to surgery have been identified including cost, accessibility, fear and lack of time.12 In order to ensure that trichiasis surgical services can most effectively minimise the incidence of blindness due to trachoma, research groups and control programmes will need to address all of these issues.

References