
Downloaded from: http://researchonline.lshtm.ac.uk/2537348/

DOI: 10.1056/NEJMp1602278

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: Copyright the publishers
When the director-general of the World Health Organization (WHO) declared that the recently reported clusters of microcephaly and other neurologic disorders represent a Public Health Emergency of International Concern (PHEIC), she called for increased research into their cause, including the question of whether the Zika virus is the source of the problem. The declaration provides an opportunity to step up the pace of research in order to find the answer to some important questions more quickly. It could not only facilitate the accumulation of knowledge about the relationship between the Zika virus and microcephaly, but also accelerate the study of newer technologies for mosquito control, which could have far-reaching effects on global health security beyond controlling Zika infections.

But to answer these research questions effectively and maximize their contribution to enhancing health security, we believe it is critical that research be conducted collaboratively. Building and strengthening public health capacities (in part through collaborative research) are central to the International Health Regulations, an international agreement of all WHO member countries designed to strengthen health security.

Yet collaborative research is not a given. Collaborative clinical and vaccine research during the recent Ebola epidemic helped some West African researchers hone their skills and bring them up to global standards for good practice. And many of the laboratories and other installations provided by donor countries during the Ebola outbreak remain in place and are becoming a focus for development aid targeted at improving public health. But in general, collaboration during that crisis was suboptimal; in too many cases, West Africa became a playground for researchers allegedly appropriating and transporting specimens and data to their home laboratories, sometimes without the knowledge or permission of the countries in which they were collected. An initiative to create a coordinated network of biobanks and data-sharing platforms for Ebola and other emerging pathogens has been launched by Médecins sans Frontières (Doctors without Borders), but it remains to be seen whether it will be accepted by the research community and contribute to increased sharing of data and specimens.

Research during other recent outbreaks and emergencies has also been fraught with failures to collaborate. Consider the current outbreaks of Middle East respiratory syndrome (MERS). The coronavirus that causes MERS was identified nearly 3 years ago, and scientists have suggested trans-
mission links to bats and to camels, but it is still not understood how the MERS coronavirus is periodically transmitted to humans from these or other sources in nature. Studies that could help answer such questions have not yet been completed, nor have their results been shared in a way that could lead to preventive measures. In some instances, scientists have taken back specimens from the Middle East to study in their own laboratories, creating misunderstandings among researchers and accusations of publishing data without permission from the country of origin.

These practices have been pejoratively labeled “parachute” research: fully equipped research teams from other countries arrive at the site where research is needed, conduct their research independently of others, and then leave. Parachute researchers reduce the effectiveness of emergency responses by neglecting to share their data with the public health teams from the affected country in which they’re working, while also missing an opportunity to enhance the capacity of host-country scientists, which could help prevent future outbreaks.

There have already been rumors of nonsharing of virus specimens and other information during the current outbreaks of Zika and clusters of neurologic disease, and international agreements on virus ownership such as the Nagoya Protocol from the Convention on Biological Diversity would have to be respected. But implementation of such a framework will face many potential but resolvable obstacles, ranging from political considerations and ethical standards to technical feasibility and academic requirements for publication; and international agreements on virus ownership such as the Nagoya Protocol from the Convention on Biological Diversity would have to be respected. But implementation of such a framework would be a first step toward new rules of the game for all.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

From the Centre on Global Health Security, Chatham House (D.L.H., L.L.); Public Health England (D.L.H.); and the London School of Hygiene and Tropical Medicine (D.L.H.) — all in London; and Médecins sans Frontières, Geneva (J.L.).

This article was published on March 9, 2016, at NEJM.org.


DOI: 10.1056/NEJMp1602278

Copyright © 2016 Massachusetts Medical Society.